Cacheline Utilization-Aware Link Traffic
Compression for Modular GPUs

Kishore Punniyamurthy
The University of Texas at Austin
kishore.punniyamurthy @utexas.edu

Abstract—Modular GPU systems are increasingly gaining at-
tention for continued scaling of system sizes under packaging
and fabrication challenges. In such systems, limited interconnect
bandwidth can be a concern for system performance and energy
efficiency. Compression has been widely considered as an effective
means to reduce the amount of data moved. However, most prior
related schemes are limited to exploiting the cacheline data values
for achieving high compression ratios.

We propose CUALIT: Cacheline Utilization-Aware Link Traffic
compression to reduce 1/O link traffic for modular GPU systems.
Our approach exploits the variation in temporal and spatial
utilization of individual cacheline words to achieve higher com-
pression ratios. We utilize a novel mechanism to predict utiliza-
tion of cachelines across warps at word granularity. Predicted
unutilized words are dropped from responses. Furthermore,
latency-critical words are compressed using traditional methods
while words with temporal slack are coalesced across cachelines
and compressed lazily to achieve higher compression ratios.
CUALIT reduces offchip link traffic by 14% on average while
achieving up to 25% lower system energy and an average 11%
(up to 2x) higher performance over a compression only scheme.

I. INTRODUCTION

System performance can be significantly impacted by inter-
connect bandwidth constraints in current hardware designs [1].
With a growing number of scalable systems utilizing highly
parallel processors [2]-[4], increasing fabrication challenges of
large chips, and higher data movement costs [5], interconnect
bandwidth has become a very valuable resource.

Reducing data traffic is a widely recognized way to save
interconnect bandwidth, thereby improving performance and
reducing memory energy consumption. Compression is an
established solution for reducing the amount of data moved
between memories and processors. While many different com-
pression approaches have been proposed in the past [6]—
[8], they typically only exploit redundancy in data values
for compression but otherwise treat all words (4 bytes) in
a cacheline identically. At the same time, general purpose
graphics processing unit (GPGPU) applications exhibit sig-
nificant variation in temporal and spatial cacheline utilization
[9], [10]. On the one hand, there are words that are accessed
either immediately after the cacheline is brought in, or have
some timing slack before they are first accessed (temporal
utilization). On the other hand, there are words that are never
accessed during their lifetime in the cache (spatial utilization).
Such variations can be exploited to further reduce the amount
of data moved. Adaptive cache management schemes that
predict spatial locality of memory requests and support partial
cacheline accesses [10], [11] to reduce bandwidth consumption
have been proposed. However, these schemes are limited

Shomit Das
AMD Research
shomit.das@amd.com

Andreas Gerstlauer
The University of Texas at Austin
gerstl@utexas.edu

prediction Decompression

Traditional low-latency I Lazy

@ compression Dﬂ compression

Slack aware compression

Pruning

3 Critical
[Non-critical
[Unutilized

Fig. 1: CUALIT Overview.

in their ability to perform word-granularity prediction for
GPGPU applications and thus reap lower benefits. LATTE-
CC [12] relies on parallelism in GPUs to perform aggressive
but slower compression. However, it is applied per individual
cacheline and does not capture opportunities across cachelines.

In this paper, we present CUALIT (pronounced “quality”),
an approach for Cacheline Utilization-Aware Link Traffic
compression that addresses such concerns by exploiting both
spatial and temporal variation in cacheline utilization at word-
level granularity to reduce interconnect traffic. An overview
of our scheme is shown in Fig. 1. It uses a novel mechanism
for fine-grained prediction of cacheline utilization. The words
predicted to be unutilized during the lifetime of a cacheline are
dropped from memory responses. Words with predicted slack
in access times are batched across cachelines and lazily com-
pressed. This enables us to harness data content locality [13]
across different cachelines being accessed at the same time,
resulting in higher effective compression ratios and subsequent
traffic reduction. The critical words are handled in similar
manner as in traditional compression schemes.

