Published June 20, 2019

Pedology

Digital Mapping of Ecological Land Units using a
Nationally Scalable Modeling Framework

Jonathan J. Maynard*
USDA-ARS
Jornada Experimental Range
Las Cruces, NM 88003

Travis W. Nauman
US Geological Survey
Southwest Biological Science Center
Moab, UT 84532

Shawn W. Salley
Brandon T. Bestelmeyer
USDA-ARS
Jornada Experimental Range
Las Cruces, NM 88003

Michael C. Duniway
US Geological Survey
Southwest Biological Science Center
Moab, UT 84532

Curtis J. Talbot
Joel R. Brown
USDA-NRCS National Ecological Site

Team Jornada Experimental Range
Las Cruces, NM 88003

Core Ideas

¢ Digital modeling framework for
mapping ecological land units was
developed.

¢ Digital maps eliminate spatial
ambiguity of multicomponent soil
map units.

e Spatial scale of modeling products
can be optimized to meet
management needs.

¢ National coverage of the training and

covariate data provides ability to scale.

Ecological site descriptions (ESDs) and associated state-and-transition models
(STMs) provide a nationally consistent classification and information system
for defining ecological land units for management applications in the United
States. Current spatial representations of ESDs, however, occur via soil map-
ping and are therefore confined to the spatial resolution used to map soils
within a survey area. Land management decisions occur across a range of
spatial scales and therefore require ecological information that spans similar
scales. Digital mapping provides an approach for optimizing the spatial scale
of modeling products to best serve decision makers and have the greatest
impact in addressing land management concerns. Here, we present a spatial
modeling framework for mapping ecological sites using machine learning
algorithms, soil survey field observations, soil survey geographic databases,
ecological site data, and a suite of remote sensing-based spatial covariates
(e.g., hyper-temporal remote sensing, terrain attributes, climate data, land-
cover, lithology). Based on the theoretical association between ecological
sites and landscape biophysical properties, we hypothesized that the spatial
distribution of ecological sites could be predicted using readily available
geospatial data. This modeling approach was tested at two study areas with-
in the western United States, representing 6.1 million ha on the Colorado
Plateau and 7.5 million ha within the Chihuahuan Desert. Results show our
approach was effective in mapping grouped ecological site classes (ESGs),
with 10-fold cross-validation accuracies of 70% in the Colorado Plateau
based on 1405 point observations across eight expertly-defined ESG classes
and 79% in the Chihuahuan Desert based on 2589 point observations across
nine expertly-defined ESG classes. Model accuracies were also evaluated
using external-validation datasets; resulting in 56 and 44% correct classifica-
tion for the Colorado Plateau and Chihuahuan Desert, respectively. National
coverage of the training and covariate data used in this study provides oppor-
tunities for a consistent national-scale mapping effort of ecological sites.

Abbreviations: ESD, ecological site description; ESG, ecological site group; MAPVI,
model-agnostic version of the permutation-based variable importance; MLRA, major
land resource area; PR-AUC, precision-recall curve; SMU, soil map unit; STM, state and
transition model; SSURGO, Soil Survey Geographic Database.

he implementation of management practices to maintain or enhance the
condition of a landscape requires a knowledge of patterns in ecological po-
tential and the responses of soils, vegetation, and wildlife to management ac-
tions. Traditionally, this knowledge has been generated through long-term observa-
tions of how the land responds to management practices or disturbance processes,
and further augmented by expert knowledge and scientific research (Knapp and
Fernandez-Gimenez, 2009; Caudle et al., 2013; Karl and Talbot, 2016). In recent
years, however, the cumulative effects of soil degradation, persistent vegetation
change, invasive species, and a changing climate are forcing land managers to seek

new tools and approaches to more efficiently direct the allocation of management
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efforts (Bestelmeyer et al., 2016). In the United States, decades
of research and land manager experience has been synthesized in
a system of ecological site descriptions (ESDs), each featuring a
state and transition model (STM) that describes dynamics within
an ccological site. Ecological sites offer a framework for under-
standing and managing landscapes based on the concepts of land
potential and an evolving understanding of ecological resilience
and threshold-type responses of many ecosystems to perturbations.
The ecological site classification system partitions landscapes into
ecological land units (ecological sites) that share a similar range
of biophysical properties (e.g., soil, climate, and potential vegeta-
tion) which leads to similar responses to management activities
and disturbance processes (Brown, 2010). STMs describe the re-
sponses of vegetation and soil surface processes to natural drivers
and management actions. The formal adoption of the ESD/STM
framework by US federal land management agencies (Caudle et
al,, 2013) has resulted in a national system for defining, mapping,
and monitoring rangelands and forests.

Ecological site concepts are developed and mapped across
a wide range of spatial scales to address different management
questions and concerns. At the broadest spatial scales, physio-
graphic climate and land use zones (e.g., ecoregions, Cleland
et al., 1997; MLRAs, McMahon et al., 2004; TEUIL, Winthers
et al., 2005) define the spatial extent of a single ecological site
mapping effort due to regional scale controls on soil-vegetation
dynamics and feasible land use options (Salley et al., 2016b). At
intermediate spatial scales, soil-geomorphic systems (SGSs) sub-
divide climate zones into discrete land areas with a characteristic
spatial arrangement of ecological sites that experience similar
ecological and soil-forming processes (Monger and Bestelmeyer,
2006). At the finest spatial scales, variations in soil physical and
chemical properties along with local topographic context define
individual ecological sites (Salley et al., 2016a). The spatial and/
or thematic scale at which ecological site concepts are developed
largely determines their efficacy in addressing specific manage-
ment questions. For example, ecological sites developed at fine
scales (1:12,000 to 1:24,000) may be effective at targeting criti-
cal habitat for species of concern (Karl and Herrick, 2010), but
may be less efficient at managing for invasive species (e.g., cheat-
grass) that are regulated by broader scale ecological controls
(Chambers et al., 2016). Thus, ecological site concepts can be
usefully developed and mapped at a variety of scales and with
flexible criteria for different management objectives (Karl and
Herrick, 2010; Maynard and Karl, 2017).

Currently, the spatial representations of ecological sites oc-
cur through assigning ecological sites to Soil Survey Geographic
Database (SSURGO) soil map unit (SMU) components (i.c.,
soil types) based on their observed co-occurrence across a land-
scape. Thus, the spatial accuracy of ecological site maps is deter-
mined by the accuracy of soil map delineations and the quality
of the grouping of soil components making up an ecological site.
Criteria for the spatial delineation of SSURGO soil map units,
however, is often different than those used to separate landscapes

according to ecological potential, and SSURGO map units may

circumscribe more than one ecological site (Ireland and Drohan,
2015; Nauman and Duniway, 2016; Maynard and Karl, 2017).
Consequently, the current ecological site mapping framework,
consisting of the forced linkage between SMU components and
ecological site concepts, has been criticized within the scientific
community for not accurately representing important ecosystem
dynamics and thus limiting the spatial accuracy of ecological site
maps used for land management (Ireland and Drohan, 2015;
Nauman and Duniway, 2016; Maynard and Karl, 2017).

Ongoing advancements in geospatial technologies are pro-
viding the tools needed to move beyond conventional soil survey
maps. Recent work has demonstrated the potential of digital
mapping techniques in predicting ecological site distribution
(Maynard and Karl, 2017) and ecological site states (Nauman et
al., 2015; Poitras et al., 2018). Through leveraging remote sens-
ing products and machine learning models, it is now possible to
create high spatial resolution maps of ecological sites. Based on
the theoretical association between ecological sites and many
landscape biophysical properties, we hypothesized that the spa-
tial distribution of ecological sites could be predicted using read-
ily available geospatial data that represent the biophysical con-
cept distinguishing the sites. Furthermore, the type of variables
and roles they play in predictive models can help quantitatively
define the biophysical factors that distinguish ecological sites
and allow for iterative refinement of site concepts.

In many areas of the western United States, ecological site
concepts have been developed at a very fine thematic resolution,
reflecting subtle differences in soil properties and associated veg-
etation characteristics. In some cases, this was done to address
specific management objectives, while in others it reflects a mir-
roring of the level of detail used to develop soil series and soil
series phase (i.e., soil component) concepts within a soil survey
area. In two regions of the western United States (Colorado
Plateau and Chihuahuan Desert), growing interest among stake-
holders for ecological site information relevant to landscape-level
patterns and transition processes was addressed by the develop-
ment of new concepts for mapping ecological sites with a coarser
thematic resolution (Bestelmeyer et al., 2016; Duniway et al.,
2016). This resulted in approximately 150 ecological sites be-
ing aggregated into eight ecological site groups in the Colorado
Plateau, and 42 ecological sites aggregated into nine ecological
site groups in the Chihuahuan Desert. The development of eco-
logical site groups (ESGs) represents a higher order classifica-
tion of ecological potential that focuses on differences in plant
functional groups that control ecosystem dynamics. This results
in land units that can produce more interpretable maps that are
well matched to landscape-level decision-making (Steele et al.,
2012; Bestelmeyer et al., 2016; Duniway et al., 2016).

