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Abstract

Energy-harvesting technology provides a promising platform
for future IoT applications. However, since communication
is very expensive in these devices, applications will require
inference “beyond the edge” to avoid wasting precious energy
on pointless communication. We show that application per-
formance is highly sensitive to inference accuracy. Unfortu-
nately, accurate inference requires large amounts of computa-
tion and memory, and energy-harvesting systems are severely
resource-constrained. Moreover, energy-harvesting systems
operate intermittently, suffering frequent power failures that
corrupt results and impede forward progress.

This paper overcomes these challenges to present the first
full-scale demonstration of DNN inference on an energy-
harvesting system. We design and implement SONIC, an
intermittence-aware software system with specialized sup-
port for DNN inference. SONIC introduces loop continuation,
a new technique that dramatically reduces the cost of guar-
anteeing correct intermittent execution for loop-heavy code
like DNN inference. To build a complete system, we fur-
ther present GENESIS, a tool that automatically compresses
networks to optimally balance inference accuracy and en-
ergy, and TAILS, which exploits SIMD hardware available
in some microcontrollers to improve energy efficiency. Both
SONIC & TAILS guarantee correct intermittent execution with-
out any hand-tuning or performance loss across different
power systems. Across three neural networks on a commer-
cially available microcontroller, SONIC & TAILS reduce in-
ference energy by 6.9x and 12.2x, respectively, over the
state-of-the-art.
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1 Introduction

The maturation of energy-harvesting technology and the re-
cent emergence of viable intermittent computing models cre-
ates the opportunity to build sophisticated battery-less sys-
tems with most of the computing, sensing, and communicat-
ing capabilities of existing battery-powered systems. Many
future IoT applications require frequent decision making, e.g.,
when to trigger a battery-draining camera, and these decisions
must be taken locally, as it is often impractically expensive
to communicate with other devices. Future IoT applications
will require local inference on raw sensor data, and their per-
formance will be determined by inference accuracy. Using
energy numbers from recent state-of-the-art systems, we show
that such local inference can improve end-to-end application
performance by 480 or more.

Recently, deep neural networks (DNNs) [47, 73, 76] have
made large strides in inference accuracy. DNNs enable so-
phisticated inference using limited, noisy inputs, relying on
rich models learned from many examples. Unfortunately,
while DNNs are much more accurate than traditional alterna-
tives [33, 59], they are also more computationally demanding.

Typical neural networks use tens of millions of weights
and require billions of compute operations [47, 73, 76]. These
networks target high-powered, throughput-optimized proces-
sors like GPUs or Google’s TPU, which executes up to 9
trillion operations per second while drawing around 40 watts
of power [46]. Even a small DNN (e.g., LeNet [49]) has over a
million weights and millions of operations. The most efficient
DNN accelerators optimize for performance as well as energy
efficiency and consume hundreds of mW [11, 13, 26, 35].
Challenges: In stark contrast to these high-performance sys-
tems, energy-harvesting devices use simple microcontrollers
(MCUs) built for extreme low-power operation. These MCUs
systems run at low frequency (1-16 MHz) and have very
small memories (tens or hundreds of kilobytes). Their simple
architectures limit them to executing a few million opera-
tions per second, while consuming only 1-3mW—a power
envelope two orders of magnitude lower than recent DNN
accelerators.
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DNN inference on these devices is unexplored, and several
challenges must be overcome to enable emerging IoT appli-
cations on energy-harvesting systems built from commodity
components. Most importantly, energy-harvesting systems op-
erate intermittently as power becomes available, complicating
the development of efficient, correct software. The operat-
ing period depends on the properties of the power system,
but is short—typically around 100,000 instructions. As a re-
sult, existing DNN inference implementations do not tolerate
intermittent operation.

Recent work proposed software systems that guarantee
correct execution on intermittent power for arbitrary pro-
grams [16, 40, 41, 52, 55, 81]. These systems add significant
runtime overheads to ensure correctness, slowing down DNN
inference by on average 10X in our experiments. What these
systems have missed is the opportunity to exploit the structure
of the computation to lower the cost of guaranteeing correct-
ness. This missed opportunity is especially costly for highly
structured and loop-heavy computations like DNN inference.
Our approach and contributions: This paper presents the
first demonstration of intermittent DNN inference on real-
world neural networks running on a widely available energy-
harvesting system. We make the following contributions:

e We first analyze where energy is spent in an energy-
harvesting system and show that inference accuracy

largely determines IoT application performance (Sec. 3).

This motivates using DNNs despite their added cost
over simpler but less accurate inference techniques.

e Building on this analysis, we present GENESIS, a tool
that automatically compresses networks to maximize
IoT application performance (Sec. 5). GENESIS uses
known compression techniques [9, 14, 36, 61]; our con-
tribution is that GENESIS optimally balances inference
energy vs. accuracy.

e We design and implement SONIC, a software system
for DNN inference with specialized support for inter-
mittent execution (Sec. 6). To ensure correctness at
low overhead, SONIC introduces loop continuation,
which exploits the regular structure of DNN inference
to selectively violate task-based abstractions from prior
work [55], allowing direct modification of non-volatile
memory. Loop continuation is safe because SONIC
ensures loop iterations are idempotent through loop-
ordered buffering (for convolutional layers) and sparse
undo-logging (for sparse fully-connected layers). These
techniques let SONIC resume from where it left off after
a power failure, eliminating task transitions and wasted
work that plague prior task-based systems.

e Finally, we build TAILS to show how to incorporate
hardware acceleration into SONIC (Sec. 7). TAILS uses
hardware available in some microcontrollers to acceler-
ate matrix multiplication and convolution. TAILS auto-
matically calibrates its parallelism to ensure correctness
with intermittent power.

We evaluate SONIC & TAILS on a TI MSP430 microcon-
troller [2] using an RF-energy harvester [4, 5] (Secs. 8 & 9).
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On three real-world DNNs [43, 49, 70], SONIC improves in-
ference efficiency by 6.9x on average over Alpaca [55], a
state-of-the-art intermittent system. TAILS exploits DMA and
SIMD to further improve efficiency by 12.2x on average.

We conclude with future research directions for parallel
intermittent architectures that avoid limitations of current
energy-harvesting MCUs and provide new features to support
intermittence efficiently (Sec. 10).

2 Background

Energy-harvesting devices operate using energy extracted
from their environment. Harvested energy is not continu-
ously available, so an energy-harvesting device operates in-
termittently as energy allows. Prior work showed that inter-
mittent execution leaves memory inconsistent, compromises
progress, and suffers from non-termination conditions. More-
over, the typical energy-harvesting device is severely resource-
constrained, adding resource management complexity to pro-
gramming. To motivate the contributions of SONIC & TAILS,
we summarize the challenges of intermittent execution on a
resource-constrained device and describe the inefficiencies of
prior intermittent execution models.