In summary, this paper makes the following contributions:

o We analyze the variation in spatial and temporal utiliza-
tion across cacheline words for GPGPU applications.

e We propose a novel prediction mechanism that al-
lows fine-grained prediction of cacheline utilization for
GPGPU applications.

o We propose lazy batch compression, an effective mech-
anism to exploit the temporal slack across words within
a cacheline to achieve higher compression ratios.

The rest of the paper is organized as follows: we show
the opportunity for exploiting cacheline utilization to reduce
bandwidth consumption in Section II followed by an overview
of related work in Section III. Section IV provides a detailed
description of our scheme. Our experimental setup and results
are presented in Section V. Finally, the paper concludes with
a summary in Section VL.

0 cyc. HEE 0-50 cyc. BN 50-100 cyc. W >100 cyc. 1 Never

MUM GAUS SRAD SC

o @
e o

8

HW LUL

N

Cacheline
temporal utilization
o O

Fig. 2: Cacheline utilization.

II. MOTIVATION

Fig. 2 shows the distribution of word utilization in cache-
lines across different GPGPU benchmarks. We track the time
of first access to each word relative to the time the cacheline
was brought into the cache. Not surprisingly, we can observe
that the different words within a cacheline are requested at dif-
ferent times. Based on utilization, they can be categorized into
three groups: Critical words: which are accessed immediately
after cacheline becomes active in cache (31% on average).
Non-critical words: which have a delay between cacheline
filling and being accessed. We see that ~10% of words are
accessed within 50 cycles of filling cacheline and ~17% of
words have a slack of more than 100 cycles. Unutilized words:
which are never accessed before the line gets evicted (~40%).
In conclusion, we see that cachelines exhibit variation in
both spatial and temporal utilization. Such variations can be
leveraged to reduce the data movement. Spatial variation can
be used to prune the unutilized words in memory responses
while the slack available due to temporal variation can be
used to increase data compression opportunities. However,
there are challenges in doing so. 1) Accurate utilization
prediction: accurate prediction of utilization is vital since
an aggressive incorrect prediction will result in additional
accesses and performance loss while conservative prediction
will limit benefits. Prior works have proposed spatial utiliza-
tion prediction but they provide coarse granularity prediction
[10] or are intended for CPU applications [11] and may
not work as well for GPU applications, as explained later.
We address this by introducing a novel granularity predictor
which can predict utilization and prune the unutilized words
from memory responses. 2) Exploiting slack to reduce data
movement with minimum overhead: traditional compression
schemes aim to compress cachelines under stringent latency
constraints (latency-sensitive). Conversely, exploiting temporal
variation requires schemes which optimize for compression
ratio with long compression/decompression latency and low
hardware overhead. We propose a lazy batch compression
scheme which delays responses in order to find and harness
data content locality across cachelines and thereby achieving
higher compression ratio by exploiting the slack.

III. RELATED WORK

Researchers have proposed many compression schemes
focusing on minimizing decompression latency for cache and
link compression. Most of the earlier proposed works tend to
focus on removal of redundant data patterns in cacheline data.
BAI [6] is based on the observation that most cachelines have
a low dynamic range for data and hence, can be represented

as base and series of offsets using fewer bytes than actual
cacheline size. There have been works which exploit frequent
values [7] or frequent patterns within cacheline [13], [14].
Some schemes have suggested a data transformation step that
results in data with higher compression ratio [15]. CUALIT is
orthogonal to all these compression algorithms since it uses
existing schemes to perform compression while considering
the spatial and temporal utilization. We evaluate CUALIT
using the C-PACK [14] compression scheme; however, any
scheme which compresses across lines can be used instead.
LATTE-CC [12] aims at aggressively compressing individual
cachelines by switching between slow but effective and fast
but relaxed compression schemes depending on the parallelism
available in GPUs. CUALIT aims at reducing link bandwidth
consumption (and not cache compression) by exploiting the
slack in access times available across cachelines. Further,
aggressive single cacheline compression schemes used in
LATTE-CC can equally be used in CUALIT.

