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Abstract— A new class of structured codes called quasi group
codes (QGCs) is introduced. A QGC is a subset of a group
code. In contrast with the group codes, QGCs are not closed
under group addition. The parameters of the QGC can be
chosen, such that the size of C � C is equal to any number
between �C� and �C�2 . We analyze the performance of a specific
class of QGCs. This class of QGCs is constructed by assigning
single-letter distributions to the indices of the codewords in a
group code. Then, the QGC is defined as the set of codewords
whose index is in the typical set corresponding to these single-
letter distributions. The asymptotic performance limits of this
class of QGCs are characterized using single-letter information
quantities. Corresponding covering and packing bounds are
derived. It is shown that the point-to-point channel capacity
and optimal rate-distortion function are achievable using QGCs.
Coding strategies based on QGCs are introduced for three fun-
damental multi-terminal problems: the Körner-Marton problem
for modulo prime-power sums, computation over the multiple
access channel (MAC), and MAC with distributed states. For
each problem, a single-letter achievable rate-region is derived.
It is shown, through examples, that the coding strategies improve
upon the previous strategies based on the unstructured codes,
linear codes, and group codes.

Index Terms— Quasi structured codes, distributed source cod-
ing, computation over multiple access channel (MAC), MAC with
states, multi-terminal communication.

I. INTRODUCTION

THE conventional technique of deriving the performance
limits for any communication problem in information the-

ory is via random coding [1] involving so-called Independent
Identically Distributed (IID) random codebooks. Since such a
code possesses only single-letter empirical properties, coding
techniques are constrained to exploit only these for enabling
efficient communication. We refer to them as unstructured
codes. These techniques have been proven to achieve capacity
for point-to-point (PtP) channels and particular multi-terminal
channels such as multiple-access channel (MAC) and degraded
broadcast channel. Based on these initial successes, it was
widely believed that one can achieve the capacity of any
network communication problem using IID codebooks.

Stepping beyond this conventional technique, Körner and
Marton [2] proposed a technique based on statistically
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correlated codebooks (in particular, identical random linear
codes) possessing algebraic closure properties, henceforth
referred to as (random) structured codes, that outperformed
all techniques based on (random) unstructured codes. This
technique was proposed for the problem of distributed com-
putation of the modulo two sum of two correlated symmetric
binary sources [2]. Applications of structured codes were also
studied for various multi-terminal communication systems,
including, but not limited to, distributed source coding [3]–[6],
computation over MAC [7]–[13], MAC with side information
[4], [14]–[17], the joint source-channel coding over MAC [18],
multiple-descriptions [19], interference channel [20]–[26],
broadcast channel [27] and MAC with Feedback [28]. In these
works, algebraic structures are exploited to design new coding
schemes which outperform all coding schemes solely based
on random unstructured codes. The emerging opinion in this
regard is that even if computational complexity is a non-
issue, algebraic structured codes may be necessary, in a deeply
fundamental way, to achieve optimality in transmission and
storage of information in networks.

There are several algebraic structures such as fields, ring
and groups. Linear codes are defined over finite fields. The
focus of this work is on structured codes defined over the ring
of modulo-m integers, that is Zm . Group codes are a class of
structured codes constructed over Zm , and were first studied
by Slepian [29] for the Gaussian channel. A group code over
Zm is defined as a set of codewords that is closed under the
element-wise modulo-m addition. Linear codes are a special
case of group codes (the case when m is a prime). There are
two main incentives to study group codes. First, linear codes
are defined only over finite fields, and finite fields exists only
when alphabet sizes equal to a prime power, i.e., Zpr . Second,
there are several communications problems in which group
codes have superior performance limits compared to linear
codes. As an example, group codes over Z8 have better error
correcting properties than linear codes for communications
over an additive white Gaussian noise channel with 8-PSK
constellation [30]. As an another example, construction of
polar codes over alphabets of size equal to a prime power pr ,
is more efficient with a module structure rather than a
vector space structure [31]–[34]. Bounds on the achievable
rates of group codes in PtP communications were studied in
[30], [35]–[39]. Como [38] derived the largest achievable rate
using group codes for certain PtP channels. In [35], Ahlswede
showed that group codes do not achieve the capacity of a
general discrete memoryless channel. In [39], Sahebi, et al.,
unified the previously known works, and characterized the
ensemble of all group codes over finite commutative groups.
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In addition, the authors derived the optimum asymptotic per-
formance limits of group codes for PtP channel/source coding
problems.

Körner and Marton suggested the use of identical lin-
ear codes for compression of two correlated binary sources
when the objective is to reconstruct the modulo-two sum of
the sources. However, if the objective is to have the full
reconstruction of both the sources at the decoder (Slepian-
Wolf setting [40]), one may use independent unstructured
binning of the sources using Shannon-style unstructured code
ensembles [1]. Similar observations were made regarding the
interference channel [20], [26], [41]. In such settings, despite
the rate penalties that individual users may pay, the use of
structured codes is preferred to achieve a common goal in
a network. A selfish user intent on maximizing individual
throughput is suggested to adopt Shannon-style unstructured
code ensembles. This observation points to a trade-off between
cooperation and communication/compression in networks.

A randomly generated codebook C in Shannon-style ensem-
bles is completely unstructured (complete lack of structure)
in the sense that, with high probability, the size of C � C
nearly equals the square of the size of C. A linear code,
group code or lattice code C is completely structured in the
sense that the size of C � C equals the size of C. This gap
between completely structured codes and completely unstruc-
tured codes leads to the following question: Is there a spectrum
of strategies involving partially structured codes or partially
unstructured codes that lie between these two extremes? Based
on this line of thought, we consider a new class of codes which
are not fully closed with respect to any algebraic structure but
maintain a degree of “closedness” with respect to some. In our
earlier works [9], [10], it was observed that adding a certain
set of codewords to a group code improves the performance
of the code. Based on these observations,1 we introduce a
new class of structured code ensembles called Quasi Group
Codes (QGC) whose closedness can be controlled. A QGC
is a subset of a group code. The degree of closedness of a
QGC can be controlled in the sense that the size of C � C
can be any number between the size of C and the square of
the size of C. We provide a method for constructing specific
subsets of these codes by putting single-letter distributions
on the indices of the codewords. We are able to analyze the
performance of the resulting code ensemble, and characterize
the asymptotic performance using single-letter information
quantities. By choosing the single-letter distribution on the
indices one can operate anywhere in the spectrum between
the two extremes: group codes and unstructured codes.

The contributions of this work are as follows. A new class of
codes over groups called Quasi Group Codes (QGC) is intro-
duced. These codes are constructed by taking subsets of group
codes. This work considers QGCs over cyclic groups Zpr .
One can use the fundamental theorem of finitely generated
Abelian groups to generalize the results of this paper to QGCs
over non-cyclic finite Abelian groups. Information-theoretic

1The motivation for this work comes from our earlier work on multi-level
polar codes based on Zpr [32]. A multi-level polar code is not a group code.
But it is a subset of a nontrivial group code.

characterizations for the asymptotic performance limits and
properties of QGCs for source coding and channel coding
problems are derived in terms of single-letter information
quantities. Covering and packing bounds are derived for an
ensemble of QGCs. Next, a binning technique for the QGCs
is developed by constructing nested QGCs. As a result of these
bounds, the PtP channel capacity and optimal rate-distortion
function of sources are shown to be achievable using nested
QGCs. The applications of QGCs in some multi-terminal
communications problems are considered. More specifically
our study includes the following problems:

Distributed Source Coding: A more general version
of Körner-Marton problem is considered. In this problem,
there are two distributed sources taking values from Zpr .
The sources are to be compressed in a distributed fashion.
The decoder wishes to compute the modulo pr -addition of the
sources losslessly.

Computation over MAC: In this problem, two trans-
mitters wish to communicate independent information to a
receiver over a MAC. The objective is to decode the modulo-
pr sum of the codewords sent by the transmitters at the
receiver. This problem is of interest in its own right. Moreover,
this problem finds applications as an intermediate step in the
study of other fundamental problems such as the interference
channel and broadcast channel [27], [42].

MAC with Distributed States: In this problem, two
transmitters wish to communicate independent information to
a receiver over a MAC. The transition probability between
the output and the inputs depends on states S1, and S2
corresponding to the two transmitters. The state sequences
are generated IID according to some fixed joint probability
distribution. Each encoder observes the corresponding state
sequence non-causally. The objective of the receiver is to
decode the messages of both transmitters.

These problems are formally defined in the sequel. For
each problem, a coding scheme based on (nested) QGCs
is introduced and a new single-letter achievable rate-region
is characterized. It is shown, through examples, that QGCs
improve upon coding strategies that are solely based on
completely unstructured/structured codes.

The rest of this paper is organized as follows: Section II pro-
vides the preliminaries and notations. In Section III, we intro-
duce QGC’s and define an ensemble of QGCs. Section IV
characterizes basic properties of QGCs. Section V describes
a method for binning using QGCs. In Section VI and
Section VII, we discuss the applications of QGC’s in distrib-
uted source coding and computation over MAC, respectively.
In Section VIII we investigate applications of nested QGCs in
the problem of MAC with states. Finally, Section IX concludes
the paper.

II. PRELIMINARIES

A. Notations

We denote (i) vectors using lowercase bold letters such
as b, u, (ii) matrices using uppercase bold letters such as
G, (iii) random variables using capital letters such as X, Y ,
(iv) numbers, realizations of random variables and elements of
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sets using lowercase letters such as a, x . Calligraphic letters
such as C and U are used to represent sets. For shorthand,
we denote the set �1, 2, . . . , m� by �1 : m�.

B. Definitions

A group is a set equipped with a binary operation denoted
by “�”. All groups in this paper are Abelian. Given a prime
power pr , the group of integers modulo-pr is denoted by Zpr ,
where the underlying set is �0, 1, � � � , pr�1�, and the addition
is modulo-pr addition. Given a group M , a subgroup is a
subset H which is closed under the group addition. For s �
�0 : r �, define

Hs 	 ps
Zpr 	 �0, ps , 2 ps, � � � , 
pr�s � 1�ps�,

and Ts 	 �0, 1, � � � , ps � 1�. For example, H0 	 Zpr , T0 	
�0�, whereas Hr 	 �0�, Tr 	 Zpr . Note, Hs is a subgroup
of Zpr , for s � �0 : r �. Given Hs and Ts , each element a
of Zpr can be represented uniquely as a sum a 	 t � h,
where h � Hs and t � Ts . We denote such t by �a�s . Note
that �a�s 	 a mod ps , for s � �0, r �. Therefore, with this
notation, ���s is a function from Zpr � Ts . Note that this
function satisfies the distributive property:

�a � b�s 	
�
�a�s � �b�s

�
s

For any elements a, b � Zpr , we define the multiplication
a � b by adding a with itself b times. Given a positive
integer n, denote Z

n
pr 	

�n
i�1 Zpr . Note that Z

n
pr is a

group, whose addition is element-wise and its underlying set is
�0, 1, . . . , pr � 1�n . We follow the definition of shifted group
codes on Zpr as in [39], [3].

Definition 1 (Shifted Group Codes). An 
n, k�-shifted group
code over Zpr is defined as

C 	 �uG � b : u � Z
k
pr �, (1)

where b � Z
n
pr is the translation (dither) vector and G is a

k 
 n generator matrix with elements in Zpr .

We follow the definition of typicality as in [43].

Definition 2. For any probability distribution P on X and
ε � 0, a sequence xn � X n is said to be ε-typical with respect
to P if ���1

n
N
a�xn� � P
a�

��� � ε

�X �
, �a � X ,

and, in addition, no a � X with P
a� 	 0 occurs in xn . Note
that N
a�xn� is the number of the occurrences of a in the
sequence xn . The set of all ε-typical sequences with respect
to a probability distribution P on X is denoted by A

�n�
ε 
X�.

The above definition can be extended to define joint typi-
cality with respect to a joint probability distribution PXY on
X 
Y . A pair of sequences 
xn, yn� � X n 
Yn is said to be
jointly ε-typical with respect to PXY if���1

n
N
a, b�xn, yn� � PXY 
a, b�

��� � ε

�X ��Y�
, �
a, b� � X 
 Y

such that none of 
a, b� with PXY 
a, b� 	 0 occurs in 
xn, yn�.

The set of all such pairs is denoted by A
�n�
ε 
X, Y �.

III. QUASI GROUP CODES

Linear codes and group codes are two classes of structured
codes. These codes are closed under the addition of the under-
lying group or field. It is known in the literature that coding
schemes based on linear codes and group codes improve upon
unstructured random coding strategies [2]. In this section,
we propose a new class of structured codes called quasi-group
codes.

A QGC is defined as a subset of a group code. Therefore,
QGCs are not necessarily closed under the addition of the
underlying group. An 
n, k� shifted group code over Zpr is
defined as the image of a linear mapping from Z

k
pr to Z

n
pr as

in Definition 1. Let U be an arbitrary subset of Z
k
pr . Then a

QGC is defined as

C 	 �uG � b : u � U�, (2)

where G is a k 
 n matrix and b is an element of Z
n
pr .

If U 	 Z
k
pr , then C is a shifted group code. As we will show,

by changing the subset U , the code C ranges from completely
structured codes (such as group codes and linear codes)
where �C � C� 	 �C� to completely unstructured codes where
�C� C� � �C�2. For a general subset U , it is difficult to derive
a single-letter characterization of the asymptotic performance
of such codes. To address this issue, we present a special type
of subsets U for which single-letter characterization of their
performance is possible.

Construction of U: Given a positive integer m, consider
m mutually independent random variables U1, U2, � � � , Um .
Suppose each Ui takes values from Zpr with distribution
PUi , i � �1 : m�. For ε � 0, and positive integers ki , define U
as a Cartesian product of the ε-typical sets of Ui , i � �1 : m�.
More precisely,

U 	�
m�

i�1

A
�ki �
ε 
Ui�. (3)

In this construction, set U is determined by m, ki , ε, and the
PMFs PUi , i � �1 : m�. An example of such construction for
m 	 1 is given in the following.

Example 1. Let U be a random variable over Zpr with PMF
PU . For ε � 0, let U to be the set of all ε-typical sequences
uk . More precisely, define U 	 A

�k�
ε 
U�. In this case, U is

determined by the PMF PU and ε. For instance, if U is uniform
over Zpr , then U 	 Z

k
pr .

In what follows, we provide an alternative representation
for the construction given in (3). Let k 	�

�m
i�1 ki and denote

qi 	� ki
k . With this notation, qi , i � �1, m� form a probability

distribution; because, qi � 0 and
�

i qi 	 1. Therefore, we can
define a random variable Q with P
Q 	 i� 	 qi . Define a
random variable U with the conditional distribution

P
U 	 a�Q 	 i� 	 P
Ui 	 a�

for all a � Zpr , i � �1 : m�. With this notation the set U in the
above construction is characterized by a finite set Q, a pair of
random variables 
U, Q� distributed over Zpr 
Q, an integer
k, and ε � 0. The joint distribution of U and Q is denoted
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by PU Q . Note that we assume PQ
q� � 0 for all q � Q.
For a more concise notation, we identify the set U without
explicitly specifying ε. Q can be interpreted as a time sharing
random variable. It determines the contribution of Ui , mea-
sured by ki

k , in the construction of U . With the notation given
for the construction of U , we define its corresponding QGC.

Definition 3. An 
n, k�- QGC C over Zpr is defined as in
(2) and (3), and is characterized by a matrix G � Z

k�n
pr ,

a translation b � Z
n
pr , and a pair of random variables 
U, Q�

distributed over the finite set Zpr 
 Q. The set U in (3) is
defined as the index set of C.

Remark 1. Any shifted group code over Zpr is a QGC.

Remark 2. Let C be a random 
n, k�-QGC constructed by
selecting the elements of its generator matrix and translation
vector randomly independently with uniform distribution from
Zpr , r � 1. In contrast to linear codes, codewords of C are
not necessarily pairwise independent.

Information theoretic analysis of coding strategies are usu-
ally carried out by constructing ensembles of randomly gen-
erated codebooks [1], [44]. Following the same approach,
we construct ensembles of QGCs with different blocklengths.

Fix positive integers 
n, k� and random variables 
U, Q�.
We create an ensemble of codes by taking the collection
of all 
n, k�-QGCs with random variables 
U, Q�, for all
matrices G and translations b. A random codebook C from
this ensemble is chosen by selecting the elements of G and
b randomly and uniformly from Zpr . In order to characterize
the asymptotic performance limits of QGCs, we need to define
sequences of ensembles of QGCs. For any positive integer
n, let kn 	 cn, where c � 0 is a constant. Consider the
sequence of the ensembles of 
n, kn�-QGCs with random
variables 
U, Q�. In the next two lemmas, we characterize the
size of randomly selected codebooks from these ensembles.
The first lemma shows that the index set U for an ensemble
of QGCs approximately equals to 2k H�U �Q�.

