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ABSTRACT

Ultra-low-power sensor nodes enable many new applications and are
becoming increasingly pervasive and important. Energy efficiency is
the key determinant of the value of these devices: battery-powered
nodes want their battery to last, and nodes that harvest energy should
minimize their time spent recharging. Unfortunately, current devices
are energy-inefficient.

In this work, we present MANIC, a new, highly energy-efficient
architecture targeting the ultra-low-power sensor domain. MANIC
achieves high energy-efficiency while maintaining programmabil-
ity and generality. MANIC introduces vector-dataflow execution,
allowing it to exploit the dataflows in a sequence of vector instruc-
tions and amortize instruction fetch and decode over a whole vector
of operations. By forwarding values from producers to consumers,
MANIC avoids costly vector register file accesses. By carefully
scheduling code and avoiding dead register writes, MANIC avoids
costly vector register writes. Across seven benchmarks, MANIC is
on average 2.8× more energy efficient than a scalar baseline, 38.1%
more energy-efficient than a vector baseline, and gets to within
26.4% of an idealized design.
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1 INTRODUCTION

The emergence of tiny, pervasively deployed, ultra-low-power sensor
systems enables important new applications in environmental sens-
ing, in- and on-body medical implants, civil infrastructure monitors,
and even tiny chip-scale satellites. Existing systems for these applica-
tions suffer fundamental inefficiencies that demand new, extremely
energy-efficient computer architectures.

Sensing workloads are increasingly sophisticated: Sensor devices
collect data from a deployed environment and must process raw data
to support applications. Processing varies and may entail digital
signal processing (DSP), computing statistics, sorting, or sophisti-
cated computations such as machine learning (ML) inference using
a deep neural network (DNN) or a support vector machine (SVM).
As processing sophistication has increased, sensor device capabil-
ity also matured to include high-definition image sensors [61] and
multi-sensor arrays [50], increasing sensed data volume.

This shift poses a challenge: how can we perform sophisticated
computations on simple, ultra-low-power systems? One design is
to offload work by wirelessly transmitting data to a more powerful
nearby computer (e.g., at the “edge” or cloud) for processing. In
offloading, the more data a sensor produces, the more data the device
must communicate. Unfortunately, transmitting data takes much
more energy per byte than sensing, storing, or computing on those
data [32, 52]. While a high-powered device like a smartphone, with
a high-bandwidth, long-range radio, can afford to offload data to
the edge or cloud, this is not practical for power-, energy-, and
bandwidth-limited sensor devices [26, 32].

Since offloading is infeasible, the alternative is to process data
locally on the sensor node itself. For example, recent work [32]
has shown how systems can use commodity off-the-shelf microcon-
trollers (COTS MCU) to filter sensed data so that only meaningful
data (as defined by the application) are transmitted. Processing data
locally at a sensor node eliminates most of the high energy cost
of communication, but makes the device highly sensitive to the
energy-efficiency of computation.

There are two key criteria that make a computation-heavy sensor
system effective. First, the device must process data locally at a low
operating power and with extremely high energy-efficiency. Second,
the device must be programmable and general to support a wide
variety of applications. These goals are in tension, since programma-
bility often carries a significant energy penalty. Our goal is to design
a highly programmable architecture that hides microarchitectural

complexity while eliminating the energy costs of programmability.
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Existing low-power architectures fall short: Ultra-low-power COTS
MCUs used in many deeply embedded sensor nodes (e.g., TI MSP430,
ARM M0+ & M4+) fail to meet the criteria for an effective sensor
node. These MCUs are general-purpose, programmable devices that
support a variety of applications. However, COTS MCUs pay a
high power, energy, and performance cost for their generality and
programmability (see the COTS MCU dot in Fig. 1).

Programmability is expensive in two main ways [7, 34, 39]. First,
instruction supply consumes significant energy: in the best case,
the energy of an instruction cache hit, and in the worst case, the
energy of a main memory read and instruction cache fill. Lacking
sophisticated microarchitectural features such as superscalar and
out-of-order execution pipelines [41, 78], the energy overhead of
instruction supply constitutes a significant fraction of total operating
energy. Second, data supply through register file (RF) access also
consumes significant energy. Together, we find that instruction and
data supply consume 54.4% of the average execution energy in our
workloads.