Here we present a consistent, nationally scalable framework
for predicting ecological sites at multiple spatial scales using a na-
tional point database, remotely sensed geospatial data layers, and
machine learning algorithms. The main objective of this study
was to evaluate the accuracy of our modeling framework for

predicting the spatial distribution of the ESGs developed in the
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Fig. 1. Location of study areas. (a) Location of Colorado Plateau study area in south-eastern UT and Chihuahuan Desert study area in southern
NM and western TX; location of training (orange) and validation (blue) points for (b) Colorado Plateau and (c) Chihuahuan Desert study areas.

Colorado Plateau and Chihuahuan Desert study areas (Fig. 1).
Specific objectives were to: (i) evaluate which environmental
covariates were the most important in predicting ESGs, (ii) test
the consistency of ESG concepts by evaluating the individual er-
ror of ecological sites within cach ESG, and (iii) evaluate the po-
tential application of our modeling framework for the consistent
mapping of ecological sites nationally.

MATERIALS AND METHODS
Study Areas

Two study areas were used to evaluate our ecological site
modeling framework: the Utah portion of the Colorado Plateau
(within MLRA 35) and the western half of the US extent of the
Chihuahuan Desert (within MLRA 42). Study area selection
was based on the following criteria: (i) high quality ecological
site and SSURGO data, (ii) established ESG concepts, and (iii)
ecological site field data for model validation. Study area bound-
aries were delineated using the EPA level 4 ecoregions that inter-
sected portions of USDA-NRCS MLRA 35 for the Colorado
Plateau and MLRA 42 for the Chihuahuan Desert. Both study
areas represent arid to semiarid grass—shrubland ecosystems that

differ with respect to climate, geology, soils, vegetation, and

topographic complexity. For more detailed descriptions of the
Colorado Plateau and Chihuahuan study areas, see Duniway et
al. (2016) and Bestelmeyer et al. (2016), respectively.

Modeling Framework

The spatial modeling framework for predicting ESGs con-
sists of five steps: (1) develop an ESG point dataset for training
and cross-validation, (2) preprocess ESG covariates for tiling and
point overlay, (3) covariate feature selection and model develop-
ment, (4) spatial predictions using tiled raster stacks, and (5)
model validation and uncertainty analysis. All modeling steps are
presented in Fig. 2 and were implemented using Open-Source
software, including: SAGA GIS, GDAL, and the R environment
for statistical computing (Conrad et al., 2015; R Development
Core Team, 2015; GDAL/OGR Contributors, 2018).

ESG Point Dataset

The development of an ESG point dataset first required that
ESG concepts be developed and correlated to SSURGO SMU
components. The development of ESG concepts in our study ar-
eas involved the establishment of workgroups comprised of scien-

tists and managers with knowledge of existing ESDs in each study
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Fig. 2. Modeling framework for the spatial prediction of ecological land units.

area. Through leveraging the current inventory of ESDs correlated
to SSURGO soil map units, relevant geospatial data (e.g., terrain
and remote sensing indices), and expert knowledge; these groups
were able to develop 8 ESGs from approximately 150 ESDs in
the Colorado Plateau (Duniway et al., 2016) and 9 ESGs from
45 ESDs in the Chihuahuan Desert (Bestelmeyer et al., 2016)
(Table 1). Next, we compiled a subset of soil observations from the
National Soil Information System (NASIS) database maintained
by the USDA—NRCS, extracting all point observations that had
been assigned nearest soil series designation. This resulted in 4643
points in the Colorado Plateau (Fig. 1b) and 4295 points in the
Chihuahuan Desert (Fig. 1c) (270,927 points were identified for
the conterminous United States). At each NASIS point within our
study areas a spatial query was performed, extracting the ecological
site class for the first matched component of the same soil series
identified from the intersected or adjacent neighboring SMUs in
the SSURGO database. The ESD associated with the matched

component was extracted and assigned to its corresponding

NASIS point. This spatial matching procedure resulted in 1405
points (30% match rate) for the Colorado Plateau and 2589 points
(61% match rate) for the Chihuahuan Desert. With the excep-
tion of one Order 4 soil survey in the Colorado Plateau (San Juan
County, Utah, Navajo Indian Reservation), soils in our study areas
were mapped at the Order 3 scale (i.e., 1:20,000 to 1:63,360). This
resulted in mean map unit areas of approximately 375 acres (1.3
to 5440 acres for the 1st and 99th percentiles) and 575 acres (1.7
t0 9390 acres for the 1st and 99th percentiles), for the Colorado
Plateau and Chihuahuan Desert, respectively. While the mapping
scale may have influenced our match rates in some areas, the consis-
tency of Order 3 surveys likely minimized significant scaling effects.
The lower match rate on the Colorado Plateau was due in large part
to portions of SSURGO being incomplete, but in the process of
publication. We then used expertly defined look-up tables relating
all matched ESDs to the ESG concepts developed from the two
workgroups to create a final ESG point dataset. In the Chihuahuan
Desert study area, the Saline and Playa/lakebeds ecological site
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Table 1. Description of ecological site group (ESG) characteristics for the Colorado Plateau and Chihuahuan Desert study areas.t

ESG Code

Soil-landform setting and vegetation communities

Colorado Plateau

Bottoms and Flats  ESG1  Occurs in flat, low-lying areas with ephemeral washes and streams. Soil texture, depth, and chemistry vary widely.
Dominated by shrubs and mixture of perennial cool-season/warm-season grasses.

Outcrops and ESG2 Bedrock controlled landforms with vegetation relegated to pockets, very shallow soil, or fissures. Often steep. Pinyon-
Slopes Juniper woodlands, with various shrubs interspersed. Mostly exposed bedrock.

Saline Hills and ESG3 Highly salt limited, erosion features common, often sloping. Ephedra and Mat Saltbush dominated, with associated
Badlands salt-tolerant species.

Saline Uplands and ESG4  Salt limitations are less apparent than in hills and badlands because of mixing of non-saline/nongypsic parent
Flats material (often sandstone). Shadscale and Galleta communities.

Shallow Shrublands ESG5  Soils are shallow to bedrock (~ < 50 cm) and often have high coarse fragment content (~ very gravelly and coarser).

and Woodlands

Blackbrush shrublands and Pinyon-juniper woodlands.

Sandy Grasslands ESG6 Deep aeolian and alluvial generally sandy deposits, range in soil development. Grasslands with some scattered

and Shrublands

shrubs (primarily Fourwing Saltbrush, but with some Sand Sage, Blackbrush, and Ephedra on sandier sites).

Finer Shrublands  ESG7 Deep aeolian and alluvial deposits, sandy loam to clay loam textures, varying levels of soil development. Mixed
shrub-grasslands, Blackbrush at the lower elevations transitioning to mostly Sagebrush at higher elevations.

Deep Rocky ESG8 Loamy soils that are > 50 cm deep and have > 35% rock fragments by volume. Wide variety of dominant shrubs and
trees, including Blackbrush, Big Sagebrush, and Juniper.

Chihuahuan Desert

Sandy ESG1 Basin floors and fan piedmonts; sandy surface, increased clay/carbonates in subsurface, usually sandy loam to sandy
clay loam. Perennial grassland, mostly Black Grama and Dropseeds, invasion and dominance by Mesquite.

Deep sand ESG2 Dunes, sand sheets, mantling fan piedmonts, alluvial flats, and floodplains. Sand or loamy sand textures. Mixed grass
and shrub species, especially Dropseeds, Sand Sagebrush, Broom Dalea, Mesquite, and Creosotebush.
Loamy-Clayey ESG3  Basin floors and fan piedmonts; sandy, loamy or clayey surface and loam, clay loam, or clay subsurface.
Perennial grassland, mostly Tobosa, invasion by Tarbush, Mesquite, Creosotebush unless soils are very clayey.
Gravelly and ESG4  Alluvial fans, fan piedmonts, and terraces; gravelly surface and subsurface. May have a petrocalcic horizon, but
Calcic otherwise deep. Shrub savanna featuring Creosotebush and other shrubs and succulents, with Black Grama, Bush
Muhly, or Tobosa.
Bedrock and ESG5 Hills, desert mountain slopes, flanks, and bases. Shallow to bedrock or colluvium. Large variations in soil texture and
Colluvium depth. Shrub savanna or shrubland depending on soil texture and depth, abundant succulents and high diversity.
Gypsic ESG6  Basin floors, relict lakebeds, playas, gypsiferous dunes, and fan piedmonts. Includes gypsic and hypergypsic soils.

Alkali Sacaton and Saltbush on gypsic soils and gypsophilous plants, including Gypsum Grama and Coldenia on

hypergypsic soils.

