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development of a trajectory of learning about integers.
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Consider second-grader Sam’s and seventh-grader Ann’s responses to the open 
number sentence 6 +  = 4.
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Sam: Six plus blank equals 4. [Pause.] I can’t do that one, either.
Int.:  Why not?
Sam:  Because that is 6, and how could it [the sum] equal 4 unless this 

[addition sign] was a minus? [Then] I could do it.
Int.:  Can you explain why it doesn’t work when it’s plus?
Sam:  Because, don’t you see, it’s 6. And if I plus more, how would I get 

4? Even if I put zero right here [points to the blank], I couldn’t get 4.
Ann:  Six plus box equals 4. That would be negative 2.
Int.:  How did you think about that?
Ann:  Because . . . you can’t have a positive number [points to the blank] 

to get a number that is less than the first number. So you would have 
to have a negative number right there [points to the blank].

Int.:  So, I understand why it has to be negative. How did you know it was 
going to be a negative 2?

Ann:  Because 6 is greater than 4 by 2. So, to actually get it down to 4 you 
would actually have to subtract 2. So it is like minus 2.

Sam’s and Ann’s responses showcase examples of two of five ways of reasoning 
documented in our cross-sectional investigation of students’ understanding of 
integer addition and subtraction. For the same open number sentence, Sam’s implicit 
generalization that when one adds two numbers, the sum should not be smaller than 
the addends, which is correct in the domain of whole numbers, is one that Ann 
appropriately leverages in her solution. As this brief example illustrates, the results 
of our investigation of students’ thinking about integers provide insights into the 
emergent and powerful ways that students reason about integer addition and subtrac-
tion open number sentences both before and after school-based integers instruction. 
Moreover, the cross-sectional nature of our study enabled us to look across partici-
pant groups to analyze differences, similarities, and connections across grade levels.

Fluency with integer operations marks a transition from arithmetic to algebra 
and serves as a foundation for algebra because of the abstract nature of integers 
(Hefendehl-Hebeker, 1991; Linchevski & Williams, 1999; Peled & Carraher, 2008; 
Vlassis, 2002). For example, to navigate algebraic equations, students must 
perform algebraic procedures using additive inverses, which first come into play 
with the introduction of integers. Further, researchers have documented that 
students’ difficulties with algebra often relate to their understanding of number, 
specifically integers (Moses, Kamii, Swap, & Howard, 1989; Vlassis, 2002). 
Fluency with integers can serve as an important milestone for students’ future 
success in mathematics. Given the well-documented struggles that students have 
operating with negative numbers (e.g., Murray, 1985; Thomaidis & Tzanakis, 
2007), understanding students’ thinking about integer operations is particularly 
important to better support their learning. In reviewing the literature, we found 
no study in which elementary, middle, and high school students were sampled to 
document their reasoning about integer addition and subtraction. The findings 
from this study provide a cross-grades view of (a) students’ ways of reasoning 
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about integer addition and subtraction, (b) the relationships between problem types 
and ways of reasoning, and (c) the role that flexibility plays in solving addition 
and subtraction problems. The findings reported here advance the field’s collective 
understanding of students’ thinking about integer addition and subtraction and 
contribute to the efforts of the mathematics education research community to 
consider implications for instruction to enable students to successfully transition 
from arithmetic to algebra. In the following sections, we share the theoretical 
perspective and the literature base on which this work builds. We close this section 
by sharing a conceptual framework in which the relevant ideas and concepts that 
guide our study design, data collection, and analyses are integrated.

Literature Review

Students’ Mathematical Reasoning: Our Theoretical Orientation
We approach our research from a children’s mathematical thinking perspective 

(Carpenter, Fennema, Franke, Levi, & Empson, 2014; Case, 1996; Fuson, Smith, & 
Lo Cicero, 1997; Steffe, 1992, 1994, 2001; Steffe & Olive, 2010). Children’s math-
ematical thinking is distinct from that of adults, and we take seriously the nature of 
that mathematics, whether correct or not from an expert perspective. We value 
seeing mathematics through children’s eyes to better understand the sense they 
make. This perspective is grounded in Piaget’s work and based on constructivist 
principles that children have existing knowledge and experiences they bring into 
the classroom and upon which they continue to build (e.g., Carpenter et al., 2014).

Generally speaking, the goal of this line of work within mathematics education 
has been to describe cognitive processes and structures that model or account for 
children’s problem-solving activities in a given domain. Some scholars, like Case 
(1996), focused on more general cognitive structures, whereas others focused on 
domain-specific theories of student thinking (Carpenter & Moser, 1982, 1983; 
Steffe, 1992, 1994; Steffe & Olive, 2010). For example, Carpenter and Moser (1982, 
1983) described increasingly abstract and efficient strategies for addition and 
subtraction problems—strategies that reflect the development of critical under-
lying cognitive processes. Within the constructivist paradigm, researchers have 
used a variety of constructs to study the development of student thinking, 
including schemes and operations (e.g., Steffe, 1992), cognitive processes reflected 
in student strategies (e.g., Carpenter & Moser, 1983), mental models and frame-
work theory (e.g., Vosniadou & Brewer, 1992), and central conceptual structures 
(e.g., Case’s, 1996, central numerical structure of the mental number line). Though 
these scholars differ in the specific goals of their work, the core constructs used, 
units of analysis, data sources, and analytic tools, this work has a common focus: 
to explain how students develop increasingly sophisticated mathematical under-
standing over time, whether through the accommodation or reorganization of 
schemes or mental models, increased flexibility in choosing different and more 
efficient strategies, the coordination of multiple schemes into larger cognitive 
structures, or operating with increasing levels of abstraction.
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Although we share a broad constructivist orientation with others in this heritage, 
our approach to studying students’ mathematical thinking in the realm of integers 
is most closely aligned with Carpenter and Moser’s (1982, 1983) research on 
number concepts and the subsequent extensions of that work with the Cognitively 
Guided Instruction research program (Carpenter, Ansell, Franke, Fennema, & 
Weisbeck, 1993; Carpenter et al., 2014; Carpenter, Franke, & Levi, 2003; Empson 
& Levi, 2011). In work similar to theirs, we emphasize problem-solving processes 
and organizing student thinking into broader ways of reasoning and more-fine- 
grained strategies within these ways of reasoning. In our research, we focus on 
categorizing different approaches to integer addition and subtraction on the bases 
of patterns in students’ solution strategies and the underlying views of number 
and operations at work in those strategies.