Programming pitfalls of architectural specialization: To combat
the energy costs of generality, some recent work has turned to mi-
croarchitectural specialization, making a system energy-efficient at
the expense of generality and programmability [13–15, 27, 51, 80].
Specialization customizes a system’s control and datapath to accom-
modate a particular workload (e.g., deep neural networks [13, 15]),
eliminating inessential inefficiencies like instruction supply and RF
access. The downside of specialization is its inability to support a
wide range of applications (see the ASIC dot in Fig. 1).

In contrast to specialization, another approach to programmable
energy-efficiency is to target a conventional vector architecture (such
as NVidia’s Jetson TX2 [64], ARM NEON [2], or TI LEA [42]),
amortizing the cost of instruction supply across a large number of
compute operations. Unfortunately, vector architectures exacerbate
the energy costs of RF access, especially in high-throughput designs
with multi-ported vector register files (VRFs) [3, 49, 65], and so re-
main far from the energy-efficiency of fully specialized designs [34]
(see the classic vector dot in Fig. 1).

The ELM architecture stands out among prior efforts as an ar-
chitecture that targets ultra-low-power operation, operates with ex-
tremely high energy-efficiency, and retains general-purpose pro-
grammability [5, 7]. The key to ELM’s efficiency is an operand

forwarding network that avoids latching intermediate results and a
distributed RF that provides sufficient register storage, while avoid-
ing unfavorable RF energy scaling. Unfortunately, despite these
successes, ELM faces fundamental limitations that prevent its wide-
spread adoption. ELM makes significant changes to the architecture
and microarchitecture of the system, requiring a full re-write of
software to target its exotic, software-managed RF hierarchy and
instruction-register design. This programming task requires expert-
level assembly hand-coding, as compilers for ELM are unlikely to
be simple or efficient; e.g., ELM itself cites a nearly 2× drop in
performance when moving from hand-coded assembly to compiler-
generated assembly [5]. While ELM supports general-purpose pro-
grams, it does so with a high programmability cost and substantial
changes to software development tools (as shown in Fig. 1).

Our design and contributions: In this work we present MANIC: an
efficient vector-dataflow architecture for ultra-low-power embedded

COTS MCU

Ease of Programming

Energy-

Efficiency

MANIC
ELM

ASIC

Classic Vector

Ideal

Better

Figure 1: MANIC seeks to improve energy efficiency without compro-

mising programmability.

systems. As depicted in Fig. 1, MANIC is closest to the Ideal design,
achieving high energy-efficiency while remaining general-purpose
and simple to program. MANIC is simple to program because it
exposes a standard vector ISA interface based on the RISC-V vector
extension [69].

MANIC achieves high energy-efficiency by eliminating the two
main costs of programmability through its vector-dataflow design.
First, vector execution amortizes instruction supply energy over a
large number of operations. Second, MANIC addresses the high
cost of VRF accesses through its dataflow component by forward-
ing operands directly between vector operations. MANIC transpar-
ently buffers vector outputs in a small forwarding buffer and, at
instruction issue, renames vector operands to directly access the for-
warding buffer, eliminating read accesses to the VRF. Additionally,
MANIC extends the vector ISA with kill annotations that denote
the last use of a vector register, eliminating write accesses to the VRF.
The vector-dataflow architecture is efficient because MANIC amor-
tizes the energy of tracking dataflow across many vector operations.
MANIC thus eliminates a large fraction of VRF accesses (90.1% on
average in our experiments) with simple microarchitectural changes
that leave the basic vector architecture intact.

Finally, we have designed and implemented a code scheduling
algorithm that exploits MANIC’s operand forwarding to minimize
VRF energy, while being microarchitecturally agnostic. In other
words, it is not necessary to expose the details of the pipeline archi-
tecture or size of forwarding buffers to minimize VRF energy—a
single code schedule is near-optimal across a range of microarchi-
tectural design points.

We implement MANIC fully in RTL and use industry-grade CAD
tools to evaluate its energy efficiency across a collection of programs
appropriate to the deeply embedded domain. Using post-synthesis
energy estimates, we show that MANIC is within 26.4% of the en-
ergy of an idealized design while remaining fully general and making
few, unobtrusive changes to the ISA and software development stack.

2 RELATED WORK

High-data-rate embedded sensors demand energy-efficient compu-
tation. Battery-powered and energy-harvesting systems are primar-
ily constrained by energy-efficiency, not performance. Despite in-
creases in capability and efficiency, prior systems compromise either
programmability, energy-efficiency, or both. Prior work on energy-
efficient architecture uses datapath specialization, vector execution,
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or compiler support, but does not apply to deeply-embedded, ultra-
low-power systems. This section discusses these prior efforts to
motivate MANIC and give context for our contributions.