Bottomlands ESG7  Basin floors, floodplains, or low lying landscape positions within uplands, intermittently flooded, may be saline.
Often cultivated. Alkali Sacaton/Giant Sacaton grassland in flooded areas. Tobosa in upland swales. Invasion by

Mesquite and invasive Tamarisk.

t Table adapted from Duniway et al. (2016) and Bestelmeyer et al. (2016).

groups were not adequately represented by our ESG point dataset
due to their spatial rarity, and consequently excluded from our anal-
ysis. After completing these filtering and matching steps, the ESG
class distribution for both of our datasets was relatively uniform
with all classes having adequate representation (Table 2).

ESG Covariates

We evaluated a range of geospatial datasets commonly used in
digital soil mapping due to the central role of soils in determining
ecological potential and modulating plant community response to
change drivers. All spatial predictions in this study were modeled
at 250-m resolution and covariates cither sourced or resampled to
conform to this resolution. Only covariates with complete cover-
age across the US were used to ensure a scalable framework. To de-
termine which environmental covariates have the strongest corre-
lation to ESG concepts, we evaluated 1846 covariates (1570 from
hyper-temporal imagery) from the following data types:

e DEM-derived terrain attributes: Thirty terrain attributes
(see Supplemental Table S1 for detailed list) commonly used
in environmental modeling were derived from the 30-m

National Elevation Dataset (NED) (Gesch et al., 2018).

Hyper-temporal MODIS indices: MODIS 16-d time-
series were acquired from 18 Feb. 2000 to 6 Mar. 2017 (393
temporal observations) for normalized difference vegetation
index (NDVI; MOD13Q1), MODIS Nadir Reflectance
Band 7 (mid-infrared, MIR; MCD43A4), and day- and
night-time land surface temperature (LST-day, LST-night;
MOD11A2).

Aggregated  MODIS indices: Long-term monthly
mean and standard deviation for MODIS NDVI
(MOD13Q1), MIR (Band 7; MCD43A4), and LST
(daytime and nighttime; MOD11A2).

Climate variables: WorldClim long-term (i.c., 1970-
2000) monthly mean temperature and precipitation and
nineteen long-term bioclimatic variables.

SoilGrids250m: 86 SoilGrids250m soil property layers
(see Supplemental Table S1 for complete list) at seven
soil depths (0, 5, 15, 30, 60, 100, and 200 cm) were
downloaded from SoilGrids250 web services (fep://ftp.
soilgrids.org/data/recent/).

Other environmental covariates: lithological classes

from the global lithological map (GLiM) geodatabase
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Table 2. Sample size distribution and areal extent for the ecological site group (ESG) classes in the Colorado Plateau and

Chihuahuan Desert study areas.

ES1 ES2 ES3 ES4 ES5 ES6 ES7 ES8
Colorado Plateau
Sample plots (N) 138 123 344 357 111 163 99 70
Area (Mha)t 0.385 0.744 1.367 0.582 0.383 0.660 0.123 0.176
Area per sample (ha) 2796 6048 3973 1631 3448 4046 1242 2519
Chihuahuan Desert

Sample plots (N) 269 133 774 655 297 151 310 -
Area (Mha)t 1.004 0.422 1.414 1.922 1.346 0.397 0.593 -
Area per sample (ha) 3731 3176 1827 2935 4532 2631 1912 -

+ ESG areas calculated based on SSURGO dominant condition; N, number of observations; Mha, mega-hectare (ha x 10°).

(Hartmann and Moosdorf, 2012), MODIS IGBP land
cover classes (MCD12Q1), average soil and sedimentary-
deposit thickness (m) (Pelletier et al., 2016), and USGS
acroradiometric grids (Hill et al., 2009).

A detailed description of each covariate evaluated in this study
is presented in Supplemental Table S1. In this study we included
several modeled covariate layers, many of which were derived using
the primary covariates in this study (e.g., LST, MIR, climate, lithol-
ogy, etc.). While these modeled layers likely exhibit some collinear-
ity with our primary covariates, they can also contain information
that explains a unique portion of the variance within our depen-
dent variable. Consequently, in models containing both modeled
and primary covariates we relied on our feature selection routine
(described below) to reduce the level of multicollinearity. Terrain
attributes were calculated using SAGA GIS software (Conrad et al,,
2015) and resampled to 250-m resolution using mean resampling
in the ‘raster’ package for R (Hijmans, 2019). Aggregated MODIS
indices were processed in Google Earth Engine, which included
quality assurance processing, tcmporal averaging, resampling to
250-m resolution using bilinear interpolation when required, and
downloading finished imagery. Hyper-temporal MODIS indices
were processed using the ‘MODIS’ package for R following the
steps described by Maynard et al. (2016).

Model Building

To determine the relative strength of each dataset in pre-
dicting ESGs, we evaluated the performance of four machine
learning models: support vector machines (SVM), random for-
est (RF), extreme gradient boosting (XGB), and an ensemble
(ENS) of these models based on the average of their prediction
probabilities. We focused on machine learning models rather
than a variety of geospatial modeling approaches (e.g., geostatis-
tics) for two main reasons. First, a growing body of literature has
shown that machine learning techniques outperform traditional
geostatistical or spatial regression models (Niculescu-Mizil and
Caruana, 2005; Oliveira et al,, 2012; Brungard et al., 2015;
Heung et al., 2016). This is particularly true for the modeling of
multi-class categorical variables. Second, the spatial distribution
of our training data is highly uneven (Fig. 1), which is problem-
atic for geostatistical techniques which require sufficient spatial
autocorrelation to accurately perform.

For the construction and optimization of each model, all

data preprocessing, feature selection, and hyper-parameter tuning

were performed within each cross-validation fold, thus prevent-
ing any data leakage which could result in overoptimistic perfor-
mance results. Data preprocessing, which included centering and
scaling of all numeric covariates, was performed prior to modeling
(Kuhn and Johnson, 2013). Feature selection was performed us-
ing the “information.gain” filtering method from the ‘FSelector’
package for R (Romanski and Kotthoff, 2018). This method cal-
culates an entropy-based information gain between each covari-
ate and target variable. Non-informative covariates were removed
by applying a threshold where only covariates whose importance
exceeded that threshold were retained. A tuning procedure us-
ing threefold cross-validation was used to determine optimal
threshold values for each model. Hyperparameter tuning was per-
formed using the ‘mlrHyperopt’ R package (Richter et al.,, 2017).
The search space for each hyperparameter was selected based on
published values and optimized using a random search with 50
iterations using threefold cross-validation. SVM, RF, and XGB
models were implemented using the ‘¢1071’, ‘randomForest} and
‘xgboost’ packages in R, respectively; and all modeling was per-
formed using the ‘mlr’ package in R (Bischl et al., 2016).

To decipher which covariates were most important in ac-
counting for unique variance within our ESG models, we ran a
series of separate models using different combinations of covari-
ate groups. Our goal was to partition our large covariate matrix
into subgroups that represented unique ecological and pedologi-
cal variability within our study areas. These subgroups included:

o Complete covariate set (All; 2 = 1846): terrain attributes,
lithology, climatic variables, USGS acroradiometric
grids, soil thickness, SoilGrids250m, and both hyper-
temporal and long-term monthly MODIS250m NDVI,
MIR, daytime LST and nighttime LST.

e Hyper-temporal MODIS250m (Hyper; » = 1570):
hyper-temporal MODIS250m NDVI, MIR, daytime
LST and nighttime LST.

e Hyper-temporal NDVI (NDVI; » = 393): hyper-
temporal MODIS250m NDVI

e Abiotic covariates (Abiotic; 7z = 170): terrain, lithology,
climatic variables, USGS aeroradiometric grids, soil
thickness, SoilGrids

o So0ilGrids250m (SG; 7 = 86): 88 SoilGrids250m soil
property raster layers
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¢ Digital soil mapping (DSM; 7 = 266): terrain attributes,
lithology, climatic variables, USGS acroradiometric
grids, soil thickness, SoilGrids250m, and long-term
monthly NDVI, MIR, daytime LST and nighttime LST.

Model Accuracy
Cross-Validation Accuracies

Model accuracy for all datasets and model types was assessed
using 10-fold cross-validation. Model predictions and correspond-
ing observations from each cross-validation fold were compiled
and used to calculate several performance metrics, including:
overall map accuracy, quantity disagreement, allocation disagree-
ment, producer’s accuracy, and user’s accuracy. Overall model
performance was evaluated using overall map accuracy, quantity
disagreement, and allocation disagreement, while class-wise mod-
el performance was evaluated using producer’s accuracy, user’s ac-
curacy, quantity disagreement, and allocation disagreement.