Additionally, we take this perspective because our ultimate goal in this research 
is to find ways to better support children’s learning of mathematics. Instruction 
that is built on students’ ideas benefits both teachers and students (Franke, 
Carpenter, Levi, & Fennema, 2001; Gearhart & Saxe, 2004; National Council of 
Teachers of Mathematics [NCTM], 2000; Sowder, 2007; Wilson & Berne, 1999). 
Moreover, instruction that is focused on responding to and developing students’ 
mathematical thinking has been shown to support rich instructional environments 
(Gearhart & Saxe, 2004; NCTM, 2000; Sengupta-Irving & Enyedy, 2015; Sowder, 
2007; Wilson & Berne, 1999) and contribute to gains in student achievement 
(Bobis et al., 2005; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Fennema 
et al., 1996; Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Villaseñor & Kepner, 
1993). However, one must investigate, understand, and describe students’ math-
ematical ideas before those ideas can be used meaningfully in instruction—thus, 
the need for our study.

Because we are interested in understanding students’ conceptions related to 
integer addition and subtraction, we first review existing research about students’ 
reasoning about integers and describe how we build on and extend this work in our 
study.1 We also summarize research on problem types and flexibility because of 
our increasing understanding of the role that the two constructs play in under-
standing students’ ways of reasoning, in general (Kilpatrick, Swafford, & Findell, 
2001), and in understanding students’ ways of reasoning about integers,  specifically.

Students’ Reasoning on Integer Addition and Subtraction Problems

Research involving students postinstruction. Researchers have investigated 
students’ reasoning and performance on integer addition and subtraction problems 

1 We identified four additional areas of integers research that are beyond the scope of this paper: 
the historical development of integers, integer instruction, students’ understanding of integer com-
parisons, and students’ understanding of algebraic expressions and equations. For a comprehensive 
discussion of the historical development of integers, see Bishop, Lamb, Philipp, Whitacre, Schap-
pelle, and Lewis (2014); Hefendehl-Hebeker (1991); and Henley (1999). For thorough overviews 
of the research related to integer instruction, see the literature reviews in Bofferding (2014) and 
Stephan and Akyuz (2012).
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both after school-based instruction (e.g., Bofferding & Richardson, 2013; Chiu, 
2001; Lamb et al., 2017; Murray, 1985; Vlassis, 2002, 2008) and before (e.g., 
Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; Bofferding, 2010; 
Murray, 1985; Peled, Mukhopadhyay, & Resnick, 1989). Studies of student 
reasoning conducted after the participants had experienced school-based integer 
instruction can be grouped into two categories on the basis of the age of the 
participants: college students (Bofferding & Richardson, 2013; Chiu, 2001) and 
middle or high school students who had experienced instruction with integers 
within 2 years (Chiu, 2001; Lamb et al., 2017; Murray, 1985). In the first category, 
college students, regardless of major, demonstrated high rates of success on both 
integer addition and subtraction problems. Bofferding and Richardson (2013) 
documented that many tended to use rules or order-based reasoning to solve prob-
lems, whereas Chiu (2001) found that students used multiple metaphors to explain 
how they obtained and justified their answers. However, the performance and 
reasoning of students who had only recently experienced integer instruction 
contrast with the above findings in two ways. First, Murray (1985) and Lamb et 
al. (2017) found that students were much less successful solving subtraction prob-
lems (39%–69% correct across both studies) than addition problems (about 75% 
correct). Second, in interviews with high-performing ninth-grade students, 
Murray (1985) found that errors were often due to misapplied rules (see, also, 
Vlassis, 2002, 2008). Thus, researchers found that after recent school-based 
instruction, participants found integer subtraction problems more challenging than 
integer addition problems and that errors were often due to misapplied rules.

Research involving students preinstruction. Early research on students’ 
reasoning prior to school-based instruction on integer addition and subtraction 
provides consistent insights (Human & Murray, 1987; Murray, 1985; Peled, 1991; 
Peled et al., 1989). These researchers found that some children could solve many 
types of integer addition and subtraction problems using relatively abstract 
approaches, termed “spontaneous non-concrete reasoning” (Human & Murray, 
1987, p. 438) and “mental models” that “were quite abstract” (Peled et al., 1989, 
p. 109). Use of these approaches contradicted the researchers’ expectations that 
students would make connections to concrete embodiments of negative numbers, 
such as temperatures (Human & Murray, 1987; Murray, 1985) or debt (Peled, 
1991). Additionally, Murray (1985) identified three productive strategies that the 
students used: (a) motion on “a vertical number line,” (b) “correspondence (analo-
gies) with operations on whole numbers” (p, 149; also identified in Human & 
Murray, 1987), and (c) logic in comparing the relationship between a previously 
solved problem and a related new problem (e.g., 5 + -3 and 5 – -3) to aid in solving 
the latter problem (p. 150). 

More than 20 years after these researchers reported promising initial findings 
about students’ integer reasoning prior to school-based instruction, other 
researchers also found that some children were capable of reasoning about inte-
gers in relatively sophisticated ways (e.g., Behrend & Mohs, 2005; Bishop, 
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Lamb, Philipp, Schappelle, & Whitacre, 2011; Bishop, Lamb, Philipp, Whitacre, 
& Schappelle, 2014; Bofferding, 2010). For example, Bishop, Lamb, Philipp, 
Schappelle, and Whitacre (2011) found that first graders who had never heard 
of negative numbers nonetheless began to invent and reason productively about 
them in the contexts of completing addition and subtraction open number 
sentences. Additionally, Bofferding (2010) investigated 22 second graders’ 
meanings for the minus sign, prior to instruction about negative numbers. The 
children solved an average of 20% of integer addition and subtraction problems 
correctly, using multiple meanings of the minus sign including subtraction, 
negation, and the sign of a number.