2.1 Ultra-low-power embedded systems

An ultra-low-power embedded device combines sensors, compute
components, and radios, and many are designed to capture data and
send them over a radio link to a base station for offloaded processing.
The offload model requires the sensor to communicate all sensed
data. Unfortunately, communication over long distances has a high
energy cost [26], creating a strong incentive to process sensed data
locally.

Battery-powered sensing devices: Some devices are battery-power-
ed [22, 44, 70] which limits lifetime and device duty cycle. With
a single-charge battery, energy-efficiency determines lifetime until
depletion. With a rechargeable battery, the number of recharge cycles
limits lifetime. Recent work [44] suggests that batteries show little
promise for compute-intensive workloads on COTS MCUs. Even
a simple data-logger lasts only a few years deployed despite very
sparse duty cycling and performing almost no computation. As
duty-cycle and computational intensity increase (e.g., for machine
learning on high-rate sensor data), lifetime will drop to weeks or
days, limiting device applicability.

Energy-harvesting sensing devices: Energy-harvesting systems
collect operating energy from their environment and use capaci-
tive energy storage instead of a battery, eliminating complexity,
duty-cycle, and lifetime limitations of batteries [19, 35, 36, 72, 87].
Energy-harvesting devices operate intermittently after buffering suf-
ficient energy and otherwise sleep, waiting for energy. An energy-
harvesting system’s value is determined by the amount of work it
can perform in a tiny energy budget, as once the energy is spent, the
device turns off and must recharge.

Recent software and platform results [9, 10, 18, 19, 30, 32, 36, 37,
45, 53, 54, 56–58, 71, 79, 86] show that intermittently powered sys-
tems can execute sophisticated applications despite these limitations,
and recent work has developed microarchitectural support for cor-
rect intermittent execution [38, 55, 59]. These prior efforts focused
primarily on ensuring correct execution in intermittent systems, with
few [30, 32, 54] optimizing performance and energy.

Relevance to MANIC: We observe that for deeply embedded sys-
tems and energy-harvesting systems, value is largely determined

by energy efficiency. A more energy-efficient system operates more
frequently and does more per operating period. Studying the fre-
quency of power failures and the typically very low cost of JIT
checkpointing [45, 58, 60], we conclude that microarchitectural sup-
port for correctness is not the most urgent research question in an
intermittent architecture; architects should focus on efficiency first.

2.2 Vector architecture

MANIC’s vector-dataflow design is informed by a long history
of vector and dataflow architectures. Early vector machines ex-
ploited vector operations for supercomputing [21] and most com-
mercially available architectures support vectors (e.g., AVX [28] and
GPUs [20]). These vector designs target performance and operate at
a power budget orders-of-magnitude higher than an ultra-low-power

device. MANIC focuses on low-power operation, which leads to
different choices than performance-optimized designs.

Vector execution is data-parallel and provides the energy-efficiency
benefit of amortizing instruction supply energy (fetch, decode, and
issue) across many operations. Unfortunately, a vector design re-
quires a large vector register file (VRF), exacerbating register file
access cost, especially in designs that require a VRF with many
ports. Reducing VRF cost and complexity has been a primary focus
of prior vector designs [3, 49].

T0 [3, 83] is a vector architecture with reconfigurable pipelines.
Software controls datapaths to chain operations, eliminating VRF
access within a chain. However, microarchitectural details of the
datapath are exposed to software, requiring major software changes
and recompilation.

CODE [49] reduces VRF cost by distributing the VRF among
heterogeneous functional units. This design is transparent to software
because CODE renames operands at instruction issue to use registers
near an appropriate functional unit. Distribution lets CODE reduce
VRF ports, but requires a routing network to send values between
functional units.

Relevance to MANIC: Like this prior work, MANIC uses vector
execution to reduce instruction supply overhead, but also includes
additional techniques to lower VRF cost. MANIC reduces VRF ports
by focusing on efficiency, not performance: MANIC uses a single
functional unit per lane, requiring a minimum of VRF ports (2 read,
1 write). VRF access remains expensive, however, requiring MANIC
to avoid VRF access when possible. MANIC’s vector-dataflow ex-
ecution model achieves this by relaxing the ordering of a typical
vector execution, similar to SIMT in GPUs. Like T0, MANIC for-
wards operands to eliminate VRF access, but, unlike T0, does so
transparently to software. Like CODE, MANIC renames operands
to hide microarchitectural complexity, but, unlike CODE, does so to
eliminate VRF access. It is this combination of techniques that lets
MANIC achieve ultra-low-power operation without complicating
software.

