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ABSTRACT

Augmented reality is an emerging application on mobile de-
vices. However, there is a lack of understanding of the com-
munication requirements and challenges of multi-user AR
scenarios. In this position paper, we propose several impor-
tant research issues that need to be addressed for low-latency,
accurate shared AR experiences: (a) Systems tradeoffs of AR
communication architectures used today in mobile AR plat-
forms; (b) Understanding AR communication patterns and
adapting the AR application layer to dynamically changing
network conditions; and (c) Tools and methodologies to eval-
uate AR quality of experience in real time on mobile devices.
We present preliminary measurements of off-the-shelf mo-
bile AR platforms as well as results from our AR system,
ShareAR, illustrating performance tradeoffs and indicating
promising new research directions.
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1 INTRODUCTION

Augmented and virtual reality (AR/VR) are forecast to be the
next frontier of mobile devices and open up a $692 billion
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Figure 1: AR devices try to ensure consistent views of
the virtual object despite different reference coordi-
nate systems.

market by 2025 [8]. In AR, a user’s perception of the world is
augmented by overlaying virtual objects onto the real world.
These virtual objects provide relevant information to the user
and remain fixed with respect to the real world, creating the
illusion of seamless integration. Widely used examples of
AR apps today include Pokemon Go, Google Translate, and
Snapchat face filters. However, these apps mainly focus on
single-user experiences, and lack the ability for multiple,
co-located users to see and interact with the same virtual
objects in real-time.

In this position paper, we explore several research direc-
tions to enable shared multi-user AR experiences. Multi-user
AR will enable a new class of AR applications where users can
interact with a common set of virtual elements to perform
a common task or enjoy a common experience. For exam-
ple, we envision multiple students wearing AR headsets in
a classroom being able to see the same virtual chemistry
molecule floating on table and manipulate it, with the virtual
molecule remaining consistent across users. However, un-
coordinated or laggy updates to the virtual molecule would
break the illusion of seamless integration with the real world,
and result in artifacts such as other users appearing to touch
non-existent parts of the virtual molecule.

There are several challenges in realizing smooth commu-
nications between multiple AR users. Firstly, communication
characteristics of existing mobile AR platforms are under-
explored: there is a lack of understanding of what, how of-
ten, and to whom AR data transmissions are sent, and their
impact on the user’s AR-specific quality-of-experience. Sec-
ondly, AR involves complex computation: AR devices typically
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utilize simultaneous localization and mapping (SLAM) and
object detection techniques, which are initially computed on
the AR device (or with the aid of edge/cloud), disseminated
to other AR devices, and finally jointly processed to produce
the final computation result. Thirdly, AR devices can have
differing fields-of-view: the AR devices need to render the
virtual objects at the correct locations and orientations in
their current fields-of-view (FoVs), while maintaining a com-
mon understanding of the real and virtual worlds of other
AR devices. Fourth, users manipulate the virtual objects inde-
pendently: the changes made by one user to a virtual object
cannot be directly observed by other devices (e.g., through
their cameras) because these manipulations do not act on
real-world objects, and instead need to be explicitly commu-
nicated to ensure consistency between the users’ displays.

The contribution of this paper is a research agenda high-
lighting several key components to support networked, multi-
user AR applications in the near future:

e Who to send to? We examine common communication
architectures used by Google ARCore and Apple ARKit,
two mobile AR platforms, and find they use either cloud-
based or peer-to-peer architectures. To the best of our
knowledge, we are the first to clearly illustrate the flow
of information exchange in multi-user AR. Since these
platforms are closed source, we cannot perform an “ap-
ples to apples” comparison of the performance tradeoffs
(e.g., scalability, latency). Therefore, we propose extend-
ing an existing open-source single-user AR system [26]
with multi-user functionality (which we call ShareAR) and
use it to measure the performance tradeoffs, which can
help provide guidelines on which architecture to use for a
given AR application, environmental context, and network
conditions (§3.1).

e What and how often to send? We collected network traces
of several existing multi-user AR apps, and found that AR
data transmissions consist of relatively large map data
(more than 20 Mb) along with smaller chunks of user
interaction data. We propose methods to adapt the AR
application layer data to time-varying network conditions,
while maintaining good AR quality. Our key idea is to tune
the available “control knobs” of the AR application data
(e.g., number of keyframe features, number of transmis-
sions, point cloud spatial granularity), taking into account
their tradeoffs with AR quality, and choose the right con-
figuration (§3.2).