2.1 Intermittent execution on energy-
harvesting systems

An energy-harvesting device operates intermittently when
harvestable power in the environment is below the device’s
operating power. To operate despite weak or periodically
unavailable power, a device slowly accumulates energy in
a hardware buffer (e.g., a capacitor) and operates when the
buffer is full. The device drains the buffer as it operates, then
it turns off and waits for the buffer to fill again.

Software executes in the intermittent execution model on
an energy-harvesting device [10, 45, 52, 57, 58, 68]. In inter-
mittent execution, software progresses in bursts, resetting at
frequent power failures. Existing devices [2, 79] mix volatile
state (e.g., registers and SRAM) and non-volatile memory
(e.g., FRAM). A power failure clears volatile state while non-
volatile memory persists. Repeated power failures impede
progress [68], and may leave memory inconsistent due to par-
tially or repeatedly applied non-volatile memory updates [52].
These progress and consistency issues lead to incorrect be-
havior that deviates from any continuously-powered execu-
tion [15].

Prior work addressed progress and memory consistency
using software checkpoints [41, 52, 81], non-volatile proces-
sors (NVPs) [53, 54], and programming models based around
atomic tasks [16, 40, 55]. A task-based system restarts af-
ter power loss with consistent memory at the most recent
task or checkpoint. We focus on task-based models because
prior work showed that they are more efficient than check-
pointing models [16, 55, 56] and because they do not rely
on specialized hardware to backup architectural state after
each instruction that makes NVPs more complex and less
performant.
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Task-based intermittent execution models: Task-based in-
termittent execution models avoid frequent checkpoints by
restarting from a task’s start after power failure, at which point
all register and stack state must be re-initialized. To ensure
memory consistency, tasks ensure that the effect of a partial
task execution is not visible to a subsequent re-execution.
Specifically, data that are read then written (i.e., a WAR
dependence) may expose the result of an interrupted task.
Task-based systems avoid “the WAR problem” with redo-
logging [55] and static data duplication [16].

Task-based systems guarantee correct execution, but at a
significant run-time cost. Redo-logging and static duplica-
tion both increase memory and compute in proportion to the
amount of data written. Transitioning from one task to the
next takes time, so short tasks that transition frequently suffer
poor performance. Long tasks better amortize transition costs,
but re-execute more work after a power failure. Worse, a task
that is too long faces non-termination if the energy it requires
exceeds the energy that the device can buffer.

A key challenge that we address with SONIC & TAILS is
ensuring correct execution of DNN inference while avoiding
the overheads of prior task-based systems. We achieve this
through SONIC’s loop continuation, which safely “breaks
the rules” of existing task-based systems by allowing WAR
dependencies for loop index variables (Sec. 6). This is safe
because SONIC ensures that each loop iteration is idempotent.
Loop continuation yields large gains because it effectively
eliminates redo-logging, task transitions, and wasted work.

Resource constraints: Intermittent systems are severely reso-
urce-constrained. In this paper we study an intermittent sys-
tem built using a TT MSP430 microcontroller (MCU), which
is the most commonly used processor in existing intermit-
tent systems [17, 37-39, 71]. Such an MCU’s frequency is
typically 1-16MHz, leaving a substantial performance gap
compared to, e.g., a full-fledged, 2GHz Xeon-based system.
An intermittent system’s MCU usually also houses all the
memory available to the system, including embedded SRAM,
which is volatile, and embedded FRAM, which is non-volatile.
Embedded memories are small and capacity varies by de-
vice. A typical MSP430 low-power MCU includes 1-4KB of
SRAM and 32-256KB of FRAM. While continuously pow-
ered embedded systems may interface with larger memories
via a serial bus (izc or SPI), most intermittent systems do
not due to their high access energy and latency. The typical
operating power of an intermittent device is around 1mW.

2.2 Efficient DNN inference

Deep neural networks (DNN) are becoming the standard for
inference applications ranging from understanding speech to
image recognition [47, 73, 76]. The architecture community
has responded with accelerators that improve the performance
of inference and training and reduce power consumption.
Some architectures focus on dense computations [11-13],
others on sparse computations [26, 35, 48, 82], and still oth-
ers on CNN acceleration [6, 7, 24, 65, 69, 74]. Industry has
followed this trend, embracing custom silicon for DNNs [46].
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Other recent work focused on algorithmic techniques for
reducing the cost of DNN inference. Near-zero weights can
often be “pruned” without losing much accuracy [36, 61].
Inference also does not need full-precision floating-point and
reducing weight precision [23, 35] reduces storage and com-
putation costs. Additional reductions in storage and computa-
tion comes from factoring DNN computations [9, 14, 44, 63,
75,71, 78].

Despite these efforts, power consumption remains orders-
of-magnitude too high for energy-harvesting systems. DNN
inference consumes hundreds of milliwatts even on the most
efficient accelerators [3, 13, 35]. Recent power-efficient DNN
work from the circuits community [28, 67] reduces power
somewhat, but compromises on programmability.

More importantly, across all of these prior efforts, inter-
mittent operation remains unaddressed. It is the key problem
addressed in this work.

3 Motivation for intermittent inference

Many attractive IoT applications will be impractical without
intelligence “beyond the edge.” Communication is too expen-
sive on these devices for solutions like cloud offloading to
be practical. Instead, energy-harvesting devices must decide
locally how to spend their energy, e.g., when to communicate
sensor readings or when to activate an expensive sensor, such
as a high-resolution camera.

This section makes the case for inference on energy-harvest-
ing, intermittently operating devices. We show how communi-
cation dominates energy, even with state-of-the-art low-power
networking, making cloud offloading impractical. We analyze
where energy is spent and show that, to a first order, inference
accuracy determines system performance, motivating the use
of DNNSs in these applications. Using this analysis we will
later compare different DNN configurations and find one that
maximizes application performance (Sec. 5).

3.1 The need for inference beyond the edge

Many applications today offload most computation to the
cloud by sending input data to the cloud and waiting for a
response. Unfortunately, communication is not free. In fact,
on energy-harvesting devices, communication costs orders-of-
magnitude more energy than local computation and sensing.
These high costs mean that it is inefficient and impractical for
energy-harvesting devices to offload inference to the edge or
cloud, even on today’s most efficient network architectures.
For example, the recent OpenChirp network architecture
lets sensors send data over long distances with extremely low
power consumption. To send an eight-byte packet, a terrestrial
sensor draws 120mA for around 800ms [25]. Using the recent
Capybara energy-harvesting power system [17], such a sensor
would require a 900mF capacitor bank to send a single eight-
byte packet. This large capacitor array imposes an effective
duty cycle on the device, because the device must idle while
charging before it can transmit. A Capybara sensor node with
its 2cm X 2cm solar array in direct sunlight (an optimistic
setup) would take around 120 seconds to charge a 900mF
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capacitor bank [17]. Hence, sending a single 28 x 28 image
with 1B per pixel (e.g., one MNIST image [50]) to the cloud
for inference would take over an hour.