Overall map accuracy is the proportion of observation points
at which the model predicts the correct ESG class. Model error can
be attributed to two different sources of randomness; the random
distribution of the quantity of each class and the random spatial
allocation of the classes. Pontius et al. (2011) presented two mea-
sures for quantifying these sources of model disagreement, termed
quantity disagreement and allocation disagreement (Pontius et
al., 2011; Warrens, 2015). Quantity disagreement represents the
amount of difference between the validation and prediction data
that is due to a less than perfect match in the proportion of class-
es. Allocation disagreement represents the amount of difference
between the validation and prediction data that is due to the less
than optimal match in the spatial allocation of classes. Quantity
disagreement (QD) is calculated as:

[1]

1«
QD:EZ;:I PP
where p,, and p_; represent the row and column totals of the
error matrix for the ith class for ¢ number of classes. Values for
quantity disagreement can range from 0 to 1, where a value of 0
represents perfect agreement in the proportion of coverage for
each class between the validation and prediction data. Allocation
disagreement (AD) is calculated as:

AD=| ¥ min(p,..p.,) |-C 2]

where C'is the overall agreement or correct classification. Values
for allocation disagreement can range from 0 to 1, where a value
of 0 represents perfect agreement in the spatial allocations for
cach class between the validation and prediction data. The pro-
ducer’s accuracy, also known as recall, measures the proportion
of correctly identified observations from a class relative to all ob-
servations of that class. Values of producer’s accuracy range from
0 to 1, with values of 1 indicating a perfect match. The user’s
accuracy, also known as precision, is the proportion of correctly
identified observations from a class relative to all predictions
of that class. Values of user’s accuracy range from 0 to 1, with

values of 1 indicating a model with perfect precision. The pre-

dicted probabilities of each ESG class occurrence were used to
calculate the area under the precision-recall curve (PR-AUC).
The PR-AUC summarizes the trade-offs between producer’s ac-
curacy and user’s accuracy for a model using different probability
thresholds. Values of PR-AUC close to 1 indicated high model
performance, while values <0.5 indicate poor performance. We

implemented a multi-class calculation of PR-AUC using the

‘multiROC’ R package (Wei and Wang, 2018). Cross-validation

folds were micro-aggregated (Forman and Scholz, 2010), while
PR-AUC for each ESG class and the total model were macro-
averaged (i.c., one-vs-rest). We calculated nonparametric boot-
strap 95% confidence intervals for each PR-AUC using the basic
bootstrap method and 100 replicates.

Finalized machine learning models were used to estimate
the probability of occurrence for each ESG class at each 250-
m grid cell covering our study areas. The ESG class with the
largest probability at each grid cell was assigned the predicted
class. Estimates of model uncertainty for our spatial predictions
were generated using the Scaled Shannon Entropy Index (SSEI)
(Shannon, 1948; Kempen, 2011; Hengl et al., 2017):

SSEL(x)=-2_1 p,(x)*log, [ p.(x)] 3]

where K is the number of possible classes, logK is the logarithm
to base K'and p,, is the probability of class k. Values of SSEI can
range from 0 to 1, with 0 indicating no uncertainty (one class has
P equal to 1 and all remaining are 0), and 1 indicating maximum
uncertainty (all classes have equal probabilities) (Kempen, 2011).
SSEI is an internal accuracy measure derived from model prob-
abilities and therefore should not be confused with classification
accuracy assessment or validation. In other words, it provides an
indication of how certain the model is in its predictions regard-
less of whether those predictions are correct. Classifier calibra-
tion was used to estimate the agreement between the predicted
probabilities of each class relative to the rate at which that class
occurs. This was calculated by grouping data points with similar
predicted probabilities for each class and plotting these against
the observed frequency for each class. Classifier calibration was
calculated using the ‘mlr’ R package.

External-Validation Accuracies

Independent ESG datasets were obtained for both study
areas to perform external model validation. For the Colorado
Plateau, an independent dataset of 356 points was obtained
for external validation where soil and vegetation surveys had
been conducted and ecological site and ecological site group
designations assigned. The network of points, previously de-
scribed in Miller et al. (2011) and Bowker et al. (2012), spans
an area of ~1500 km? along the southern edge of Canyonlands
National Park where a wide range in elevation, climate, vegeta-
tion, and soils occur (Fig. 1b). External-validation data for the
Chihuahuan Desert was obtained from several sources, includ-
ing, (i) sites established for the project ‘Restore New Mexico’
(Coffman et al., 2014) and (ii) a collection of field data from the
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Jornada Experimental Range as described in Maynard and Karl
(2017) (Fig. 1c). These locations all contained validated ecologi-
cal site concepts based on a full characterization of the soil at

each plot.

Model-Agnostic Interpretability Methods

Most machine learning algorithms are inherently complex, pro-
ducing ‘black box’ models that prevent a direct explanation of how
covariates contribute toward model predictions or affect model per-
formance (Casalicchio et al., 2018; Fisher et al,, 2018; Greenwell et
al,, 2018). While some machine learning algorithms provide model
specific variable importance calculations, these measures are often
not comparable across model types or can give seemingly incoherent
results when several different models produce a strong fit to the data
(Fisher et al,, 2018). To correct for these deficiencies, model-agnos-
tic interpretability methods have been developed (Goldstein et al.,
2015; Fisher et al.,, 2018). Permutation-based variable importance
was first introduced by Breiman (2001) in the Random Forests algo-
rithm. Building on this framework, Fisher et al. (2018) recently pro-
posed a model-agnostic version of the permutation-based variable
importance (MAPVI) measure, but applied at the aggregate model-
level and for a general loss function. In this approach, a covariate’s
importance in a model is measured by calculating the increase in pre-
diction error after randomly permuting its values. Covariates with
large increases in error after permutation are considered “important”
because the model relied on them for the prediction. Conversely, if
the model error remains unchanged after permutation, the covariate
is considered “unimportant” because it was ignored for the predic-
tion. We used the MAPVI method to determine which covariates
were most important in predicting ESG classes for the different ma-
chine learning models. The MAPVT algorithm was implemented
using the ‘iml’ R package (Molnar et al., 2018).

SSURGO Ecological Site Maps

Currently, use of ecological site data in a spatial context re-
quires some form of generalization to resolve the one-to-many
relationship between SSURGO SMUs and soil components. In
the correlation between ecological site concepts and SSURGO
SMU components, multiple SMU components concepts (e.g.,
variations of soil series, phases, or other higher taxonomic con-
cepts) are often correlated to a single ESD. Thus, multiple soil
components within a SMU can be correlated to the same ESD.
Consequently, we employed the dominant condition generaliza-
tion approach, where the ecological site was selected by the most
frequent condition (i.c., percent area occurrence) within a map
unit. SSURGO ecological site and SMU component data were
downloaded from SoilDataAccess (Accessed 12 Oct. 2017),
merged based on the representative component percentage for
each SMU, and aggregated by dominant condition. In rare cas-
es (<0.5%) where multiple ecological site concepts resulted in
equal representative percentages within a SMU, ESD selection
was based on consulting local soil survey office and analysis of
correlated minor components. The ESD-ESG look-up tables de-
veloped from the Ecological Site Grouping workshops were then

used to assign the appropriate ESG group to each SMU ecologi-
cal site class. The accuracy of the SSURGO dominant-condition
ESG maps were evaluated using both the NASIS-SSURGO

training dataset and the external-validation datasets.

RESULTS

Model results from our ESG mapping framework support our
initial hypothesis that ESGs can be accurately predicted using read-
ily available geospatial data. Cross-validation and external-validation
accuracies for all combinations of model types and covariate datas-
ets are presented in Fig. 3. Cross-validation accuracies ranged from
64 to 70% for the Colorado Plateau and from 72 to 79% for the
Chihuahuan Desert across all datasets and model types (Fig. 3a-b).

External-validation accuracies ranged from 37 to 56% for the
Colorado Plateau and from 34 to 44% for the Chihuahuan Desert
across all datasets and model types (Fig. 3c-d). Our analysis of mul-
tiple datasets and model types revealed that the range in accuracy be-
tween datasets was much higher than between models, highlighting
the importance of covariate selection in developing accurate ESG
models (Fig. 3). In all but one case the ensemble (ENS) model pro-
duced the highest cross-validation accuracies at both study sites (Fig.
3a-b). In general, the range in model accuracy across the four models
for a given dataset was small (<6%) and often the top performing
model was only one or two percentage points more accurate than
the next model. In our external validation, the top performing mod-
el alternated between the ENS and RF models across our datasets
(Fig. 3c-d). In terms of covariate datasets, the complete dataset (All)
generally produced the highest accuracies both across sites and vali-
dation approaches (Fig. 3). The DSM dataset produced the second
highest accuracy and NDVI the lowest at both sites in our cross-
validation analysis. However, in the external-validation NDVI pro-
duced one of the highest accuracies and the abiotic dataset the low-
est for the Colorado Plateau; whereas for the Chihuahuan Desert
NDVTI accuracy remained low while the abiotic datasets continued
to have high accuracies. While the complete covariate dataset (All)
generally produced the highest total model accuracies, it contains
1846 covariates which significantly increased computational time
relative to other datasets, like DSM (7 = 268), which produced only
slightly lower accuracies. Given the need to produce scalable mod-
els that are both accurate and parsimonious, we focused additional
analysis on the DSM dataset.