2.3 Dataflow architecture

MANIC eliminates VRF accesses by forwarding operands between
instructions according to dataflow. Dataflow machines have a long
history [23–25, 62] that includes changes to the programming and
execution model to eliminate control and data movement overheads.
More recent efforts identify dataflow locality [73, 77] as a key deter-
minant in sequential code. Ample prior work in out-of-order (OoO)
execution engines (i.e., restricted dataflow) uses operator fusion to
improve performance and reduce RF pressure [4, 12, 48, 74, 75].

RSVP [17] uses SIMD execution, specialized for dataflow oper-
ation, focused on performance. However, RSVP requires writing
programs in a custom dataflow language and only targets streaming
workloads. Dyser [33], Plasticine [68], and Stream-dataflow [63]
have revived spatial dataflow, enabling programmable designs at
ASIC-like efficiencies. Their key drawback is the need to compile
programs directly to a spatial fabric, which precludes microarchitec-
tural change.

ELM [5] is perhaps the most related work to MANIC. ELM
is a custom microarchitecture designed for low-power, embedded
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operation. ELM uses restricted SIMD execution and operand for-
warding to provide dataflow-like execution. ELM’s complex register
file hierarchy and forwarding mechanism are software-controlled,
exposing microarchitectural details to the programmer and requiring
expert-level, hand-coded assembly for maximum efficiency. Even
with significant changes to the compiler toolchain, ELM poses a risk
of unpredictable performance and high programming cost.

Relevance to MANIC: Like the work above, MANIC seeks to
exploit dataflow to improve efficiency and, like RSVP and ELM,
uses SIMD in order to amortize instruction supply cost. MANIC
also relies upon operand forwarding like ELM to avoid RF reads
and writes. However, unlike this prior work, MANIC seeks to hide
microarchitectural complexity from the programmer. MANIC uses
dataflow to inform control of a single lane functional unit instead
of opting for a spatial fabric like in Dyser, Plasticine, and Stream-
dataflow. And unlike ELM, which has a significant programming
cost, MANIC relies on the standard vector extension to the RISC-V
ISA with only a few optional changes.

2.4 Register file optimization

MANIC reduces vector register file energy by leveraging dataflow
to avoid register file reads and writes. There are a number of prior
works that also identify the register file as a performance and/or
energy bottleneck.

In the GPU domain, Gebhart et al. and Jeon et al. observe that
producers often have only a single consumer and consumers arrive
shortly after a producer [31, 46]. Gerbhart et al. introduces a RF
cache and operand buffer to forward values directly between instruc-
tions, reducing RF pressure [31, 84]. RF virtualization for GPUs has
also been explored as a way to improve RF utilization [46, 81, 82].
These systems remap registers by dynamically allocating and deallo-
cating registers among running threads in order to expose additional
parallelism [81, 82] or to reduce the number of physical registers
while maintaining performance [46].

For CPU designs, dead-value prediction and operator fusion can
be used to reduce RF reads and writes. Dead-value prediction re-
duces RF pressure by identifying values that do not need to be
persisted to the register file because they are not read again [8, 66].
Finally, compilers can mark dead values [47, 82] so that hardware
can deallocate and free the physical register earlier.

Relevance to MANIC: MANIC exploits the same pattern of regis-
ter liveness (i.e., values are not alive for very long) identified in prior
work. However, instead of exploiting this pattern to improve perfor-
mance or RF utilization, MANIC focuses on eliminating RF accesses
to save energy. MANIC remaps registers similar to RF virtualization,
but operates at a much finer granularity (remapping instruction-by-
instruction vs. at program phases/thread barriers) and remaps regis-
ters explicitly following dataflow (vs. caching them). Lastly, MANIC
uses compiler-generated dead-value hints to avoid VRF writes; to
the best of our knowledge, it is the first to use compiler-generated
hints in a vector design. Prior work on dead-value prediction is in-
applicable to ultra-low-power designs because it requires expensive
speculative recovery mechanisms to handle mispredictions.
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Figure 2: Different execution models. Orange arrows represent control

flow, blue arrows represent dataflow. MANIC relies on vector-dataflow

execution, avoiding register accesses by forwarding and renaming.