Across this body of studies, researchers found that some students could solve a 
range of addition and subtraction problems using relatively sophisticated and 
abstract strategies and that students used three productive ways of reasoning: (a) 
leveraging order relations (Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2014; 
Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; Bofferding & 
Richardson, 2013; Chiu, 2001; Peled, 1991), (b) applying magnitude-based reasoning 
(Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; Chiu, 2001; Human 
& Murray, 1987; Whitacre et al., 2012), and (c) using logical necessity (Bishop, 
Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; Bishop, Lamb, Philipp, 
Whitacre, & Schappelle, 2016a, 2016b; Murray, 1985). Murray’s (1985) findings that 
students used three productive strategies (number line, analogy to whole numbers, 
and logic) closely correspond to three of the ways of reasoning identified by Bishop, 
Lamb, Philipp, Whitacre, Schappelle, and Lewis (2014): Motion on a vertical number 
line is an example of students’ leveraging order relations; correspondence (analogies) 
to whole numbers is an example of magnitude-based reasoning; and employing logic 
aligns with logical necessity. The notable consistency between findings related to 
these ways of reasoning—shared in studies that were conducted 30 years apart and 
across different grade levels—provides strength for claims that these ways of 
reasoning are robust and consistently held by students.

Both Murray (1985) and Bishop, Lamb, Philipp, Whitacre, Schappelle, and 
Lewis (2014) identified important and consistent categories of student thinking, 
and Bishop, Lamb, Philipp, Whitacre, Schappelle, and Lewis (2014) provided an 
organizing framework (the Ways of Reasoning Framework) to structure the field’s 
understanding and interpretation of student thinking with respect to integers. 
However, this framework has not been applied to a large data set. In this article, 
we present results of students’ reasoning across a large, cross-sectional data set 
and demonstrate the Ways of Reasoning Framework’s potential to unify students’ 
integer thinking across grade levels.2 We also add to the literature on problem 
types and flexibility by relating these constructs to integer operations of addition 
and subtraction. In the next section, we share research about problem types and 
how problem types may influence performance and strategy selection.

2 We introduce this framework in more detail in the Conceptual Framework section.
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Problem Types
Researchers have long recognized the importance of distinguishing among 

problem types within particular content areas and number domains (Carney, 
Smith, Hughes, Brendefur, & Crawford, 2016; Carpenter et al., 2014; Carpenter & 
Moser, 1982, 1983; Taber, 2002; Vergnaud, 1982, 1983). Features used to classify 
problems have included number choice (Carney et al., 2016), number relationships 
within problems (Taber, 2002), location of the unknown (Carpenter et al., 2014; 
Carpenter & Moser, 1982), operation (Vergnaud, 1983; Carpenter & Moser, 1983), 
and mathematical structure (Vergnaud, 1982, 1983). In most cases, researchers 
classified problems because of their influence on students’ success rates (e.g., 
Carpenter & Moser, 1982, 1983; Taber, 2002) or children’s problem-solving 
approaches (e.g., Carney et al., 2016; Carpenter & Moser, 1982). Because our 
ultimate goal is to share problem types that have the potential to support students’ 
growth in mathematical understanding, we, too, focus on features of problems that 
distinguish differences in students’ success and problem-solving approaches.

Within integer addition and subtraction, some work has been done to distinguish 
problem types (Bofferding, 2010; Bofferding & Richardson, 2013; Wessman-
Enzinger, 2015). For example, Wessman-Enzinger (2015) identified 24 problem 
types, taking into account operation; sign; location; and magnitude of each 
addend, minuend, or subtrahend (e.g., -4 + 6 and 6 + -4 are different problem types, 
which also differ from -4 + 2, and -4 + 4). Similarly, Bofferding (2010) shared 32 
problem types, accounting for “the position of the signs and numerals in the prob-
lems” (p. 705). In subsequent work, Bofferding and Richardson (2013) identified 
problem types distinguished by operation and the number of positives or negatives 
in the problem statement. They shared six categories: (a) Addition: Two Positives; 
(b) Addition: Two Negatives; (c) Addition: Negative, Positive; (d) Subtraction: Two 
Positives; (e) Subtraction: Two Negatives; (f) Subtraction: Negative, Positive. 
Human and Murray (1987) shared 10 “cases” (p. 440) of result-unknown integer 
addition and subtraction problems, although they acknowledged that their list was 
incomplete (e.g., the cases did not include addition problems with the first addend 
negative and second addend positive). And we infer from Peled’s Levels of 
Knowledge (1991), although not stated explicitly, that she distinguished three 
classes, or types, of problems on the basis of students’ abilities to solve result-
unknown integer addition and subtraction problems:

(a) a ± b, for a an integer and b a natural number;
(b) -a + -b for a, b natural numbers, -a – -b for a, b natural numbers AND a > b; 
and 
(c) a  ±  -b for a, b natural numbers, -a – -b for a, b natural numbers AND a < b.

In the realm of integers, researchers have determined problem types on the basis 
of operations (e.g., Bofferding, 2010; Bofferding & Richardson, 2013; Murray, 
1985; Wessman-Enzinger, 2015); whether the addends, minuend, or subtrahend 
were positive or negative (e.g., Bofferding & Richardson, 2013); how students 
solved the problems (e.g., Peled, 1991); and success rates (e.g., Murray, 1985). 
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Given the range in the number of problem types identified by different researchers, 
the field does not appear to have an established organizing principle to drive the 
identification of problem types. Thus, developing a coherent classification of 
problem types would address a gap in the literature and make a significant contri-
bution to research in this area.