e How to measure multi-user AR quality? Tools to measure
AR quality are needed in order to quantitatively evalu-
ate any proposed modification to multi-user AR systems.
AR quality is defined in terms of the accuracy, jitter, and
drift of a virtual object’s position and orientation (§2.2).
However, computing a virtual object’s position and orien-
tation error is challenging because there is no common
“ground truth” point of reference (there exist only relative
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Figure 2: ShareAR integrates new components for
multi-user AR with existing single-user AR.
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observations made by each device). We propose an AR
quality evaluation tool that relies on markers placed in the
environment, serving as points of reference from which
to compute the virtual object’s position/orientation error.
The tool collects logs from each AR device and computes
the placement and orientation error of the virtual objects
seen by the AR users (§3.3).

Underlying the above ideas is the ability to experiment with
the internal computations and communications of multi-user
AR. Because existing multi-user AR platforms [3, 13, 21]
are closed source, we are currently working on integrating
the above ideas into our Android prototype, ShareAR, as
shown in Fig. 2. The purpose of our research prototype is not
to compete with existing commercial platforms, but rather
to provide a research prototype for experimentation and
testing. ShareAR implements multi-user AR functionality,
including sharing environmental maps and virtual object
information with other AR devices, as well the proposed
quality measurement tool, and provides a platform on top of
which other AR applications can be built.

In the remainder of this paper, we discuss relevant AR
background (§2.1), performance metrics (§2.2), related work
(§2.3), our research agenda (§3), and conclude in (§4).

2 BACKGROUND
2.1 Multi-User AR & SLAM

Simultaneous localization and mapping (SLAM) is a funda-
mental component of modern mobile AR systems, including
those from Google, Apple, and Microsoft [5, 14, 23]. In a
typical single-user AR scenario, the AR device uses SLAM
to construct a point cloud representing the real world, and
also estimates its own location and orientation (known as
pose). To compute the point cloud, SLAM selects a subset of

conditions
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camera frames (known as keyframes), extracts features from
the keyframes, runs SLAM algorithms on the features (e.g.,
bundle adjustment), and outputs the 3D coordinates of the
features (i.e., the point cloud) and the estimated device pose.
This pipeline is shown in the bottom half of Fig. 2. The 3D
coordinates of the point cloud are relative to an origin point,
typically set as the pose of the device when the AR app was
first launched. The device’s coordinate system is called its
world frame.

To place virtual objects for AR, the device records the
pose of the virtual object (the pose of the virtual object is
defined as its location and orientation, and can be provided
by user input, or an object detector). The device runs SLAM
continuously to update its own pose estimate and the point
cloud, and then draws the virtual object on the display when
its FoV overlaps with the virtual object’s pose.

In a multi-user scenario, each device runs SLAM to build
up its own point cloud of the environment, with coordinates
stored relative to its own world frame, as shown in Fig. 1.
One device can add a virtual object to its own world frame
and desire these objects to be reflected on the displays of
the other AR devices. Since the devices have different world
frames, they need to align their maps (i.e., point clouds) using
map fusion techniques. However, the point clouds estimated
by each AR device are likely not identical, making map align-
ment noisy and potentially resulting in inconsistency of the
virtual objects’ locations and orientation across users.

For this paper, we define a SLAM map' as comprised of
several data structures: a 4 X 4 homogeneous transformation
matrix representing the device’s pose when each keyframe
was captured [16], the 3D coordinates of the keyframe fea-
tures (i.e., the point cloud), feature descriptors, and a Dis-
tributed Bag Of Words [9] (DBoW) database enabling fast
keyframe matching for map alignment.

2.2 Metrics for Multi-User AR

Single-user AR quality can be measured through a number
of quantitative metrics, including rendering quality, FoV size,
registration error, and task completion [30]. In this work,
we focus on quantitative metrics relevant to a multi-user,
collaborative AR experience. We call these multi-user Quality
of Augmentation (QoA) metrics. Specifically, the metrics we
focus on are:

e Virtual Object Pose Accuracy (m,°): The pose accuracy
measures how far the virtual object is from the correct
position/orientation [33]. We assume that the correct pose
is given by the initiating device (either from user input, or
by an object detector). For example, Fig. 3 shows screen-
shots of an inaccurately placed virtual cube seen by device
B, relative to a virtual cube initially placed by device A.