In contrast, our full-system SONIC prototype performs in-
ference locally in just 10 seconds operating on weak, har-
vested RF energy—an improvement of more than 360x.
SONIC & TAILS thus open the door to entirely new classes of
inference-driven applications on energy-harvesting devices.

3.2 Why accuracy matters

We now consider an example application to show how in-
ference accuracy determines end-to-end application perfor-
mance. This analysis motivates the use of state-of-the-art
inference techniques, namely DNNs, over less accurate but
cheaper techniques like support-vector machines.

To reach these conclusions, we employ a high-level analyt-
ical model, where energy in the system is divided between
sensing, communication, and inference. (Sensing includes
all associated local processing, e.g., to set up the sensor and
post-process readings.) We use local inference to filter sensor
readings so that only the “interesting” sensor readings are
communicated. Our figure of merit is the number of inter-
esting sensor readings that can be sent in a fixed amount of
harvested energy (which is also a good proxy for execution
time). We denote this as IMpJ, or interesting messages per
Joule. Though this metric does not capture the interesting
readings that are not communicated due to inference error
(i.e., false negatives), our analysis demonstrates the need for
high accuracy, and hence false negatives are uncommon.

This simple model captures many interesting applications
of inference beyond the edge: e.g., wildlife monitoring, dis-
aster recovery, wearables, military, etc. For concreteness, we
consider a wildlife-monitoring application where sensors
with small cameras are deployed across a wide area with
OpenChirp connectivity. These sensors monitor a local popu-
lation of, say, hedgehogs and send pictures over radio when
they are detected. The goal is to capture as many images of
hedgehogs as possible, and images without have no value.

Baseline without inference: Our baseline system does not
support local inference, so it must communicate every im-
age. Communication is expensive, so this baseline system
does not perform well. Suppose sensing costs Egepse €nergy,
communicating one sensor reading costs Ecomm energy, and
interesting events occur at a base rate of p (see Table 1). Then
the baseline system spends Egense + Ecomm €NErgy per event,
only p of which are worth communicating, and its IMplJ is:

p

Baseline= —————
Esense + Ecomm

6]

Ideal: Although impossible to build, an ideal system would
communicate only the interesting sensor readings, i.e., a frac-
tion p of all events. Hence, its IMpJ is:

p

Ideal = —————
Egense + p Ecomm

2
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Parameter Description
IMplJ Our figure of merit, the number of “interesting” mes-
sages sent per Joule of harvested energy.
P Base rate (probability) of “interesting” events.
tp True positive rate in inference.
Iy True negative rate in inference.
Eense Energy cost of sensing (e.g., taking a photo).
Ecomm Energy cost of communicating one sensor reading.
Einfer Energy cost of a inference on one sensor reading.

Table 1. Description of each parameter in our energy model.

Local inference: Finally, we consider a realistic system with
local, imperfect inference. In addition to sensing energy Egenge,
each sensor reading requires Ejyfer €nergy to decide whether it
is worth communicating. Suppose inference has a true positive
rate of 7, and a true negative rate of #,. Since communica-
tion is very expensive, performance suffers from incorrectly
communicated, uninteresting sensor readings at a rate of:

(1-p) (1—1). Its IMpJ is: N )

(Esense +Einfer) + (P tp+ (1 —P) (1 _tn)) Ecomm

Case study: Wildlife monitoring: We now apply this model
to the earlier wildlife monitoring example. Hedgehogs are
reclusive creatures, so “interesting” photos are rare, say p =
0.05. Low-power cameras allow images to be taken at low
energy, e.g., Egense = 10mJ [62]. As we saw above, commu-
nicating an image is expensive, taking E¢omm ~ 23,000mJ
over OpenChirp [25]. Finally, we consider two systems with
local inference: a naive baseline implemented using prior task-
based intermittence support (specifically Tile-8 in Sec. 6.2)
and SONIC & TAILS, our proposed technique. Their inference
energies are gathered from our prototype (Sec. 8), taking
Einfer.naive = 198mJ and Eipfer TarLs ~ 26mJ, respectively.

Inference =

= == Naive local inference
—— SONIC&TAILS (this work)

—— Always send image
=== ldeal

_}-1.1,

20

-
T

Interesting images sent
per harvested kilo-Joule
o
(=]

0
0.0

\
0.4 0.6 0.8
Accuracy

0.2 1.0
Figure 1. Inference accuracy determines end-to-end system perfor-
mance in an example wildlife monitoring application. Interesting
events are rare and communication is expensive; local inference
ensures that energy is only spent on interesting events.

Fig. 1 shows each system’s IMplJ after plugging these num-
bers into the model. For simplicity, the figure assumes that
true positive and negative rates are equal, termed “accuracy”.
Since communication dominates the energy budget, local
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inference enables large end-to-end benefits on the order of
1 / p =20x. However, for these gains to be realized in prac-
tice, inference must be accurate, and the benefits quickly
deteriorate as inference accuracy declines. Qualitatively simi-
lar results are obtained when p varies, though the magnitude
of benefit changes (increasing with smaller p).

This system is dominated by the energy of sending results.
Inference is relatively inexpensive, so naive local inference
and SONIC & TAILS perform similarly (though SONIC & TAILS
outperforms Naive by up to 14%). To see the benefits of effi-
cient inference, we must first address the system’s communi-
cation bottleneck.

Sending only inference results: Depending on the applica-
tion, even larger end-to-end improvements are possible by
sending only the result of inference rather than the full sensor
reading. For instance, in this wildlife monitoring example,
the energy-harvesting device could send a single packet when
hedgehogs were detected, rather than the full image. The ef-
fect is to significantly decrease Eqomm for the systems with
local inference, mitigating the system’s bottleneck. In our
wildlife monitoring example, E.omm decreases by 98 x.

= == Naive local inference
—— SONIC&TAILS (this work)

——— Always send image
——-Ideal (send result only)

1000 -

Interesting results sent
per harvested kilo-Joule

Accuracy

Figure 2. Local inference (i.e. Naive and SONIC & TAILS) lets
energy-harvesting devices communicate only results of inference,
enabling dramatic increases in end-to-end system performance.

Fig. 2 shows end-to-end performance when only sending
inference results. Local inference allows dramatic reductions
in communication energy: SONIC & TAILS can detect and
communicate 480x more events than the baseline system
without local inference. These reductions also mean that in-
ference is a non-negligible energy cost, and SONIC & TAILS
outperform naive local inference by 4.6x. Finally, the gap
between Ideal and SONIC & TAILS is 2.2x. This gap is diffi-
cult to close further on current hardware; we discuss ways to
address it in Sec. 10.

4 System overview

This paper describes the first system for performing DNN in-
ference efficiently on intermittently-operating, energy-harvest-
ing devices. Fig. 3 shows the new system components in this
work and how they produce an efficient, intermittence-safe
executable starting from a high-level DNN model description.
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Figure 3. Overview of implementing a DNN application using
SONIC & TAILS. GENESIS first compresses the network to optimize
interesting messages sent per Joule (IMpJ). SONIC & TAILS then
ensure correct intermittent execution at high performance [29].