In our interviews with students, we found that some problems seemed to elicit 
particular approaches for solving them. For example, we found that some partici-
pants tended to approach the problem -3 + 6 =  by counting on from -3 or using 
a number line. However, participants tended to approach the problem -5 + -1 =  
by comparing negative numbers to natural numbers. We thus sought to develop a 
problem-types framework for integer addition and subtraction that could be used 
to distinguish “important differences in how children solve the different problems” 
(Carpenter & Moser, 1983, p. 15).

In the next section, we share research about a related topic, flexibility, and how 
the construct of flexibility may play out for students’ completion of integer open 
number sentences.

Flexibility
In his discussion of strategies for integer computation, Murray (1985) observed 

that the same child might use different strategies depending on the problem structure:

Students were willing to change their strategies to accommodate the different cases, 
e.g. [sic] starting off with a vertical number line to deal with 5 – 8, but solving cases 
like -5 – -2 or -4 x 5 by extrapolating from known number facts. (p. 149)

During our interviews, we also noticed that some students seemed to purposefully 
and effectively change strategies from problem to problem. We were curious about 
the role that flexible strategy use, which we call flexibility, might play in relation 
to students’ success in solving integer problems.

In the 1990s, several researchers documented that experts demonstrated flexi-
bility (sometimes called within-individual variability, e.g., Dowker, Flood, 
Griffiths, Harriss, & Hook, 1996) when completing tasks in content areas such as 
single-digit multiplication (LeFevre et al., 1996), fraction comparison (Smith, 
1995), and estimation (Dowker et al., 1996; Sowder, 1992). For example, Smith 
(1995) studied 11 competent students’ strategies for solving a variety of rational 
number problems. On comparison tasks, he found that the students used different 
strategies from problem to problem and that the problem type was a better 
predictor of strategy use than the individual student. Smith shared, “These results 
indicate that these students selected strategies to take advantage of the possibilities 
presented by the numerical features of the items to achieve solutions with a 
minimum of arithmetical computation ‘overhead’” (p. 28).

In recent studies, researchers have begun to focus more centrally on character-
izing and operationalizing features of flexibility (Berk, Taber, Gorowara, & 
Poetzl, 2009; Star & Newton, 2009; Star & Rittle-Johnson, 2008) and investigating 
how to improve students’ flexibility (Berk et al., 2009; Blöte, Van der Burg, & 
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Klein, 2001; Star et al., 2015; Star & Rittle-Johnson, 2008; Star & Seifert, 2006). 
For example, Berk, Taber, Gorowara, and Poetzl (2009) documented prospective 
teachers’ flexibility in relation to proportional reasoning and designed an interven-
tion to improve flexibility. They found that prospective teachers exhibited limited 
flexibility prior to participating in a methods class but that they learned to become 
more flexible, even 6 months after the intervention.

Star and colleagues have successively refined definitions of flexibility over time 
when new studies yielded insight. Initially, they defined flexibility as knowledge 
of multiple solution procedures as well as the capacity to innovate to create new 
procedures (Star & Seifert, 2006). In later work, they added knowledge of the rela-
tive efficiency of the strategies in addition to just knowing multiple strategies (Star 
& Rittle-Johnson, 2008). And later still, they defined flexibility as “knowledge of 
multiple solutions [or strategies] as well as the ability and tendency to selectively 
choose the most appropriate ones for a given problem and a particular problem-
solving goal” (Star & Newton, 2009, p. 558). The most recent definition includes 
knowledge of strategies and selectively choosing strategies (rather than knowing 
only which strategies were relatively efficient) with respect to a specific goal.

Given the importance of flexibility demonstrated across several content areas 
and our own observations that some students we interviewed appeared to change 
strategies from problem to problem, we wondered about the role that flexibility 
might play in students’ solutions to integer open number sentences. For example, 
do students who use multiple strategies select different strategies on the basis of 
particular problem types, and to what degree does this kind of flexibility influence 
performance? To answer these questions about flexibility, we adopted Star and 
Newton’s (2009) definition, in which they emphasize not only having multiple 
strategies available to use but also selectively using those strategies on the basis 
of problem features.

To summarize, our goals in this article are to describe patterns in students’ 
reasoning about integer addition and subtraction within and across grade levels 
and to identify possible relationships among students’ problem-solving strategies, 
problem types, and the flexibility of students’ problem solving. Given these goals, 
in the next section we share a framework for ways of reasoning about integer addi-
tion and subtraction that we developed and shared in earlier work and that also 
builds on other scholars’ research related to student thinking in the domain of 
integers. We use the Ways of Reasoning Framework as an organizing structure 
for the research that we share here.

Conceptual Framework
The Ways of Reasoning Framework. The Ways of Reasoning Framework 

(WoRs) was developed and refined iteratively over a period of 3 years, using a large 
cross-sectional data set, and earlier versions have been shared (e.g., Bishop, Lamb, 
Philipp, Whitacre, Schappelle, & Lewis, 2014; Bishop et al., 2016a; Bishop, Lamb, 
Philipp, Whitacre, & Schappelle, in press). We identified five broad categories that 
we call Ways of Reasoning and multiple strategies within each way of reasoning 
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that include more detail and nuance regarding a child’s reasoning. WoRs are general 
conceptualizations of and approaches to solving integer addition and subtraction 
problems, characterized on the bases of key features of students’ solutions and the 
underlying views of number and operations at work. We identified five WoRs that 
students across all participant groups in our study used when completing open 
number sentences: order-based, analogy-based, formal, computational, and emer-
gent. (In earlier publications, we referred to analogy-based as magnitude and 
emergent as limited.) In Table 1, we define each way of reasoning (WoR).

Within each WoR we identified specific strategies that students used (e.g., 
counting as a particular instantiation of an order-based WoR or the use of a 
number line as a different instantiation of order-based reasoning). For us, a 
strategy is a subcategory of a particular WoR that further describes and differen-
tiates student responses within the broader WoR. We view the five WoRs as an 
organizing structure into which we have categorized more detailed strategies on 
the basis of the underlying views of number and operations leveraged in a given 
strategy’s use. We now briefly share descriptions of the five WoRs along with 
some of the corresponding strategies. (For more detailed descriptions of the WoRs 
and corresponding strategies, see Bishop et al., in press.)