!The CloudAnchor, ARWorldMap, and SpatialAnchor objects used in
Google [13], Apple [3], and Microsoft’s [21] AR platforms, respectively,
are some version of SLAM maps.
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Figure 3: Example of virtual object pose inaccuracy.

o Virtual Object Pose Jitter and Drift (m/s,°/s): The pose
jitter measures the motion of the virtual object between
subsequent frames [22]. The pose drift measures the accu-
mulation of position and orientation errors over time [18].
Low jitter and drift means that the virtual object stays in
place with respect to the real world over time, even if the
user moves.

e End-to-end Latency (s): The end-to-end latency mea-
sures the time from when device A places a virtual object,
to when it is drawn in the FoV of device B. The compo-
nents of latency can include communication, computation,
rendering, I/0, OS time, etc.

We note that while pose accuracy, jitter, and drift have been
considered in the robotics community, “pose” in that setting
typically refers to the pose of the device. Instead, for AR, we
are interested in the pose of the virtual objects displayed in
the user’s FoV. Virtual object pose estimation differs from
real object pose estimation in that there is no external ground
truth observable by each device.

2.3 Related Work

Mobile AR systems: Several works focus on object detec-
tion for AR [2, 7, 15, 19, 20, 27, 33], sometimes with the
help of the cloud/edge. While object detection is one com-
ponent of AR that can generate virtual objects, we consider
communicating general pose information about the virtual
objects to other users. OverLay [17] labels real-world objects
with the help of odometry sensors, whereas we addition-
ally incorporate continuous camera frames, and can display
virtual objects with 3D location/orientation in the world.
MARVEL [6] focuses on the energy-efficiency of mobile AR,
and GLEAM [24] discusses lighting rendering for virtual
objects, which are orthogonal directions to this work.
Multi-user AR: CARS [34] discusses sharing object de-
tection results between multiple users, whereas we consider
more general virtual objects and integration with SLAM-
based AR. In industry, Google ARCore, Apple ARKit, and Mi-
crosoft HoloLens are recent mobile AR platforms [3, 13, 21];
our focus is on measurements and comparative evaluation



HotNets *19, November 13-15, 2019, Princeton, NJ, USA

(1) Send map or map pieces

deviceA@,)) \é_ @

Cloud

data

center

(a) Cloud-based architecture, similar to Google ARCore.

(3) Align A and B’s
coordinate systems

Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi Chen

device A @)))

l..

l..
(1) Send map ny
or map pieces

(b) P2P architecture, similar to Apple ARKit.

Figure 4: Current mobile AR platforms use peer-to-peer or cloud-based architectures.

of the communication architectures and strategies of such
systems.

Multi-user SLAM: Since AR is closely tied to SLAM,
there has been some work on multi-user SLAM in the robot-
ics context. These works mainly focus on coordinate system
alignment algorithms, with less attention paid to the com-
munication aspects. For example, Zou et al. [35] hardcodes
transmitting the SLAM data up to every 5 frames, while
Schmuck et al. [31] transmits SLAM information whenever
it is updated. Furthermore, these works focus on commu-
nicating information about the real world, while AR also
requires communicating information about virtual objects.

3 RESEARCH AGENDA

3.1 AR Communication Architectures

3.1.1  Current P2P and Cloud-based Architectures. There
are two primary communication architectures in current
SLAM-based mobile AR systems: cloud-based and P2P. For
the remainder of this paper, for ease of exposition, we will
refer to two devices, A and B. Device A places a virtual object
in its environment, and wishes to share this information with
a newly joined device, B. In our current prototype, we focus
on the two-device scenario for simplicity, but we intend to
scale up our experiments in the near future.

Cloud-based: In a centralized architecture, the cloud col-
lects device pose information from the AR devices, performs
processing, and returns results as needed. Cloud-based ar-
chitectures are used, for example, by Google ARCore [13]
and MARVEL [6]. The information exchange is illustrated
in Fig. 4a, and described below:

(1) Device A sends: A sends its SLAM map (or the related
camera frames), and the virtual object’s coordinates to
the cloud.

(2) Device B sends: B sends a piece of its map correspond-
ing to its current location (or the related camera frames)
to the cloud.

(3) Cloud aligns coordinate systems: The cloud runs SLAM
(if camera frames only were sent), then aligns A’s map

and B’s map piece, and computes the virtual object’s
pose in B’s coordinate system.

(4) Cloud sends virtual object’s coordinates: The cloud sends

the computation result to device B.

(5) B draws virtual object: B draws the virtual object in its

world coordinate system.