There are three main components to the system: GENESIS,
SONIC, and TAILS.

GENESIS (generating energy-aware networks for efficiensy
on intermittent systems) is a tool that automatically optimizes
a DNN, starting from a programmer’s high-level description
of the network. GENESIS attempts to compress each layer
of the network using well-known separation and pruning
techniques. GENESIS’s goal is to find a network that optimizes
IMpJ while meeting resource constraints. As Fig. 3 shows,
GENESIS’s input is a network description and its output is an
optimally compressed network. Sec. 5 describes GENESIS.

SONIC (software-only neural intermittent computing) is an
intermittence-safe, task-based API and runtime system that
includes specialized support for DNN inference that safely
“breaks the rules” of existing task-based systems to improve
performance. SONIC is compatible with existing task-based
frameworks [16, 55], allowing seamless integration into larger
applications. Sec. 6 describes SONIC in detail.

TAILS (tile-accelerated intermittent LEA support) is an al-
ternative to the SONIC runtime library that leverages hardware
vector acceleration, specifically targeting the TI Low Energy
Accelerator (LEA) [1]. To use TAILS, the programmer need
only link their compiled binary to the TAILS-enabled runtime
system. This runtime includes all of SONIC’s optimizations
and a suite of hardware-accelerated vector operations, such
as convolutions. Sec. 7 describes TAILS in detail.

Starting with a high-level network description, a program-
mer can use GENESIS, SONIC, and TAILS to build an efficient,
intermittent DNN-enabled application that meets resource
constraints, is robust to intermittent operation, and leverages
widely available hardware acceleration. Our code and datasets
can be found at: https://github.com/CMUAbstract/SONIC.

S Optimal DNN compression with GENESIS

The first challenge to overcome in SONIC & TAILS is fit-
ting neural networks into the resource constraints of energy-
harvesting systems. In particular, the limited memory capac-
ity of current microcontrollers imposes a hard constraint on



Session: Emerging Paradigms ASPLOS’19, April 13-17, 2019, Providence, RI, USA

—e—Pareto optimal, Separate + Prune —e—Pareto optimal, Prune only Non-pareto (infeasible) X Configuration Used
—e—Pareto optimal, Separate only Non-pareto (feasible) X Original, uncompressed
1.0 -
1.0 - x 2
Al .
0.8 08r X o
> 0T > oy
g . S 06 go6-
chadl 2 2
< o4t K 04- 2047
-
0.2- 0.2- 0.21
0.0 i i i i f 0.0t i i i 0.0 i :
00 02 04 06 08 1.0 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Multiply-accumulate (MAC) ops 1e7 Multiply-accumulate (MAC) ops 1e6 Multiply-accumulate (MAC) ops 1e6
(a) MNIST image recognition. (b) Human activity recognition (HAR). (c) Google keyword spotting (OkG).
Figure 4. GENESIS explores the inference accuracy-cost tradeoff for different neural network configurations.
. o~ a0k .
$:40_ $:50‘ g:Z.O'
o9 o9 o9
? 4 30 - B4 40~ RZ 150
o o o
QS [ Q>
ES £ 530 £
oc 20~ o< i o< 1.0 -
£o £020- £o
§§10_ §§10_ §§0-5_ I
2% 25 2%
£ o 0 i \ | | i Lo 0 i i | ~ o 0.0 | . 3
0 1 2 3 4 5 0 2 4 6 ) 2 4 6
Energy per inference (J) 1le-1 Energy per inference (J) 1e-2 Energy per inference (J) 1le-2
(a) MNIST image recognition. (b) Human activity recognition (HAR). (c) Google keyword spotting (OkG).

Figure 5. GENESIS uses our end-to-end application performance model (Eq. 3) to select the best feasible network configuration.

networks. We have developed a tool called GENESIS that 5.2 Fitting networks on energy-harvesting systems
automatically explores different configurations of a baseline GENESIS evaluates many compressed configurations of a
neural network, applying separation and pruning techniques network and builds a Pareto frontier. Compression has trade-
(Sec. 2) to reduce the network’s resource requirements. GEN- offs in four dimensions, difficult to capture with a pareto
ESIS improves upon these known techniques by optimally curve; these include true negative rate, true positive rate, mem-
balancing inference energy and true positive/negative rates to ory size (i.e., parameters), and compute/energy (i.e., opera-
maximize IMpJ, building on the the model in Sec. 3. tions). Fully-connected layers typically dominate memory,

whereas convolutional layers dominate compute. GENESIS
5.1 Neural networks considered in this paper compresses both.

GENESIS compresses each layer using two known tech-
niques: separation and pruning. Separation (or rank decom-
position) splits an m x n fully-connected layer into two m X k
and k x n matrix multiplications, or an m X n X k convolu-
tional filter into three m x 1 x 1, 1 xnx 1, and 1 x 1 x k,
filters [9, 14]. GENESIS separates layers using the Tucker ten-
sor decomposition, using the high-order orthogonal iteration
algorithm [21, 22, 80]. Pruning involves removing parame-
ters below a given threshold, since they have small impact on
results [36, 61].

GENESIS sweeps parameters for both separation and prun-

This paper considers three networks, summarized in Table 2.
To represent image-based applications (e.g., wildlife moni-
toring and disaster recovery), we consider MNIST [50]. We
consider MNIST instead of ImageNet because ImageNet’s
large images do not fit in a resource-constrained device’s
memory. To represent wearable applications, we consider hu-
man activity recognition (HAR). HAR classifies activities us-
ing accelerometer data [43]. To represent audio applications,
we consider Google keyword spotting (OkG) [70], which
classifies words in audio snippets.

We also evaluated binary neural networks and several ) pal
SVM models and found that they perform poorly on current ing across each layer. of the network, re-training thg network
energy-harvesting MCUs. A 99%-accurate binary network after compression to improve accuracy. GENESIS rehe;s on the
for MNIST required 4.4MB of weights [18], exceeding the Ray Tune black box optimizer with the Medlaq Stopping Rule
device’s scant memory, and compressing this to 360KB lost to explore the configuration space [31, 60]. Fig. 4 shows the

nearly 10% accuracy [8]. Likewise, no SVM model that fit results for the networks in Table 2. Each marker on the figure
on the device was competitive with the DNN models [51]: represents one compre.ssed cqnﬁguration, shown by inferenc.e
measured by IMpJ, SVM under-performed by 2x on MNIST accuracy on the y-axis and inference energy on the x-axis.
and by 8x on HAR, and we could not find an SVM model Feasible configurations (i.e., ones that fit in our device’s small
for OKG that performed anywhere close to the DNN. memory; see Sec. 8) are shown as green circles and infeasible
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Network  Layer Uncompressed Compression Compressed Compression Accuracy