Lemma 1. Let Un be the index set associated with the
ensemble of 
n, kn�-QGCs with random variables 
U, Q� and
ε � 0, where kn 	 cn for a constant c � 0. Then there exists
N � 0, such that for all n � N,

��� 1

kn
log2 �Un� � H 
U �Q�

��� � ε�,

where ε� is a continuous function of ε, and ε� � 0 as ε � 0.

Proof: The proof is given in Appendix A-A

Remark 3. As an immediate consequence of Lemma 1,
we provide an upper-bound on the size of a QGC. For that, let
Cn be an 
n, kn�-QGC with random variables 
U, Q�. Then,
for large enough n,

1

n
log2 �Cn� �

kn

n
H 
U �Q� � ε�. (4)

To explain inequality (4), note that a codebook Cn is the
image of the index set Un under the mapping

�n
u� 	 uGn � bn .

Therefore, the bound in (4) is due to the fact that �n is,
in general, a many-to-one mapping. In the case of linear codes
(r 	 1), it is assumed that k � n. In this case, for sufficiently
large n, �n is injective with high probability. This implies
that the size of a random linear code approximately equals
� 2k . Consequently, k

n is a relevant measure for the rate of a

k, n� linear code. However, for a QGC (general r � 2), even
if k � n, under certain conditions, �n is “almost” injective
with high probability. In what follows, we characterize these
conditions. We begin by defining α-injectivity.

Definition 4. A mapping φ : U � X , defined on finite sets

U,X �, is said to be α-injective, if there exists a subset A � U
with cardinality at least α�U � such that restriction of φ to A
is injective.

By the above definition, any 1-injective map is one-to-
one. The next lemma shows that under particular conditions
on 
U, Q� and for sufficiently large n, the mapping �n is
α-injective with high probability, where α � 1.

Lemma 2. Let Un be the index set associated with the
ensemble of 
n, kn�-QGCs with random variables 
U, Q�,
where kn 	 cn for a constant c � 0. Define a map

�n : Un � Z
n
pr ,

�n
u� 	 uGn for all u � Un, where Gn is a kn 
 n matrix
whose elements are chosen randomly and uniformly from Zpr .
Suppose

H 
U ��U �s, Q� �
1

c

r � s� log2 p � ε,

for all s � �0 : r � 1�. Then, for any γ, δ � 0 and sufficiently
large n, the mapping �n is 
1 � δ�-injective with probability
at least 
1 � γ �.2

Proof: The proof is provided in Appendix A-B.
As a result, under the conditions given in Lemma 2, the rate

of a random codebook selected from ensemble of 
n, k�-QGCs
with random variables 
U, Q� approximately equals R �
k
n H 
U �Q�, with high probability. The condition in Lemma 2
can viewed as a restriction on the size of the index set, that is

k

n
H 
U ��U �s, Q� � 
r � s� log2 p � ε, 0 � s � r � 1. (5)

We refer to this condition as the injectivity condition.

IV. PROPERTIES OF QUASI GROUP CODES

It is known that if C is a random unstructured codebook,
then �C � C� � �C�2 with high probability. Group codes on
the other hand are closed under the addition, which means
�C � C� 	 �C�. Comparing to unstructured codes, when
the structure of the group codes matches with that of a
multi-terminal channel/source coding problem, it turns out
that higher/lower transmission rates are obtained. However,
in certain problems, the structure of the group codes is too
restrictive. More precisely, when the underlying group is Zpr

2Note that the map �n in the lemma does not have any translation, i.e.,
b � 0. It is sufficient to prove the lemma for b � 0. This is due to the fact
that if �n is �1 � δ�-injective, then so is �n � b, for any translation b.
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for r � 2, there are several nontrivial subgroups. These
subgroups cause a penalty on the rate of a group code. This
results in lower transmission rates in channel coding and
higher transmission rates in source coding.

Quasi group codes balance the trade-off between the struc-
ture of the group codes and that of the unstructured codes.
More precisely, when C is a QGC, then �C � C� is a num-
ber between �C� and �C�2. This results in a more flexible
algebraic structure to match better with the structure of the
channel or source. This trade-off is shown more precisely in
the following lemma.

Lemma 3. Let Ci , i 	 1, 2 be an 
n, ki�-QGC over Zpr with
random variables 
Ui , Q�. Suppose, PU1,U2,Q is such that the
Markov chain U1 � Q � U2 holds and that the injectivity
condition in (5) is satisfied for 
U1, Q� and 
U2, Q�.

1) Suppose k1 	 k2 	 k, and the generator matrices of
C1, C2 and D are identical. Let D be an 
n, k�-QGC with
random variables 
U1 � U2, Q� and the same generator
matrix as for C1 and C2. Suppose Ui is selected randomly
and uniformly from the index set (see Definition 3) of
Ci , i 	 1, 2. Let Xi be the codeword of Ci corresponding
to Ui , i 	 1, 2. Then, for all ε � 0 and sufficiently
large n,

P�X1 � X2 � D� � 1 � δ
ε�,

where δ
ε� � 0 as ε � 0.
2) C1 � C2 is an 
n, k1 � k2�-QGC with random variables


UI , 
Q, I ��, where I � �1, 2�. If I 	 i , then UI 	 Ui ,
i 	 1, 2. In addition, the joint PMF of these random
variables is given by

P
I 	 i, Q 	 q, UI 	 a� 	

ki

k1 � k2
P
Q 	 q�P
Ui 	 a�Q 	 q�,

(6)

for all a � Zpr , q � Q and i 	 1, 2.

Proof: Suppose Ui is the index set, Gi is the matrix, and
bi is the translation of Ci , i 	 1, 2.

We prove the first statement for the case when time sharing
random variable Q is trivial. The proof for general Q follows
from similar steps. If Q is trivial, the index sets satisfy Ui 	

A
�k�
ε 
Ui �, i 	 1, 2. Since k1 	 k2 and G1 	 G2, then

Xi 	 Ui G � bi , i 	 1, 2.

With this notation, X1 � X2 	 
U1 � U2�G � b1 � b2.
From Lemma 10, with probability at least 1 � 2�nε	pr

,

we have 
U1, U2� � A
�k�
δ�ε�


U1, U2�, where δ is a function as

in Lemma 10. Therefore, U1 � U2 � A
�k�
δ�ε�


U1 � U2� with

probability at least 1 � 2�nε	pr
. The proof is complete by

noting that the index set of D is defined as Ud 	� A
�k�
δ�ε�


U1 � U2�.
For the second statement, we have

C1 � C2 	 ��u1, u2�

�
G1
G2

�
� b1 � b2 : ui � Ui , i 	 1, 2�.

Therefore, C1 � C2 is an 
n, k1 � k2�-QGC. Note that U1 
U2
is the index set associated with this codebook. The statement
follows, since each subset Ui , i 	 1, 2 is a Cartesian product
of ε-typical sets of Ui,q , q � Q. The random variables

UI , 
Q, I �� describes such a Cartesian product.

We explain the intuition behind the lemma. Suppose C1, C2
and D are QGCs with identical generator matrices and with
random variables U1, U2 and U1�U2, respectively. Then D 	
C1 � C2 with probability approaching one.
Remark 4. If C1 and C2 are the QGCs as in Lemma 3, then
from standard counting arguments we have

max��C1�, �C2�� � �C1 � C2� � min�prn, �C1� � �C2��

In what follows, we derive a packing bound and a cover-
ing bound for a QGC with matrices and translation chosen
randomly and uniformly. Fix a PMF PXY , and suppose an
ε-typical sequence y is given with respect to the marginal
distribution PY . Consider the set of all codewords in a QGC
that are jointly typical with y with respect to PXY . In the
packing lemma, we characterize the conditions under which
the probability of this set is small. This implies the existence
of a “good-channel” code which is also a QGC. In the
covering lemma, we derive the conditions for which, with high
probability, there exists at least one such codeword in a QGC.
In this case a “good-source” code exists which is also a QGC.
These conditions are provided in the next two lemmas.

For any positive integer n, let kn 	 cn, where c � 0 is a
constant. Let Cn be a sequence of 
n, kn�-QGCs with random
variables 
U, Q�, ε � 0. By Rn denote the rate of Cn . Suppose
the elements of the generator matrix and the translation of Cn

are chosen randomly and uniformly from Zpr .

Lemma 4 (Packing). Let 
X, Y � � PXY . By cn
θ� denote the
θ th codeword of Cn. Let Ỹn be a random sequence distributed
according to

	n
i�1 PY �X 
ỹi �cn,i
θ��. Suppose, conditioned on

cn
θ�, Ỹn is independent of all other codewords in Cn. Then,
for any θ � �1 : �Cn��, and δ � 0, �N � 0 such that for all
n � N,

P��x � Cn : 
x, Ỹn� � A
�n�
ε 
X, Y �, x � cn
θ�� � δ,

if the following bounds hold

Rn � min
0
s
r�1

H 
U �Q�

H 
U �Q, �U �s�



log2 pr�s

�H 
X �Y, �X�s� � η
ε�
�
, (7)

where η
ε� � 0 as ε � 0 .
Proof: See Appendix B.

Lemma 5 (Covering). Let 
X, X̂� � PX X̂ , where X̂ takes
values from Zpr . Let Xn be a random sequence distributed
according to

	n
i�1 PX 
xi�. Then, for any δ � 0, �N � 0

such that for all n � N,

P��x̂ � Cn : 
Xn, x̂� � A
�n�
ε 
X, X̂�� � 1 � δ

if the following inequalities hold

Rn � max
1
s
r

H 
U �Q�

H 
�U �s�Q�

�
log2 ps � H 
�X̂�s �X� � η
ε�



. (8)

Proof: See Appendix C.
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Remark 5. The covering and packing bounds for the special
case r 	 1 are simplified to

Packing: Rn � log2 p � H 
X �Y �,

Covering: Rn � log2 p � H 
X̂ �X�.

Lemma 3, 4 and Lemma 5 provide a tool to derive inner
bounds for achievable rates using quasi group codes in multi-
terminal channel coding and source coding problems.

V. BINNING USING QGC

Note that in a randomly generated QGC, all codewords
have uniform distribution over Z

n
pr . However, in many

communication setups we require application of codes with
non-uniform distributions. In addition, we require binning
techniques for various multi-terminal communications. In this
section, we present a method for random binning of QGCs.
In the next sections, we will use random binning of QGCs to
propose coding schemes for various multi-terminal problems.

We introduce nested quasi group codes using which we
propose a random binning technique. A QGC CI is said to be
nested in a QGC CO , if CI � CO � b, for some translation b.
Suppose CO is an 
n, k�l�-QGC with the following structure,

CO 	� �uG � vG̃ � b : u � U, v � V�, (9)

where U and V are subsets of Z
k
pr , and Z

l
pr , respectively.

Define the inner-code as

CI 	� �uG � b : u � U�.

By Definition 3, CI is an 
n, k�-QGC. In addition, there exists
a � Z

n
pr such that CI � CO � a. The pair 
CI , CO� is called

a nested QGC. For any fixed element v � V , we define its
corresponding bin as the set

B
v� 	� �uG � vG̃ � b : u � U�. (10)

Definition 5. An 
n, k, l�-nested QGC is defined as a pair

CI , CO�, where CI is an 
n, k�-QGC, and

CO 	 �xI � x̄ : xI � CI , x̄ � C̄�,
where C̄ is an 
n, l�-QGC. Let the random variables corre-
sponding to CI and C̄ are 
U, Q� and 
V , Q�, respectively.
CI , CO and C̄ are called the inner, the outer and the shift codes,
respectively. Then, CO is characterized by 
U, V , Q�.

In a nested QGC both the outer-code and the inner-code
are themselves QGCs. More precisely we have the following
remark.

Remark 6. Let 
CI , CO� be an 
n, k1, k2�-nested QGC with
random variables 
U1, U2, Q�. Suppose the joint distribution
among 
U1, U2, Q� is the one that satisfies the Markov chain
U1 � Q � U2. Then by Lemma 3 CO is an 
n, k1 � k2�-
QGC with random variables 
UI , 
Q, I ��, where I is a random
index variable taking values in �1, 2�, and the joint PMF of
the random variables 
UI , Q, I � is given by (6).

Note that with equation (10), B
v� 	 CI � vG̃. As a result,
each bin is a shifted version of the inner-code. Thus, each bin
in an 
n, k, l�-nested QGC is also an 
n, k�-QGC.

Remark 7. Suppose 
CI , CO� is an 
n, k1, k2�-nested QGC
with random matrices and translations. Assume the injectivity
condition (5) holds for CI and CO . By RO and RI denote the
rates of CO and CI , respectively. Let ρ denote the binning
rate ( the rate of C̄ as in Definition 5). Using Remark 6
and 3, for large enough n, with probability close to one,
�RO � RI � ρ� � o
ε�.

Intuitively, as a result of this remark, RO � RI � ρ.
Furthermore, since the injectivity condition holds, then with
probability close to one, we obtain

RO �
k

n
H 
U �Q� �

l

n
H 
V �Q�,

RI �
k

n
H 
U �Q�,

ρ �
l

n
H 
V �Q�.

This implies that the bins B
v� corresponding to different
v � C̄ are “almost disjoint”. In this method for binning, since
both the inner-code and the outer-code are QGCs, the structure
of the inner-code, bins and the outer-code can be determined
using the PMFs of the related random variables (that is U, V
and Q as in Definition 5).

We established a set of lemmas (Lemma 1- 5) that are used
to derive achievable rates for coding strategies based on QGCs.
In the following, we introduce a coding strategy using QGCs
and show the achievability of the Shannon performance limits
for PtP channel and source coding problem. For that, we first
provide a set of definitions to model PtP channel and source
coding problem.
Channel Model: A discrete memoryless channel is charac-
terized by the triple 
X ,Y, PY �X �, where the two finite sets
X and Y are the input and output alphabets, respectively, and
PY �X is the channel transition probability matrix.

Definition 6. An 
n,��-code for a channel 
X ,Y, PY �X � is
a pair of mappings 
e, f � where e : �1 : �� � X n and
f : Yn � �1 : ��.

Definition 7. For a given channel 
X ,Y, PY �X �, a rate R is
said to be achievable if for any ε � 0 and for all sufficiently
large n, there exists an 
n,��-code such that :

1

�

��
i�1

Pn
Y �X 
 f 
Y n� � i �Xn 	 e
i�� � ε,

1

n
log � � R � ε.

The channel capacity is defined as the supremum of all
achievable rates.

Source Model: A discrete memoryless source is a tuple

X , X̂ , PX , d�, where the two finite sets X and X̂ are the
source and reconstruction alphabets, respectively, PX is
the source probability distribution, and d : X 
 X̂ � R

� is
the (bounded) distortion function.

Definition 8. An 
n,��-code for a source 
X , X̂ , PX , d� is a
pair of mappings 
e, f � where

f : X n � �1 : ��

and
e : �1 : �� � X̂ n .
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Definition 9. For a given source 
X , X̂ , PX , d�, a rate-
distortion pair 
R, D� is said to be achievable if for any ε � 0
and for all sufficiently large n, there exists an 
n,��-code such
that :

1

n

n�
i�1

d
Xi , X̂i� � D � ε,
1

n
log � � R � ε,

where X̂n 	 e
 f 
Xn��. The optimal rate-distortion region is
defined as the set of all achievable rate-distortion pairs.

Definition 10. An 
n,��-code is said to be based on nested
QGCs, if there exists an 
n, k, l�-nested QGC with random
variables 
U, V , Q� such that a) � 	 �V�, where V is the index
set associated with the codebook C̄ (see Definition 5), b) for
any v � V , the output of the mapping e
v� is in B
v�, where
B
v� is the bin associated with v, and is defined as in (10).

Definition 11. For a channel, a rate R is said to be achievable
using nested QGCs if for any ε � 0 and all sufficiently large n,
there exists an 
n,��-code based on nested QGCs such that:

1

�

��
i�1

P
 f 
Y n� � i �Xn 	 e
i�� � ε,
1

n
log � � R � ε.

For a source, a rate-distortion pair 
R, D� is said to be
achievable using nested QGCs, if for any ε � 0 and for
all sufficiently large n, there exists an 
n,��-code based on
nested QGCs such that:

1

n

n�
i�1

d
Xi , X̂i� � D � ε,
1

n
log � � R � ε,

where X̂n 	 e
 f 
Xn��.

Theorem 1. The PtP channel capacity and the optimal rate-
distortion region of sources are achievable using nested QGCs.

In what follows, we introduce an achievable scheme using
nested QGCs and provide an outline of the proof for the
theorem.