Order-based. In an order-based WoR, one leverages the sequential and ordered 
nature of numbers to reason about a problem. Common strategies include using a 
number line (or motion), counting by ones, and jumping to zero (when computing, 
using friendly number decompositions that have a sum or difference of 0). For 
example, a student who describes completing -4 + 7 =  by starting at -4, 
“jumping” 4 units to reach zero, and then moving 3 more units beyond zero is 
using the jumping to zero strategy.

Analogy-based. An analogy-based WoR is often tied to ideas about cardinality 
and magnitude and is characterized by creating an analogy between signed 
numbers and some other concept. For example, many students compare negative 
numbers to positive numbers, using a strategy that we called negatives like posi-
tives (see also Human & Murray, 1987; Murray, 1985). This strategy involves 
computing with negative numbers through explicit comparison to computing with 
positive numbers (e.g., completing  + -2 = -10 by comparing it to the problem 
 + 2 = 10).

Formal. In reasoning formally, one treats negative numbers as formal objects 
that exist in a mathematical system and are subject to fundamental mathematical 
principles that govern their behavior. Formal strategies included Infers Sign and 
Logical Necessity. Ann’s response shared at the beginning of the article is an 
example of Infers Sign. She looked at structural features of the problem—the 
operation in conjunction with the sign of the given numbers—to determine the 
sign of the answer prior to determining the final answer. We considered Ann’s 
strategy to be a formal WoR because she made a claim about a class of problems—
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Table 1
Ways of Reasoning Framework

Ways of reasoning Definition
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Order-based In this way of reasoning, one leverages the sequential and 
ordered nature of numbers to reason about a problem. 
Strategies include use of the number line with motion as 
well as counting forward or backward by 1s or another 
incrementing amount.

Analogy-based This way of reasoning is characterized by relating 
numbers and, in particular, signed numbers to another 
idea, concept, or object and reasoning about negative 
numbers on the basis of behaviors observed in this other 
concept. At times, signed numbers may be related to 
contexts (e.g., debt or digging holes).a Analogy-based 
reasoning is often tied to ideas about cardinality and 
understanding a number as having magnitude.

Formal In this way of reasoning, signed numbers are treated as 
formal objects that exist in a system and are subject to 
mathematical principles that govern behavior. Students 
may leverage the ideas of structural similarity, well-
defined expressions, the structure of our number system, 
and fundamental principles (such as the field properties). 
This way of reasoning includes generalizing beyond a 
specific case by making a comparison to another, known, 
problem and appropriately adjusting one’s heuristic so that 
the logic of the approach remains consistent, or 
generalizing beyond a specific case to apply properties of 
classes of numbers, such as generalizations about zero.

Computational In this way of reasoning, one uses a procedure, rule, or 
calculation to arrive at an answer. For example, some 
students used a rule to change the operation of a given 
problem along with the corresponding sign of the 
subtrahend or second addend (i.e., changing 6 – -2 to 6 + 2 
or 5 + -7 to 5 – 7). Students often explained these changes 
by referring to rules like “keep change change” (keep the 
sign of the first quantity, change the operation, and change 
the sign of the second quantity). For a strategy to be placed 
into this category, the student may state a procedure or rule 
with or without sharing a justification.
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Emergent This category of reasoning reflects preliminary attempts 
to compute with signed numbers; the domain of possible 
solutions appears to be restricted to whole numbers. The 
effect (or possible effect) of operating with a negative 
number is not considered. For example, a child may 
overgeneralize that addition always makes larger and, as a 
result, claim that a problem for which the sum is less than 
one of the addends (6 +  = 4) has no answer.

a If students related signed numbers to an order-based context such as elevation, they received both 
an order-based and an analogy-based code. Of the 115 contexts shared, only 6% (7) were order-based; 
all used the context of digging and filling holes.
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addition problems wherein the sum is smaller than the addend—rather than 
referencing the specific values in this problem to initially determine the sign of 
the answer.

Computational. When students invoked a computational WoR, they typically 
used a procedure, rule, or calculation to arrive at an answer. See the example in 
Table 1.

Emergent. Strategies within the emergent WoR were locally restricted to whole 
numbers, and thus one would have to emerge from using this WoR to another to 
meaningfully compute with signed numbers (see also Whitacre et al., 2016). We 
view these strategies as sensible and reasonable, particularly given young chil-
dren’s early experiences with number. The most common strategy within the 
emergent WoR was Addition Makes Larger/Subtraction Makes Smaller (AML/
SMS), which is related to conceptualizations of addition as increasing the cardi-
nality of a set and subtraction as decreasing the cardinality of a set; these stem 
from the overgeneralizations that addition always makes larger and subtraction 
always makes smaller. As an example of AML/SMS, consider Sam’s response to 
6 +  = 4, shared at the beginning of the article.

We use the five WoRs described above along with their corresponding strategies 
as a conceptual framework to help us identify important differences and simi-
larities among students’ integer reasoning and to describe the complexity and 
richness of students’ thinking about integer addition and subtraction. The organi-
zation of strategies into broader WoRs within our framework enables us to distin-
guish key details of student thinking in a way that provides an overarching struc-
ture and coherence and, at the same time, to recognize important similarities in 
problem-solving strategies. Thus, we use the WoRs Framework as both a concep-
tual tool and an analytic tool in our study to help us identify patterns in students’ 
reasoning, to consider different problem-type categories and how different catego-
rizations may be related to students’ WoRs, and to document problem-solving 
approaches from which flexibility may be measured.