3 VECTOR-DATAFLOW EXECUTION

MANIC implements the vector-dataflow execution model. There are
two main goals of vector-dataflow execution (Fig. 1). The first goal
is to provide general-purpose programmability. The second goal is
to do this while operating efficiently by minimizing instruction and
data supply overheads. Vector-dataflow achieves this through three
features: (i) vector execution, (ii) dataflow instruction fusion, and
(iii) register kill points.

3.1 Vector execution

The first main feature of MANIC’s execution model is vector execu-
tion. Vector instructions specify an operation that applies to an entire
vector of input operands (as in ample prior work discussed in Sec. 2).
The key advantage of vector operation for an ultra-low-power design
is that control overheads imposed by each instruction — instruction
cache access, fetch, decode, and issue — amortize over the many
operands in the vector of inputs. Vector operation dramatically re-
duces the cost of instruction supply and control, which is a primary
energy cost of general-purpose programmability. Vector operation is
thus a key ingredient in MANIC’s energy-efficiency.

Fig. 2 illustrates the difference between scalar execution and vec-
tor execution. Fig. 2a executes a sequence of instructions in a scalar
fashion. Blue arrows show dataflow and orange arrows show control
flow. Instructions proceed in sequence and write to and read from the
register file to produce and consume outputs and operands. Fig. 2b
executes the same sequence of instructions in a vector execution.
The execution performs the vector instruction’s operation on each
element of the vector in sequence, consuming operands from and
producing outputs to the register for each operation over the entire
vector. Control proceeds horizontally across each of the vector’s
elements for a single vector instruction before control transfers ver-

tically to the next vector instruction. Vector execution amortizes the
control overhead of a scalar execution because a single instruction
corresponds to an entire vector worth of operations.

3.2 Dataflow instruction fusion

The second main feature of MANIC’s execution model is dataflow

instruction fusion. Dataflow instruction fusion identifies windows
of contiguous, dependent vector instructions. Dataflow instruction
fusion eliminates register file reads by directly forwarding values
between instructions within the window. Comparing to a typical
vector machine illustrates the benefit of dataflow instruction fusion.
In a typical vector machine, instructions execute independently and
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of the dependence tracking that they introduce. Instead, these opera-
tions execute one element at a time, ultimately writing to the vector
register file.

A store also ends issuing for a window. A store may write to a
memory location that a later operation loads from. Such a through-
memory dependence is unknown until execution time. Consequently,
MANIC conservatively assumes that the address of any store may
alias with the address of any load or store in the window (i.e., in a
later vector element). A store ends the construction of a window to
avoid the need for dynamic memory disambiguation to detect and
avoid the effect of such aliasing. We evaluated adding a non-aliasing

store instruction that would allow MANIC to forward past stores,
but this instruction improved energy-efficiency by less than 0.5% in
our applications. This is because store instructions often naturally
close windows (e.g. a vfence follows the store to ensure correct-
ness). Thus, given the added programming complexity for minimum
benefit, we conclude that such an instruction is unnecessary.

Xdata buffer: Some instructions like vector loads and stores require
extra information (e.g. base address and stride) available from the
scalar register file when the instruction is decoded. Due to the loosely
coupled nature of MANIC, this extra information must be buffered
alongside the vector instruction. Since not all vector instructions
require values from the scalar register file, MANIC includes a sep-
arate buffer, called the xdata buffer, to hold this extra information.
Entries in the instruction buffer contain indices into the xdata buffer
as needed. During execution, MANIC uses these indices to read
information from the xdata buffer and execute accordingly.

Forwarding buffer: The forwarding buffer is a small, directly-
indexed buffer that stores intermediate values as MANIC’s execution
unit forwards them to dependent instructions in the instruction win-
dow. The issue logic lazily allocates space in the forwarding buffer
and renames instruction’s forwarded operands to refer to these allo-
cated entries. The benefit of the forwarding buffer is that it is very
small and simple, which corresponds to a very low static power and
access energy compared to the very high static power and access
energy of the vector register file. By accessing the forwarding buffer
instead of accessing the vector register file, an instruction with one
or more forwarded operands consumes less energy than one that
executes without MANIC.

Efficient reductions: RISC-V V contains reduction instructions like
vredsum v1 v2, which adds up all elements of v2 and writes the sum
into the first element of v1. MANIC relies on the forwarding buffer
to avoid VRF accesses for reductions. Instead of writing partial
results to the VRF, MANIC allocates space in the forwarding buffer
for partial accumulation. The decode logic recognizes a reduction,
allocates space, and remaps the second source operand and the
destination to point to the entry in the forwarding buffer. During
execution, MANIC will then use the partial result in the forwarding
buffer as one source for the reduction (e.g., sum) and overwrite it
with the new value as it is produced. This optimization re-purposes
MANIC’s existing dataflow mechanisms to save an entire vector-
length of VRF reads and writes for reductions.