P2P-based: In a de-centralized or P2P architecture, AR
devices communicate directly with each other, without the
assistance of a central entity. Such an architecture is followed,
for example by Apple ARKit [3]. The process is illustrated
in Fig. 4b and described below:

(1) Device A sends: A sends its SLAM map (or related cam-

era frames) and the virtual object’s coordinates to B.

(2) Device B aligns coordinate systems: B runs SLAM (if

only camera frames were sent), then aligns A and B’s
coordinate systems, and computes the virtual object’s
pose in B’s coordinate system.

(3) B draws virtual object: B draws the virtual object in its

world coordinate system.
In summary, these two architectures require similar types
of computation, but at different locations (i.e., on the device
or in the cloud), which impacts the information exchange
between the devices.

Measurements: We conducted measurements of several
AR applications utilizing the above architectures in a con-
trolled lab setting. We used Samsung Galaxy S7 smartphones
with WiFi connectivity (50 Mbps download and upload speed),
unless otherwise mentioned. Each measurement was re-
peated 3 times, with the averages plotted. In Fig. 5a, we
show end-to-end latency measurements of three AR apps:
CloudAnchor [11] and Just a Line [12] (Google ARCore demo
apps), and AR MultiUser [4] (Apple ARKit demo app). We
observe that latencies between device A placing a virtual
object and device B drawing the virtual object are quite
long, from 7-18 s. The cloud-based apps tend to have longer
communication times and shorter coordinate system align-
ment times, because of cloud compute resources. On the
other hand, the P2P app has shorter communication time
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Figure 5: Latency breakdown starting from device A placing a virtual object to device B rendering it on the display.

but longer coordinate system alignment time due to running
the joint computations on the mobile device (in this case an
iPad), leading to longer end-to-end latency overall.

3.1.2  Comparing Architectures in ShareAR. Given our un-
derstanding of the above architectures, which architecture
is more suitable in different scenarios? The P2P architecture
has advantages in terms of scalability (there is no central
bottleneck link), and privacy (information doesn’t need to
be sent to the cloud). However, updates to virtual objects
can take time to propagate across the devices, potentially
resulting in inconsistent information. The cloud architecture
has advantages in terms of compute power, and can syn-
chronize updates about the virtual objects across devices,
but relies on Internet connectivity. Another possibility is a
hybrid architecture, where the devices share information
only amongst themselves, but one device acts as a “master”
node that undertakes communication and computation ef-
forts. Such an approach essentially assigns one of the devices
to take the role of the cloud, but places heavy computation
and communication demands on the master node.

Given that these architectures are currently implemented
in different mobile OSes (i0S and Android) and are closed
source, an apples-to-apples comparison of their system per-
formance metrics cannot be made between them, nor can
modifications be made. Our idea is to develop an open-source
reference system that allows comparison of the different com-
munication architectures. To do this, we build on an open-
source state-of-the-art SLAM system for single users [26],
and add multi-user capabilities and the ability to switch
between the communication architectures observed in the
commercial mobile AR platforms. This will enable accurate
measurements of the performance of each component of the
AR computation and communication pipeline. Our system,
ShareAR, will provide researchers and developers with in-
sight into the system requirements of multi-user mobile AR,
guidelines on architectural decisions, and understanding of
which parts of the AR pipeline can be optimized.

We have implemented an initial prototype of ShareAR with
two Android devices and an edge server. ShareAR allows de-
vice A to place a virtual cube and device B to receive and

render the cube in its FoV, with full control over all compo-
nents of the system, including SLAM algorithms, communica-
tion protocol, communication frequency, coordinate system
alignment frequency, etc. In Fig. 5b, we show some initial
measurements of ShareAR, comparing the computation time
of coordinate system alignment of P2P and server-based
architectures. We can see that the edge server-based compu-
tation time is lower, suggesting that an edge-server based
architecture may be ideal as communication latency is also
low in edge scenarios [28]. Specifically, the map alignment
time with the P2P architecture is seven times longer than in
the server-based architecture, which suggests great poten-
tial for both the edge- and cloud-based architectures. In fact,
the server-based architecture can still tolerate an additional
10 seconds of communication latency and still have lower
end-to-end latency than the P2P architecture (Fig. 5b).