Channel coding using QGCs : Consider a memoryless
channel with input alphabet X and conditional distribution
PY �X . Let the prime power pr be such that �X � � pr . Fix a
PMF PX on X , and set l 	 n R, where R will be determined
later. Let 
CI , CO� be an 
n, k, l�-nested QGC with random
variables 
U, V , Q�. Let Q be a trivial random variable, and
U and V be independent with uniform distribution over �0, 1�.
The elements of the generator matrix and the translation used
for the nested QGC are drawn randomly and uniformly from
Zpr . Let RI and RO denote the rate of the inner-code CI and
the outer-code CO , respectively. According to Remark 7, with
probability close to one, RO � RI � R and the binning rate
approximately equals to l

n H 
V � 	 R.
Suppose the messages are drawn randomly and uniformly

from �0, 1�l . Upon receiving a message v, the encoder first
calculates its bin, that is B
v�. Then it finds x � B
v� such that

x � A
�n�
ε 
X�. If x was found, it is transmitted to the channel.

Otherwise, an encoding error is declared. Upon receiving y
from the channel, the decoder finds all c̃ � CO such that


c̃, y� � A
�n�
ε 
X, Y �.

Fig. 1. An example for the problem of distributed source coding. In this
setup, the sources X1 and X2 take values from Zpr . The decoder reconstructs
X1 � X2 losslessly.

Then, the decoder lists the bin number for any of such c̃. If the
bin number is unique, it is declared as the decoded message.
Otherwise, an encoding error will be declared.

The effective transmission of the above coding strategy
equals the binning rate, i.e., R. Using the covering lemma
(Lemma 5), the probability of the error at the encoder
approaches zero, if

RI � log pr � H 
X�.

Using the packing lemma (Lemma 4), the probability of error
at the decoder approaches zero, if

RO � log pr � H 
X �Y �.

As a result, the effective transmission rate R � I 
X; Y � is
achievable.

Source coding using QGCs : We use the same nested
QGC constructed for the channel coding problem. Given a
distortion level D, consider a random variable X̂ such that
E�d
X, X̂�� � D. Let x be a typical sequence from the source.
The encoder finds a codeword c � CO such that 
x, c� is jointly
ε-typical with respect to PX PX̂ �X . If no such c was found,
an encoding error will be declared. Otherwise, the encoder
sends the bin index v for which c � B
v�. Given v, the decoder
finds c̃ � B
v� such that c̃ is ε-typical with respect to PX̂ .
An error occurs, if no unique codeword c̃ was found.

Note that with high probability the effective transmission
rate approximately equals to R. Using Lemma 5, the encoding
error approaches zero, if

RO � log pr � H 
X̂ �X�.

Using Lemma 4, the decoding error approaches zero, if

RI � log pr � H 
X̂�.

As a result the rate R � I 
X; X̂� and distortion D is
achievable.

VI. DISTRIBUTED SOURCE CODING

In this section, we consider a distributed source coding
problem described as follows. Suppose X1 and X2 are sources
with alphabet Zpr and with joint PMF PX1 X2 . The j th encoder
compresses X j and sends it to a central decoder. The decoder
wishes to reconstruct X1 � X2 losslessly, where the addition
is modulo-pr . Figure 1 depicts the diagram of this setup.

It is assumed that n IID copies of the sources are made avail-
able at the encoders, where n is called the blocklength. In what
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follows, we define the encoding and decoding processes and
formulate the problem setup.

Definition 12. An 
n,�1,�2�-code consists of two encoding
functions

fi : Z
n
pr � �1, 2, � � � ,�i�, i 	 1, 2,

and a decoding function

g : �1, 2, � � � ,�1� 
 �1, 2, � � � ,�2� � Z
n
pr

Definition 13. Given a pair of sources 
X1, X2� � PX1 X2

with values over Zpr 
 Zpr , a pair 
R1, R2� is said to be
achievable if for any ε � 0 and sufficiently large n, there
exists an 
n,�1,�2�-code such that,

1

n
log2 Mi � Ri � ε, for i 	 1, 2,

and

P�X1
n � X2

n � g
 f1
X1
n�, f2
X2

n��� � ε.

For this problem, we adopt nested QGCs and propose a new
coding scheme. The following theorem presents an achievable
rate region for the defined setup.

Theorem 2. For a pair of sources 
X1, X2� � PX1 X2 with
values from Zpr , lossless reconstruction of the modulo-pr sum
X1 � X2 is possible with transmission rate-pair 
R1, R2�,
if there exist random variables 
W1, W2, Q� such that the
following bound holds

Ri � log2 pr�

min
0
s
r�1

H 
Wi �Q�

H 
W1 � W2��W1 � W2�s, Q�



log2 p�r�s�

� H 
X1 � X2��X1 � X2�s�
�
, (11)

where i 	 1, 2, 
W1, W2� take values from Zpr , the Markov
chain W1 � Q � W2 holds, and the injectivity condition (5)
is satisfied for each pair 
W1, Q� and 
W2, Q�. In addition,
�Q� � r is sufficient to achieve the above bounds.

Proof: See Appendix D.

Remark 8. The intuition for the rate-region can be briefly
explained as follows. Each source is encoded using a nested
QGC. The source covering task constrains the rate of the outer
code. The packing task induced by the need to recover the sum
(X1 � X2) at the decoder constrains the rate of the inner code.
The overall rates of transmission is given by the difference
between these two rates.

Every linear code and group code is a QGC. Therefore,
the achievable rate region given in Theorem 2 subsumes the
one achieved using linear codes or group codes with jointly
typical encoding/decoding techniques. We show, through the
following example, that the inclusion is strict.

Example 2. Consider a distributed source coding problem in
which X1 and X2 are sources over Z4 and lossless recon-
struction of X1 �4 X2 is required at the decoder. Assume
X1 is uniform over Z4. X2 is related to X1 via the equation

TABLE I

DISTRIBUTION OF N

TABLE II

ACHIEVABLE SUM-RATE USING DIFFERENT CODING SCHEMES

FOR EXAMPLE 2. NOTE THAT Z � X1 �4 X2

X2 	 N � X1, where N is a random variable which is inde-
pendent of X1. The distribution of N is presented in Table I.

Using random unstructured codes, the rates 
R1, R2� such
that

R1 � R2 � H 
X1, X2�

are achievable [40]. It is also possible to use linear codes
for the reconstruction of X1 �4 X2. For that, the decoder
first reconstructs the modulo-7 sum of X1 and X2, then
from X1 �7 X2 the modulo-4 sum is retrieved. This is
because linear codes are built only over finite fields, and Z7
is the smallest field in which the modulo-4 addition can be
embedded. Therefore, the rates

R1 	 R2 � H 
X1 �7 X2�

is achievable using linear codes over the field Z7 [2]. As is
shown in [39], group codes in this example outperform linear
codes. The largest achievable region using group codes is
described by all rate pair 
R1, R2� such that

Ri � max�H 
Z�, 2 H 
Z ��Z �1��, i 	 1, 2,

where Z 	 X1�4 X2. It is shown in [9] that using transversal
group codes the rates 
R1, R2� such that

Ri � max�H 
Z�, 1�2 H 
Z� � H 
Z ��Z �1��

are achievable. An achievable rate region using nested QGC’s
can be obtained from Theorem 2. Let Q be a trivial random
variable and set

P
W1 	 0� 	 P
W2 	 0� 	 0.95

and

P
W1 	 1� 	 P
W2 	 1� 	 0.05.

As a result one can verify that the following is achievable:

R j � 2 � min�0.6
2 � H 
Z��, 5.7
2 � 2H 
Z ��Z �1��.

Note that the factors 0.6 and 5.7 are determined by the
specific choice of the probability distribution on 
W1, Q�
and 
W2, Q�. Different factor are obtained by changing the
probability distributions. We compare the achievable rates of
these schemes. The result are presented in Table II.
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Fig. 2. An example for the problem of computation over MAC. The channel
input alphabets belong to Zpr . The receiver decodes X1 � X2 which is the
modulo-pr sum of the inputs of the MAC.

VII. COMPUTATION OVER MAC

In this section, we consider the problem of computation over
MAC. Figure 2 depicts an example of this problem. In this
setup X1 and X2 are the channel’s inputs, and take values
from Zpr . Two distributed encoders map their messages to
Xn

1 and Xn
2 . Upon receiving the channel output the decoder

wishes to decode Xn
1 � Xn

2 losslessly. The definition of a
code for computation over MAC, and an achievable rate are
given in Definition 15 and 16, respectively. Applications of
this problem are found in various multi-user communication
setups such as interference and broadcast channels.

Definition 14. A two-user MAC is a tuple 
X1,X2,Y ,
PY �X1 X2

�, where the finite sets X1,X2 are the inputs alphabets,
Y is the output alphabet, and PY �X1 X2

is the channel transition
probability matrix. Without loss of generality, it is assumed
that X1 	 X2 	 Zpr , for a prime-power pr .

Definition 15 (Codes for computation over MAC).
An 
n,�1,�2�-code for computation over a MAC

Zpr , Zpr ,Y, PY �X1 X2

� consists of two encoding functions
and one decoding function fi : �1 : �i � � Z

n
pr , for i 	 1, 2,

and g : Yn � Z
n
pr , respectively.

Definition 16 (Achievable Rate). 
R1, R2� is said to be
achievable, if for any ε � 0, there exists for all sufficiently
large n an 
n,�1,�2�-code such that

P�g
Y n� � f1
M1� � f2
M2�� � ε,

Ri � ε �
1

n
log �i ,

H 
Mi � fi
Mi �� � ε, i 	 1, 2,

where M1 and M2 are independent random variables and
P
Mi 	 mi � 	 1

�i
for all mi � �1 : �i �, i 	 1, 2.

For the above setup, we use QGCs to derive an achievable
rate region.

Theorem 3. Given a MAC 
Zpr , Zpr ,Y, PY �X1 X2
�, rate-pair


R1, R2� is achievable according to Definition 16, if there exist
random variables 
Q, X1, X2, V1, V2, W1, W2� such that the
following bounds hold

Ri � min
0
s
r

H 
Vi �Q�

H 
V ��V �s, Q�



log2 pr�s � H 
X �Y, �X�s�

� max
1
t
r
j�0,1

H 
W ��W �s, Q�

H 
�W j �t �Q�

�
log2 pt � H 
�X j�t�


 �

where i 	 1, 2, 
V1, V2, W1, W2� take values from Zpr , and
W 	 W1 � W2, V 	 V1 � V2, X 	 X1 � X2. More-
over, the injectivity condition (5) is satisfied for each pair

W1, Q�, 
W2, Q�, 
V1, Q�, and 
V2, Q� and the joint PMF
of all the random variables factors as

PQ X1 X2V1V2W1W2Y 	 PX1 PX2 PQ PY �X1 X2

2�
i�1

PVi �Q PWi �Q .

Remark 9. The cardinality bound �Q� � r2 is sufficient to
achieve the rate region in the theorem.

Proof: See Appendix E.

Corollary 1. A special case of the theorem is when X1 and X2
are distributed uniformly over Zpr . In this case, the following
is achievable

Ri �

min
0
s
r

H 
Vi �Q�

H 
V1�V2��V1�V2�s, Q�
I 
X1 � X2; Y ��X1 � X2�s�,

(12)

where i 	 1, 2.

We show, through the following example, that QGC outper-
forms the previously known schemes.

Example 3. Consider the MAC described by Y 	 X1 � X2 �
N, where X1 and X2 are the channel inputs with alphabet Z4.
N is independent of X1 and X2 with the distribution given
in Table I.

Using standard unstructured codes the rate pair 
R1, R2�
satisfying

R1 � R2 � I 
X1 X2; Y �

are achievable. Note that the modulo-4 addition can be
embedded in a larger field such as Z7. For that linear codes
over Z7 can be used. In this case, the following rates are
achievable:

R1 	 R2 	

max
PX1 PX2 :X1,X2�Z4

min
�

H 
X1�, H 
X2�
�
� H 
X1 �7 X2�Y �,

where the maximization is taken over all probability distribu-
tion PX1 PX2 on Z7 
Z7 such that P
Xi � Z4� 	 1, , i 	 1, 2.
This is because, Z4 is the input alphabet of the channel.

It is shown in [39] that the largest achievable region using
group codes is

Ri � min�I 
Z; Y �, 2I 
Z; Y ��Z �1��,

where Z 	 X1 � X2 and X1 and X2 are uniform over Z4.
Using Corollary 1, QGC’s achieve

Ri � min�0.6 I 
Z; Y �, 5.7 I 
Z; Y ��Z �1��.

This can be verified by checking (12) when Q is a trivial
random variable,

P
V1 	 0� 	 P
V2 	 0� 	 0.95

and
P
V1 	 1� 	 P
V2 	 1� 	 0.05.
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TABLE III

ACHIEVABLE RATES USING DIFFERENT CODING SCHEMES
FOR EXAMPLE 3. NOTE THAT Z � X1 � X2

Fig. 3. A two-user MAC with distributed states. The states �S1, S2� are
generated randomly according to PS1S2 . The entire sequence of each state Si
is available non-casually at the i th transmitter, where i � 1, 2.

Note that the factors 0.6 and 5.7 are determined by the
specific choice of the probability distribution on 
W1, Q� and

W2, Q�. Different factors can be obtained by changing the
probability distributions. We compare the achievable rates of
these schemes for the explained setup. The result are presented
in Table III.

VIII. MAC WITH STATES

A. Model

Consider a two-user discrete memoryless MAC with input
alphabets X1,X2, and output alphabet Y . The transition prob-
abilities between the input and the output of the channel
depends on a random vector 
S1, S2� which is called state.
Figure 3 demonstrates such setup. Each state Si takes values
from a set Si , where i 	 1, 2. The sequence of the states is
generated randomly according to the probability distribution	n

i�1 PS1S2 . The entire sequence of the state Si is known at
the i th transmitter, i 	 1, 2, non-causally. The conditional
distribution of Y given the inputs and the state is PY �X1 X2 S1S2

.
Each input Xi is associated with a state dependent cost
function ci : Xi 
 Si � �0,���.3 The cost associated with
the sequences xn

i and sn
i is given by

c̄i
x
n
i , sn

i � 	
1

n

n�
j�1

ci
xi j , si j �.

Definition 17. An 
n,�1,�2�-code for reliable communica-
tion over a given two-user MAC with states is defined by two

3We use a cost function for this problem because, in many cases without a
cost function the problem has a trivial solution.

encoding functions

fi : �1, 2, . . . ,�i� 
 Sn
i � Yn, i 	 1, 2,

and a decoding function

g : Yn � �1, 2, . . . ,�1� 
 �1, 2, . . . ,�2�.

Definition 18. For a given MAC with state, the rate-cost tuple

R1, R2, τ1, τ2� is said to be achievable, if for any ε � 0, and
for all large enough n there exists an 
n,�1,�2�-code such
that

P�g
Y n� � 
M1, M2�� � ε,
1

n
log �i � Ri � ε,

and
E�c̄i
 fi 
Mi �, Sn

i �� � τi � ε,

for i 	 1, 2, where a) M1, M2 are independent random
variables with distribution P
Mi 	 mi� 	 1

�i
for all mi �

�1 : �i �, b) 
M1, M2� is independent of the states 
S1, S2�.
Given τ1, τ2, the capacity region Cτ1,τ2 is defined as the set
of all rates 
R1, R2� such that the rate-cost 
R1, R2, τ1, τ2� is
achievable.

B. Achievable Rates

We propose a structured coding scheme that builds upon
QGC. Then we present the single-letter characterization of the
achievable region of this coding scheme. Using this binning
method, a rate region is given in the following theorem.

Theorem 4. For a given MAC 
X1,X2,Y, PY �X1 X2
� with inde-

pendent states 
S1, S2� and cost functions c1, c2 the following
rates are achievable using nested-QGC

R1 � R2 � r log2 p � H 
Z1 � Z2�Y, Q��

max
i�1,2

1
t
r

�H 
V1�V2�Q�

H 
�Vi�t �Q�



log2 pt � H 
�Zi�t �Q, Si�

��
,

where the joint distribution of the above random variables
factors as

PS1S2 PQ PY �X1 X2

�
i�1,2

PVi �Q PZi �QSi
PXi �Q Zi Si

.

Proof: Let CI, j be an 
n, k�-QGC with matrix G j ,
translation b j , and random variables 
W j , Q�, where W j is
uniform over �0, 1�, and j 	 1, 2. Denote W1 and W2 as
the index sets associated with CI,1 and CI,1, as in (2). Let
C̄1, C̄2 and D̄ be three 
n, l� QGC with identical matrices Ḡ
and identical translations b̄. Suppose 
Vj , Q� are the random
variables associated with C̄ j , where j 	 1, 2. Furthermore,
let 
V1 � V2, Q� is the random variable associated with
D̄. Suppose that the elements of all the matrices and the
translations are selected randomly and uniformly from Zpr .
Rate of C̄i is denoted by ρi , rate of D̄ is denoted by ρ, and that
of CI,i is Ri , i 	 1, 2. For each, sequence zi and si , generate
a sequence xi randomly with IID distribution according to
Pn

Xi �Zi Si
, i 	 1, 2. Denote such sequence by xi
si , zi �.