Questions Stemming From Existing Research
As described in the previous sections, existing research about integer addition 

and subtraction indicates that (a) college students successfully solve problems 
using rules and order-based strategies and can explain their strategies using 
 metaphorical reasoning; (b) after integers instruction, middle and high school 
students struggle with integer subtraction; (c) some young children can solve 
problems and reason productively about integers prior to school-based instruction; 
(d) problem types for integer addition and subtraction have been shared using a 
variety of classifications, identifying from two to 32 problem types; and (e) 
students appear, at times, to flexibly choose particular problem-solving strategies 
about integers on the basis of the problem features. As mentioned, we found no 
study in which elementary, middle, and high school students were systematically 
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sampled to (a) document their WoRs, (b) identify problem types that evoke 
particular WoRs, or (c) examine the degree of flexibility in students’ reasoning 
about integer addition and subtraction. We thus posed the following research ques-
tions to help address these gaps in existing scholarship:

1.  How successful are students at solving integer addition and subtraction open-
number-sentence problems, and what WoRs do they use to solve them?

2.  What problem types, if any, are likely to evoke particular WoRs?
3.  To what degree do students flexibly use analogy-based, computational, 

formal, and order-based WoRs, and what is the relationship between flexi-
bility and students’ success in completing the open number sentences?

Methods

Setting and Participants
We designed, conducted, and analyzed 160 interviews across four groups of 

students. We sought to map the terrain of endpoints for integers conceptions for 
K–12 students. At one end point, we included 40 students in Grade 11 whom we 
deemed to be mathematically successful and college-track, as determined by their 
enrollment in precalculus or calculus. To map the other endpoint for integers 
conceptions for K–12 students, we included 41 students in Grades 2 and 4 who 
had not yet heard of negative numbers. To complete the terrain, we also included 
a group of 39 students in Grades 2 and 4 who had heard of negative numbers but 
had not yet received school-based instruction about negative numbers and another 
group of 40 students in seventh grade who had already experienced school-based 
instruction with negative numbers. Our decision to group second- and fourth-
grade students together on the basis of their familiarity with negative numbers 
resulted from discussions about the theoretical and practical benefits and draw-
backs of grouping by grade level versus grouping by familiarity with negative 
numbers. We decided on these groupings because we deemed that the types of 
responses second and fourth graders who had (or had not) heard of negative 
numbers were more similar to each other, given our project goals. Moreover, we 
believed that the analyses would be more meaningful when comparing groups of 
students who had negative numbers in their mathematical domains versus those 
who did not than comparing students across grade levels (i.e., comparing second 
and fourth graders to each other). Further, when we took grade level into account 
in our within-group problem-type analyses, we found no statistically significant 
differences between second-grade and fourth-grade students.

The 160 students in the study were from 11 public schools (three elementary 
schools, three middle schools, one K–8 school, and four high schools) with varying 
standardized test scores as indicated by each school’s Academic Performance 
Index (API). We purposefully selected schools to ensure a range of demographics 
and performance markers (Patton, 2015). For each grade level, we selected schools 
that represented a range of API scores, socioeconomic status (as determined by 
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percentage of students on free or reduced-price lunch), and diversity. School size, 
API, and demographic information are provided in Table 2.

At each participating school, two teachers at each targeted grade level volun-
teered to participate. All students in the teachers’ classes were invited to partici-
pate. Students were then selected randomly from among all who returned signed 
consent forms. We selected nine to 11 students per grade level from each of the 
four schools associated with each grade level. Our goal was not to relate specific 
instructional experiences to students’ conceptions. Rather, we sought to under-
stand the range of conceptions observed and the frequencies of these conceptions.

We named the groups according to the rationale for selection in this study: 
College-Track students (CTs; n = 40, 11th graders enrolled in precalculus or 
calculus), Post Instruction With Negatives students (PINs; n = 40, seventh-grade 
students who had recently completed instruction in integers), Before Instruction 
With Negatives students (BINs; n = 39, second and fourth graders with negatives 
in their numerical domains), and No Evidence of Negatives students (NENs; 
n = 41, second and fourth graders without negatives in their numerical domains). 
Group placements for second and fourth graders were made on the basis of 
responses to Questions 2, 3, and 9 in the interview (see the Introductory Questions 
section of the interview in the Appendix for Questions 2 and 3). The BIN group 
included 13 Grade 2 students and 26 Grade 4 students who, on the basis of 
responses to those two tasks, provided evidence of having at least some knowledge 
of negative numbers. The NEN group included 27 Grade 2 and 14 Grade 4 students 
who, on the basis of responses to those two tasks, provided no evidence of having 
knowledge of negative numbers. Students in the NEN group completed a subset 
of the interview items, given their lack of familiarity with negative numbers.

Interviews
The interviews, conducted at the children’s school sites during the school day, 

were videotaped and typically lasted 60–90 minutes. The interviews consisted of 
a range of tasks, including open number sentences, number comparisons, and story 
problems. The interview protocol was developed iteratively while we tested tasks 
during pilot interviews and modified the tasks and sequence. A total of 74 pilot 
interviews were conducted in 2010. The final version of the interview included 56 
items. In this article, we include analyses of the open number sentences portions 
of the interviews (shown in the Appendix).

When we initially designed the open number sentences, we considered problem 
features highlighted in the literature, such as the operation, a variety of sign 
combinations in each open number sentence, and the magnitudes of the numbers. 
In the final interview shared in the Appendix, we also added a dimension not 
included in the literature: We varied the location of the unknown (start, change, 
and result) with an emphasis on change- and result-unknown problems because 
of their potential to highlight differences in students’ approaches.

Interviewers followed an interview protocol using a standardized open-ended 
interview (Patton, 2015). We asked students to read the question aloud, solve the 
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problem, and then immediately explain how they thought about the problem. 
Follow-up questions were restricted to seeking clarification on the strategy so that 
the interviewer understood the child’s approach, except on the first open number 
sentence, 3 – 5 = , when we asked specific follow-up questions on the basis of 
students’ responses to confirm whether students had heard of negative numbers.