Black box testing: To ensure that the results produced
ShareAR reflect existing AR systems, we will perform black
box testing. We will choose a set of sample AR apps and sce-
narios, and tune ShareAR until its results are similar to those
observed in commercial platforms (e.g., Google ARCore).
While we cannot have perfect reproduction of commercial
platforms, due to their opaqueness, we explicitly try to match
their performance for a given set of test cases. In our initial
results with ShareAR, the computation latency of the server-
based architecture (upper bar in Fig. 5b) is roughly compara-
ble to computation latency of Google ARCore’s server-based
architecture (the “B send map + server align” bar in Fig. 5a).
(ShareAR is slightly slower because its computation latency
includes the DBoW generation time, which we were not able
to measure in ARCore because it is closed-source.) Similarly,
ShareAR’s P2P computation latency (lower bar in Fig. 5b) is
comparable to ARKit’s P2P computation latency (“B align”
in Fig. 5a).

3.2 Adaptive AR Communications

A good understanding of the network traffic sent and re-
ceived by the AR devices is needed in order to effectively
manage the traffic and ensure good user QoE. While low
latency is a key requirement for mobile AR [28], our initial
measurements show that bandwidth requirements can also
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Figure 6: Bandwidth trace from AR app, showing large
map and small user interaction transmissions.

be significant, due to the exchange of large amounts of map
data. We collected network traces from several AR applica-
tions [4, 11, 12], and show a representative example from
the Just a Line app in Fig. 6. The trace shows a large burst of
traffic (more than 26 Mb) around ¢ = 21 s, and smaller peri-
odic bursts starting at t = 35 s. The ARCore documentation
and code [13] suggest that the large traffic burst contains
SLAM map data or camera frames, while the small bursts
contain the coordinates of the virtual line drawn by user A,
who is drawing periodically. Moreover, the large data burst
needs to be repeated if a new virtual object is placed in signif-
icantly different location by a user, which we have observed
experimentally (not shown).

3.2.1 Adapting AR Communications to the Network. Based
on the above observations of large amounts of SLAM/visual
update data, we propose adapting the size and frequency
of data transmissions in order to improve communication
efficiency and reduce user-perceived latency. We propose
both lossy and lossless adaptation methods to do so.

Lossless methods: Lossless methods involve suppressing
data that is not needed; for example, device A does not need
to send keyframe features corresponding to areas far away
from device B. In our initial work with ShareAR, instead
of sending the entire map for alignment between device A
and B, device A omitted sending its DBoW, which consumed
a large fraction of the map size. Instead, device B used its
own locally generated DBoW to perform matching with
A’s keyframes. Fig. 5¢ shows that this simple optimization
drastically reduced the communication time (to nearly zero).
However, the alignment time increased because B needs
to query all of A’s keyframes in B’s DBoW (which grows
continuously as B captures more frames), while in the default
case, B only needs to query its current keyframe in A’s DBoW
(which is frozen after transmission). A naive approach of
simply applying the standard Boost gzip compressor [29] to
the entire map, while saving communication time compared
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to the baseline of full map transmission, did not result in as
much latency savings overall because it did not intelligently
select which data structures to send.

Lossy methods: Lossy methods involve tradeoffs between
the amount of communicated data and the QoA metrics. For
example, sending frequent map updates can improve the vir-
tual object’s pose accuracy by re-aligning the devices’ coor-
dinate systems, but also increase the end-to-end latency due
to longer communication time and use up system resources
for frequent data processing. Essentially, for lossy methods,
there are a set of “control knobs” that can be tuned (e.g.,
frequency of updates/map alignment, number of features,
spatial granularity or compression of the point cloud [25]),
each of which has some impact on QoA. We are inspired
by auto-tuning works in the multimedia community [1, 32],
where the control knobs/parameters are tuned to the current
network conditions to maximize quality-of-experience. In
the context of AR, these operating conditions include net-
work bandwidth, and the performance metrics are the QoA
metrics. Our proposed method first involves performing an
offline characterization of the tradeoffs between application-
layer parameters and the QoA. This will provide valuable
rules of thumb on how to set these parameters. Then, given
an understanding of these tradeoffs, we will formulate this
problem as an optimization problem, the output of which are
the optimal configuration parameters. We envision our adap-
tation method implemented as an API, which a developer can
incorporate into her AR app to improve its communication
efficiency.

3.3 Quality of Augmentation Tool

A good estimate of multi-user AR performance metrics (Sec. 2.2)
is needed to evaluate the performance of multi-user AR sys-
tems. Such a tool should take as input information from
device A on the correct location of each virtual object, and
information from device B on the rendered location of each
virtual object. The outputs of the tool are the QoA metrics
defined earlier. We envision such a tool as an overlay in our
ShareAR system, collecting logs from the AR devices, and
running on a device or an external server. While we will
evaluate our measurement tool in ShareAR, the tool will
also be usable in any multi-user AR system that exposes the
appropriate information (poses of virtual objects, certain co-
ordinates in the point cloud, and timing information; details
below).