Size Technique Size

Image clas Conv  20x1x5x5 HOOI 3x1D Conv 11.4x
mage ClasT cony 100x20x 5% 5 Pruning 1253 39.9x
sification . 99.00%
(MNIST) FC 200 x 1600 Pruning, SVD 5456 109x

FC 500 x 200 Pruning, SVD 1892 —

FC 10 x 500 — — —
Human Conv 98 x3x1x12 HOOI 3x1D Conv 2.25%
activity FC 192 x 2450 Pruning, SVD 10804 o
recognition FC 256 x 192 Pruning, SVD — 38.1x 88.0%
(HAR) FC 6256 — — —
Google Conv 186 x1x98x8 HOOI, Pruning 3x1D Conv 7.3x
keyword FC 96 x 1674 Pruning, SVD 16362 11.8x 84.0%
spotting FC 128 x 96 Pruning, SVD 2070 — s
(OkG) FC 32x128 SVD 4096 2%

FC 128 x 32 SVD 4096 —

FC 128 x 12 — — —

Table 2. Neural networks used in this paper.

configurations are grey xs. Note that the original configura-
tion (large x) is infeasible for all three networks, meaning
that they cannot be naively ported to the device because their
parameters would not fit in memory.

Fig. 4 also shows the Pareto frontier for each compression
technique. Generally, pruning is more effective than separa-
tion, but the techniques are complementary.

5.3 Choosing a neural network configuration

GENESIS estimates a configuration’s IMpJ using the model
from Sec. 3, specifically Eq. 3. The user specifies Egepse and
Ecomm for their application as well as per-compute-operation
energy cost. From these parameters, GENESIS estimates Ejpfer
for each configuration, and uses the inference accuracy from
the prior training step to estimate application performance.
The user can specify which class in the training set is “interest-
ing,” letting GENESIS compute true positive ¢, and negative
t, rates for the specific application.

Fig. 5 shows the results by mapping each point in Fig. 4
through the model. For these results, we use Egepge from
Sec. 3, per-operation energy from our SONIC & TAILS proto-
type in Sec. 8, and estimate E¢omm from input size assuming
OpenChirp networking [25].

GENESIS chooses the feasible configuration that maxi-
mizes estimated end-to-end performance (i.e., IMplJ). Fig. 5
shows that this choice is non-trivial. True positive, true nega-
tive, and inference energy affect end-to-end application per-
formance in ways that are difficult to predict. Simply choosing
the most accurate configuration, as the twisty blue curve sug-
gests in Fig. 5, is insufficient since it may waste too much
energy or underperform other configurations on true positive
or true negative rates.

6 Efficient intermittent inference with SONIC

SONIC is the first software system optimized for inference on
resource-constrained, intermittently operating devices. SONIC
supports operations common to most DNN computations,
exposing them to the programmer through a simple APIL
SONIC’s functionality is implemented as a group of rasks
supported by the SONIC runtime system, which is a modified
version of the Alpaca runtime system [55]. These tasks im-
plement DNN functionality, and the SONIC runtime system
guarantees correct intermittent operation.
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Specializing intermittence support for DNN inference yields
large benefits. Prior task-based intermittent execution mod-
els [16, 55] can degrade performance by up to 19x and by
10x on average (Sec. 9). SONIC dramatically reduces these
overheads to just 25%-75% over a standard baseline of DNN
inference that does not tolerate intermittent operation.

SONIC achieves these gains by eliminating the three major
sources of overhead in prior task-based systems: redo-logging,
task transitions, and wasted work (Sec. 2). Our key technique
is loop continuation, which selectively violates the task ab-
straction for loop index variables. Loop continuation lets
SoNIC directly modify loop indices without frequent and ex-
pensive saving and restoring. By writing loop indices directly
to non-volatile memory, SONIC checkpoints its progress after
each loop iteration, eliminating expensive task transitions and
wasting work upon power failure.

Loop continuation is safe because SONIC ensures that each
loop iteration is idempotent. SONIC ensures idempotence
in convolutional and fully-connected layers through loop-
ordered buffering and sparse undo-logging. These two tech-
niques ensure idempotence without statically privatizing or
dynamically checkpointing data, avoiding the overheads im-
posed by prior task-based systems.

6.1 The SoNIC API

The SONIC API lets the programmer describe a DNN’s struc-
ture through common linear algebra primitives. Just as a
programmer chains tasks together in a task-based intermit-
tent programming model [16, 40, 55], the programmer chains
SONIC’s tasks together to represent the control and data flow
of a DNN inference pipeline. SONIC’s API exposes func-
tionality that the programmer invokes like any other task in
their program (specifically, a modular task group [16, 55]).
Though SONIC “breaks the rules” of a typical task-based in-
termittent system, the programmer does not need to reason
about these differences when they are writing a program us-
ing the SONIC API. The program-level behavioral guarantee
that SONIC provides is the same as the one underlying other
task-based intermittent execution models: a SONIC task will
execute atomically despite power interruptions by ensuring
that repeated, interrupted attempts to execute are idempotent.

6.2 The SONIC runtime implementation

DNN inference is dominated by loops within each layer of the
neural network. SONIC optimizes DNN inference by ensuring
that these loops execute correctly on intermittent power while
adding much less overhead than prior task-based systems.

Loops in task-based systems: A typical task-based intermit-
tent system sees two kinds of loops: short loops and long
loops. All iterations of a short loop fit in a single task and will
complete without consuming more energy than the device can
buffer. A short loop maintains control state in volatile mem-
ory and these variables clear on power failure. When power
resumes, the task restarts and completes. Data manipulated by
a short loop are usually non-volatile (i.e., “task-shared” [55])
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Figure 6. Executing a loop using two fixed task-tilings and with
SONIC’s loop continuation mechanism. Loop continuation avoids
the re-execution and non-termination costs of task-tiling. TAILS uses
SIMD to perform more work in a fixed energy budget (Sec. 7).
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and if read and updated, they must be backed up (either stati-
cally or dynamically) to ensure they remain consistent. The
problem with short loops is that they always restart from the
beginning, wastefully repeating loop work that was already
done. In contrast, a long loop with many iterations does not
fit in a single task; a long loop demands more energy than the
device can buffer and may never terminate. A programmer
must split loop iterations across tasks, requiring a task transi-
tion on each iteration and requiring control state and data to
be non-volatile and backed up. The problem with long loops
is that may not terminate and, when split across tasks, impose
hefty privatization and task transition overheads.

Task-tiling is a simple way to split a loop’s iterations into
tasks. A task-tiled loop executes a fixed number of iterations
per task. Task-tiling amortizes task transitioning overhead,
but risks executing more iterations in a single task than the
device’s energy buffer can support, causing non-termination.
Figure 6 shows the intermittent execution (energy trace on
left) of a loop computing a dot product using two fixed tile
sizes of five (Tile-5) and twelve (Tile-12). Tile-5 wastes work
when four iterations complete before a failure. Tile-12 pre-
vents forward progress because the device buffers insufficient
energy to complete twelve iterations.