Codebook Construction: For each encoder we use a nested
QGC. For the first encoder, we use the 
n, k, l�-nested QGC
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generated by CI,1 and C̄1. For the second encoder, we use
the 
n, k, l�-nested QGC characterized by CI,2 and C̄2. The
codebook used in the decoder is CI,1 �CI,2 �D̄. By Lemma 3,
this codebook is an 
n, 2k � l�-QGC. In addition, the rate of
such code is R1 � R2 � ρ

Encoding: For i 	 1, 2, the i th encoder is given a message
θi , and an state sequence si . The encoder first calculates the bin
associated with θi . Then it finds a codeword zi in that bin such

zi , si� are jointly ε-typical with respect to PZi Si . If no such
sequence was found, the error event Ei will be declared. The
encoder calculates xi
si , zi �, and sends it through the channel.
Define the event Ec as the event in which 
Z1, Z2, s1, s2� are
not jointly ε�- typical with respect to the joint distribution
PZ1 Z2 S1S2 .

Decoding: The decoder receives yn from the channel. Then
it finds w̃1 � W1, w̃2 � W2, and ṽ � A

�n�
ε 
V1 � V2� such that

the corresponding codeword defined as

z̃ 	 w̃1G1 � w̃2G2 � ṽḠ � b1 � b2 � b̄

is jointly ε̃-typical with Y with respect to PZ1�Z2,Y . If w̃1, w̃2
are unique, then they are considered as the decoded messages.
Otherwise an error event Ed will be declared.

Error Analysis: We use Lemma 5 for E1 and E2. For that
in the covering bound given in (8) set R 	 ρi , U 	 Vi , Q 	
Q̄, X̂ 	 Xi , and X 	 Si , where i 	 1, 2. As a result, P
E1�
and P
E2� approaches zero as n � �, if the covering bound
holds:

ρi � max
1
t
r

H 
Vi �Q̄�

H 
�Vi�t �Q̄�

log2 pt � H 
�Z �t �Si��.

Note that by Remark 3, ρi � l
n H 
Vi �Q̄� � δ
ε�. Thus,

the above bound gives the following bound

l

n
H 
�Vi�t �Q̄� � log2 pt � H 
�Z �t �Si�, (13)

where 1 � t � r, i 	 1, 2.
Analysis of Ec

�
Ec

1
�

Ec
2: Define the set

Es1,s2 	�
�

z1, z2� � Z

n
pr 
 Z

n
pr : 
zi , si � � A

�n�
ε 
Zi , Si �,


z1, z2, s1, s2� � A
�n�
ε 
Z1, Z2, S1, S2�, i 	 1, 2

�
.

Therefore, probability of Ec
�

Ec
1

�
Ec

2 can be written as

P
Ec
�

Ec
1
�

Ec
2� 	

�
�s1,s2��A

�n�
ε �S1,S2�

Pn
S1,S2


s1, s2�
�

�z1,z2��Es1 ,s2

P
e1
�1, s1� 	 x1, e2
�2, s2� 	 x2�,

where ei is the output of the i th encoder, and �i is the random
message to be transmitted by encoder i , where i 	 1, 2.
To bound P
Ec

�
Ec

1

�
Ec

2�, we use a similar argument as in
the proof of Theorem 3. We can show that, E�P
Ec

�
Ec

1

�
Ec

2�� � 0 as n � �.
Analysis of Ed

�

Ec

�
E1
�

E2�
c:

Next, we use Lemma 4 to provide an upper-bound on
P
Ed

�

Ec

�
E1
�

E2�
c�. Conditioned on Ec

1

�
Ec

2, the event
Ed is the same as the event of interest in Lemma 4. Set
Cn 	 CI,1 � CI,2 � D̄, and R 	 R1 � R2 � ρ. It can be
shown that P
Ed

�

Ec

�
E1
�

E2�
c� approaches zero, if the

packing bound in (7) holds. Since Wi is uniform over �0, 1�,
then H 
Wi �Q, �Wi �t� 	 0 for all t � 0. Therefore, the packing
bound is simplified to

R1 � R2 � ρ � log2 pr � H 
Z1 � Z2�Y �. (14)

Note that ρ � l
n H 
V1 � V2�Q�. Therefore, if the bound

R1 � R2 � log2 pr � H 
Z1 � Z2�Y � �
l

n
H 
V1 � V2�Q�,

(15)

holds on R1�R2, then (14) holds too. Using (13), we establish
a lower bound on l

n H 
V1 � V2�Q�. We have

l

n
H 
V1 � V2�Q� �

H 
V1 � V2�Q�

H 
�Vi�t �Q̄�

�
log2 pt � H 
�Z �t �Si�



,

(16)

where 1 � t � r, i 	 1, 2. Then combining (15) and (16)
gives the following:

R1 � R2 � log2 pr � H 
Z1 � Z2�Y �

�
H 
V1 � V2�Q�

H 
�Vi�t �Q̄�

�
log2 pt � H 
�Z �t �Si�



.

Since these bounds hold for i 	 1, 2, and 1 � t � r , we get
the bound in the theorem.

Lemma 6. The rate region given in Theorem 4 contains the
achievable rate region using group codes and linear codes.
For that let Vi , i 	 1, 2 be distributed uniformly over Zpr .
Therefore, we get the bound

R1 � R2 � min
i�1,2

1
t
r

�
r

t
H 
�Zi�t �QSi �� � H 
Z1 � Z2�Y Q�.

Jafar [45] used the Gel’fand-Pinsker approach for the point-
to-point channel coding with states, and proposed a coding
scheme using unstructured random codes. Using this scheme
a single-letter and computable rate region is characterized.

Definition 19. For a MAC 
X1,X2,Y, PY �X1 X2
� with states


S1, S2� and cost functions c1, c2, define RG P as

max
�

I 
U1, U2; Y �Q� � I 
U1; S1�Q� � I 
U2; S2�Q�
�
, (17)

where the maximization is taken over all joint probability
distributions PS1S2 QU1U2 X1 X2Y satisfying E�ci 
Xi , Si �� � τi

for i 	 1, 2, and factoring as

PQ PS1S2 PY �X1 X2

�
i�1,2

PUi Xi �Si Q .

The collection of all such PMFs PS1 S2 QU1U2 X1 X2Y is denoted
by PG P .

To the best of our knowledge, RG P is the current largest
achievable rate region using unstructured codes for the prob-
lem of MAC with states [45].
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C. An Example

We present a MAC with state setup for which RG P is
strictly contained in the region characterized in Theorem 4.

Example 4. Consider a noiseless MAC given in the following

Y 	 X1 �4 S1 �4 X2 �4 S2,

where X1, X2 are the inputs, Y is the output, and S1, S2 are
the states. All the random variables take values from Z4. The
states S1 and S2 are mutually independent, and are distributed
uniformly over Z4. The cost function at the first encoder is
defined as

c1
x� 	�
�

1 if x � �1, 3�
0 otherwise,

whereas, for the second encoder the cost function is

c2
x� 	�
�

1 if x � �2, 3�
0 otherwise.

We are interested in satisfying the cost constraints
E�c1
X1�� 	 E�c2
X2�� 	 0. This implies that, with
probability one, X1 � �0, 2�, and X2 � �0, 1�.

Lemma 7. For the setup in Example 4, an outer-bound for
RG P is the set of all rate pairs 
R1, R2� such that R1�R2 � 1.

Proof: See Appendix F.
Using numerical analysis, we can provide a tighter bound on
the sum-rate which is R1 � R2 � 0.32. However, the bound
in Lemma 7 is sufficient for the purpose of this paper.

Corollary 2. For the MAC with states problem in Example 4,
the rate pairs 
R1, R2� satisfying R1 � R2 	 1 is achievable.

Proof: The proof follows using Theorem 4 with appropri-
ately selected distributions PVi �Q , PZi �QSi

, and PXi �Q Zi Si
for

i 	 1, 2. For that, let Q be a trivial random variable and

V1, V2� be IID random variables uniform distribution over
�0, 1�. Conditioned on S1, the distributions of Z1 is given by

PZ1�S1

z1�s1� 	�

�
1�2 if z1 	 �s1, or z1 	 �s1 � 2
0 otherwise,

The distribution of Z2 conditioned on S2 is

PZ2�S2

z2�s2� 	�

�
1�2 if z2 	 s2, or z2 	 s2 � 1
0 otherwise,

The conditional distributions of Xi given 
Si , Zi�, i 	 1, 2, are
governed by the relation Xi 	 Zi � Si , i 	 1, 2. As a result,
X1 � �0, 2�, and X2 � �0, 1�, with probability one. Hence,
the cost constraints for 
c1, c2� are satisfied. Therefore, for
the defined distributions, the sum-rate given in the Theorem is
simplified to R1�R2 � 1. As a result the sum-rate R1�R2 	 1
is achievable.

IX. CONCLUSION

A new class of structured codes called Quasi Group Codes
was introduced, and basic properties and performance limits
of such codes were investigate. The asymptotic performance
limits of QGCs was characterized using single-letter infor-
mation quantities. The PtP channel capacity and optimal

rate-distortion function are achievable using QGCs. Coding
strategies based on QGCs were studied for three multi-terminal
problems: the Körner-Marton problem for modulo prime-
power sums, computation over MAC, and MAC with States.
For each problem, a coding scheme based on (nested) QGCs
was introduced, and a single-letter achievable rate-region was
derived. The results show that the coding scheme improves
upon coding strategies based on unstructured codes, linear
codes and group codes.

APPENDIX A

A. Proof of Lemma 1

Proof: Using (3) we get

Un 	
�
q�Q

A
�kq,n�
ε 
Uq�,

where kq,n 	 PQ
q�kn , and the distribution of Uq is the
same as the conditional distribution of U given Q 	 q . Using
well-known results on the size of ε-typical sets we can provide

a bound on �A
�kq,n�
ε 
Uq��. More precisely, there exists Nq such

that for all kq,n � cNq , we have

�
1

kq,n
log2 �A

�kq,n�
ε 
Uq�� � H 
Uq�� � 2ε�q ,

where using the same argument as in [43]

ε�q 	 �
ε

pr

�
a�Zpr ,P�Uq�a�
0

log2 P
Uq 	 a�.

Therefore,

1

kn
log2 �Un� 	

1

kn

�
q�Q

log2 �A
�kq,n�
ε 
Uq��

�
�

q�Q

kq,n

kn

H 
Uq� � 2ε�q�

�a�
	 H 
U �Q� �

�
q�Q

PQ
q�2ε�q � H 
U �Q� � ε�,

where ε� 	� 2 maxq�Q ε�q . Note that 
a� holds as PQ
q� 	
kq,n�kn. Using a similar argument we can show that

1

kn
log2 �Un� � H 
U �Q� � ε�.

Finally, by setting N 	 maxq Nq , and combining the bounds
on 1

kn
log2 �Un� the proof is completed.

B. Proof of Lemma 2

Proof: For any u � Un , define

θ
u� 	�
�

u��Un
u��u

���n
u�� 	 �n
u��.

Note that θ
u� is the number of vectors u� � Un that have the
same output as for u, i.e., �n
u�� 	 �n
u�. Let

A 	�
�

u � Un : θ
u� 	 0
�
.
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Note that A is a subset over which �n is injective. We show
that �Ac� � δ �Un� with high probability. Using Markov
inequality:

P��Ac� � δ�Un�� �
E��Ac��

δ�Un�
,

where the expectation is taken with respect to the distribution
on random mapping �n . Note that

�Ac� 	
�

u�Un

��θ
u� � 0� �
�

u�Un

θ
u�

Hence,

P��Ac� � δ�Un�� �
1

δ�Un�

�
u�Un

E�θ
u��. (18)

By definition, E�θ
u�� 	
�

u��u P��n
u�� 	 �n
u��. We pro-
vide an upper bound on E�θ
u��.

Let Hs 	 ps
Zpr be a subgroup of Zpr , where s � �0 : r�1�.

If a � Zpr � �0�, then there exists a maximum s � �0 : r � 1�
such that a � Hs . That is a � Hs and a � Ht for all t � s.
As a result, for any u� � Un there are r cases for the maximum
s such that u � u� � H kn

s . Considering these cases, we obtain

�
u��Un
u��u

P��n
u�� 	 �n
u�� 	
r�1�
s�0

�
u��Un

u��u�Hkn
s �Hkn

s�1

P��n
u�� 	 �n
u�� (19)

Since �n is a linear map, we have

P��n
u�� 	 �n
u�� 	 P��n
u� � u� 	 0�.

Next, we use Lemma 11 (see Appendix H). Since

u� � u � H kn
s  H kn

s�1,

then
P��n
u� � u� 	 0� 	 p�n�r�s�.

Therefore, using (19) and the expression for E�θ
u��, we get

E�θ
u�� �
r�1�
s�0

�
u��Un

u��u�Hkn
s

p�n�r�s� (20)

Next, we replace the summation over u� with the size of the set
Un
�


u�H kn
s �. Since Un is a Cartesian product of typical sets,

we use Lemma 12 (see Appendix H) to obtain the following
bound

�Un

�

u � H kn

s �� �
�

q

2kq,n
H�Uq ��Uq �s��ε�q�,

where kq,n 	 PQ
q�kn . Therefore, the following bound holds:

E�θ
u�� �
r�1�
s�0

2kn�H�U �Q�U �s��ε�� p�n�r�s� (21)

By assumption,

H 
U ��U �s, Q� �
1

c

r � s� log2 p � ε,�s � �0 : r � 1�.

Therefore, for appropriate choice of ε and for sufficiently large
n, the right-hand side of (21) can be made arbitrary small (say
smaller than δγ ). Therefore, from Markov inequality given in
(18), we obtain

P��Ac� � δ�Un�� �
1

δ�Un�

�
u�Un

γ δ 	 γ.

APPENDIX B
PROOF OF LEMMA 4

Proof: Let Cn be the random 
n, kn�-QGC as in Lemma 4.
For shorthand, for any u � Un , denote �n
u� 	 uGn , where
Gn is the random matrix corresponding to Cn . Fix u0 � Un .
Without loss of generality assume c
θ� 	 �n
u0� � B , where
B is the translation associated with Cn . Define the event

En
u� :	 �
�n
u� � B, Ỹ� � A
�n�
ε 
X, Y ��,

and let En be the event of interest as given in the lemma. Then
En is the union of En
u� for all u � Un �u0�. By the union
bound, the probability of En is bounded as

P
En� �
�

u�Un
u�u0

P
En
u�� (22)

For any u � Un , the probability of En
u�, can be calcu-
lated as,

P
En
u�� 	
�

x0�Z
n
pr

�
y�Yn

P
�n
u0��B 	 x0, Ỹ	y, En
u��

	
�

x0�Z
n
pr

�
y�A

�n�
ε �Y �

�
x:

�x,y��A
�n�
ε �X,Y �

P
�n
u0� � B 	 x0, Ỹ 	 y,�n
u� � B 	 x�. (23)

By assumption, conditioned on �n
u0�� B , the random vari-
able Ỹ is independent of �n
u�� B . Therefore, the summand
in (23) is simplified to

P
�n
u0� � B 	 x0,�n
u� � B 	 x�Pn
Y �X 
y�x0�. (24)

Since B is uniform over Z
n
pr , and is independent of other

random variables,

P
�n
u0� � B 	 x0,�n
u� � B 	 x�

	 p�nr P
�n
u � u0� 	 x � x0�.

Using Lemma 11 (in Appendix H), if u � u0 � H kn
s  H kn

s�1,
then

P
�n
u � u0� 	 x � x0� 	 p�n�r�s�
��x � x0 � H kn

s �.

Therefore, using (23), and for u � u0 � H kn
s  H kn

s�1 we obtain

P
En
u�� 	
�

x0�Z
n
pr

�
y�A

�n�
ε �Y �

�
x:

�x,y��A
�n�
ε �X,Y �

x�x0�Hn
s

p�nr Pn
Y �X 
y�x0�p�n�r�s�

Denote

A 	� �x : 
x, y� � A
�n�
ε 
X, Y �, x � x0 � H n

s �.
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Note that if 
�x0�s, y� � A
�n�
ε 
�X�sY �, then A 	 !. Therefore,

P
En
u�� 	
�

�x0,y�:
��x0�s ,y��A

�n�
ε ��X�s Y �

�
x�A

p�nr Pn
Y �X 
y�x0�p�n�r�s� (25)

Next, we replace the summation over x with the size of the
set A. We bound the size of A using Lemma 12. Therefore,
an upper-bound on (25) is

P
En
u�� ��
�x0,y�:

��x0�s ,y��A
�n�
ε ��X�s Y �

p�nr Pn
Y �X 
y�x0�p�n�r�s�2n�H�X �Y,�X�s ��δ�4ε��

�
�

x0�Z
n
pr

�
y�Yn

p�nr Pn
Y �X 
y�x0�p�n�r�s�2n�H�X �Y,�X�s ��δ�4ε��

� p�n�r�s�2n�H�X �Y,�X�s ��δ�4ε��. (26)

Note that if a � Z
k
pr , a � 0 then there exists s � �0 : r � 1�

such that a � H k
s  H k

s�1. Therefore, there are r different cases
for each value of s. Using (26), and considering these cases,
we obtain

P
En� �
r�1�
s�0

�
u�Un

u�u0�Hkn
s �Hkn

s�1

P
En
u��

�
r�1�
s�0

�
u�Un

u�u0�Hkn
s �Hkn

s�1

2n�H�X �Y �X�s ��δ�4ε�� p�n�r�s�

�
r�1�
s�0

�Un

�

u0 � H k

s ��2
n�H�X �Y �X�s ��δ�4ε�� p�n�r�s�.