Individual ESG cross-validation accuracies for the Colorado
Platcau and Chihuahuan Desert are presented in Supplemental
Fig. S1 and S2, respectively. At both study sites, the effect of covari-
ate dataset and model type on prediction accuracies varied slightly
between ESG classes, indicating potential differences in the impor-
tance of biotic vs. abiotic variables for predicting different ESGs. A
more detailed assessment of individual ESG prediction accuracies
was performed on results from the ENS model of the DSM dataset
(Tables 3 and 4). The ENS-DSM model produced both high pro-
ducer’sand user’s accuracy for the majority of ESG classes. However,
afew ESG classes were appreciably lower relative to the other classes
at both study sites. In the Colorado Plateau ESG6 (Outcrops and
Slopes) had the lowest producer’s accuracy (0.48), while in the
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Fig. 3. Comparison of cross-validation model accuracy between covariate datasets (x axis) and machine learning models (colored circles) for (a)
the Colorado Plateau and (b) Chihuahuan Desert study areas. Comparison of external-validation accuracies for (c) the Colorado Plateau and (d)

Chihuahuan Desert study areas.

Chihuahuan Desert ESG7 (Bottomland) had the lowest produc-
er’s accuracy (0.56). In general, values of producer’s accuracy and
user’s accuracy closely followed each other both in terms of their
absolute values and relative differences. Analysis of the area under
the precision-recall curve for each ESG class and the overall models
showed a similar trend to values of producer’s accuracy and user’s ac-
curacy and had narrow 95% confidence intervals around each PR-
AUC value (Tables 3 and 4). At both study sites, analysis of model
disagreement revealed that the quantity disagreement was low
across all classes, while allocation disagreement tended to be higher,
particularly for classes with high sample sizes (Tables 3 and 4). For
example, in the Colorado Plateau ESG3 (Shallow Shrublands and
Woodlands) has one of the largest sample sizes and highest alloca-
tion disagreement (0.17). This high allocation disagreement for
ESG3 can be seen where six out of the seven other classes has ESG3
as their most dominant misclassified class (‘Table 3). A similar pat-
tern was observed in the Chihuahuan Desert for ESG3 (Loamy-
Clayey) and ESG4 (Gravely and Calcic) (Table 4).

In both study sites, SSURGO derived ESG maps revealed
that large areas currently do not have spatial information on ESG
classes (Fig. 4). These unmapped areas occur where SSURGO
has yet to be completed or where ESD correlations have yet to
be established (gridded in Fig. 4). Due to this incomplete spatial
coverage, only a subset of our internal- and external-validation
datasets could be used to query SSURGO delineated ESG class-

es. To ensure an accurate comparison between thC accuracy Of

SSURGO ESG delineations and our modeled ESG distributions,
we subset our training—validation dataset to match our SSURGO
dataset and recalculated model accuracy statistics. Comparisons
of map accuracy between the SSURGO ESG map and our ESG
model predictions from the ENS model using the DSM dataset
revealed strong similarities (‘Table 5). In the Colorado Plateau,
the DSM-ENS model had slightly higher cross-validation accu-
racy (0.70 vs. 0.66) and slightly lower external-validation accuracy
(0.51 vs. 0.66) relative to SSURGO. In the Chihuahuan Deserrt,
DSM-ENS and SSURGO accuracies were nearly identical with
cross-validation accuracies of 0.82 and 0.83, and external-valida-
tion accuracies of 0.45 and 0.43 for DSM-ENS and SSURGO,
respectively. However, in both study areas the external-validation
data only covered smaller subsets of the overall study areas and

may not be fully representative of all areas.

Spatial Predictions of ESGs

Spatial predictions of ESG classes from our four models us-
ing the DSM datasetare presented in Fig. 5 and 6 for the Colorado
Plateau and Chihuahuan Desert, respectively. In general, the spa-
tial distribution of ESGs conforms to our expectations based on
exert knowledge of these study areas. In the Colorado Plateau,
the RF and XGB predictions (both tree based models) displayed
similar distributions, while the SVM model produced a notice-
ably different spatial distribution (Fig. 5). Spatial differences in

prediction surfaces were less pronounced between models for
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Table 3. Colorado Plateau class-wise accuracy statistics for the ensemble (ENS) model of the digital soil mapping (DSM) dataset.t

Class N PA UA PR-AUCH QD AD First class Second class
ES1 138 0.84 0.83 0.93 £ 0.02 0.00 0.03 EST (84%) ES3 (09%)
ES2 123 0.73 0.70 0.74 + 0.09 0.00 0.05 ES2 (73%) ES3 (11%)
ES3 344 0.65 0.62 0.68 + 0.06 0.01 0.17 ES3 (65%) ES4 (13%)
ES4 357 0.78 0.70 0.83 +0.03 0.03 0.11 ES4 (78%) ES3 (11%)
ES5 111 0.61 0.71 0.72 £ 0.07 0.01 0.04 ES5 (61%) ES3 (19%)
ES6 163 0.48 0.57 0.52 £ 0.09 0.02 0.08 ES6 (48%) ES3 (26%)
ES7 99 0.64 0.76 0.76 + 0.08 0.01 0.03 ES7 (64%) ES4 (21%)
ES8 70 0.83 0.84 0.89 + 0.07 0.00 0.02 ES99 (83%) ES3 (04%)
Overall 1405 0.70 - 0.76 + 0.03 0.04 0.27 - -

t N, number of observations; PA, producer’s accuracy; UA, user’s accuracy; PR-AUC, multiclass area under the precision-recall curve; QD, quantity
disagreement; AD, allocation disagreement; First and Second, most probable groups and percentage of ESG observations predicted to that group.

¥ Multiclass implementation of the area under the precision-recall curve (i.e., PA vs. UA) plus/minus the bootstrapped 95% confidence interval.

the Chihuahuan Desert (Fig. 6). The averaging effect of the ENS
model can be seen at both sites. In the Colorado Plateau, despite
large gaps in SSURGO coverage, a fairly good correspondence
between SSURGO and model result can be seen (Fig. 4 and 5).
One noticeable difference is in the distribution of ES6 (Outcrops
and Slopes), where our model results show significantly less cov-
erage relative to SSURGO. ESG6 had the lowest producer’s
accuracy and a high rate of misclassification as ESG3 (Shallow
Shrublands and Woodlands). Large areas mapped as ESG6 in the
SSURGO map were predicted as ESG3 in our predicted maps,
highlighting the need for further refinement with respect to
these ESG classes. Correspondence between SSURGO and spa-
tial predictions in the Chihuahuan Desert were high, particularly
in the eastern half of the study area where most of our training—
validation points occurred (Fig. 4 and 6).

It should be noted that the NASIS point dataset used in this
study was collected using a purposive sampling design (i.c., rapid
field transects) which can introduce potential bias in our model
estimates and uncertainty as to how well our sample of points
represents the larger population (Brus et al., 2011). Spatial as-
sessments of prediction uncertainty were made with the scaled
Shannon Entropy index (Fig. 7). Mapped areas with low un-
certainty (low Shannon Entropy) correspond to areas with a
higher density of training data. This is particularly noticeable in
the Chihuahuan Desert site where the relatively dense and even
distribution of points in the eastern portion of the study area
resulted in very low levels of uncertainty. In contrast, very few

observations in the western portion of the study area resulted

in higher levels of model uncertainty. Classifier calibration plots
provide additional insight into the accuracy of modeled predic-
tion probabilities. A classification model is considered ‘calibrated’
when the predicted probability of a class matches the expected
frequency of that class, in which case predicted probabilities can
be directly interpreted as a confidence level. Thus, for a perfectly
calibrated model each class would plot along the 1:1 line (dotted
black line in Fig. 7c-d), and deviations from this would indicate
that the model is cither over or under estimating the probability
of occurrence for a particular class. The classifier calibration plot
for the Colorado Plateau shows a general trend of slightly under-
estimating probabilities at moderate-to-low probability values,
and overestimating probabilities at high probability values. This
was particularly true for ESG5 and ESG6, which also had the
lowest producer’s accuracies (Fig. 7c; Table 3). In contrast, the
classifier calibration plot for the Chihuahuan Desert was better
calibrated with most groups aligning with the 1:1 line (Fig. 7d)
The uneven spatial distribution of points across our sites
may diminish our ability to quantify the range of covariate space
that characterizes cach ESG. Thus, despite adequate representa-
tion of each ESG class in terms of point observations, it scems
likely that ESGs found within regions of uncharacterized geo-
graphic space will inhabit slightly different regions of covariate
space relative to the covariate space characterized for that ESG
from the training—validation dataset. Extrapolation of our mod-
els to these uncharacterized regions produces higher levels of un-

certainty, as shown in our maps of Shannon Entropy, and higher

Table 4. Chihuahuan Desert class-wise accuracy statistics for the ensemble (ENS) model of the digital soil mapping (DSM) dataset. +