6.2.1 Loop continuation

SONIC’s loop continuation is an intermittence-safe optimiza-
tion that avoids wasted work, unnecessary data privatization,
and task transition overheads in tasks containing long-running
loop nests. Loop continuation works by directly modifying
loop control variables and memory manipulated in a loop nest,
rather than splitting a long-running loop across tasks. Loop
continuation permits loops of arbitrary iteration count within
a single task, with neither non-termination nor excessive state
management overhead. Loop continuation stores a loop’s con-
trol variables and data manipulated directly in non-volatile
memory without backing either up. When a loop continuation
task restarts, its (volatile) local variables are reinitialized at
the task’s start. The loop control variables, however, retain
their state and the loop continues from the last attempted
iteration. (Pseudocode for SONIC’s loop continuation can be
found in our technical report [30].)
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Figure 7. SONIC uses loop continuation and loop-ordered buffering
to reduce overheads of correct intermittent execution. Loop continua-
tion maximizes the amount of computation done per task by allowing
computation to pick up where it left off before power failure.

Fig. 7 shows how loop continuation works by storing the
loop control state for Task_Convolve in non-volatile memory.
SONIC ensures that the loop’s control variable i is correct by
updating it at the end of the iteration and not resetting it upon
re-execution. A power failure during or after the update to
the control variable may require the body of the loop nest to
repeat a single iteration, but it never skips an iteration.

Figure 6 shows SONIC executing using loop continuation.
Despite the power interruption, execution resumes on the
ninth loop iteration, rather than restarting the entire loop nest
or every fifth iteration like Tile-5 does.

6.2.2 Idempotence tricks

Normally, restarting from the middle of a loop nest could
leave manipulated data partially updated and possibly incon-
sistent. However, loop continuation is safe because SONIC’s
runtime system ensures each loop iteration is idempotent
using either loop-ordered buffering or sparse undo-logging.
SONIC never requires an operation in an iteration to read a
value produced by another operation in the same iteration.
Thus, an iteration that repeatedly re-executes due to power
interruption will always see correct values.

Loop-ordered buffering: Loop-ordered buffering is a double-
buffering mechanism used in convolutional layers (and dense
fully-connected layers) that ensures each loop iteration is
idempotent without expensive redo-logging (cf., [55]). Since
the MSP430 devices do not possess sophisticated caching
mechanisms, rather than optimizing for reuse and data lo-
cality, SONIC optimizes the number of items needed to com-
mit. By re-ordering the loops in DNN inference and double-
buffering partial activations as needed, SONIC is able to com-
pletely eliminate commits within a loop iteration.
Evaluating a sparse or dense convolution requires SONIC
to apply a filter to a layer’s entire input activation matrix.
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SONIC orders loop iterations to apply each element of the
filter to each element of the input activation (i.e., multiplying
them) before moving on to the next element of the filter. For
idempotence, SONIC writes the partially accumulated value
to an intermediate output buffer, rather than applying updates
to the input matrix in-place. After applying a single filter
element to each entry in the input and storing the partial result
in the intermediate buffer, SONIC swaps the input buffer with
the intermediate buffer and moves on to the next filter value.

Since SONIC never reads and then writes to the same mem-
ory locations within an iteration, it avoids the WAR problem
described in Sec. 2 and loop iterations are thus idempotent.
Fig. 7 shows how under loop-ordered buffering, SONIC never
reads and writes to the same matrix buffer while comput-
ing a partial result in Task_Convolve. After finishing this
task, SONIC transitions to Task_Next_Filter, which swaps the
buffer pointers and gets the next value to apply from the filter.

Sparse undo-logging: While loop-ordered buffering is suffi-
cient to ensure each loop iteration is idempotent, it is some-
times unnecessarily wasteful. The problem arises because
loop-ordered buffering swaps between buffers after every
task, so it must copy data between buffers in case it is read
in the future—even if the data has not been modified. This
copying is wasteful on sparse fully-connected layers, where
most filter weights are pruned and thus few activations are
modified in a single iteration. With loop-ordered buffering,
SONIC ends up spending most of its time and energy copying
unmodified activations between buffers.

To eliminate this inefficiency, SONIC introduces sparse
undo-logging which ensures idempotence through undo-loggi-
ng instead of double buffering. To ensure atomicity, sparse
undo-logging tracks its progress through the loop via two
index variables, the read and write indices. When applying a
filter, SONIC first copies the original, unmodified activation
into a canonical memory location, and then increments the
read index. SONIC then computes the modified activation and
writes it back to the original activation buffer (there is no
separate output buffer). Then it increments the write index
and proceeds to the next iteration. This two-phase approach
guarantees correct execution, since sparse undo-logging re-
sumes computing the output value from the buffered original
value if power fails in the middle of an update.

Sparse undo-logging ensures that the work per task grows
with the number of modifications made, not the size of the out-
put buffer (unlike loop-ordered buffering). However, sparse
undo-logging doubles the number of memory writes per mod-
ified element, so it is inefficient on dense layers where most
data are modified. In those cases, loop-ordered buffering is
significantly more efficient. We therefore only use sparse
undo-logging in sparse fully-connected layers. Finally, unlike
prior task-based systems such as Alpaca, sparse undo-logging
ensures idempotence with constant space overhead and no
task transition between iterations.

Related work: Prior work in persistent memory [27] uses
techniques similar to our sparse undo-logging. This work is
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in the high-performance domain, and therefore focuses on
cache locality and scheduling cache flushes and barriers. In
contrast, our prototype has no caches, and we exploit this fact
in loop-ordered buffering to re-arrange loops in a way that
would destroy cache performance on conventional systems.
Moreover, SONIC is more selective than [27], only using undo-
logging in sparse fully-connected layers where it outperforms
double buffering.

7 Hardware acceleration with TAILS

TAILS improves on SONIC by incorporating widely available
hardware acceleration to perform inference even more effi-
ciently. A programmer may optionally link their SONIC appli-
cation to the TAILS runtime system, enabling the application
to use direct-memory access (DMA) hardware to optimize
block data movement and to execute operation in parallel
using a simple vector accelerator like the TI Low-Energy Ac-
celerator (LEA) [1]. LEA supports finite-impulse-response
discrete-time convolution (FIR DTC), which directly imple-
ments the convolutions needed in DNN inference.

TAILS’s runtime system enables the effective use of LEA
in an intermittent system by adaptively binding hardware
parameters at run time to maximize operational throughput
without exceeding the device’s energy buffer. Our TAILS pro-
totype adaptively determines the DMA block size and LEA
vector width based on the number of operations that success-
fully complete using the device’s fixed energy buffer. After
calibrating these parameters, TAILS uses them to configure
available hardware units and execute inference thereafter.