Note that Un is the Cartesian product of ε-typical sets
A
�p�q�kn�
ε 
Uq�, where q � Q and kn 	 cn. For each component

q of Un , we can apply Lemma 12. Therefore,

�Un " 
u0 � H k
s �� � 2

�
q p�q�kn�H�Uq ��Uq �s��δ�2ε��

	 2kn�H�U ��U �s ,Q��δ�2ε��.

Finally,

P
En� �
r�1�
s�0

2n
�

kn
n �H�U ��U �s ,Q��H�X �Y,�X�s��

kn
n δ�2ε��δ�4ε�



p�n�r�s�.

As a result limn�� P
En� 	 0, if the inequality

cH 
U ��U �s, Q� � log2 pr�s � H 
X �Y, �X�s� � 2
2 � c�δ
ε�,

holds for all 0 � s � r � 1. Multiply each side of this
inequality by H�U �Q�

H�U �Q,�U �s�
. This gives the following bound

cH 
U �Q� �
H 
U �Q�

H 
U �Q, �U �s�



log2 pr�s � H 
X �Y, �X�s�

� 2
2 � c�δ
ε�
�
.

By definition Rn 	 1
n log2 �Cn� � cH 
U �Q��ε�. Therefore,

Rn �
H 
U �Q�

H 
U �Q, �U �s�

log2 pr�s�H 
X �Y, �X�s��2
2�c�δ
ε��,

and the proof is completed.

APPENDIX C
PROOF OF LEMMA 5

Proof: We use the same notation as in the proof of
Lemma 4. For any typical sequence x define

λn
x� 	
�

x̂�A
�n�
ε �X̂ �x�

�
u�Un

���n
u� � B 	 x̂�.

Note λn
x� counts the number of codewords that are condi-
tionally typical with x with respect to p
x̂�x�. We show that

lim
n��

P
λn
x� 	 0� 	 0

for any ε-typical sequence x. This implies that

lim
n��

P
λn
Xn� 	 0� 	 0,

where Xn �
	n

i�1 p
x�. This proves the statements of the
Lemma. Hence, it suffices to show that limn�� P
λn
x� 	
0� 	 0. We have,

P�λn
x� 	 0� � P
�
λn
x� �

1

2
E
λn
x��

�

� P
�
�λn
x� � E
λn
x��� �

1

2
E
λn
x��

�
(27)

Hence, by Chebyshev’s inequality,

P�λn
x� 	 0� �
4 V ar
λn
x��

E
λn
x��2 .

Note that

E
λn
x�� 	
�

x̂�A
�n�
ε �X̂ �x�

�
u�Un

P��
u� � B 	 x̂� (28)

Since B is uniform over Z
n
pr , we get

E
λn
x�� 	 �A
�n�
ε 
X �x̂���Un�p

�rn. (29)

Note that

2kn�H�U �Q��2ε�� � �Un� � 2kn�H�U �Q��2ε��,

where

ε� 	 �
ε

pr

�
q�Q

PQ
q�
�

a�Zpr :PU�Q�a�q�
0

log PU �Q
a�q�.

Therefore,

E
λn
x�� � 2n�H�X̂ �X��2ε̃�2kn�H�U �Q��2ε�� p�rn (30a)

E
λn
x�� � 2n�H�X̂ �X��2ε̃�2kn�H�U �Q��2ε�� p�rn, (30b)

To calculate the variance, we start with

E
λn
x�
2� 	

�
ˆx,O�x�A

�n�
ε �X̂ �x�

�
u,u��Un

P��
u� � B 	 x̂,�
u�� � B 	 x̂��.
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Since B is independent of other random variables, the most
inner term in the above summations is simplified to

p�nr P��
u � u�� 	 x̂ � x̂��.

Using Lemma 11 (in Appendix H), if u � u� � H kn
s  H kn

s�1,
then

P��
u � u�� 	 x̂ � x̂�� 	 p�n�r�s�
��x̂ � x̂� � H n

s �

Considering all the cases for the values of s, we get

E
λn
x�
2� 	

r�
s�0

�
u,u��Un

u�u��Hkn
s �Hkn

s�1

�
ˆx,O�x�A

�n�
ε �X̂ �x�

x̂�x̂��Hn
s

p�nr p�n�r�s�

Since the innermost terms in the above summations do not
depend on the individual values of x, x̂, u, u�, the correspond-
ing summations can be replaced by the size of the associated
sets. Moreover, we provide an upper bound on the summation
over u, u� by replacing H kn

s  H kn
s�1 with H kn

s . Using Lemma 12
for x, x̂, we get

E
λn
x�
2� �

r�
s�0

�
u�Un�

u��Un

u�u��Hkn
s

2n�H�X̂ �X��ε̃�H�X̂ �X,�X̂�s��δ�4ε�� p�nr p�n�r�s�.

For any u � Un , by applying Lemma 12 we get

�Un

�

u � H kn

s �� � 2kn�H�U �Q,�U �s ��δ�4ε��.

As a result,

E
λn
x�
2� �

r�
s�0

2kn�H�U �Q,�U �s ��δ�4ε��2kn�H�U �Q��ε��


 2n�H�X̂ �X��ε̃�H�X̂ �X,�X̂�s��δ�4ε�� p�nr p�n�r�s�.

Note that the case s 	 0 gives E2
λn
x��. Therefore,

V ar
λn
x�
2� � p�nr

r�
s�1

2kn�H�U �Q��H�U �Q,�U �s ��


 2n�H�X̂ �X��H�X̂ �X,�X̂�s��2n�1�c��ε�δ�4ε�� p�n�r�s� (31)

Finally, using (30), (31) and the Chebyshev’s inequality as
argued before, we get

P�λn
x� 	 0� � 4
r�

s�1

2kn��H�U �Q��H�U �Q,�U �s ��


 2n��H�X̂ �X��H�X̂ �X,�X̂�s��2n�1�c��ε�δ�4ε�� pnr p�n�r�s�

	 4 2n�1�c��ε�δ�4ε��
r�

s�1

2�kn H��U �s �Q�2�nH��X̂ �s �X� pns .

The second equality follows, because the equality

H 
V �W � � H 
V ��V �s, W � 	 H 
�V �s �W �

holds for any random variables V and W . Therefore, P�λn
x��
approaches zero, as n � �, if the inequality

cH 
�U �s�Q� � log2 ps � H 
�X̂�s �X� � 
1 � c�
ε � δ
4ε��,

holds for 1 � s � r . By the definition of rate and the above
inequalities the proof is completed.

APPENDIX D
PROOF OF THEOREM 2

Fix a positive integer n, and define l1 	� c1 n, l2 	� c2n, and
k 	� c̃n, where c̃, c1 and c2 are positive real numbers such that
l1, l2 and k are integers.

Codebook Generation: We use two nested QGC’s, one
for each encoder. The codebook for Encoder 1 is an 
n, k, l1�
nested QGC (as in Definition 5) with random variables

W1, V1, Q�. Let CI,1, C̄1, and CO,1 denote the corresponding
inner code, shift code and the outer code (as in Definition 5),
respectively. The codebook for Encoder 2 is an 
n, k, l2� nested
QGC with random variables 
W2, V2, Q�, inner code CI,2, shift
code C̄2, and outer code CO,2. The codebook at the decoder is
denoted by Cd which is an 
n, k� QGC with random variables

W1 � W2, Q�.

Conditioned on Q, the random variables 
W1, W2, V1, V2�
are mutually independent. The random variable Vi is uniform
over �0, 1�, and is independent of Q.

The nested QGCs and Cd have identical generator matrices
but different translations and index random variables. Note that
each nested QGC has two generator matrices/translations, one
for the inner code and one for the shift code as in Definition 5.
The generator matrix and the translation for the inner codes
CI,i , i 	 1, 2, are denoted by G and b, respectively. The
generator matrix and the translation used for shift code CI,i ,
are denoted by Ḡ and b̄i , respectively, where i 	 1, 2. The
elements of G, Ḡ, b, and b̄i , i 	 1, 2 are generated randomly
and independently from Zpr .

By RO,i and RI,i denote the rate of the inner code and outer
code defined for the i th nested QGC. Define Ri 	� RO,i �
RI,i , i 	 1, 2.

Encoding: Suppose 
x1, x2� is a realization of 
Xn
1 , Xn

2 �.
The first encoder checks if x1 is ε-typical and x1 � CO,1. If not,
an encoding error E1 is declared. In the case of no encoding
error, by Definition 5, x1 	 cI,1 � c̄1, where cI,1 � CI,1 and
c̄1 � C̄1. The first encoder sends the index of c̄1. Note c̄1
determines the index of the bin which contains x1. Similarly,
if x2 � A

�n�
ε 
X2� and x2 � CO,2, the second encoder sends

finds cI,2 � CI,2 and c̄2 � C̄2 such that x2 	 cI,2 � c̄2. Then
it sends the index of c̄2. If no such cI,2 and c̄2 are found,
an error event E2 is declared.

Decoding: The decoder wishes to reconstruct x1 � x2.
Assume there is no encoding error. Upon receiving the bin
numbers from the encoders, the decoder calculates c̄1 and c̄2.
Then, it finds c̃ � Cd such that

c̃ � c̄1 � c̄2 � A
�n�
ε 
X1 � X2�.

If c̃ is unique, then
c̃ � c̄1 � c̄2

is declared as a reconstruction of x1 � x2. An error event Ed

occurs, if no unique c̃ was found.
We need to find conditions for which the probability of the

error events E1, E2 and Ed approach zero. By Wi denote the
index set of CI,i , and let Vi be the index set of C̄i , i 	 1, 2.
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Error: Let 
 f1
��, f2
��� and g
�, �� denote the encoding
and decoding functions corresponding to the above coding
scheme. The overall error event is defined as

E 	� �Xn
1 � Xn

2 � g
 f1
Xn
1�, f2
Xn

2���

For the achievability, we need to show that P
E� can be made
arbitrary small for sufficiently large n. For that, using the
aforementioned encoding and decoding error events we have

P
E� � P
E1 # E2
�

Ed� � P
E �Ec
1
�

Ec
2
�

Ec
d�

Using standard arguments for typical sequences, we can show
that when there is no encoding and decoding error (i.e.,
Ec

1

�
Ec

2

�
Ec

d ) the error probability P
E �Ec
1

�
Ec

2

�
Ec

d�
approaches 0 as n � �. As a result, the second term above
is sufficiently small for large enough n. Therefore, for suffi-
ciently large n and from the union bound on the first term we
obtain,

P
E� � P
E1� � P
E2� � P
Ed � � ε.

A. Analysis of E1, E2

In what follows, we apply the covering lemma (Lemma 5) to
bound the probability of the encoding errors. For that the outer
code CO,i is used to “cover” the source Xi . Note that CO,i is
the outer code for the 
n, k, l� nested QGC used at Encoder i ,
i 	 1, 2. Therefore, CO,i is a 
n, k�l� QGC with appropriately
defined index random variables (as is defined in Lemma 3).
The random variables defined for CO,i are 
Ui , 
Q, Ji ��, where
given Ji 	 1 we have Ui 	 Wi , and given Ji 	 2 we get Ui 	
Vi . In addition, P
Ji 	 0� 	 k

li�k , and P
Ji 	 1� 	 li
li�k .

We apply Lemma 5 to bound the probability of Ei . In this
lemma set X̂ 	 X 	 Xi with probability one, Cn 	 CO,i , and
Rn 	 RO,i , i 	 1, 2. Using Lemma 5, P
Ei � is sufficiently
small for large blocklength n if

RO,i � max
1
s
r

H 
Ui �Q, Ji�

H 
�Ui�s �Q, Ji�

log2 ps � o
ε��.

Using Remark 3, and the above bound we get

k � li

n
H 
�Ui�s �Q, Ji � � log2 ps � o
ε�

for s � �1 : r �. Therefore, by the definition of Ui and Ji ,
we get

k

n
H 
�Wi�s �Q� �

li

n
H 
Vi �Q� � log2 ps � o
ε�, 1 � s � r.

Note that in this bound we use the equality H 
�Vi�s� 	 H 
Vi�.
This equality holds because Vi takes values from �0, 1�. Again
using Remark 3, we get �Ri�

li
n H 
Vi �Q�� � o
ε�. Hence, if the

following holds

k

n
H 
�Wi�s �Q� � Ri � log2 ps � o
ε�, (32)

for 1 � s � r and i 	 1, 2, then P
Ei � � 0 as n � �.

B. Analysis of Ed

Upon receiving the bin numbers, the decoder calculates c̄1
and c̄2. The decoding error consists of two events: 1) no typical
sequence z̃ was found, and 2) multiple typical sequences z̃
were found. Using standard arguments, one can show that the
probability of the first event is sufficiently small for large
enough n. In what follows, we bound the probability of
the second event, i.e., Ed,2. This event occurs, if there exist
more than one c̃ � CI,1 �CI,2 such that c̃� c̄1 � c̄2 is ε-typical
with respect to PX1�X2 .

To bound P
Ed,2� we need to take into account whether
there is an encoding error or not. For that, first we provide
an alternative representation for the encoding errors. For any
sequence xi � Z

n
pr define

λi 
xi� 	
�

wi�Wi

�
vi�Vi

��xi 	 wi G � vi Ḡ � b � b̄i�,

where i 	 1, 2 and 
G, Ḡ, b, b̄i � are the generator matrices
and translations defined for the i th nested QGC. With this
notation, Ei occurs if λi 
xi� 	 0, where 
x1, x2� is a
realization of the sources. Next, we define a super-set of the
encoding error events as

E �
i 	� �λi 
xi� �

1

2
E
λi 
xi���, i 	 1, 2, (33)

where E
λi 
xi�� is the expected value of λi
xi�. Note that
Ei � E �

i , i 	 1, 2.
For the modified encoding error events 
E �

1, E �
2� given in

(33) we have

P
Ed,2� � P
E �
1
�

E �
2� � P
Ed,2

�
E

�c
1
�

E
�c
2 �

� P
E �
1� � P
E �

2� � P
Ed,2
�

E
�c
1
�

E
�c
2 �

For the first two terms above, based on the proof of Lemma 5,
we can showed that P
E �

i � � 0 as n � �. Note that
P
E �

i � is the same as the second term in (27) in the proof
of the covering. In fact, for the proof of the covering bound,
we showed that such probability approaches 0 as n � �.

In what follow, we show that the second probability in the
above approaches 0 as n � �.

Analysis of P
Ed,2�E
�c
1
�

E
�c
2 �: Note that E �

1
c � E �

2
c

implies that there is no encoding error; because

λi
xi � � 1�2 E
λi 
xi��.

Since there is no error at the encoding stage, xi � CO,i , i 	
1, 2. By Definition 5, every codeword in CO,i is characterized
by a pair 
vi , wi �, where vi � Vi , wi � Wi , i 	 1, 2. Given
xi , if more than one pair was found at the i th encoder,
select one randomly and uniformly. By P
vi , wi �xi� denote the
probability that 
vi , wi � is selected at the i th encoder. Then,

P
vi , wi �xi� 	
1

λi 
xi�
��wi G � vi Ḡ � b � b̄i 	 xi�.

Fix G, G̃i , b and b̄i , i 	 1, 2. Suppose x1 and x2 are the
realizations of the sources X1 and X2, respectively. Moreover,
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suppose 
x1, x2� � A
�n�
ε 
X1, X2�. Therefore,

P
Ed,2
�

E �
1

c �
E �

2
c
�x1, x2�

	 �

�
λi 
xi� �

1

2
E
λi 
xi��, i 	 1, 2

�

�

� 2�
j�1

�
v j�V j

�
w j�W j

P
v j , w j �x j�

�
�P
Ed,2�xi , vi , wi , i 	 1, 2�.