Structural hazards: There are three structural hazards that cause
MANIC to stop buffering additional instructions, stall the scalar
core, and start vector execution. The first hazard occurs when the
instruction buffer is full and another vector instruction is waiting to

be buffered. The second hazard occurs when all slots in the forward-
ing buffer are allocated and an incoming instruction requires a slot.
Finally, the third hazard occurs when the xdata buffer is full and a
decoded vector instruction requires a slot. The prevalence of each
hazard depends on the size of the buffers associated with each. The
first hazard is most common, while the other two tend to be rare.

4.3 Memory system

MANIC includes an instruction cache (icache) and a data cache
(dcache). This departs from the designs of many commercial micro-
controllers in the ultra-low-power computing domain, which do not
have dcaches and have extremely small icaches on the order of 64
bytes [41]. However, we find that even small or moderately sized
dcaches (512B) are effective in minimizing the number of accesses
to main memory. We measured miss curves for the seven different
application we consider; for each application there is an extreme
drop-off in the number of misses for even small cache sizes, and
with a 512B cache the curves are basically flat. Since the energy
of an access to main memory dwarfs an access to the dcache, the
dcache offers a significant reduction in energy.

Caching and intermittence: In the intermittent computing domain,
improperly managed caches may lead to memory corruption because
dirty data may be lost when power fails. As such, MANIC assumes
a hardware-software JIT-checkpointing mechanism (like [9, 45, 58])
for protecting the caches and any dirty data. Checkpointing energy
for cached data is virtually negligible because caches are very small
relative to the operating period.

4.4 Putting it together with an example

We illustrate the operation of the issue logic, renaming table, instruc-
tion window, and forwarding buffer with an example of MANIC’s
operation, shown in Fig. 5. The figure starts with vector-aware as-
sembly code that MANIC transforms into vector-dataflow operations
by populating the renaming table and instruction buffer with infor-
mation about the dataflow. Vector assembly instructions pass into
MANIC’s microarchitectural mechanisms as they decode to the issue
logic and later execute.

Issuing instructions and renaming operands: The figure shows a
three-instruction program and illustrates how the issue logic popu-
lates the instruction buffer and remaps registers for each instruction.

• vload: The issue logic records the load in the instruction window
and, since the instruction is a vector load and requires a base
address, also inserts the base address (&a forwarded from the
scalar register file) into the xdata buffer. In addition, the issue
logic writes an empty renaming entry to v0 in the renaming table
along with the index of the instruction in the instruction buffer. An
empty renaming entry at execution time signifies a vector register
write. However, during issue, an empty entry may be filled by an
instruction added to the instruction window later during the same
issue phase.

• vmul: The multiply instruction consumes two register operands
that are not in the renaming table and, at execution time, will
issue two vector register file reads. As with the load, the issue
logic records the multiply’s output register with an empty entry
in the renaming table as well as the index of the multiply in the
instruction buffer.
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leads to additional misses and accesses to main memory. For most
benchmarks, except dense matrix multiplication, there is no reduc-
tion in energy for the largest cache size of 512B (if anything there
is a slight increase due to increased access energy and leakage).
Dense matrix multiplication still shows improvement in energy for
the largest cache size, but the improvement is small compared to the
improvement between 128B and 256B, suggesting that most of the
benefit has been captured at 256B.

7 CONCLUSION

This paper described MANIC, an ultra-low-power embedded pro-
cessor architecture that achieves high energy efficiency without
sacrificing programmability or generality. The key to MANIC’s ef-
ficient operation is its vector-dataflow execution model, in which
dependent instructions in a short window forward operands to one
another according to dataflow. Vector operation amortizes control
overhead. Dataflow execution avoids costly reads from the vector
register file. Simple compiler and software support helps avoid fur-
ther vector register file writes in a microarchitecture-agnostic way.
MANIC’s microarchitecture implementation directly implements
vector-dataflow with simple hardware additions, while still exposing
a standard RISC-V ISA interface. MANIC’s highly efficient imple-
mentation is on average 2.8× more energy efficient than an scalar
core and is within 26.4% on average of an ideal design that elimi-
nates all costs of programmability. Our results show that MANIC’s
vector-dataflow model is realizable and approaches the limit of en-
ergy efficiency for an ultra-low-power embedded processor.
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