Class N PA UA PR-AUCH QD AD First group  Second group
ES1 269 0.82 0.81 0.88 £ 0.03 0.00 0.04 EST (82%) ESG2 (05%)
ES2 133 0.79 0.86 0.88 = 0.05 0.00 0.01 ES2 (79%) ESGT (13%)
ES3 774 0.81 0.78 0.88 +0.02 0.01 0.11 ES3 (81%) ESG4 (09%)
ES4 655 0.82 0.77 0.86 £ 0.03 0.02 0.09 ES4 (82%) ESG3 (09%)
ES5 297 0.79 0.83 0.88 = 0.04 0.01 0.04 ES5 (79%) ESG4 (16%)
ES6 151 0.88 0.80 0.89 £ 0.04 0.01 0.01 ES6 (88%) ESG3 (05%)
ES7 310 0.56 0.71 0.73 £0.05 0.03 0.05 ES7 (56%) ESG3 (28%)
Overall 2589 0.79 - 0.86 +0.02 0.04 0.18 - -

t N, number of observations; PA, producer’s accuracy; UA, user’s accuracy; PR-AUC, multiclass area under the precision-recall curve; QD, quantity
disagreement; AD, allocation disagreement; First and Second, most probable groups and percentage of ESG observations predicted to that group.

¥ Multiclass implementation of the area under the precision-recall curve (i.e., PA vs. UA) plus/minus the bootstrapped 95% confidence interval.
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Fig. 4. SSURGO dominant condition maps of ecological site groups in (a) Colorado Plateau, and (b) Chihuahuan Desert study areas.

rates of misclassification, as demonstrated by low external-vali-
dation results for the Chihuahuan Desert.

Covariate Importance

The top 10 predictors from the model-agnostic permu-
tation-based variable importance (MAPVI) calculation of the
SVM, RE and XGB models on the DSM dataset are presented
in Fig. 8. At both study sites, covariate importance dropped sig-
nificantly after the first covariate. This was most pronounced for
the RF and XGB models (Fig. 8). In the Colorado Plateau, the
top-ranking covariate was different between the three models,
with MRRTF as most important for SVM (terrain attribute),
NDVI-12-M for RF (MODIS imagery), and TAXOUSDA
for XGB (SoilGrids250m). While the top ten covariates large-
ly differed between the Colorado Plateau models, there were
some similarities in terms of covariate types. Terrain attributes,
MODIS imagery, and SoilGrids250m layers were all important

to different extents in each model. However, some notable differ-
ences included the importance of USGS acroradiometric grids
in RF and the importance of climate variables in XGB. For the
Chihuahuan Desert, TAXOUSDA was the top-ranking covari-
ate in all three models (Fig. 8). The importance of subsequent

Table 5. Cross-validation and external-validation accuracies from
the SSURGO dominant-condition ecological site group (ESG)
map and model predictions from the ensemble (ENS) model of
the digital soil mapping (DSM) dataset at both study sites.

Site Source Training-validationt External-validation
Colorado Plateau ~ SSURGO 0.66 0.66
Colorado Plateau ~ DSM-ENS 0.70 0.51
Chihuahuan Desert SSURGO 0.83 0.43
Chihuahuan Desert DSM-ENS 0.82 0.45

t Training-validation accuracy for SSURGO consisted of comparing the
SSURGO ESG dominant condition at each training point relative to its
actual ESG class. Training-validation accuracy for the DSM-ENS model
was the 10-fold cross-validation accuracy of the training dataset.
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Fig. 5. Spatial prediction maps of the Colorado Plateau study area for, (a) support vector machine, (b) random forest, (c) extreme gradient boosting,
and (d) an ensemble of all models using the digital soil mapping (DSM) dataset.

covariates differed widely between the three models, where ter-
rain attributes, SoilGrids250m layers, soil thickness, and climate
variables assumed different levels of importance.

ESG Misclassification

Our ability to predict ESGs is dependent on the establish-
ment of ecologically distinct thematic groupings that can be de-
tected and differentiated using available covariate datasets. Two
sources of error can occur that results in low prediction accuracies:
(1) conceptually overlapping thematic classes that result in signifi-
cant overlap in covariate space, and (2) deficiencies in our covari-
ate data preventing the identification of ecologically meaningful
differences between ESG classes. Here we present examples from
both study areas of thematic overlap and covariate limitations that
may result in higher rates of misclassification within ESGs.

In the Colorado Plateau, ESG3 (Shallow Shrublands and
Woodlands) has one of the lower classification accuracies (65%)
and the largest sample size from our point dataset (Table 3). ESG3
represents the aggregation of 12 established ecological sites, span-

ning three precipitation/climate zones (ranging from 15 cm to 40
cm in MAP), with soil profiles that are shallow to bedrock and
soil textures ranging from loam to sand. Of the 12 ecological sites,
the Desert Shallow Sandy Loam (Blackbrush) site had the high-
est classification error (68%), with most observations being mis-
classified as ESG2 (Saline Uplands and Flats) (Fig. 9a). Analysis
of ESG2 misclassifications showed that five out of seven ecologi-
cal sites (Fig. 9b, purple text) had some percentage misclassifica-
tion as ESG3. The most dominant ecological site for ESG2 from
our point dataset is the Desert Shallow Sandy Loam (Shadscale),
which has similar characteristics to the Desert Shallow Sandy
Loam (Blackbrush), with the main difference being the Shadscale
is found in more saline soils. Soil salinity is an important property
used to distinguish between ESG2 and ESG3, thus much of the
misclassification between these two groups could possibly be cor-
rected if a soil salinity covariate was available. Furthermore, the
highest number of misclassifications within ESG3 was from the
Semidesert Shallow Sandy Loam (Utah Juniper, Blackbrush) eco-

logical site which also comprises the largest number of point ob-
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Fig. 6. Spatial prediction maps of the Chihuahuan Desert study area for, (a) support vector machine, (b) random forest, (c) extreme gradient
boosting, and (d) an ensemble of all models using the digital soil mapping (DSM) dataset.

678 Soil Science Society of America Journal



(a) Colorado Plateau SSEI

100

1900000 -

1850000 -

1800000

1750000 -

1700000

e

1650000 9%
T

¥

T T T
-1500000 -1400000 -1300000 -1200000

(c) Colorado Plateau Classifier Calibration

EEENENNENERN NN EEEREE

Class
— ESG1
— ESG2
— ESG3
— ESG4
—— ESG5
— ESG6
—— ESG7
— ESG8

Class Proportion

robability Bin

nY

(b) Chihuahuan Desert SSEI

100
1200000
80
1100000
60
1000000
k40
900000 20
800000 ' 0
T T T T T
1200000 -1100000  -1000000  -900000 -800000
(d) Chihuahaun Desert Classifier Calibration
1.00 EEEE N EENEENNENEEEEEEEDS
Class
gws- — ESG1
= — ESG2
£
g — ESG3
©0.50-
o — ESG4
(23
& — ESG5
©0.251 —— ESG6
— ESG7
0.00- 2
O
W~ LN MW T LW OWLNLWOWL OO WO O
S -"oNoc®Ss Yoo Qs No®ao D
LWV WVWIVWRIWVWRWVWRWVWR VIR Y
QO - - A NN AT THWBOONNOR D
cgosseess0se2e8902888228
Probability Bin

Fig. 7. Scaled Shannon’s Entropy index for (a) the Colorado Plateau, and (b) Chihuahuan Desert study sites. Classifier calibration plot for (c) the

Colorado Plateau and (d) Chihuahuan Desert study areas

servations for ESG3. The Semidesert Shallow Sandy Loam (Utah
Juniper, Blackbrush) was dominantly misclassified as ESG4
(Sandy Grasslands and Shrublands), which on closer examination
reveals that 47% of ESG4 misclassifications were misclassified as
ESG3. There are many complex areas in this region where shal-
low soils with more blackbrush and juniper vegetation have subtle
gradients into deeper areas of soils where grasses become more
dominant possibly creating confusion at the interface between
the two sites. Thus, similarities between ecological sites across
ESGs prevent the establishment of crisp thematic or taxonomic
separation. Consequently, misclassifications can result when
ESGs overlap in thematic space, as well as potential deficiencies
in our ability to characterize ecological differences with our cur-
rent covariate dataset and at 250-m resolution.

In the Chihuahuan Desert, ESG7 (Bottomland) had the

lowest class-wise accuracy (58%) and was predominantly mis-

classified as ESG3 (Loamy-Clayey, 28%). ESG7 represents the
aggregation of 12 established ecological sites, including draws,
flats, swales, bottomlands, and meadow sites that are character-
ized by fine textured soils (e.g., loamy) that may include some
salt accumulation. Of these 12 ecological sites, the Loamy Swale
(Mixed Prairie) site was responsible for 65% of the classification
error, with the majority (i.c., 84%) being misclassified as ESG3
(Loamy-Clayey) (Fig. 10a). Analysis of ESG3 misclassifications
showed that six out of nine ecological sites (Fig. 10b, purple text)
had some percentage misclassification as ESG7, indicating that
these ecological sites share some similarities with the ecological
sites in ESG7.