There have been prior works which have proposed partial
cache line access to reduce link bandwidth usage and poten-
tially increase effective cache size. LAMAR [10] proposes
dynamically switching between performing 32B cacheline
sector accesses against entire 128B cacheline access depend-
ing on the prediction mechanism used. Further, they also
suggest modifications to caches to increase their effective
size. CUALIT does aim to reduce bandwidth requirements
depending on the spatial locality captured (cacheline utiliza-
tion) similar to these approaches, but we perform much finer
granularity accesses (as small as 4B). Such small granularity
accesses make predicting the number of words to be accessed
and which words to be accessed more challenging. We do not
propose changing effective cache size but such modifications
can very well be performed. Amoeba-cache [11] proposes
variable cacheline size to reduce link bandwidth consumption
and cache capacity utilization. This work also proposes a
prediction mechanism to perform fine grained access inspired
from earlier works [10]. The mechanisms presented in these
works are intended for CPUs and can perform poorly for GPUs
(shown later). CUALIT uses a novel prediction mechanism to
predict the correct granularity of access and we show that it
avoids the pitfalls of prior works.

IV. CUALIT

CUALIT combines granularity prediction, utilization-aware
pruning, and compression to reduce the amount of data moved
across the interconnect; thereby saving bandwidth and energy
consumption while improving performance. Fig. 3 shows the
overview of our scheme. Our scheme begins with an accurate
prediction of the utilization of the requested cacheline during
its lifetime in the cache. To do so, the prediction mechanism
needs to be trained. Caches are augmented with book-keeping
data to track the utilized words within the cacheline. Every
time a cacheline gets evicted, its utilization is used to calibrate
the granularity predictor @) (more details in Section IV).
When a memory read request is generated due to a cache miss,
the utilization of the cacheline is predicted and then the request
along with this metadata is sent across the interconnect to the

= NM{SM|[SM | --| SM SM || SM
1 Evicted

Cache

-~ SM
Cache

Cache||Cache

RS

[On-chip network |

! Cache|[Cache

[On-chip network |

1 t
Decompression Decompression
unit unit

| Off-chip interconnect

Py
)
Q
[=
[0
@
+
[P

Pruning unit

I

HNWS
CRARNOBO
Ly

Avg. SD of line
utilization (bytes)

KM HW LUL MUM GAUS SRAD

Fig. 4: Access granularity variation.

memory @). Once the responses have been accessed from the
memory, they are pruned o and compressed based on their
criticality 9 before sending into the interconnect. Finally,
the compressed responses are decompressed within each GPU
module before being filled into the cache e The metadata
included with the responses specify the valid words within
each response. We now delve into the individual components.

A. Utilization prediction

Benefit from CUALIT hinges on reliable and fine-grained
prediction of cacheline utilization. In a GPU, since the threads
are mostly identical, it is reasonable to expect the same
instructions across warps to behave similarly. We validate
this by tracking the variation in the utilization of cachelines
accessed by individual instructions (program counter (PC)
specific) and plot the standard deviation (SD) of utilization
(in bytes) averaged across all PC for different benchmarks as
shown in Fig. 4. The maximum and minimum SD observed
are plotted as error bars. We see that for most benchmarks, the
variation in utilization of cachelines accessed by same PC is
~10B or less for a 128B cacheline, indicating that instructions
with same PC have similar utilization in most cases. We exploit
this observation in our scheme.