7.1 Automatic one-time calibration

Before its first execution, a TAILS application runs a short,
recursive calibration routine to determine DMA block size
and LEA vector size. The routine determines the maximum
vector size that it is possible to DMA into LEA’s operating
buffer, process using FIR DTC, and DMA back to non-volatile
memory without exceeding the device’s energy buffer and
impeding progress. If a tile size does not complete before
power fails, the calibration task re-executes, halving the tile
size. Calibration ends when a FIR DTC completes and TAILS
uses that tile size for subsequent computations.

7.2 Accelerating inference with LEA

Once TAILS determines its tile size, the application runs, us-
ing DMA and LEA to compute dense and sparse convolutions
and dense matrix multiplications. LEA has limitations: it only
supports dense operations and can only read from the device’s
small 4KB SRAM (not the 256KB FRAM). TAILS uses DMA
to move inputs into SRAM, invokes LEA, and DMAs the re-
sults back to FRAM. Dense layers are natively supported:
fully-connected layers use LEA’s vector MAC operation, and
convolutions use LEA’s one-dimensional FIR DTC operation.
To support two- and three-dimensional convolutions, TAILS
iteratively applies one-dimensional convolutions and accu-
mulates those convolutions’ results. TAILS uses loop-ordered
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buffering to ensure that updates to the partially accumulated
values are idempotent (Sec. 6.2.2).

Sparse operations require more effort. TATLS uses LEA
for sparse convolutions by first making filters dense (padding
with zeros). Making the filters dense is inexpensive because
each filter is reused many times, amortizing its creation cost.
However, this does mean that LEA performs unnecessary
work, which sometimes hurts performance. For this reason,
we use LEA’s dot-product operation instead of FIR-DTC for
1 x p x 1 factored convolutional layers.

Finally, sparse fully-connected layers are inefficient on
LEA because filters do not get reuse. We found that TAILS
spent most of its time on padding filters, and, despite sig-
nificant effort, we were unable to accelerate sparse fully-
connected layers with LEA. For this reason, TAILS performs
sparse fully-connected layers in software exactly like SONIC.

8 Methodology

We implement SONIC and TAILS on the TI-MSP430FR5994 [2]
at 16MHz in the setup in Fig. 8. The board is connected to a
Powercast P2210B [4] harvester 1m away from a 3W Power-
caster transmitter [5]. We ran all configurations on continuous
power and on intermittent power with three different capacitor
sizes: 1mF, 50mF, and 100uF.

MSP430
Measurement MCU

y
capacitors

Figure 8. Diagram of the measurement setup.

Running code on the device: We compile with MSPGCC
6.4 and use TI's MSPDriverlib for DMA and TI's DSPLib for
LEA. We use GCC instead of Alpaca’s LLVM backend be-
cause LLVM lacks support for 20-bit addressing and produces
slower code for MSP430 than GCC.

Measurement: We use a second MSP430FR5994 to measure
intermittent executions. GPIO pins on the measurement MCU
connect through a level-shifter to the intermittent device, al-
lowing it to count reboots and signal when to start and stop
timing. We automate measurement with a combination of
software and hardware that compiles a configuration binary,
flashes the binary to the device, and communicates with the
measurement MCU to collect results. The system actuates a
relay to switch between continuous power for reprogramming
and intermittent power for testing.

Measuring energy: By counting the number of charge cycles
between GPIO pulses, we can determine the amount of energy
consumed in different code regions. For a more fine-grained
approach, we built a suite of microbenchmarks to count how
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many times a particular operation (e.g., a load from FRAM)
can run in single charge cycle. We then profile how many
times each operation is invoked during inference and scale by
per-operation energy to get a detailed energy breakdown.

Baselines for comparison: We compare SONIC & TAILS to
four DNN inference implementations. The first implemen-
tation is a standard, baseline implementation that does not
tolerate intermittent operation (it does not terminate). The
other three implementations are based on Alpaca [55] and
split up loops by tiling iterations, as in Fig. 6.

9 Evaluation

We now evaluate our prototype to demonstrate that:
(i) SONIC & TAILS guarantee correct intermittent execution;
(i) SONIC & TAILS greatly reduce inference energy and time
over the state-of-the-art; and (iii) SONIC & TAILS perform
well across a variety of networks without any hand-tuning.

9.1 SONIC & TAILS significantly accelerate intermittent
DNN inference over the state-of-the-art

Fig. 9 shows the inference time for the three networks we
consider (Table 2). For each network, we evaluated six im-
plementations running on four different power systems. We
break inference time into: dead time spent recharging; live
time spent on each convolution layer (which dominates); live
time spent on the fully-connected layers; and everything else.

First, notice that SONIC & TAILS guarantees correct execu-
tion for every network on every power system. This is not true
of the naive baseline, which does not run correctly on intermit-
tent power, or of most tilings for prior task-based intermittent
systems. The only other implementation that reliably executes
correctly is Tile-8, since its tiling is small enough to always
complete within a single charge cycle. The other tilings fail
on some configurations: Tile-32 fails on MNIST with a 100uF
capacitor, and Tile-128 fails on all networks at 100uF.

SONIC & TAILS guarantee correct execution at much lower
overheads than Tile-8. Averaging across networks, Tile-8 is
gmean 13.4x slower than the naive baseline on continuous
power, whereas SONIC is 1.45x slower and TAILS is actually
1.2x faster than the baseline. That is to say, SONIC improves
performance on average by 6.9 over tiled Alpaca [55], and
TAILS improves it by 12.2x. Moreover, execution time is
consistent across capacitor sizes for SONIC & TAILS.

Larger tile sizes amortize overheads somewhat, but since
they do not complete on all networks or capacitor sizes, they
are an unattractive implementation choice. SONIC & TAILS
guarantee correct intermittent execution across all capacitor
sizes, while also being faster than the largest tilings: even
compared to Tile-128, SONIC is on average 5.2x faster on
continuous power and TAILS is 9.2 faster.

Both DMA and LEA improve TAILS’s efficiency. We tested
configurations where DMA and LEA are emulated by soft-
ware and found that LEA consistently improved performance
by 1.4x, while DMA improved it by 14% on average.
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Figure 9. Inference time on three neural networks. The naive baseline is fast, but does not tolerate intermittent execution. Tiled implementations
can ensure correct execution, but only at high cost (up to 19x slowdown) and sometimes do not complete. SONIC ensures correct execution
and is nearly as fast as the naive baseline, and TAILS is even faster. (9a) All three networks on continuous power, where SONIC & TAILS
add dramatically lower overheads than prior task-based systems. (9b) All three networks on intermittent power (100uF capacitor), where the
baseline and most tiled implementations do not complete. (9¢) The MNIST network across all four power systems. SONIC & TAILS always
completes and has consistently good performance; HAR and OkG show similar results.
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Figure 10. Proportions of time spent comput- Figure 11. Energy of three neural networks ~ Figure 12. Energy profile of SONIC broken
ing the kernel of a layer. SONIC & TAILS add  with a 1mF capacitor. SONIC & TAILS require ~ down by operation and layer. Multiplication,
small overheads over a naive baseline, unlike  substantially less energy than the state-of-the- control, and memory accesses represent sig-

prior task-based systems (Tile-32). art. nificant overheads.