Analyses
In our analyses, we explore students’ WoRs across participant groups, identify 

integer addition- and subtraction-problem types, and describe the relationships 
between problem types and WoRs. Additionally, we computed a flexibility measure 
for every student to examine the relationship between flexibility and performance 
on the open number sentences. Below we provide details of the analyses.

Performance and WoRs on open number sentences. Interview data were 
coded at the problem level; every open number sentence was coded for the under-
lying way (or ways) of reasoning the student used, any strategies used, and correct-
ness. We coded directly from the videorecordings of the interviews and referred 
to student work collected during the interview as needed. (See Table 1 for defini-
tions and examples. The complete WoRs coding scheme is available at http://www.
sci.sdsu.edu/CRMSE/projectz/movies.html.)

Reliability. The two primary coders trained six additional people to code 
student interviews. Twenty percent of the interviews were double-coded to ensure 
reliability in our code interpretations and to guard against coding drift, and 
random assignment was used to select interviews to be double-coded. Coders were 
blind to which interviews were double-coded. Interrater reliability was calculated 
at both the way-of-reasoning and strategy-code levels. Interrater agreement was 
92% for way of reasoning and 83% for strategy codes. In the interest of reliability, 
additional interviews identified as challenging to code were also double-coded. 
In total, 42 (26.25%) of the 160 interviews were double-coded. All discrepancies 
were resolved through discussion.

Problem-type categories. As noted in the description of the interview, open 
number sentences were systematically chosen to include different problem 
features, and those features were deliberately varied across the collection of 25 
open number sentences. For example, although we initially wondered whether 
addition problems would be easier than subtraction problems or whether the loca-
tion of the unknown would influence success, we found that, across the data set, 
these features had less influence on success than the signs of the numbers and the 
locations of negative integers. Thus, the features we considered in the design of 
the open number sentences did not yield problem-type categories that reflected 
differences in students’ success or solution processes.

During our data collection, we noticed that some problems tended to evoke some 
WoRs more than others. We sought to test this hypothesis as part of our data 
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analysis. We thus ran two types of statistical analyses to explore the three problem-
type categories—change-positive, all-negatives, and counterintuitive (described 
in the Findings section)—that emerged. First, we investigated which problem 
types were easier and harder for students (controlling for possible grade-level 
effects) using three 2 × 2 ANOVAs to test for differences in percentage correct 
across problem-type categories and whether percentage correct varied by grade. 
In each ANOVA, the first factor occurred within participants (pairwise differ-
ences in percentage correct for problem types), and the second factor occurred 
between participants (grade level).3 The two factors for each of these ANOVAs 
were (a) pairwise differences in percentage correct for problem type and (b) grade 
level. The first ANOVA was a 2 (Problem Type: Change-positive percentage 
correct vs. All-negatives percentage correct) × 2 (Grade level: second vs. fourth), 
the second ANOVA was a 2 (Problem Type: Change-positive percentage correct 
vs. Counterintuitive percentage correct) × 2 (Grade level: second vs. fourth), and 
the third ANOVA was a 2 (Problem Type: All-negatives percentage correct vs. 
Counterintuitive percentage correct) × 2 (Grade level: second vs. fourth). 

Second, we investigated differences in the use of a given WoR across problem 
type (controlling for possible grade-level effects), for example, in the use of order-
based reasoning across the three problem types and by grade level. Thus, within 
each WoR, we examined the difference in percentage use for problem type and 
whether the percentage use was dependent on grade. For each of the five WoRs, 
we used three 2 × 2 ANOVAs (for a total of 15). The two factors for each ANOVA 
were (a) pairwise differences in percentage use for problem type and (b) grade 
level. For example, within the order-based WoR, we ran three ANOVAs: The first 
was a 2 (Problem Type: Percentage use of order-based WoR on Change-positive 
vs. Percentage use of order-based WoR on All-negatives) × 2 (Grade level: second 
vs. fourth) ANOVA; the second was a 2 (Problem Type: Percentage use of order-
based WoR on Change-positive vs. Percentage use of order-based WoR on 
Counterintuitive) × 2 (Grade level: second vs. fourth) ANOVA; and the third was 
a 2 (Problem Type: Percentage use of order-based WoR on All-negatives vs. 
Percentage use of order-based WoR on Counterintuitive) × 2 (Grade level: second 
vs. fourth) ANOVA. The first factor occurred within participants (pairwise differ-
ences in percentage use for problem types), and the second factor occurred 
between participants (grade level). Because we used multiple ANOVAs in our 
analysis, we used the Bonferroni Adjustment to reduce the likelihood of a Type I 
error at the .05 level (statistically significant F-values occurred at a = .05/18 = 
.0028). Additionally, all pairwise comparisons were two-tailed.

Flexibility. We remind the reader that we adopted Star and Newton’s (2009) 
definition of flexibility as “knowledge of multiple solutions [or strategies] as well 
as the ability and tendency to selectively choose the most appropriate ones for a 

3 As explained in detail in the Findings section, we restricted our analysis to BIN students and thus 
had only two levels for grade: second grade and fourth grade.
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given problem and a particular problem-solving goal” (p. 558). To use this defini-
tion, we calculated a flexibility measure for each student by first identifying the 
number of times each way of reasoning was used on problems for which that WoR 
was aligned on the basis of the problem type. Because determining the alignment 
of a student’s solution depends on the problem-type category, we share more 
specific details about how we measured flexibility in the Findings section after 
we have discussed our problem types.

In general, for each open number sentence, we identified the WoRs that were 
aligned with that problem. To determine whether a student had a “tendency to 
selectively choose” a WoR, we counted instances of use of a WoR only if the 
student used an aligned WoR three or more times for a given subset of problems. 
We selected this threshold because the use of a particular way of reasoning at least 
three times on separate open number sentences indicated that a student’s use of a 
way of reasoning was not anomalous but, rather, selectively chosen. Moreover, 
because we restricted our analyses to whether participants used each WoR on a 
subset of problems according to the problem-type framework, the problems them-
selves set a de facto upper bound on the frequency with which we expected to 
observe different WoRs. Thus, our measure of flexibility captured the number of 
WoRs a student selectively used. For example, a student who used order-based 
reasoning on seven, analogy-based reasoning on one, formal reasoning on two, 
and computational reasoning on five open number sentences that were aligned 
with the problem types would receive a flexibility score of 2 for selectively using 
two WoRs (order-based and computational). We then used the flexibility score to 
explore the relationship between flexibility and performance on the 25 open 
number sentences using correlation coefficients.