Prior works have proposed fine-grained utilization pre-
diction by selecting useful words as the set of all words
between touched words seen in history, while utilizing critical
word index [11]. Such schemes may not work well for GPU
applications. Consider the example shown in Fig. 5a consisting
of 4 warps (Wp-W3) each accessing 2 words in cacheline A
(32B cacheline) on executing instruction with program counter
(PC) p. Consider a case where cacheline A is filled in to the
cache and gets evicted by the time only 2 warps (Wy-W) have
completed their accesses. Prior PC-based spatial prediction

Tag Store

PC:p PC# Ut
cachelinea[0] 1] 2] 3] 4] 5] 6] 7] Oct | 0@ | Tag bits & entry
Events Cacheline A = = =
PC:p A —> 0x2 | 0x4 | Tag bits & entry
PC:p A Cacheline A Prediction Table
Cacheline A evicted ° evicted =
Cache miss Predicted

granularity: 4

[rep ALTTIIIIIT et ngy |

(a) Prediction example. (b) Granularity predictor
Fig. 5: Utilization prediction.

solutions [11] use the utilized words to predict the mask for
next access, which is <0:3>in this case. Next consider that
warp W, executes PC p, now the prediction will be either
<0:3>in which case the prediction is wrong, or if the predictor
uses critical word index then no prediction will be made and
result in conservative access. Similar miss predictions may
happen when warps access other cachelines while executing
PC p instruction.

We propose a novel prediction mechanism capable of re-
liably predicting the number of words (4B) which will be
accessed from the requested cacheline before its eviction. The
predictor outputs the granularity for the access and not the
pattern of useful bytes within cacheline. Consider accessing
128B cacheline at different granularities for example, 1x128B,
2x64B, 4x32B and so on forming a hierarchy. The predictor
predicts the optimal granularity (4/8/16/32/64/128 bytes) and
only the predicted granularity size segments containing the
requested words are moved. For example, if the coalesced
request for the cacheline requires the 0% and 5% word and
the predicted granularity is 16B. Then all the words within
the 16B segments containing requested words (i.e., words O-
7) are brought in response. For the example shown earlier, our
prediction mechanism will learn the granularity to be 4 words
and would predict the 4 word chunk containing the requested
words (i.e., <4:7>) when W, executes.

Fig. 5b shows the working of the granularity predictor. It
is a PC-based predictor consisting of a prediction table and
metadata tracking as part of the cache tag store. The prediction
table is indexed by PC bits and holds the predicted granularity
for the PC. The tag store is extended to store bits from PC
making the request and to track the cacheline words accessed.

Predictor training is a two step process. Every time a
new cacheline is allocated 0, bits from PC of the corre-
sponding instruction are stored as part of tag entry. We use
bits <10:7>from PC. On a line eviction 9, the PC bits
and utilization metadata are used to update the prediction
table. The PC bits are used to index into the table and
the corresponding entry is updated with the new granularity
(4/8/16/32/64/128 bytes) depending on the number of words
accessed in the evicted cacheline. Since the update to the
predictor table happens on eviction, it does not affect the
critical path and therefore, does not add to the memory latency.
We found that predictor table with 16 entries worked well for
our experiments. Finally on a cache miss 0, bits from the
requesting PC are used to index into the granularity prediction
table to obtain the granularity of request. If no prediction is

18] : Addr2, <1,0,0,1,0,0,0,0>
| Comp | | Lazy Comp | Addr1, <0,1,1,0,0,0,0,0> : Addr3, <0,0,1,1,1,1,1,1>

<0,1,1,0,0,0,0,0> <1,0,0,1,0,0,0,0>

(CE T T
t f t

<11,0,0,0,0,00> S 200, T, T1,1,1,1> -
| Decompression |
<01,1,00,0,00>; :
[1 [TTTT] Gran:16B Viela : (i e
<1,1,0,0,0,0,0,05; ata1]®®"] |dataz| "% gatag] P23

Gran: 32B Critical compressed

data

Lazy compressed data

(a) Pruning and compression. (b) Decompression.
Fig. 6: CUALIT working.

available, full cacheline is selected by default. The predicted
granularity along with the bytes required by the coalesced
request is used to determine the actual utilization of the
cacheline. The total overhead of metadata sent along with each
request is 35 bits (32b bitmask + 3b for granularity).