In what follows, we bound P
Ed,2�xi , vi , wi , i 	 1, 2�,
P
v1, w1�x1�, and P
v2, w2�x2�. For the first conditional prob-
ability we have

P
Ed,2�xi , vi , wi , i 	1, 2� 	 �
�
�z̃ � A

�n�
ε 
X1 � X2� :

z̃ � x1 � x2, z̃ � CI,1 � CI,2 � c̄1�c̄2
�
,

where, c̄i 	 vi Ḡ� b̄i , i 	 1, 2. Let W 	 W1�W2, and define
Z 	� X1 � X2. Using the union bound, we have

P
Ed,2�xi , vi , wi , i 	 1, 2�

�
�

w̃�W

�
z̃�A

�n�
ε �Z�

z̃�x1�x2

��w̃G � 
v1 � v2�Ḡ � 2b � b̄1 � b̄2 	 z̃�

�
�

w̃�W
w̃�w1�w2

�
z̃�A

�n�
ε �Z�

��w̃G � 
v1 � v2�Ḡ � 2b � b̄1 � b̄2 	 z̃�.

(34)

The second inequality follows, because the condition w̃ �
w1 �w2 is less restrictive than z̃ � x1 �x2. This is due to the
fact that G is not injective necessarily.

Next, we provide an upper-bound on P
vi , wi �xi�, i 	 1, 2.
Since E �

1
c � E �

2
c is in the conditioning, λi 
xi� � 1

2 E
λi 
xi��.
As a result,

P
vi , wi �xi� �
2

E
λi 
xi ��
��wi G � vi Ḡ � b � b̄i 	 xi�

(35)

Using the bounds given in (34) and (35), we get

P
Ed,2
�

E �
1

c �
E �

2
c
�x1, x2� �� 2�

j�1

�
v j�V j

w j�W j

2

E
λ j 
x j ��
��w j G � v j Ḡ � b � b̄ j 	 x j�

�



�

w̃�W
w̃�w1�w2

�
z̃�A

�n�
ε �Z�

��w̃G � 
v1 � v2�Ḡ � 2b � b̄1 � b̄2 	 z̃�.

Next, we average P
Ed,2
�

E �
1

c � E �
2

c
�x1, x2� over all

possible choices of G, Ḡ, b, b̄1, and b̄2. We obtain

E�P
Ed,2
�

E �
1

c �
E �

2
c
�x1, x2�� ��

v1�V1
w1�W1

2

E
λ1
x1��

�
v2�V2

w2�W2

2

E
λ2
x2��

�
w̃�W

w̃�w1�w2

�
z̃�A

�n�
ε �Z�

P
�

w̃G � 
v1 � v2�Ḡ � 2B � B̄1 � B̄2 	 z̃,

wi G � vi Ḡ � B � B̄i 	 xi , i 	 1, 2
�
.

Note B̄1 and B̄2 are independent random variables with
uniformly distributed over Z

n
pr . Therefore, the innermost term

in the above summations equals

p�2nr P�
w̃ � w1 � w2�G 	 z̃ � x1 � x2�. (36)

We apply Lemma 11 (in Appendix H), to calculate the above
probability. If w̃ � w1 � w2 � H k

s  H k
s�1, then (36) equals to

p�2nr p�n�r�s�
��z̃ � x1 � x2 � H k

s �. (37)

As a result, we have

E�P
Ed,2
�

E �
1

c �
E �

2
c
�x1, x2�� �

�
v1�V1

w1�W1

2

E
λ1
x1��

�
v2�V2

w2�W2

2

E
λ2
x2��

r�1�
s�0

�
w̃�W

w̃�w1�w2�Hk
s �Hk

s�1�
z̃�A

�n�
ε �Z�

z̃�x1�x2�Hn
s

p�2nr p�n�r�s�.

Since the innermost terms in the above summations depend
only on s, we can replace the summations over w̃ and z̃ with
the size of the associated sets. We apply Lemma 12 to bound
the size of these sets. Also, we can replace the summations
over vi and wi , i 	 1, 2 with the size of the related sets. Define
W 	� W1 � W2, we get,

E�P
Ed,2
�

E �
1

c �
E �

2
c
�x1, x2�� �

�W1��V1�
2

E
λ1
x1��
�W2��V2�

2

E
λ2
x2��



r�1�
s�0

2n�H�Z ��Z�s ��o�ε��2k�H�W �Q,�W �s��o�ε�� p�2nr p�n�r�s�.

Note that from (29) in the proof of Lemma 5,

E
λi 
xi�� 	 �Wi ��Vi �p
�nr , i 	 1, 2.

Therefore, we have

E�P
Ed,2
�

E �
1

c �
E �

2
c
�x1, x2�� �

4
r�1�
s�0

2n�H�Z ��Z�s��o�ε��2k�H�W �Q,�W �s ��o�ε�� p�n�r�s�.

Note that the above bound does not depend on ε-typical
sequences x1 and x2. Using standard arguments for ε-typical
sets, the probability that 
Xn

1 , Xn
2� � A

�n�
ε 
X1, X2� is upper-

bounded by c
nε2 , where c 	 p6r

4 . Hence, we have

E�P
Ed,2
�

E �
1

c �
E �

2
c
�� �

c

nε2 � 4
1 �
c

nε2 �
r�1�
s�0

2n�H�Z ��Z�s��o�ε��2k�H�W �Q,�W �s ��o�ε�� p�n�r�s�.

Therefore, E�P
Ed,2
�

E �
1

c� E �
2

c
�� tends to zero as n � �,

if for all s � �0 : r � 1�,

k

n
H 
W �Q, �W �s� � log2 p�r�s� � H 
Z ��Z �s� � o
ε�. (38)
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Next, we use (38) to show that the bounds in (32) are
redundant except the following:

Ri �
k

n
H 
Wi �Q� 	 log2 pr . (39)

For that, we compare (39) with the bounds in (32) for
different values of s. Noting that

H 
Wi �Q� 	 H 
�Wi�s �Q� � H 
Wi �Q�Wi �s�,

it is sufficient to show that
k

n
H 
Wi �Q, �Wi �s� � log2 pr�s .

For that, we first prove the following inequality

H 
Wi �Q, �Wi �s� � H 
W1 � W2�Q, �W1 � W2�s�, (40)

where i 	 1, 2, and 0 � s � r . Then, using (38), we get

k

n
H 
Wi �Q, �Wi �s� � log2 pr�s .

In what follows, we prove (40). For that

H 
W1 � W2�Q, �W1 � W2�s�

	 H 
W1 � W2�Q, ��W1�s � �W2�s�s�

� H 
W1 � W2�Q, �W1�s, �W2�s�

	 H 
W1, W2�Q, �W1�s, �W2�s�

� H 
W1�Q, �W1�s, �W2�s, W1 � W2�

�a�
	 H 
W2�Q, �W2�s� � H 
W1�Q, �W1�s�

� H 
W1�Q, �W1�s, �W2�s, W1 � W2�

�b�
	 H 
W2�Q, �W2�s� � I 
W1; W1 � W2�Q, �W1�s, �W2��

� H 
W2�Q, �W2�s�,

where 
a� and 
b� hold because of the Markov chain W1 �
Q � W2. Similarly, we can show that

H 
W1 � W2�Q, �W1 � W2�s� � H 
W1�Q, �W1�s�.

Finally, using (39) and (38) the following holds

Ri � log2 pr�

min
0
s
r�1

H 
Wi �Q�

H 
W1 � W2�Q, �W1 � W2�s�



log2 p�r�s�

� H 
Z ��Z �s�
�
,

(41)

where we minimize the above bound over all PMFs of the
form

PQW1V1W2V2 	 PQ

�
i



PVi �Q PWi �Q

�
,

such that p
q� is a rational number for all q � Q. Since
rational numbers are dense in R, one can consider arbitrary
PMF p
q�. Lastly, in the next lemma, we show that the
cardinality bound �Q� � r is sufficient to optimize (41).

Lemma 8. The cardinality of Q is bounded by �Q� � r .

Proof: Note that (38) and (39) give an alternative char-
acterization of the achievable region. Using these equations,

observe that this region is convex in R
2. As a result, we can

characterize the achievable region by its supporting hyper-
planes. Let

R̄i 	� log2 pr � Ri , i 	 1, 2.

Using (41) for any 0 � α � 1 the corresponding supporting
hyper-plane is characterized by�

α R̄1 � 
1 � α�R̄2



H 
W �Q, �W �s��

αH 
W1�Q� � 
1 � α�H 
W2�Q�

�

log2 p�r�s�

� H 
Z ��Z �s�
�

� 0, (42)

where s � �0, r � 1�. We use the support lemma for the above
inequalities to bound �Q�. To this end, we first show that the
left-hand side of these inequalities are continuous functions of
conditional PMF’s of W1 and W2 given Q. Let Pr denote the
set of all product PMF’s on Zpr 
Zpr . Note Pr is a compact
set. Fix q � Q. Denote

f 
p
w1�q�p
w2�q��	αH 
W1�Q 	 q��
1�α�H 
W2�Q	q�

and

gs
p
w1�q�p
w2�q�� 	 H 
W1 � W2�Q 	 q, �W1 � W2�s�,

where s � �0 : r � 1�. We show that f 
��, gs
�� are real
valued continuous functions of Pr . Since the entropy function
is continuous then so is f . We can write

gs
p
w1�q�p
w2�q�� 	 H 
W1 � W2�Q 	 q�

� H 
�W1 � W2�s �Q 	 q�.

Note that ���s is a continuous function from Pr to Pr . This
implies that H 
���s� is also continuous. So gs is continuous.
As a result, the left-hand side of the bounds in (42) are real
valued continuous functions of Pr . Therefore, we can apply
the support lemma [44]. Since there are r bounds for different
values of s, then �Q� � r .

APPENDIX E
PROOF OF THEOREM 3

Fix positive integer n, and define l 	� cn, and k 	� c̃n, where
c̃ and c are positive real numbers such that l and k are integers.

Codebook Generation: We use two nested QGC’s, one
for each encoder. The codebook for Encoder 1 is an 
n, k, l�
nested QGC (as in Definition 5) with random variables

W1, V1, Q�. Let CI,1, C̄1, and CO,1 denote the corresponding
inner code, shift code and the outer code (as in Definition 5),
respectively. The codebook for Encoder 2 is an 
n, k, l� nested
QGC with random variables 
W2, V2, Q�, inner code CI,2,
shift code C̄2, and outer code CO,2. For the decoder, we use
CO,1 � CO,2 as a codebook. Conditioned on Q, the random
variables 
W1, W2, V1, V2� are mutually independent.

The nested QGCs and Cd have identical generator matrices
but different translations and index random variables. Note that
each nested QGC has two generator matrices/translations, one
for the inner code and one for the shift code as in Definition 5.
The generator matrix and the translation for the inner codes
CI,i , i 	 1, 2, are denoted by G and b, respectively. The
generator matrix and the translation used for shift code CI,i ,
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are denoted by Ḡ and b̄i , respectively, where i 	 1, 2. The
elements of G, Ḡ, b, and b̄i , i 	 1, 2 are generated randomly
and independently from Zpr . By Ri denote the rate of C̄i , and
let RI,i be the rate of CI,i , where i 	 1, 2.

Encoding: Index the codewords of C̄i , i 	 1, 2. Upon
receiving a message index θi , the i th encoder finds the
codeword ci � C̄i with that index. Then it finds cI,i � CI,i such
that ci �cI,i is ε-typical with respect to PXi . If such codeword
was found, the encoder i sends xi 	 ci � cI,i , i 	 1, 2.
Otherwise, an error event Ei , i 	 1, 2 is declared.

Decoding: The channel takes x1 and x2 and produces y.
Upon receiving y from the channel, the decoder wishes to
decode x 	 x1 �x2. It finds x̃ � CO,1 �CO,2 such that x̃ and y
are jointly ε̃-typical with respect to the distribution PX1�X2,Y .
An error event Ed is declared, if no unique x̃ was found.

Probability of Error: Let 
 f1
��, f2
��� and g
�, �� denote
the encoding and decoding functions corresponding to the
above coding scheme. The overall error event is defined as

E 	� �g
Y n� � f1
M1� � f2
M2��.

For the achievability, we need to show that P
E� can be made
arbitrary small for sufficiently large n. If 
Xn

1 , Xn
2� denote

the outputs of the encoders, define an error event Ec as the
event in which 
Xn

1 , Xn
2� � A

�n�
ε 
X1, X2�. Next, using the

aforementioned encoding and decoding error events we have

P
E� �P
E1
�

E2
�

Ed
�

Ec�

� P
E �Ec
1
�

Ec
2
�

Ec
d

�
Ec

c�.

Using standard arguments for typical sequences, we can show
that when there is no encoding and decoding error (i.e., Ec

1

�
Ec

2

�
Ec

d

�
Ec

c ) the error probability P
E �Ec
1

�
Ec

2

�
Ec

d

�
Ec

c� approaches 0 as n � �. As a result, the second term
above is sufficiently small for large enough n. Therefore, for
sufficiently large n and from the union bound on the first term
we obtain,

P
E� � P
E1� � P
E2� � P
Ed � � P
Ec� � ε.

We need to find conditions for which the probability of the
error events E1, E2, Ed and Ec approach zero. For any a �
Z

k
pr and ā � Z

l
pr define the map φ
a, ā� 	 aG�āḠ. By �
�, ��

denote the map φ whose matrices are selected randomly and
uniformly.

A. Analysis of E1, E2

For any sequence vi � Vi define

λi 
vi� 	
�

wi�Wi

�
xi�A

�n�
ε �Xi �

��xi 	 φ
wi , vi� � b � b̄i�,

where i 	 1, 2. Therefore, Ei occurs if λi
vi� 	 0. For more
convenience, we weaken the definition of event Ei . We say
Ei occurs, if λi 
vi� � 1

2 E
λi 
vi ��. Using Lemma 5 we can
show that P
Ei � � 0 as n � �, if

k

n
H 
�Wi�t �Q� � log2 pt � H 
�Xi�t� � γ 
ε�, (43)

holds for i 	 1, 2, and 1 � t � r, where γ is a function
satisfying limε�0 γ 
ε� 	 0.

B. Analysis of Ec

Define the set

E 	�
�

x1, x2� � A

�n�
ε 
X1�
A

�n�
ε 
X2� :


x1, x2� � A
�n�
ε 
X1, X2�

�
.

Therefore, probability of Ec can be written as

P
Ec�E
c
1
�

Ec
2� 	

�
�x1,x2��E

P
e1
�1� 	 x1, e2
�2� 	 x2�,

where ei is the output of the i th encoder, and �i is the random
message to be transmitted by encoder i , where i 	 1, 2.
By P
vi , wi , xi� denote the probability that 
vi , wi , xi� is
selected at the i th encoder. Then,

P
vi , wi , xi� 	
1

�Vi �

1

λi 
vi�
��φ
wi , vi� � b � b̄i 	 xi�.

By the definition of φ1
�� and φ2
��, we have

P
Ec�E
c
1
�

Ec
2� 	

�
�x1,x2��E

2�
i�1

� �
vi�Vi

�
wi�Wi

1

�Vi �

1

λi 
vi�



�

�
xi 	 φi 
wi , vi � � b � b̄i

��
.

Since there is no encoding error (for the modified version),
then λi 
vi� � 1

2 E�λi 
vi��, i 	 1, 2. Therefore, replacing
λi 
vi� in the above expression with 1

2 E�λi
vi �� gives an upper
bound on P
Ec�Ec

1

�
Ec

2�. Next, we take expectation over all
φ1 and φ2. We have

E�P
Ec�E
c
1
�

Ec
2�� �

�
�x1,x2��E

�
vi�Vi
i�1,2

�
wi�Wi
i�1,2

� 2�
j�1

4

�V j �E�λ j
v j ��

�



P
�

xi 	 �i
wi , vi � � B � B̄i , i 	 1, 2
�

�a�
	

�
�x1,x2��E

�
vi�Vi
i�1,2

�
wi�Wi
i�1,2

� 2�
j�1

4

�V j �E�λ j
v j ��

�
p�2nr

	
�

�x1,x2��E
�W1��W2�

4

E�λ1
v1��E�λ2
v2��
p�2nr . (44)

Note that 
a� is because B1 and B2 are independent random
vectors with uniform distribution over Z

n
pr . From the definition

of λ j 
v j �, j 	 1, 2, we have

E�λ j 
v j �� 	 �W j ��A
�n�
ε 
Xi��p

�nr .

As a result of the above equation and (44),

E�P
Ec�E
c
1
�

Ec
2�� �

�
�x1,x2��E

4�A
�n�
ε 
X1��

�1�A
�n�
ε 
X2��

�1.

There exists a continuous function δ
ε� � 0 with δ
0� 	 0

such that for any xi � A
�n�
ε 
Xi �, we have

Pn
Xi

xi� � �A

�n�
ε 
Xi ��

�12�δ�ε�.
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Thus,

E�P
Ec
�

Ec
1
�

Ec
2�� �

�
�x1,x2��E

Pn
X1


x1�Pn
X2


x2�2n2δ�ε�

	 2n2δ�ε�Pn
X1 X2


E�.

Thus, E�P
Ec�Ec
1

�
Ec

2�� � 0 as n � �.