Ultimately, these results indicate that inference is viable on TAILS’s overhead also comes from control; TAILS signifi-
commodity energy-harvesting devices, and SONIC & TAILS cantly accelerates kernels. TAILS’s control overhead is large
significantly reduce overheads over the state-of-the-art. due to LEA’s fixed-point representation, which forces TAILS

to bit-shift activations before invoking FIR-DTC. Moreover,
LEA does not have a left-shift operation (it does have a right-

9.2 Loop continuation nearly eliminates overheads due shift), so these shifts must be done in software. These shifts
to intermittence account for most of the control time in Fig. 10.
Fig. 10 shows that the overheads of SONIC & TAILS come Fig. 10 also shows the time breakdown for Tile-32. Unlike
mainly from control required to support intermittence. The SONIC & TAILS, Tile-32 spends significantly more time in
darker-hatched regions of the bars represent the proportion both control and the kernel. This is because Alpaca uses redo-
of time spent computing a layer’s kernel (i.e., the main loop), logging on all written values to ensure idempotence, so every
while the lighter regions represent control overheads (i.e., task write requires dynamic buffering (kernel time) and commit-
transitions and setup/teardown). Most of the difference in per- ting when the task completes (control time). SONIC & TAILS
formance between the baseline and SONIC is attributable to effectively eliminate redo-logging, avoiding these overheads.

the lighter, control regions. This suggests that SONIC imposes
small overhead over the naive baseline, which accumulates 9.3 SONIC & TAILS use much less energy than tiling

values in registers and avoids memory writes (but does not Energy-harvesting systems spend a majority of their time pow-
tolerate intermittence). ered off recharging, so execution time is largely determined by
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energy efficiency. Fig. 11 shows that SONIC & TAILS achieve
high performance because they require less energy than other
schemes. Inference energy is in direct proportion to the dead
time spent recharging in Fig. 9. Since dead time dominates
inference time, SONIC & TAILS get similar improvements in
inference energy as they do in terms of inference time.

9.4 Where does SONIC’s energy go?

Fig. 12 further characterizes SONIC by showing the pro-
portion of energy spent on different operations. The blue
regions represent memory operations, the orange regions
are control instructions, the green regions are arithmetic in-
structions within the kernels, the purple regions are the task-
transition overhead, and the grey regions are the remaining,
unaccounted-for energy. The control instructions account for
26% of SONIC’s energy, and a further 14% of system energy
comes from FRAM writes to loop indices. Ideally, these over-
heads would be amortized across many kernel operations, but
doing this requires a more efficient architecture.

10 Future intermittent architecture research

Our experience in building SONIC & TAILS demonstrates
there is a large opportunity to accelerate intermittent infer-
ence via a parallel architecture with built-in support for in-
termittent operation. However, typical microcontrollers for
energy-harvesting systems are poorly suited to efficient infer-
ence, and we have identified several opportunities to signifi-
cantly improve them with better hardware support. Current
microcontrollers are sequential, single-cycle processors, and
so spend very little of their energy on “useful work™ [42].
For example, by deducting the energy of nop instructions
from Fig. 12, we estimate that SONIC spends 40% of its en-
ergy on instruction fetch and decode. This cost is a waste in
highly structured computations like DNN inference, where
overheads easily amortize over many operations.

LEA should bridge this efficiency gap, but unfortunately
LEA has many limitations. Invoking LEA is expensive. Each
LEA invocation should therefore do as much work as possible,
but LEA’s parallelism is limited by its small (4KB) SRAM
buffer. This small buffer also forces frequent DMA between
SRAM and FRAM, which cannot be overlapped with LEA
execution and does not support strided accesses or scatter-
gather. LEA has surprising gaps in its support: it does not
support vector left-shift or scalar multiply, forcing TAILS to
fall back to software. In software, integer multiplication is a
memory-mapped peripheral that takes four instructions and
nine cycles. All told, these limitations cause SONIC & TAILS
to spend much more energy than necessary. There is ample
room to improve inference efficiency via a better architecture.

Thus far, architectures for intermittent computing have
focused on how hardware can efficiently guarantee correct-
ness [41, 53, 54]. While there is certainly scope for archi-
tectural support, correctness requires a full-stack approach.
Handling correctness in the architecture alone is insufficient
because it ignores system-level effects, such as I/O (e.g., sen-
sors and radios), data timeliness, and interrupts that must be
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part of an end-to-end correctness guarantee [17, 40]. More-
over, an architecture-only approach is energy-inefficient be-
cause it must conservatively back up architectural state in
non-volatile memory after each instruction. Software can
instead identify precisely what state is needed for correct-
ness (e.g., loop indices in SONIC). We therefore see more
opportunity in targeted architectural support (e.g., caches
with just-in-time checkpointing to avoid frequent, expensive
writes to non-volatile memory for index variables), than in
conservative models that ask nothing of software [53, 54].

Furthermore, to enable compute-heavy applications like
inference and signal processing, future intermittent architec-
tures must aggressively optimize for energy efficiency. The
key is to eliminate or amortize wasted energy (e.g., in fetch,
decode, register file, and FRAM)—we estimate that a new
architecture would save 14% of system energy just by elimi-
nating frequent FRAM writes to loop indices alone!

Intermittent architectures must navigate several fundamen-
tal design challenges to optimize energy efficiency. Highly
specialized architectures (e.g., ASICs) are the most efficient,
but sacrifice programmability. Such specialization is prema-
ture in intermittent computing systems because the dominant
applications in this domain are yet to be determined; pro-
grammability remains essential. Programmable architectures
can achieve ASIC-like efficiency on highly parallel codes
by amortizing energy spent across many in-flight operations.
Unfortunately, this requires high power and large amounts of
state [19], both of which are non-starters in energy-harvesting
systems. Hence, a balance of modest specialization and SIMD
parallelism is needed to maximize energy-efficiency [20, 34].
We are currently exploring an intermittent parallel architec-
ture inspired by streaming dataflow models [32, 64, 66, 72],
striking an appealing balance between programmability, par-
allelism, and specialization to maximize efficiency without
compromising the architecture’s ability to provide correctness
guarantees.

11 Conclusion

This paper has argued that intelligence “beyond the edge”
will enable new classes of IoT applications, and presented the
first demonstration of efficient DNN inference on commodity
energy-harvesting systems. We presented a high-level analy-
sis of why inference accuracy matters, and used this analysis
to automatically compress networks to maximize end-to-end
application performance. SONIC & TAILS then specialize in-
termittence support to guarantee correct execution, regardless
of power system, while reducing overheads by up to 6.9x
and 12.2x, respectively, over the state-of-the-art.
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