The above scheme predicts the spatial utilization of cache-
lines and not its temporal utilization. We mark the words
required in the coalesced request as critical and others as non-
critical. We do so for simplicity as tracking variation in slack
across words will require a complicated design and additional
book-keeping. As results (in a later section) show, this simple
differentiation is sufficient to get benefits.

B. Spatial utilization-aware pruning

The predicted spatial utilization is used to prune the unuti-
lized words from the responses. This is simply done by
dropping the words from the memory responses and updating
the metadata to indicate the valid words. Fig. 6a shows an
example of the same with two 32B responses with predicted
granularity of 16B and 32B respectively. The unutilized words
(shown in gray) from memory responses are cropped by the
pruning unit. Instead of pruning the memory response, it is
possible to read only the required bytes, resulting in potential
lower memory access latency. However, in our experiments
we read the entire cacheline from memory. Unlike spatial
utilization, exploiting temporal utilization is not trivial since
all the words are required but have different slack time.
Traditional compression schemes optimize for latency and
treat all words equally except for their data content. On the
contrary, we need schemes which optimize for compression
ratio at the expense of long latency.

C. Slack-aware compression

We perform slack-aware compression where words are com-
pressed differently based on the available slack (criticality).
As mentioned earlier, words are marked critical if they are
required by the request causing the cache miss (using metadata
in each request). In our example (Fig. 6a), words <0:3>of
the first response are predicted to be utilized based on its
granularity with words <1:2>as critical while the second
response has entire cacheline predicted to be utilized with
words <0:1>as critical. Critical words which are required
immediately are compressed using the traditional scheme by
the Comp unit. We use C-PACK as our standard compression
scheme but any other scheme can equally be used. The non-
critical (and any mispredicted critical) words are batched
together and compressed lazily. Each compressed data also

Common Line 1 Line 2
Header metadata metadata

P Ty YYY N

1 VId | Compressed Vid Compressed !

' -Addr‘ mask| __Line 1 }Addr‘mask Line 2 ‘ i

e m e e e e e e e
____________ —_— 2/

Non-Critical words [e
Comp [I I I

Destination Holding directory

Fig. 7: Lazy batch compression.

contains metadata (a bit mask) indicating the number and
position of valid words.

Fig. 7 shows the lazy batch compression unit in detail.
Lazy batch compression tries to compress non-critical words
across cachelines with an aim to achieve higher compression
ratio. It uses a library based compression scheme (C-PACK)
to compress words while reusing dictionary across cachelines
to exploit data-content locality and thereby achieving higher
compression ratio. To be able to compress across cachelines,
the responses are delayed and batched together by storing them
in the holding buffer for a certain duration (a parameter).
Delaying and batching responses to compress more words
allows this scheme to trade-off slack for compression ratio.
In a multi-module GPU system memory responses might be
destined to different modules and should be batched separately.
We do so, by having a holding directory with a buffer for
each destination. The buffer size is set at 256B to limit
overhead. When a new response with slack reaches the unit,
the appropriate buffer is selected based on the destination, the
incoming words are compressed using the destination-specific
dictionary and inserted into the buffer if space available. For
every new cacheline inserted, its valid mask (32b) and address
(48b) are also stored. The responses are dispatched to their
destinations once the delay duration is over or the buffer is
full. If there is insufficient space in buffer, the words are
treated the same as critical words and dispatched immediately
without delay. We use 32B dictionary per destination and delay
duration of 200 cycles to keep the overhead nominal.