C. Analysis of Ed

In what follows, to make the analysis tractable, we define
an alternative decoding error. Upon receiving y, the decoder
finds w̃ � A

�n�
ε 
W1 � W2� and ṽ � A

�n�
ε 
V1 � V2� such that

φ
w̃, ṽ� � 2b � b̄1 � b̄2 is jointly typical with y with respect
to PX1�X2,Y . For the alternative decoder, we define a new
decoding error. A decoding error E �

d occurs, if 
w̃, ṽ� is not
unique. With this definition Ed � E �

d . Because, the mapping
xi 	 φ
wi , vi� � b � b̄i is not necessarily injective. Note that
the new decoder is required to decode w1 � w2 and v1 � v2.
This is a more restrictive condition than decoding x1 � x2.
Therefore, it is sufficient to show that P
E �

d� � 0 as n � �.
In what follows, we provide an upper bound on P
E �

d�.
Since the probability of the encoding errors E1, E2 and Ec

are sufficiently small, then

P
E �
d � � P
E �

d " Ec
1
�

Ec
2
�

Ec
c �.

We show that this probability approaches zero as n � �.
Fix φ, b and b̄i , i 	 1, 2. Note that By P
vi , wi , xi � denote
the probability that 
vi , wi , xi� is selected at the i th encoder.
Then,

P
vi , wi , xi� 	
1

�Vi �

1

λi
vi�
��φ
wi , vi� � b � b̄i 	 xi�.

Then the probability of E �
d " Ec

1
�

Ec
2
�

Ec
c equals

P
E �
d " Ec

1
�

Ec
2
�

Ec
c� 	� 2�

j�1

�
v j�V j

�
w j�W j

�

�
λi 
vi� � 1�2 E
λi 
vi��, i 	 1, 2

��



�

�x1,x2��A
�n�
ε �X1,X2�

�
y�Yn

P
vi , wi , xi , i 	 1, 2�

Pn
Y �X1 X2


y�x1, x2�P



Ed � Ec
1
�

Ec
2
�

Ec
c ,

y, xi , vi , wi , i 	 1, 2
�
.

Next, we bound P
E �
d � Ec

1

�
Ec

2

�
Ec

c , y, xi , vi , wi , i 	 1, 2�,
and P
vi wi , xi , i 	 1, 2�.

P
E �
d � Ec

1
�

Ec
2
�

Ec
c , y, xi , vi , wi , i 	 1, 2� 	

�

�
� 
w̃, ṽ� � W 
 V : 
w̃, ṽ� � 
w1 � w2, v1 � v2�,

φ
w̃, ṽ��2b�b̄1 � b̄2 � An
ε�
Z �y�

�
,

where W 	� A
�n�
ε 
W1 � W2�,V 	� A

�n�
ε 
V1 � V2�, and Z 	�

X1 � X2. Using the union bound, we have

P
E �
d � Ec

1
�

Ec
2
�

Ec
c , y, xi , vi , wi , i 	 1, 2� ��

w̃�W
w̃�w1�w2

�
ṽ�V

ṽ�v1�v2

�
z̃�A

�n�
ε�
�Z �y�

��φ
w̃, ṽ� � 2b � b̄1 � b̄2 	 z̃�

(45)

Note that P
vi , wi , xi , i 	 1, 2� 	
	

i�1,2 P
vi , wi , xi�.
Since there is no encoding error, λi 
vi� � 1

2 E
λi 
vi ��. As a
result,

P
vi , wi , xi� �
1

�Vi �

2

E
λi 
vi ��
��φ
wi , vi� � b � b̄i 	 xi�

(46)

Therefore, using (46), we have

P
E �
d
�

Ec
1
�

Ec
2
�

Ec
c� �

�
�x1,x2��A

�n�
ε �X1,X2�� 2�

j�1

�
v j�V j

�
w j�W j

�

�
λ j 
v j � � 1�2 E
λ j 
v j ��

� 1

�V j �

2

E
λi 
v j ��


 ��φ
w j , v j � � b � b̄ j 	 x j�
� �

y�Yn

Pn
Y �X1 X2


y�x1, x2�


 P



E �
d � Ec

1
�

Ec
2
�

Ec
c , y, xi , vi , wi , i 	 1, 2

�

�
�

�x1,x2��A
�n�
ε �X1,X2�

� 2�
j�1

�
v j�V j

�
w j�W j

1

�V j �

2

E
λi 
v j ��


 ��φ
w j , v j � � b � b̄ j 	 x j�

� �
y�Yn

Pn
Y �X1 X2


y�x1, x2�


 P
E �
d � Ec

1
�

Ec
2
�

Ec
c , y, xi , vi , wi , i 	 1, 2�. (47)

The last inequality follows by eliminating the indicator
function on �λi 
vi� � 1�2 E
λi 
vi��, i 	 1, 2

�
. Note that for

jointly ε-typical sequences x1, x2 and large enough n, we have

P
Yn � A
�n�
ε̃ 
Y �x1, x2�� �

c

nε̃2 ,

where c is a constant. This follows from the standard argu-
ments on typical sets. Thus, using (47) and (45) we get

P
E �
d
�

Ec
1
�

Ec
2
�

Ec
c� �

c

nε̃2 �
�

�x1,x2��A
�n�
ε �X1,X2��

� 2�
j�1

�
v j�V j

�
w j�W j

1

�V j �

2��φ
w j , v j � � b � b̄ j 	 x j�

E
λi 
v j ��

�
�



�

y�An
ε̃
�Y �x1,x2�

Pn
Y �X1 X2


y�x1, x2�
�

w̃�W
w̃�w1�w2

�
ṽ�V

ṽ�v1�v2�
z̃�A

�n�
ε�
�Z �y�

�

�
φ
w̃, ṽ� � 2b � b̄1 � b̄2 	 z̃

�
.



HEIDARI et al.: QUASI STRUCTURED CODES FOR MULTI-TERMINAL COMMUNICATIONS 6283

Next, we take the average of the above expression over all
maps φ, and all vectors b, b̄i , i 	 1, 2.

E�P
E �
d
�

Ec
1
�

Ec
2
�

Ec
c �� �

c

nε̃2 ��
� 2�

j�1

�
v j�V j

�
w j�W j

1

�V j �

2

E
λ j 
v j ��

�
�



�

�x1,x2,y��A
�n�
ε̄ �X1,X2,Y �

Pn
Y �X1 X2


y�x1, x2�
�

w̃�W
w̃�w1�w2

�
ṽ�V

ṽ�v1�v2

�
z̃�A

�n�
ε�
�Z �y�

P
�

z̃ 	 �
w̃, ṽ� � 2B � B̄1 � B̄1,

x1 	 �
w1, v1� � B � B̄1, x2 	 �
w2, v2� � B � B̄1

�
.

Notice that B, B̄1, and are B̄1 are uniform over Z
n
pr and

independent of other random variables. Hence, the innermost
term in the above summations is simplified to

p�2nr P� ˜z � x1 � x2 	 �
w̃ � 
w1 � w2�, ṽ � 
v1 � v2���

(48)

Using Lemma 11, if

w̃ � 
w1 � w2�, ṽ � 
v1 � v2� � H k
s  H k

s�1,

the expression in (48) equals

p�2nr p�n�r�s�
��z̃ � x1 � x2 � H n

s �,

where 0 � s � r � 1. Therefore, E�P
E �
d

�
Ec

1

�
Ec

2

�
Ec

c��
is upper-bounded as

E�P
E �
d
�

Ec
1
�

Ec
2
�

Ec
c�� �

c

nε̃2 ��
� 2�

j�1

�
v j�V j

�
w j�W j

1

�V j �

2

E
λ j 
v j ��

�
�


�
�x1,x2,y��A

�n�
ε̄ �X1,X2,Y �

Pn
Y �X1 X2


y�x1, x2�
r�1�
s�0�

w̃�W
w̃��w1�w2��Hk

s

�
ṽ�V

ṽ��v1�v2��Hk
s

�
z̃�An

ε �Z �y�
˜z�x1�x2�Hn

s

p�2nr p�n�r�s�.

(49)

Note that the most inner term in the above summations does
not depend on the value of z̃, ṽ and w̃. Hence, we replace
those summations by the size of the corresponding subsets.
Using Lemma 12 we can bound the size of these subsets and
get the following bound on the probability of error

E�P
E �
d
�

Ec
1
�

Ec
2
�

Ec
c �� �

c

nε̃2 ��
� 2�

j�1

�
v j�V j

�
w j�W j

1

�V j �

2

E
λ j 
v j ��

�
�


�
�x1,x2,y��A

�n�
ε̄ �X1,X2,Y �

Pn
Y �X1 X2


y�x1, x2�
r�1�
s�0

2k�H�W �Q,�W �s ��η1�ε��


 2l�H�V �Q,�V �s��η2�ε�� 2n�H�Z �Y �Z�s ��η3�ε�� p�2nr p�n�r�s�,

where W 	 W1 � W2, V 	 V1 � V2, and limε�0 ηi 
ε� 	
0, i 	 1, 2, 3. Note that

E
λi 
vi �� 	 �Wi ��A
�n�
ε 
Xi ��p

�nr , i 	 1, 2.

As the terms in the above expression do not depend on the
values of wi , vi , xi , i 	 1, 2 and y, we can replace the
summations over them with the corresponding sets. As a result,
we have

E�P
E �
d
�

Ec
1
�

Ec
2 Ec

c�� �
c

nε2 � 4
r�1�
s�0

p�n�r�s�2k H�W �Q,�W �s�2l H�V �Q,�V �s� 2n�H�Z �Y,�Z�s��δ��ε��,

where limε�0 δ�
ε� 	 0. Therefore, the right-hand side of the
above inequality approaches zero as n � �, if the following
bounds hold:

k

n
H 
W �Q, �W �s� �

l

n
H 
V �Q, �V �s�

� log2 pr�s � H 
Z �Y �Z �s� � δ
ε�, (50)

for 0 � s � r � 1. Next, we apply Fourier-Motzkin
technique [44] to eliminate k

n from (43) and (50). We get

l

n
H 
V �Q,�V �s� � log2 pr�s � H 
Z �Y �Z �s�

�
H 
W �Q, �W �s�

H 
�Wi�t �Q�

log2 pt � H 
�Xi�t�� � o
ε�,

where i 	 1, 2, 0 � s � r � 1, and 1 � t � r . Note by
definition

Ri 	
1

n
log2 �C̄i � �

1

n
log2 �Vi � �

l

n
H 
Vi �Q�.

Therefore, we obtain the bounds in the theorem. Using the
same argument as in Lemma 8, we can bound the cardinality
of Q by �Q� � r2. This completes the proof.

APPENDIX F
PROOF OF LEMMA 7

Proof: Consider the bound on the sum-rate given in (17).
The set of all 
R1, R2� satisfying only this bound is an outer-
bound for RG P . The time-sharing random variable Q is trivial
for this outer-bound, because there is only one inequality on
the rates, and because of the cost constraints E�ci
Xi �� 	
0, i 	 1, 2. For any distribution P � PG P , we obtain

R1 � R2 � I 
U1, U2; Y � � I 
U1; S1� � I 
U2; S2�

	 H 
Y � � H 
Y �U1, U2� � H 
S1�

� H 
S1�U1� � H 
S2� � H 
S2�U2�

� H 
S1�U1� � H 
S2�U2� � H 
Y �U1, U2� � 2

	 max
P�PG P

�
u1�U1

�
u2�U2

p
u1, u2�



H 
S1�u1�

� H 
S2�u2� � H 
Y �u1, u2� � 2
�
, (51)

where the second inequality holds, as H 
Y � � 2, and
H 
Si� 	 2 for i 	 1, 2. In the next step, we relax the
conditions in PG P , and provide an upper-bound on (51). For
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i 	 1, 2, and any ui � Ui , define Pui as the collection of all
conditional PMFs p
si , xi �ui� on Z

2
4 such that

1) Xi 	 fi 
Si , ui � for some function fi ,
2) E
ci
Xi ��ui� 	 0.

In the first condition, given ui , fi 
si , ui� can be thought as
a function gui of si . For different ui ’s we have different
functions gui 
si �. The second condition is implied from the
cost constraint E
ci
Xi �� 	 0, because without loss of
generality we assume p
ui� � 0 for all ui � Ui . Also, note
that we removed the condition that Si is uniform over Z4.
Hence, PG P is a subset of the set of all PMFs of the form
P 	

	2
i�1 p
ui�p
si , xi �ui�, where p
si , xi �ui� � Pui ,

i 	 1, 2.
As a result, (51) is upper-bounded by

R1 � R2 � max
p�u1�,p�u2�

max
p�si ,xi �ui ��Pui

i�1,2�
u1�U1
u2�U2

p
u1, u2�



H 
S1�u1� � H 
S2�u2� � H 
Y �u1, u2� � 2
�

� max
u1�U1,u2�U2

max
p�si ,xi �ui ��Pui

i�1,2

H 
S1�u1� � H 
S2�u2� � H 
Y �u1, u2� � 2

�
.

Fix u2 � U2 and p
s2, x2�u2� � Pu2 . We maximize over all
u1 � U1 and p
s1, x1�u1� � Pu1 . Let N 	 X2 � S2, where
X2 and S2 are distributed according to p
s2, x2�u2�. For fixed
u2 � U2, by Qu2 � Pu2 denote the PMF p
s2, x2�u2�. This
maximization problem is equivalent to finding

R
u2, Qu2� 	� H 
S2�u2� � max
u1�U1

max
p�s1,x1�u1��Pu1

H 
S1�u1� � H 
X1 � S1 � N �u1� � 2. (52)

Consider the problem of PtP channel with state, where the
channel is Y 	 X1 � S1 � N . It can be shown that

R
u2, Qu2� � H 
S2�u2�

is an upper-bound on the capacity of this problem. We proceed
by the following lemma.

Lemma 9. The following bound holds R
u2, Qu2� � 1 for all
u2 � U2 and Qu2 � Pu2 .

Proof: The proof is given in Appendix G.
Finally, as a result of the above lemma the proof is completed.

APPENDIX G
PROOF OF LEMMA 9

Proof: Note that for any fixed u2 � U2, the distribution of
N depends on the conditional PMF p
s1�u1�, and the function
x1 	 f1
s1, u1�. For any u � U2 define

Lu :	 � f2
u, s� � s : s � Z4�.

For any given i � �1, 2, 3, 4�, define

Bi 	� �u � U2 : �Lu� 	 i�.

Note that Bi ’s are disjoint and U2 	
�

i Bi . Depending on
u2, we consider four cases. In what follows, for each case,
we derive an upper bound on (52). Consider the PMF p
ω�
on Z4. For brevity, we represent this PMF by the vector p :	

p
0�, p
1�, p
2�, p
3��.

Case 1: u2 � B1

Since �Lu2 � 	 1, then for all s2 � Z4 the following holds

s2 � f2
s2, u2� 	 a,

where a � Z4 is a constant that only depends on u2. This
implies that conditioned on u2, X2 � S2 equals to a constant
a, with probability one. Therefore,

H 
X1 � S1 � X2 � S2�u2, u1� 	 H 
X1 � S1 � a�u1, u2�

	 H 
X1 � S1�u1�.

Moreover,

H 
S2�u2� 	 H 
a � X2�u2� 	 H 
X2�u2�.

By assumption p
u2� � 0. Therefore, the cost constraint
E
c2
X2�� 	 0 implies that E
c2
X2��U2 	 u2� 	 0. Hence,
given U2 	 u2, the random variable X2 takes at most two
values with positive probabilities. As a result, H 
X2�u2� � 1.
Given this inequality, we obtain

R
u2, Qu2� � H 
S1�u1� � H 
X1 � S1�u1� � 1 � 0

where the last inequality follows by Lemma 14 in Appendix H.

Case 2: u2 � B2

For any fixed u2 � B2, f2
s2, u2� � s2 takes two values
for all s2 � Z4. Assume these values are a, b � Z4, where
a � b. Given u2 the random variable X2 � S2 is distributed
over �a, b�. Therefore, X2�S2�a is distributed over �0, b�a�,
and

H 
X1 � S1 � X2 � S2�u2, u1� 	

H 
X1 � S1 � X2 � S2 � a�u2, u1�.

As a result, the case �a, b� gives the same bound as �0, b�a�,
and we need to consider only the case in which a 	 0. For
the case in which a 	 0, and b 	 3, consider X2 � S2 � 1.
Using a similar argument as above, we can show that when
b 	 3, we get the same bound when b 	 1. Therefore, we only
need to consider the cases in which a 	 0, and b � �1, 2�.
We address these cases in the next Claim.

Claim 1. Let P
X2 � S2 	 0�u1� 	 p0. The following holds:
1) If b 	 2, then

R
u2, Qu2��β



H 
S1�u1� � H 
X1�S1�N�2	3,0,1	3,0��u1�
�

� 
1 � β�



H 
S1�u1��H 
X1�S1�N�1	3,0,2	3,0��u1�
�

� H 
S2�u2� � 2.
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2) If b 	 1, then

R
u2, Qu2� � β



H 
S1�u1� � H 
X1�S1�N�2	3,1	3,0,0��u1�
�

� 
1 � β�



H 
S1�u1��H 
X1�S1�N�1	3,2	3,0,0��u1�
�

� H 
S2�u2� � 2.