The most dominant ecological site for ESG3 from our
point dataset is the Loamy Slope (Mixed Prairie), which has
similar characteristics to the Loamy Swale (Mixed Prairic) site

which may partly explain its high misclassification rate.
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Fig. 8. Model agnostic permutation-based variable importance measurements from the support vector machine (SVM), random forest (RF),
extreme gradient boosting (XGB) models of (a-c) the Colorado Plateau and (d-f) the Chihuahuan Desert.

DISCUSSION
Building a Nationally Scalable Ecological Site
Modeling Framework

In this study we developed and tested a modeling framework
for mapping ecological sites, in this case via ESGs. Our objective
was to develop a nationally consistent framework, leveraging
readily available remote sensing-based raster data layers and a na-
tional ecological site point dataset developed from NASIS and
SSURGO. Our results show that our modeling framework was
effective at predicting ESG classes, with high model accuracies
(70-79% cross-validated accuracy and 44-56% external-validat-
ed accuracy) and predicted maps aligned with our expectations
of ESG spatial distributions. Through analyzing and comparing
multiple machine learning models and covariate datasets, we

determined that covariate selection was more important than
model selection for modeling of ESGs. The lower importance
of model type was not surprising given that we evaluated three
of the strongest machine learning algorithms used for environ-
mental modeling (Kuhn and Johnson, 2013). Since ecologi-
cal site classification is based on the relationship between soils,
vegetation and climate; it is logical that covariates typically used
to approximate factors of soil formation, like those within our
DSM dataset (e.g., climate, lithology, terrain attributes, NDVI),
were the most important for predicting ESG classes. It is clear
from the similarity in model performance across the different
datasets that there is a high degree of correlation between covari-
ates and shared contribution toward explaining model variance.

The known interrelationships between biotic and abiotic factors
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Fig. 9. Analysis of Colorado Plateau model misclassification for ecological site group (ESG) 3 (Shallow Shrublands and Woodlands): (a) relative
percent accuracy/misclassification of ESG3 broken out by ecological site description (ESD) and the model predicted ESG (7 = number of ESG3
observations within each ESD class); (b) relationship of misclassifications between ESG3 and both ESG2 (Saline Uplands and Flats) and ESG4
(Sandy Grasslands and Shrublands), showing the ESDs with misclassified observations (bold colored text) and the relative percent of total

misclassified points attributed to each group.

influencing soil and ecosystem development explains the strong
similarity in model accuracy observed between our contrasting
datasets (Behrens et al., 2014; Miller et al., 2015).

Ecological site concepts are developed at a regional scale
(i.e., MLRA or Land Resource Unit) due to differences in soil
and climatic controls on vegetation composition, distribution,
and resilience. Differences in covariate importance between our
study areas confirm the importance of these local-to-regional
controls on ecosystem structure and function, and the need to
develop models that characterize and quantify these differences.
While both study sites displayed strong relationships to both bi-
otic and abiotic covariates, underlying soil themes used often to
distinguish ecological sites are strong predictors across all mod-
els, especially TAXOUSDA (SoilGrids250m USDA soil taxon-
omy suborders) (Fig. 3; Fig. 8c-f; Supplemental Fig. S2). USDA
soil taxonomy suborders are representative of unique soil form-
ing environments and encapsulate information on a wide range
of soil properties (Soil Survey Staff, 2014). Suborders were also
the fifth most important variable in the MLRA 35 RF model
(Fig. 8b), and a suite of basic soil properties are heavily utilized in
the MLRA 35 SVM model. All models also include at least two
topographical covariates in the top ten with elevation, relative
clevation, topographic wetness, and protection (similar to expo-
sure) indices being commonly utilized in prediction decisions.
Opverall, the Chihuahuan Desert had low overall and classwise
accuracies for the remotely sensed vegetation index datasets and

largely favored soil and topographical variables.

The Colorado Platcau RF and XGB models showed a stron-
ger response to NDVI (Fig. 8b-c), also shown in both the external
validation (Fig. 3¢) and in some of the individual ESG producer’s
accuracies (Supplemental Fig. S1; i, ESG1 and ESG3). The
MAPVIP analysis further confirmed the importance of NDVI in
the Colorado Plateau, where it was the top covariate in the RF mod-
eland ranked several times within the top 10 covariates for both RF
and XGB models. The greater influence of NDVT in the Colorado
Plateau may be because of the extreme difference in vegetation cover
and greenness between ESGs in this region. For example, both the
Saline Hills and Badlands as well as Outcrops and Slopes can have
very low total foliar cover overall and thus would be easily distin-
guishable from other sites using NDVIL. However, the NDVI data
on its own had the lowest cross-validation accuracy (Fig. 3a), which
may indicate the need to also incorporate soil and topographic pa-
rameters. The importance of soil and topography was also reported
in recent work on the Colorado Plateau showing that 30-m maps of
taxonomic soil particle size class and local topography can largely
distinguish ecological sites (Nauman and Duniway, 2016) and sim-
ilar finer scaled soil taxonomic data and topographic indices should
be utilized in future work. The balance of soil, topography and
vegetation index variable importance also reflect recommendations
from recent work mapping ecological sites from hyper-temporal
remotely sensed vegetation indices where over-reliance on spectral
data can cause confusion between ecological states (e.g., distur-
bance) and ecological sites (Maynard and Karl, 2017).

Current spatial application of ESD by land managers and
other users is dependent on SSURGO data to generate maps. We
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have demonstrated that our modeling framework can produce
predictive ESG maps that have a similar accuracy to SSURGO
ESG maps, but in many cases higher precision for spatially rare
ESGs. Our approach has the added benefit of predicting ESG
distribution within areas that currently lack SSURGO ecologi-
cal site data. Furthermore, through the ongoing refinement of
our modeling framework we have the potential to achieve ac-
curacies that surpass what is currently available from SSURGO.

Accounting for Sources of Model Error

Traditional soil and ecological class maps are based on the
‘double crisp’ model where groups are supposed to be crisply de-
lineated in both thematic and geographic space (Burrough et al.,
1997). One of the initial objectives of this study was to evaluate
the different factors contributing to both thematic and spatial
inaccuracies. We also differentiate a third source of inaccuracy
that is not directly related to cither thematic or spatial issues but
originates from factors within the model itself (e.g., sample size
distribution). Thus, ecological site prediction inaccuracy can be
broadly attributed to three general categories; (i) thematic fac-
tors, (ii) spatial factors, and (iii) model-based factors.

Ecological site group concepts are created with the intent to
minimize the number of groups while simultancously minimiz-
ing within group variation and maximizing between group varia-
tions with respect to ecosystem properties and dynamics (e.g., re-
silience, response to disturbance; Bestelmeyer et al., 2016). Each
ecological site group represents a modal concept that encompass-
es a range of variability in soil properties and vegetation compo-

sition. Devising discrete ecological groups, however, can be dif-

ficule when landscapes are characterized by broad gradients in bi-
otic and abiotic properties that mediate ecosystem resilience and
response to disturbance. ESG thematic error commonly occurs
within these transitional environments when two or more classes
exhibit high inter-class similarities with respect to the ecosystem
properties and/or processes that define group concepts and the
covariates that approximate them. Our analysis of ESG misclassi-
fication examined several examples where one or more ecological
site within an ESG exhibited a higher similarity in characteristics
to a different ESG resulting in high rates of misclassification for
those ecological sites. These results suggest that in certain cases
grouping concepts should be reevaluated; adjusting which eco-
logical sites should be assigned within each ESG concept.

In spatial modeling, two aspects of scale can influence model
accuracy: spatial resolution and spatial extent. All analysis in this
study was conducted at a set spatial resolution of 250 m. This was
chosen to balance the need for a spatial resolution high enough to
detect the properties and processes relevant to ESG distribution
across our study areas, as well as to manage the computational re-
quirements needed for any future implementation of our approach
at a regional or national scale. Continual advancements in com-
puting power are making it feasible to implement spatial modeling
frameworks such as ours, at even finer spatial scales (Ramcharan et
al,, 2018). In arcas with high topographic complexity, our 250-m
spatial resolution was too coarse to adequately characterize vari-
ability in ecosystem types. This was clearly demonstrated in the
area surrounding our external-validation points in the Colorado
Plateau study area, where our 250-m ENS-DSM predictions ap-
pear coarse relative to the SSURGO derived ESG map which
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Fig. 11. Evaluation of model scaling effects in the Colorado Plateau study area. (a) SSURGO ecological site group (ESG) map of area surrounding
external validation points; (b) digital soil mapping- ensemble (DSM-ENS) model results of area surrounding external validation points, (c, d)
enlarged subregion from maps a and b illustrating the effect of the spatial resolution of covariate data in characterizing landscape variability.

was created at a finer spatial resolution (Fig. 11). Issues relating to
spatial extent, include the uneven spatial distribution of training
data. An uneven spatial distribution of training data can result in
spatial extrapolation into areas not well defined in terms of the
model covariate space. This was seen in both study areas where
the prediction uncertainty is highest in areas where training data
is limited (Fig. 7). Our results (Fig. 7 c-d) and a number of differ-
ent digital soil mapping studies have shown that model prediction
uncertainties are closely related to validation accuracy and can be
‘calibrated’ or rescaled by validation data to produce validation un-
certainty maps that can more effectively direct new field sampling
efforts aimed at reducing model uncertainty (Hiring et al., 2012;
Nauman and Thompson, 2014; Nauman et al., 2014; Ramcharan
et al,, 2018). Consequently, future modeling efforts should focus
on translating model uncertainties into validated uncertainties,
and field sampling efforts should target areas of mapped high un-
certainty to help improve model accuracy.