D. Decompression

The compressed responses received from the interconnect
are decompressed at each module before filling them into
caches. Since lazy batch compression compresses lines to same
module (not same cache), decompression is done at the I/O
interface of each module as shown in Fig. 3. The metadata
included with every response received contains information
about the number and position of valid words. Fig. 6b shows
an example of decompression in action. Metadatal provides
the address (Addrl) and valid mask (<0,1,1,0,0,0,0>) for
critical compressed line which is used for its decompression.
Lazy batch compressed responses with multiple cachelines are
decompressed one at a time using the metadata pertaining to
individual cacheline. The decompression mechanism is same
as the original scheme [14] except the number of words are de-
termined by valid mask. The extracted responses are then sent
to their respective caches within each module where they are
filled into the cache along with their active word masks which
are stored in tag arrays. We add compression/decompression
latency overhead of 10 cycles [14]. If a read request wants a

1

b

oo > - CMSI T Cluster 2 Cluster 1
VIR ST DT e | ey s

' S A g ' ['

™
A
5

L

‘Q:ﬁ
=
IEl
2/
i
I
&
Bl
=
&
v

...........................

1
< Interconnect 1 1 SMCluster17 1§ SMCluster21 1
- 1 fEﬁY 1 rEﬁ| 1
LN}
1

[y L] [y } 1
[J—

—
nterconnect——>

Fig. 8: Example of Simulated System.

TABLE I: Simulation parameters.

System Configuration
Total SMs 64 (16 clusters with 4 each)
Memory stacks 16
SM Configuration
1.4Ghz, GTO warp scheduler [16]
32kB, 4-way, 128B cacheline [20]
IMB, 16-way, 128B cacheline [20]

Core configuration
Private L1 cache
Shared L2 cache

Interconnect

Frequency 2.5Ghz

Topology Ext: Tree, Central pkg: Fully connected
Bandwidth

In-pkg bandwidth
Off-chip bandwidth

160 GB/s per stack [20]
80 GB/s [20]
Memory Stack
16 vaults/stack, 64 TSVs/vault [20]
FR-FCFS
DDR3 [20]

Stack configuration
Scheduling policy
Timing

word which is not active in the cache, it is treated as a miss.
Since this work aims at reducing interconnect traffic, caches in
our experimental setup do not support variable cacheline size.
Therefore, the effective cache capacity remains the same.

V. EVALUATION

In this work, our goal is to reduce the link bandwidth
consumption using utilization-aware compression. We evaluate
our scheme’s impact on link bandwidth and consequent system
performance and energy, on a multi-module system where
each module consists of streaming multiprocessors (SMs)
and in-package memory in the form of Hybrid Memory
Cubes (HMCs) as shown in Fig. 8. We use GPGPUSim
v3.2.2 [16] for our experiments. GPGPUSim is coupled with
GPUWattch [17] for modeling SM energy consumption and
DRAMPower [18] to model the memory and I/O power. We
configure GPGPUSim to model 3D stacked memory according
to HMC specifications [19] since HMC allows integration of
units into a network. The capacity of each stack is the same
and total memory is set to be equal to the memory footprint
of each application evaluated. The simulator parameters are
summarized in Table I. The benchmarks evaluated are shown
in Table II. The benchmarks are simulated to completion or
till 1 billion instructions whichever occurred first.

We first compare the effectiveness of our prediction mech-
anism against PC-based prediction scheme used in [11]. We
limit to PC-based schemes so that the patterns learnt from
a warp can be used across all the warps. The responses are
pruned to bring only the predicted bytes. No compression is
applied. Fig. 9 shows the off-chip traffic observed using pro-
posed granularity prediction and prior work. We can observe
that our scheme performs better with average 22% (up to 56%)
lower data movement. The prior work uses critical word index

TABLE II: Benchmarks.

Benchmark Input
Backprop (BP) [21] 256k
Bfs [21] IMW
Cfd [21] 0.2M
Heartwall (HW) [21] test.avi, 5
Lulesh (LUL) [22] Default
Mummer (MUM) [21] NC_003997_q25bp.50k.fna
Gaussian (GAUS) [21] matrix512
Sradvl (SRAD) [21] 100, 0.5, 502, 458
Streamcluster (SC) [21] Default

Normalized
off-chip data
cooor
NRowo

BP Bfs Cfd HW LUL

MUM GAUS SRAD SC Avg

Fig. 9: Prediction mechanism performance.

on top of PC for indexing, resulting in conservative behavior
with lower benefits. Our aggressive fine grained prediction
results in higher data movement for Backprop and Sradvl but
the increase is small (<4%).