While latency is relatively easy to compute by instrument-
ing timers in the code, the main challenge is measuring the
virtual object pose accuracy (and its derivatives, drift and
jitter). This problem is illustrated in Fig. 3a, 3b, where the
virtual cube is drawn at different locations, with respect to
the real world, in device A and B’s FoVs (e.g., in A’s FoV, the
cube hovers above the center of the laptop, while in B’s FoV,

file size

2 . . . . .
In this set of experiments, send time is estimated as 5 MBps *
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vironment to measure the pose accuracy of virtual ob-
ject. Above is a simplified 1D example.

the cube hovers to the upper left of the laptop). How can B
measure the misplacement and angle of its virtual cube?

The robotics community typically tackles this problem
by collecting ground truth pose measurements (e.g., using
a laser system) that pinpoints the exact location of all the
physical objects in a space. However, such solutions do not
apply in the AR context because we are interested in the pose
of virtual objects, not the pose of real-world objects. Other
work [33] in the multimedia community manually labels the
ground truth locations of the real-world objects on which
the virtual object was placed. However, this is not scalable
over many frames.

Our idea, in a nutshell, is to place easily recognizable mark-
ers in the environment (e.g., ArUco markers [10]), whose
location and orientation can be accurately estimated by the
devices using SLAM or PnP methods [16], and used as refer-
ence points to measure the virtual object’s pose accuracy. A
toy 1D example is shown in Fig. 7, and described below:

(1) After (inaccurately) aligning A and B’s coordinate sys-

tems, device B draws the cube at pg’ = 3. This is an
error of —3.

(2) Device B accurately estimates the marker’s position

mp = 8, and reports mg, pp/ to the tool.

(3) Device A accurately estimates the marker position

my = 3, and reports ma, pa = 5 to the QoA tool.

(4) The QoA tool computes the cube’s pose error as (pa —

ma) = (mp —pg) =(5-3) - (8-3) = -3.
We plan to extend this technique to all 6-DoF (position, ori-
entation). The virtual object’s pose jitter and drift will be
computed based on the pose accuracy.

We will place these markers at various locations in a con-
trolled environment. Having more markers requires more
setup time, but can improve the measurement accuracy, as
there are more reference markers to compare against. Hav-
ing fewer markers is a simpler setup, but results in fewer
reference points to calculate the virtual object’s pose accu-
racy against. We note that the markers do not need to be
placed at regular, fixed locations in the environment; they
can be moved between experiments, as the QoA tool only
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requires that they be spaced out. In our initial experiments,
we investigated whether the presence of the markers impacts
the pose of the virtual object (i.e., whether the measurement
setup affects the quantity we are trying to measure); how-
ever, we found that adding/removing the marker from the
scene had little impact on the virtual object’s pose.

While we mainly propose a marker-based setup to esti-
mate the virtual object’s pose, a marker-less setup may also
be possible, for ease of deployment but potentially with lower
measurement accuracy. For example, we could use natural
features in the scene as the “markers”. However, even with
the ArUco markers, which are specifically designed to be
easily detectable in the environment, we find that multi-
ple AruCo markers (i.e., an ArUco board) are needed in the
scene to achieve good measurement accuracy. Using natural
features would likely further degrade the measurement accu-
racy. Furthermore, while extracting the 3D locations of the
natural features to use as markers is possible as an interme-
diate output of SLAM, this would couple the measurement
tool with the quantity being measured (the virtual cube’s
pose), which is undesirable.

4 CONCLUSIONS

Our proposed research dissects and enhances the communi-
cation capabilities of multi-user AR. We first examine current
mobile AR platforms to understand their communication
architectures, end-to-end latency, and bandwidth require-
ments. We propose ShareAR, which allows fine-grained con-
trol of the AR processing pipeline, in order to conduct fair
comparisons between different communication architectures
and strategies. We propose optimizations of the large data
transmissions arising from exchanging SLAM map data or
other visual information, accounting for AR-specific quality
metrics and current network conditions. We also propose a
simple mechanism using markers to measure the AR quality
in controlled environments. The outcome of this research
will be communication-efficient support for multi-user AR
applications in the near future.
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