The spatial distribution of points, as well as the spatial
resolution of our data, both influences our ability to detect the

boundaries between ESGs. While abrupt ESG boundaries can
occur due to clearly observable physiographic features such as
changes in geomorphology and lithology, gradual transitions or
gradients between distinct soil forming environments and eco-
system types commonly occur (Burrough et al., 1997). There are
several model-based factors that influence the ability to predict
ESG classes, particularly in these transitional areas with high
uncertainty. The first relates to deficiencies in our model co-
variate space for differentiating ESGs. From our example in the
Colorado Plateau, we saw that the confusion between the ESG3
Desert Shallow Sandy Loam (Blackbrush) and ESG2 Desert
Shallow Sandy Loam (Shadescale) was most likely due to an in-
ability to detect differences in soil salinity. Examples like this il-
lustrate how expert knowledge of ecosystem dynamics can help
inform possible causes of model error. Machine learning algo-
rithms allows for probabilistic outputs that can help to quantify
the higher levels of uncertainty associated with classes that share
similar regions of covariate space. This quantification of model

uncertainty can help direct the acquisition of new covariate data
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(e.g., soil salinity map) that has the potential to minimize the
high uncertainty within these areas.

Through leveraging NASIS and SSURGO databases we
were able to generate an extensive ESG point dataset at both
study sites. However, low match rates (30% Colorado Plateau;
61% Chihuahuan Desert) between NASIS and SSURGO eco-
logical site designations limited the number of possible points
for model building and validation. These match rates will con-
tinue to increase as missing portions of SSURGO are surveyed
and published, and with possible improvements to our current
matching algorithm. Our sample size distribution was relatively
balanced across our ESG classes at both sites; thus, we did not
see a pattern of lower producer’s accuracy in underrepresented
classes. Increasing the number of observations, however, may
help resolve some of the confusion between similar ESG classes,
as a more complete characterization of the covariate space for
each ESG is established. The utilization of field transect obser-
vations from NASIS in concert with final parameter attribution
from SSURGO has great potential for modeling many differ-
ent soil and ecological parameters. By combining the spatial
density of field observations in NASIS (mostly soil taxonomic
data) with the rich descriptive content in SSURGO, much more
location-specific soils data can be leveraged into modeling ef-
forts, essentially allowing for a de-constructing of SSURGO and

remodeling with machine learning for spatial representation.

Future Research Efforts

While our ESG model accuracies were high and predicted
maps aligned with our expectation of ESG distribution, there are
still ways to improve on our modeling framework. One important
improvement would be to improve the spatial resolution of our
models and predicted surfaces. As our results demonstrate, in highly
heterogencous landscapes 250-m resolution predicted surfaces may
fail to accurately delineate spatially rare or irregularly shaped ESGs
(Fig. 11). Preliminary analysis of the Colorado Plateau has shown
that improving the spatial resolution to 30 m resulted in a marked
increase in both cross-validated and externally validated accuracies
(unpubl. data, 2018). The topographic complexity of a landscape in-
fluences the spatial scale at which an ecosystem property or process
can be detected and modeled (Maynard and Johnson, 2014). The
Colorado Plateau study area exhibits a high degree of topographic
complexity which has a strong influence on the spatial structure, po-
tential composition and temporal dynamics of plant communities
(Duniway et al.,, 2016). The ability to model these plant community
dynamics is clearly dependent on identifying and adjusting the spa-
tial scale of our covariate data to match the scale of the dominant
soil-landscape processes. The ability to identify and adjust the spa-
tial modeling scale will allow for the development and mapping of
ecological site concepts that support and inform a variety of differ-
ent land management objectives.

Machine learning models are effective at detecting patterns
within complex datasets and provide a relatively automated ap-
proach to model fitting that does not require imposed relation-

ships based on expert knowledge from soil scientists or ecologists

(Hengl et al., 2017, 2018). On the one hand machine learning
approaches can remove or diminish many of the obstacles that
have impeded the development and mapping of ecological sites.
On the other hand, machine learning models have been criti-
cized as ‘black boxes’ that run the risk of detecting relationships
and predicting results that are not aligned with reality. The re-
cent emergence of model agnostic interpretability methods of-
fers new ways to shed light on the complexity of machine learn-
ing models, allowing greater interpretation and refinement of
model covariates based on our knowledge of soil forming pro-
cesses. Our use of a model agnostic variable importance measure
allowed us to compare which covariates were most important
across our machine learning models and thus infer dominant
factors and processes influencing ESG differentiation.

We believe that machine learning approaches have tremen-
dous potential but must be guided and refined by the wealth of
expert knowledge that has been generated over the years. There
are several areas where the combination of expert knowledge and
data-miningand/or modeling techniques can provide significant
benefit toward the development and refinement of ecological
site mapping efforts. The first involves developing data-driven
approaches to ecological site concept development and aggre-
gation strategies for ecological site grouping. For the Colorado
Plateau, Duniway et al. (2016) describe some of the preliminary
data mining work they performed for evaluating ecological site
variability and the development of ESG concepts. This informa-
tion was then used to help guide the development of ESGs by
a workgroup of scientists and land managers. Currently, large
portions of the US still lack ecological site concepts or, where
provisional concepts have been developed, lack a linkage to de-
tailed soil mapping. Consequently, new approaches need to be
developed to expedite the initial development of ecological site
concepts, leveraging data-mining techniques and the wealth of
existing soil and environmental data. The second area involves
the mapping of ecological sites which is the focus of this study.
We have already demonstrated and discussed many of the ben-
cfits of digital ESG mapping (c.g., extrapolation to unmapped
areas, prediction of uncertainty). However, one significant ben-
efit not yet addressed is the extensible nature of our modeling
approach. While traditional soil and ecological maps encapsu-
late a tremendous wealth of expert knowledge, they largely exist
as static products. This is due to the difficulties of transferring
and extracting the necessary information needed to update maps
as the resources change or to increase the spatial resolution as
demands for more detailed land resources information rises. In
contrast, machine learning methods provide an extensible frame-
work that allows for continual updating and improvement as
new data and analytical approaches become available. This will
allow for the accuracy and precision of our mapping products to
continue to improve, and for updated products to be generated
at a much faster pace relative to traditional mapping approaches.
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CONCLUSIONS

Spatial representations of ecological sites and ecological site
groups using digital mapping techniques offers clear advantages
over the current SSURGO soil-site correlation approach in terms
of informing and directing land management actions across mul-
tiple spatial scales. In this study we presented a consistent, nation-
ally scalable modeling framework for mapping ecological sites
using a national point database, remotely sensed geospatial data
layers, and machine learning algorithms. While our results are
presented within the context of the current NRCS SSURGO
spatial framework, our mapping framework is independent of
existing mapping systems. Given the availability of geospatial
covariate data and point data characterizing ecological site con-
cepts, this approach has the potential of being applied anywhere
in the world. This offers several advantages over existing mapping
systems that produce static data products, most importantly the
ability for models and data products to continually evolve and im-
prove as new data sources and modeling techniques emerge. The
ability to explicitly evaluate and adjust the spatial and thematic
resolution of our modeled results will allow for the creation and
delineation of ecological sites that provide more accurate repre-
sentations of targeted processes. Results from this study demon-
strate that our modeling framework can produce predictive ESG
maps that have a similar accuracy to SSURGO ESG maps, but in
many cases higher precision for spatially rare ESGs. Furthermore,
digital mapping techniques provide the ability to predict eco-
logical site distributions within areas currently unmapped in
SSURGO. Static data products built largely on expert knowledge
cannot meet the increasing demands for data products capable
of addressing a range of new and evolving land management
concerns at a variety of spatial scales. The development of open-
source extensible modeling frameworks is not a replacement of
expert knowledge but rather present new ways of encapsulating
that knowledge into a system that is more flexible to user needs

and capable of evolving as those needs change through time.
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