We compare the reduction in actual off-chip data (not
including padding bytes) moved under different configurations
as shown in Fig. 10. The baseline (Base) has no compression
and accesses complete cachelines. Comp uses traditional com-
pression (C-PACK). CompMask uses granularity prediction
and compresses the pruned data using traditional compression
scheme and CompMask-Lazy uses granularity prediction and
employs slack-aware compression on pruned response. RQ and
RSP indicate data traffic type: memory request and response
respectively. We can see that on average Comp reduces 28%
of total offchip data traffic, CompMask gets higher (33%) re-
duction indicating spatial utilization can be exploited to obtain
bandwidth saving. The effectiveness of lazy batch compression
is evident from the average 42% traffic reduction obtained
by CompMask-Lazy. Moreover, CompMask-Lazy reduces 12%
higher off-chip traffic than CompMask indicating the addi-
tional compression opportunities captured by our lazy batch
compression scheme. The request traffic for all configurations
is in general higher than Base (except for Comp) due to the
metadata (requested word mask (4 bytes) and granularity (1
byte)) overhead. This overhead is often compensated by the
reduction in the response sizes resulting in net reduction in
traffic. However, there are some cases when the net traffic
increases e.g., Heartwall and Backprop for CompMask.

HMC uses packet switch interconnect and will have over-
head of padding bytes if response sizes are not multiple of flit
size. Schemes like [15] can be deployed to eliminate the same
but has not been implemented in this work.

We now compare the system energy savings obtained with
different configurations. I/O link energy saving methods have
been proposed by X. Jian et al. [5], which save energy at
the cost of bandwidth. Implementing these solutions is not
the focus of this work and we assume that I/O component of
link energy is reduced proportional to the reduction in link
traffic. Fig.11 shows the normalized IPC and system energy
across different configurations. Comparing the energy savings
obtained we see that Comp reduces system energy by 12%

EEE RQ:Base
RSP:Base

EEE RQ:Comp
RSP:Comp

BN RQ:C
RSP:CompMask

@ RQ:C k-Lazy
T3 RSP:CompMask-Lazy

Normalized
offchip data
eepocoopm

ON RO ®O

BP Bfs Cfd HW LUL MUM GAUS SRAD sC Avg

Fig. 10: Normalized off-chip traffic.

Normalized Energy

BP Bfs Cfd HW LUL

MUM GAUS SRAD SC Avg

Fig. 11: Normalized IPC and energy saving.

while CompMask and CompMask-Lazy get 14% and 17%
energy saving respectively. CompMask-Lazy reduces 4% (up
to 24%) more system energy than CompMask scheme.

On comparing the IPC improvement across configurations
(see Fig. 11), we see in general that the reduction in traffic
is not reflected in IPC benefits, this is because, using a
flitsize of 68 bytes diminishes the benefit obtained due to
padding overhead and lower bandwidth pressure. The response
size is 128 bytes (data) + 8 bytes (header) resulting in 2
flits per response. Cfd and Streamcluster still benefit from
traffic reduction. On average Comp provides 5% (up to 32%)
performance improvement, while CompMask and CompMask-
Lazy provide 7% (up to 48%) and 16% (up to 2x) improvement
respectively. Streamcluster benefits significantly due to its high
data-content locality. We study the performance impact under
smaller flit sizes. We reduce the flit size from 68B to 32B
while keeping other network parameters same, this reduces
the padding overhead and increases the bandwidth demand
since every response now requires 5 flits. Fig.12 shows the
IPC under different flit sizes normalized to 68B (Base-68). We
can see that performance drops for many benchmarks due to
increased bandwidth demand with 32B flits and in most cases
our scheme is able to accommodate the increased bandwidth
demand while achieving similar or higher performance. We
find that under higher bandwidth demand Comp provides 20%
average improvement while CompMask and CompMask-Lazy
provide 23% and 36% improvement respectively.

