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camera frames (known as keyframes), extracts features from
the keyframes, runs SLAM algorithms on the features (e.g.,
bundle adjustment), and outputs the 3D coordinates of the
features (i.e., the point cloud) and the estimated device pose.
This pipeline is shown in the bottom half of Fig. 2. The 3D
coordinates of the point cloud are relative to an origin point,
typically set as the pose of the device when the AR app was
first launched. The device’s coordinate system is called its
world frame.
To place virtual objects for AR, the device records the

pose of the virtual object (the pose of the virtual object is
defined as its location and orientation, and can be provided
by user input, or an object detector). The device runs SLAM
continuously to update its own pose estimate and the point
cloud, and then draws the virtual object on the display when
its FoV overlaps with the virtual object’s pose.

In a multi-user scenario, each device runs SLAM to build
up its own point cloud of the environment, with coordinates
stored relative to its own world frame, as shown in Fig. 1.
One device can add a virtual object to its own world frame
and desire these objects to be reflected on the displays of
the other AR devices. Since the devices have different world
frames, they need to align their maps (i.e., point clouds) using
map fusion techniques. However, the point clouds estimated
by each AR device are likely not identical, making map align-
ment noisy and potentially resulting in inconsistency of the
virtual objects’ locations and orientation across users.

For this paper, we define a SLAM map1 as comprised of
several data structures: a 4× 4 homogeneous transformation
matrix representing the device’s pose when each keyframe
was captured [16], the 3D coordinates of the keyframe fea-
tures (i.e., the point cloud), feature descriptors, and a Dis-
tributed Bag Of Words [9] (DBoW) database enabling fast
keyframe matching for map alignment.

2.2 Metrics for Multi-User AR

Single-user AR quality can be measured through a number
of quantitative metrics, including rendering quality, FoV size,
registration error, and task completion [30]. In this work,
we focus on quantitative metrics relevant to a multi-user,
collaborative AR experience.We call thesemulti-user Quality
of Augmentation (QoA) metrics. Specifically, the metrics we
focus on are:

• Virtual Object Pose Accuracy (m,◦): The pose accuracy
measures how far the virtual object is from the correct
position/orientation [33]. We assume that the correct pose
is given by the initiating device (either from user input, or
by an object detector). For example, Fig. 3 shows screen-
shots of an inaccurately placed virtual cube seen by device
B, relative to a virtual cube initially placed by device A.

1The CloudAnchor, ARWorldMap, and SpatialAnchor objects used in

Google [13], Apple [3], and Microsoft’s [21] AR platforms, respectively,

are some version of SLAM maps.

(a) Virtual cube as seen by de-

vice A.

(b) Virtual cube as seen by de-

vice B.

Figure 3: Example of virtual object pose inaccuracy.

• VirtualObject Pose Jitter andDrift (m/s,◦/s):The pose
jitter measures the motion of the virtual object between
subsequent frames [22]. The pose drift measures the accu-
mulation of position and orientation errors over time [18].
Low jitter and drift means that the virtual object stays in
place with respect to the real world over time, even if the
user moves.

• End-to-end Latency (s): The end-to-end latency mea-
sures the time from when device A places a virtual object,
to when it is drawn in the FoV of device B. The compo-
nents of latency can include communication, computation,
rendering, I/O, OS time, etc.

We note that while pose accuracy, jitter, and drift have been
considered in the robotics community, łposež in that setting
typically refers to the pose of the device. Instead, for AR, we
are interested in the pose of the virtual objects displayed in
the user’s FoV. Virtual object pose estimation differs from
real object pose estimation in that there is no external ground
truth observable by each device.

2.3 Related Work

Mobile AR systems: Several works focus on object detec-
tion for AR [2, 7, 15, 19, 20, 27, 33], sometimes with the
help of the cloud/edge. While object detection is one com-
ponent of AR that can generate virtual objects, we consider
communicating general pose information about the virtual
objects to other users. OverLay [17] labels real-world objects
with the help of odometry sensors, whereas we addition-
ally incorporate continuous camera frames, and can display
virtual objects with 3D location/orientation in the world.
MARVEL [6] focuses on the energy-efficiency of mobile AR,
and GLEAM [24] discusses lighting rendering for virtual
objects, which are orthogonal directions to this work.
Multi-user AR: CARS [34] discusses sharing object de-

tection results between multiple users, whereas we consider
more general virtual objects and integration with SLAM-
based AR. In industry, Google ARCore, Apple ARKit, and Mi-
crosoft HoloLens are recent mobile AR platforms [3, 13, 21];
our focus is on measurements and comparative evaluation
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