Proof: The proof is given in Appendix I.
Using the claim and applying Lemma 14, we have

R
u2, Qu2� � 1 � H 
S2�u2� � 2 � 1.

Case 3: u2 � B3

We need only to consider the case when p 	 
p0, p1, p2, 0�.
We proceed by the following claim.

Claim 2. If u2 � B3, the following bound holds

R
u2,Qu2�

� β0



H 
S1�u1� � H 
X1 � S1 � N�2	4,1	4,1	4,0��u1�

�

� β1



H 
S1�u1� � H 
X1 � S1 � N�1	4,2	4,1	4,0��u1�

�

� β2



H 
S1�u1� � H 
X1 � S1 � N�1	4,1	4,2	4,0��u1�

�
� H 
S2�u2� � 2,

where βi 	 4 pi � 1, i 	 0, 1, 2.

Proof: Similar to Claim 1, we can write p as a linear
combination of three distributions of the form

p 	 β0 
 �2�4, 1�4, 1�4, 0� � β1 
 �1�4, 2�4, 1�4, 0�

� β2 
 �1�4, 1�4, 2�4, 0�,

where βi 	 4 pi � 1, i 	 0, 1, 2. The proof then follows from
the concavity of the entropy.
Therefore, by Lemma 14, we obtain

R
u2, Qu2� � 1 � H 
S2�u2� � 2 � 1.

Case 4: u2 � B4

In this case, there is a 1-1 correspondence between
x2
s2, u2� � s2 and s2. Therefore

H 
S2�u1, u2� 	 H 
S2 � X2�u1, u2�,

and we obtain

H 
S2�u1, u2� � H 
X1 � S1 � X2 � S2�u1, u2�

	 H 
S2 � X2�u1, u2� � H 
X1 � S1 � X2 � S2�u1, u2�

� 0.

Therefore

H 
S1�u1� � H 
S2�u2� � H 
Y �u1u2� � 2 � H 
S1�u1� � 2

� 0.

Finally, considering all four cases R
u2, Qu2 � � 1 for all
u2 � U2. This completes the proof.

APPENDIX H
USEFUL LEMMAS

Lemma 10. Let X and Y be independent random variables
with marginal distributions PX and PY , respectively. Suppose
X and Y take values from a group Zm. Then

1) A
�n�
ε	2
X � Y � � A

�n�
ε 
X� � A

�n�
ε 
Y �,

2) there exists a function δ
�� with limε�0 δ
ε� 	 0 such
that ��A�n�

δ�ε�

X, Y �

��
��A�n�ε 
X�

����A�n�ε 
Y �
�� � 1 � 2�n ε

m .

Proof: For the first statement take an arbitrary element
z � A

�n�
ε	2
X �Y �. We show that such an element can be written

as z 	 x � y for some element x � A
�n�
ε 
X� and y � A

�n�
ε 
Y �.

For that, select an arbitrary y � A
�n�
ε	2
Y �z�. From standard

arguments on typical sequences, y is ε�2- typical with respect

to PY . In addition, 
z, y� � A
�n�
ε 
X � Y, Y �. As a result,


z � y, y� � A
�n�
ε 
X, Y �.

Set x 	 z � y. We showed that, 
x, y� � A
�n�
ε 
X, Y �, and

x � y 	 z. Since x and y are jointly ε-typical, then x �

A
�n�
ε 
X� and y � A

�n�
ε 
Y �. This completes the proof for the

first statement.
For the second statement, given ε̃ � 0 we have

1 �

��A�n�
ε̃


X, Y �
��

��A�n�ε 
X�
����A�n�ε 
Y �

�� �
��A�n�

ε̃

X, Y �c

��
��A�n�ε 
X�

����A�n�ε 
Y �
��

	
�

�x,y��A
�n�
ε̃ �X,Y �

1��A�n�ε 
X�
����A�n�ε 
Y �

��
Let Pn

X,Y 	
	n

i�1 PX PY . From standard arguments for ε-
typical sequences the above expression does not exceed

�
�x,y��A

�n�
ε̃ �X,Y �

2nε α
m Pn

X,Y 
x, y� 	 Pn
X,Y �A

�n�
ε̃


X, Y �c�2nε α
m

� 2nε α
m 2

� ε̃2n
m2 ln 4 ,

where

α 	 �
3

m

�
a,b�Zm

PX,Y �a,b�
0

log PX,Y 
a, b�.

The last inequality holds as 
X, Y � are independent. Define
the function δ
ε� 		� �mε
1 � α� ln 4�1	2 and set ε̃ 	 δ
ε�.
As a result, the right-hand side of the above inequality is
simplified to 2�n ε

m . Thus, the second statement of the lemma
is established.

Lemma 11 ( [39]). Suppose that G is a k 
 n matrix with
elements generated randomly and uniformly from Zpr . If u �
H k

s  H k
s�1, then

P�uGi 	 x� 	 p�n�r�s�
��x � H n

s �.
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Lemma 12. Given 
X, Y � � PXY , and sequences x, y such

that 
�x�s, y� � A
�n�
ε 
�X�s, Y �, let

A 	� �x� � 
x�, y� � An
ε 
XY �, x� � x � H n

s �.

Then

A
�n�
c1ε
X ��x�s, y� �A � A

�n�
c2ε
X ��x�s, y�,

and we have,

�A� � 
1 � c1ε�2
n�H�X �Y �X�s ��c1δ�ε��

�A� � 2n�H�X �Y �X�s ��c2δ�ε��,

where
δ
ε� 	

ε

�Y�

�
a�X

�
b�Y :p�b�a�
0

log2 p
b�a�,

and c1 	 1
�X ���Y � , and c2 	 pr�s �X ��1

�Y � .

Proof: Suppose x� � A. Then x�� x � H n
s , which implies

�x��s 	 �x�s . In addition, 
x�, y� � A
�n�
ε 
X, Y �. Therefore,


x�, �x�s, y� � A
�n�
ε� 
X, �X�, Y �,

where ε� 	 εpr�s . Thus,

x� � A
�n�
ε�


X ��x�s, y�,

where ε� 	
�X ��1
�Y � ε�. On the other hand, if x� � A

�n�
ε̃ 
X ��x�sy�,

then �x��s 	 �x�s , and x� � A
�n�
ε 
X �y�, where ε 	

ε̃
�X � � �Y��.

Lemma 13. Let X and Y be two independent random vari-
ables over Zm with distributions p 	 
p0, p1, . . . , pm�1� and
q 	 
q0, q1, . . . , qm�1�, respectively. Then H 
X �m Y � 	
H 
Y � if and only if there exists i � �1 : m� such that
p $m q 	 π i
q�, where $m is the circular convolution and is
defined as


p $m q�
a� 	�
�

b�Zm

pbqa�b, �a � Zm ,

π

q0, q1, . . . , qm�1�� 	 
qm�1, q0, q1, . . . , qm�2�, and π i is
the composition of the function π with itself for i times.

Proof: First note that as X is independent of Y , we have

H 
X �m Y � � H 
Y � 	 I 
X; X �m Y � � 0.

We want to find all distributions p and q for which the right-
hand side equals zero. We first fix a distribution q and find
all p such that the equality holds. This is equivalent to the
solution of the following minimization problem:

min
p��m

H 
p $m q� � H 
q�, (53)

where

�m 	�
�

q0, q1, . . . ,qm�1� � R

m :
m�1�
i�0

qi 	 1, qi � 0, i � �0 : m � 1�
�
.

Note that �m is a m � 1-dimensional simplex in R
m . Define

the map

ϕq : �m %� �m, ϕq
p� 	 p $m q

for all p, q � �m . Note that ϕq is a linear map. Let ϕq
�m�
denote the image of �m under ϕq. Since ϕq is a linear map,
ϕq
�m� is a simplex. Therefore, (53) is equivalent to

min
p��ϕq��m�

H 
p�� � H 
q�.

It is well-known that the entropy function is strictly concave.
Hence, the minimum points are the extreme points of the
simplex ϕq
�m�. Extreme points of ϕq
�m� are the image of
the extreme points of �m . Define the map π : �m %� �m as
in the statement of the lemma. Extreme points of ϕq
�m� are
characterized by π i
q�, i � �1 : m�, where π i is the composi-
tion of π with itself for i times. Therefore, the minimum points
of (53) are described as

�m
i�1 ϕ�1

q 
π i 
q��, where ϕ�1
a� is
the pre-image of a,�a � �m .

Next, we range over all q � �m . Define the set

Ai 	� �
p, q� � �m 
 �m : p $m q 	 π i 
q��.

Then, the set of all 
p, q� such that H 
p $m q� 	 H 
q� is
characterized by the set

�m
i�1 Ai . This is equivalent to the

statement of the lemma.

Lemma 14. Suppose S and Np are independent random
variables over Z4, where p is the distribution of Np. Let
f : Z4 %� Z4 be a function of S, and denote X 	� f 
S�.
Suppose for the cost functions 
c1, c2� given in Example 4,
the equality E�c1
X�� 	 0 holds. Then the following bounds
hold:

H 
S� � H 
X � S� � 1

H 
S� � H 
X � S � Np� � 1,

where

p �
�
�1�3, 0, 2�3, 0�, �1�3, 2�3, 0, 0�, �1�4, 1�4, 1�2, 0�

�
.

Proof: For the first equality, we start with the following
relations

H 
X � S� 	 H 
X, S� � H 
X �X � S�

	 H 
S� � H 
X �X � S�.

Therefore, we obtain

H 
S� � H 
X � S� 	 H 
X �X � S� � H 
X�
�a�
� 1.

Note 
a� is true, because X takes at most two values with
positive probabilities.

For the second inequality we have

H 
S� � H 
X � S�Np� 	 H 
S� � H 
X � S� � H 
X � S�

� H 
X � S � Np�

� 1 � 
H 
X � S � Np� � H 
X � S��

� 1. (54)
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TABLE IV

THE CONDITIONS ON x��� AND S

Let q be the distribution of X � S. We find the conditions on
p and q for which

H 
X � S � Np� � H 
X � S� 	 0.

Since Np is independent of X � S, we can use Lemma 13 in
which Y 	 Np and X 	 X � S. Therefore,

H 
X � S � Np� 	 H 
X � S�,

if and only if p $4 q 	 π i
q� for some i � �1 : 4�. For fixed
i and p, the map defined by

q %� p $4 q � π i
q�

is a linear map. In addition, the null space of this map charac-
terizes the set of all q that satisfies the equality in Lemma 13.
For p 	 �1�3, 0, 2�3, 0� this map can be represented by the
matrix

Ai,�1	3,0,2	3,0� 	

�
���
� 2

3 0 2
3 0

0 � 2
3 0 2

3
2
3 0 � 2

3 0
0 2

3 0 � 2
3

�
���

The null space of Ai,�1	3,0,2	3,0� is the subspace spanned
by �1�2, 0, 1�2, 0� and �1�4, 1�4, 1�4, 1�4�. Using the same
approach, we can show that for any i � �1 : 4� and

p �
�
�1�3, 0, 2�3, 0�, �1�3, 2�3, 0, 0�, �1�4, 1�4, 1�2, 0�

�
,

the null space of Ai,p is contained in the subspace spanned
by �1�2, 0, 1�2, 0� and �1�4, 1�4, 1�4, 1�4�. This implies that
q0 	 q2 and q1 	 q3.

Note q is the distribution of x
S� � S. Next, we find all
functions x
�� and random variables S such that q0 	 q2 and
q1 	 q3. For each a � Z4, we characterize 
s, x
s�� such
that x
s� � s 	 a, where x
s� � �0, 2�. We present such a
characterization in Table IV. Using Table IV, if q0 � 0, then

P
S 	 0� 	 P
S 	 2� 	 q0

and x
0� 	 x
2�. Similarly, if q1 � 0, then

P
S 	 1� 	 P
S 	 3� 	 q1

and x
1� 	 x
3�. Therefore, if q0, q1 � 0, the distribution of
S equals to q 	 �q0, q1, q0, q1�. If q0 	 0, then q1 	 1�2.
This implies

P
S 	 1� 	 P
S 	 3� 	
1

2
.

Similarly, If q1 	 0, then

P
S 	 0� 	 P
S 	 2� 	 q1 	
1

2
.

As a result of this argument, H 
S� 	 H 
X � S�. Also by
Lemma 13, the equality

H 
X � S� 	 H 
X � S � Np�

holds. Therefore, in this case,

H 
S� � H 
X � S � Np� 	 0.

To sum-up, we proved that if

p �
�
�1�3, 0, 2�3, 0�, �1�3, 2�3, 0, 0�, �1�4, 1�4, 1�2, 0�

�
,

and
H 
X � S� 	 H 
X � S � Np�,

then
H 
S� � H 
X � S � Np� 	 0.

Therefore, using this argument and (54), we proved that if

p �
�
�1�3, 0, 2�3, 0�, �1�3, 2�3, 0, 0�, �1�4, 1�4, 1�2, 0�

�
,

then
H 
X � S� � H 
X � S � Np� � 1.

APPENDIX I
PROOF OF CLAIM 1

Proof:
1): Let a 	 0, b 	 2, and P
X2 � S2 	 0�u1� 	 p0, and

P
X2 � S2 	 2�u1� 	 1 � p0. We represent this PMF by the
vector p 	 �p0, 0, 1 � p0, 0�. This probability distribution is
a linear combination of the form

p 	 β
�
2�3, 0, 1�3, 0

�
� 
1 � β�

�
1�3, 0, 2�3, 0

�
, (55)

where β 	 3 p0 � 1.

Remark 10. Let Z 	 X � Y , where the PMF of X is p 	
�p0, p1, p2, p3�, and the PMF of Y is q 	 �q0, q1, q2, q3�. If t
is the PMF of Z , then t 	 p $4 q, where $4 is the circular
convolution in Z4. In addition, the map


p, q� %&� p $4 q

is bi-linear.

Let
ti 	 P

�
X1 � S1 � X2 � S2 	 i �u1u2



,

and
qi 	 P

�
X1 � S1 	 i �u1



for all i � Z4. Also denote q 	 �q0, q1, q2, q3�, and t 	
�t0, t1, t2, t3�. Using Remark 10 and equation (55) we obtain

t 	 β
�
�2�3, 0, 1�3, 0� $4 q



� 
1 � β�

�
�1�3, 0, 2�3, 0� $4 q



.

This implies that, t is also a linear combination of two PMFs.
From the concavity of entropy, we get the following lower-
bound:

H 
X1 � S1 � X2 � S2�u1u2� 	 H 
t�

	 H


β
�
�2�3, 0, 1�3, 0�$4 q



�
1�β�

�
�1�3, 0, 2�3, 0�$4q


�

�β H


�2�3, 0, 1�3, 0�$4q

�
�
1�β�H



�1�3, 0, 2�3, 0�$4q

�
	 β H

�
X1 � S1 � N�2	3,0,1	3,0��u1



� 
1 � β�H

�
X1 � S1 � N�1	3,0,2	3,0��u1



,
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where in the last equality, N�λ0,λ1,λ2,λ3� denotes a random
variable with PMF �λ0, λ1, λ2, λ3� that is also independent of
u1 and X1 � S1. As a result of the above argument, equation
(51) is bounded by

H 
S1�u1� � H 
S2�u2� � H 
Y �u1u2� � 2

� H 
S1�u1� � H 
S2�u2� � β H 
X1 � S1 � N�2	3,0,1	3,0��u1�

� 
1 � β�H 
X1 � S1 � N�1	3,0,2	3,0��u1� � 2

	 β



H 
S1�u1� � H 
X1 � S1 � N�2	3,0,1	3,0��u1�
�

� 
1 � β�



H 
S1�u1� � H 
X1 � S1 � N�1	3,0,2	3,0��u1�
�

� H 
S2�u2� � 2.

2): Let a 	 0, b 	 2, and P
X2 � S2 	 0�u1� 	 p0, and
P
X2�S2 	 1�u1� 	 1�p0. In this case p 	 �p0, 1�p0, 0, 0�.
Also,

p 	 β�2�3, 1�3, 0, 0� � 
1 � β��1�3, 2�3, 0, 0�,

where β 	 3 p0 � 1. Similar to case 1), we use Remark 10
and the concavity of the entropy to get,

H 
S1�u1� � H 
S2�u2� � H 
Y �u1u2� � 2

� β



H 
S1�u1� � H 
X1 � S1 � N�2	3,1	3,0,0��u1�
�

� 
1 � β�



H 
S1�u1� � H 
X1 � S1 � N�1	3,2	3,0,0��u1�
�

� H 
S2�u2� � 2
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