VI. CONCLUSION

This paper presents CUALIT - Cacheline Utilization Aware
Link Traffic Compression. The scheme exploits the variation in
temporal and spatial utilization to achieve higher compression
ratio. CUALIT uses a novel granularity predictor to predict the
cacheline utilization at a very fine granularity. This information
is then used to prune unutilized words, batch and lazily
compress words with slack to harness data content locality
across cachelines. Our evaluations show that CUALIT reduces
the link traffic by 42% on average, subsequently reducing
system energy by 17% and improving performance by 16%.
Further, under high bandwidth demand, CUALIT provides
36% improvement demonstrating its effectiveness to reduce
bandwidth demand.

Il Base-68 B Comp-68 [CompMask-68 [1 CompMask-Lazy-68
Comp-32 [EZd CompMask-32 [] CompMask-Lazy-32

Base-32

Fig. 12: IPC with 68B and 32B flitsizes.

VII. ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
comments. This work was partially supported by the National
Science Foundation (NSF) under grant CCF-1725743.

©2019 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES

[1] H. Jang et al., “Bandwidth-efficient on-chip interconnect designs for
GPGPUs,” in DAC, 2015.

[2] U. Milic et al., “Beyond the socket: Numa-aware gpus,” in MICRO,
2017.

[3] T. Vijayaraghavan et al., “Design and analysis of an apu for exascale
computing,” in HPCA, 2017.

[4] M. Poremba et al., “There and back again: Optimizing the interconnect
in networks of memory cubes,” in ISCA, 2017.

[5] X. Jian et al., “Understanding and optimizing power consumption in
memory networks,” in HPCA, 2017.

[6] G. Pekhimenko et al., “Base-delta-immediate compression: Practical
data compression for on-chip caches,” in PACT, 2012.

[71 J. Yang et al., “Frequent value compression in data caches,” in MICRO,
2000.

[8] V. Sathish et al., “Lossless and lossy memory i/o link compression for
improving performance of gpgpu workloads,” in PACT, 2012.

[9] C. Huang and V. Nagarajan, “Increasing cache capacity via critical-
words-only cache,” in /CCD, 2014.

[10] M. Rhu et al., “A locality-aware memory hierarchy for energy-efficient
GPU architectures,” in MICRO, 2013.

[11] S. Kumar et al., “Amoeba-cache: Adaptive blocks for eliminating waste
in the memory hierarchy,” in MICRO, 2012.

[12] A. Arunkumar et al., “LATTE-CC: Latency tolerance aware adaptive
cache compression management for energy efficient GPUs,” in HPCA,
2018.

[13] B. Panda and A. Seznec, “Dictionary sharing: An efficient cache
compression scheme for compressed caches,” in MICRO, 2016.

[14] X. Chen et al., “C-Pack: A high-performance microprocessor cache
compression algorithm,” IEEE Trans. on VLSI Systems, 2010.

[15] J. Kim et al., “Bit-plane compression: Transforming data for better
compression in many-core architectures,” in ISCA, 2016.

[16] A. Bakhoda et al., “Analyzing cuda workloads using a detailed gpu
simulator,” in ISPASS, 2009.

[17] J. Leng et al., “GPUWattch: enabling energy optimizations in GPGPUs,”
in ISCA, 2013.

[18] K. Chandrasekar et al., “System and circuit level power modeling of
energy-efficient 3D-stacked wide /O DRAMs,” in DATE, 2013.

[19] HMC Consortium, “Hybrid memory cube spec. 2.1,” tech. rep., 2015.

[20] K. Hsieh et al., “Transparent offloading and mapping (TOM): Enabling
programmer-transparent near-data processing in GPU systems,” in ISCA,
2016.

[21] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IISWC, 2009.

[22] 1. Karlin et al., “Lulesh programming model and performance ports
overview,” tech. rep., Lawrence Livermore National Lab, 2012.