Findings
In the following sections, we share findings in four groupings: (a) students’ 

performance on the open number sentences, (b) students’ use of the five WoRs, 
(c) three problem types that emerged, and (d) the degree of students’ flexible use 
of the WoRs and its relationship to their success on the open number sentences.

Participant-Group Performance
As one might expect, the participant groups performed differentially on the open 

number sentences. We found that half of all students who had not yet received 
school-based instruction had heard of negative integers. The BIN students solved, 
on average, more than one third of the problems correctly (x = 35.3%). Thus, some 
young children reasoned productively about negative numbers, and this reasoning 
often led to correct answers. In contrast, the NEN students correctly solved only 
6% of the 12 problems posed to them (x = 5.9%). Additionally, the PIN students 
solved about three fourths of the problems correctly (x = 73.3%). whereas CT 
students solved virtually all problems correctly (x = 98.2%). That is, we saw a 
ceiling effect for our CT students.
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To understand the spread of the data, we examined the percentage of students 
in each participant group who solved less than 10% or more than 90% of all prob-
lems correctly and then examined the percentage correct in 20% increments (see 
Table 3). Students in the NEN and CT student groups had the most clustered sets 
of scores. Three fourths of the NEN group solved fewer than 10% of the problems 
correctly, and more than half were incorrect on every problem. In contrast, all but 
one of the CT students solved more than 90% of the problems correctly, including 
33 of the 40 students who answered every problem correctly. Most of the BIN 
students solved one third to one half of the problems correctly. The PIN students’ 
performance varied the most, with scores ranging from 16% to 100% correct. Two 
subgroups of PIN students emerged: a group correct on 90% or more of the tasks 
and a larger group of students (almost half) who failed to reach what many consider 
to be a minimum proficiency level of 70% correct.

We make three observations based on these data. First, the initial relative 
success of BIN students (given their lack of school-based instruction on the topic) 
may indicate that some students have fruitful conceptions on which teachers might 
build. Second, the PIN students had completed all school-based instruction on 
integers identified in the state standards at the time of the study, and although more 
than one third of the PIN students (37.5%) correctly answered 90% or more of the 
problems, half responded correctly to fewer than 70% of the items. Finally, because 
we intentionally selected CT students who were on a college-track trajectory, the 
CT students performed as expected: 39 of 40 CT students scored above 90%, and 
more than 80% answered every problem correctly. 

Additionally, consistent with findings from Murray (1985) and Lamb et al. 
(2017), the PIN students, who had completed school-based instruction on integers 
within 2 years of the interviews, differed in their performance on subtraction 
problems compared with addition problems (means of 64% versus 84%, respec-
tively). However, the other three groups, NEN, BIN, and CT, performed similarly 
on subtraction and addition problems (NEN: 6% correct for both; BIN: 36% vs. 
34%, respectively, and CT: 98% vs. 99%, respectively). In the next section, we 
examine the frequency of use of the WoRs.

Table 3
Participant-Group Performance on Open Number Sentences

Participant 
group

< 10% 
correct

10–29% 
correct

30–49% 
correct

50–69% 
correct

70–89% 
correct

≥ 90% 
correct

NEN 
n = 41

75.6% 
(n = 31)

24.4% 
(n = 10)

BIN 
n = 39

2.6% 
(n = 1)

30.8% 
(n = 12)

59% 
(n = 23)

5.1% 
(n = 2)

2.6% 
(n = 1)

PIN 
n = 40

5% 
(n = 2)

12.5% 
(n = 5)

30% 
(n = 12)

15% 
(n = 6)

37.5% 
(n = 15)

CT 
n = 40

2.5% 
(n = 1)

97.5% 
(n = 39)
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Frequency of Use of Ways of Reasoning
In this section, we share our second main finding and report the frequencies of 

WoRs used across the data set and within participant groups (refer to Table 1 in 
the Conceptual Framework for descriptions of these categories). As seen in Table 
4, students in the BIN, PIN, and CT participant groups used each of the five broad 
WoRs shared in the conceptual framework. Across all problems posed, computa-
tional reasoning was the most common, occurring in responses to about two of 
every five problems. Emergent and order-based WoRs were used on about one 
third and one fourth of the problems posed, respectively. Formal and analogy-
based WoRs were less frequent overall, with each employed in responses to about 
10% of the problems posed.

Students in the NEN group provided no evidence of experience with negative 
numbers, and, unsurprisingly, they solved 90% of all problems with an emergent 
WoR. No problems for this participant group were solved using order-based, 
analogy-based, or formal WoRs. Although the BIN students solved more than half 
of the problems using an emergent WoR, they used all other WoRs as well: They 
solved one third of all problems with order-based reasoning, about 10% each with 
analogy-based and computational reasoning, and 3% with formal reasoning. The 
PIN group solved half of the problems with a computational WoR, almost 40% 
with an order-based WoR, and 13–20% with analogy-based, formal, or emergent 
WoRs. Finally, the CT group solved three fourths of the problems using a compu-
tational WoR, almost none (fewer than 1%) with an emergent WoR, about one 
fourth with a formal WoR, and almost one fifth each with order-based and anal-
ogy-based reasoning. As described in the Methods section, students can use more 
than one WoR when solving a problem—as was done by our CT students for many 
problems. The CT students used computational reasoning in conjunction with at 
least one additional WoR on 28% of all problems posed, and they solved 25% of 
the problems without a computational WoR. Thus, the CT students used a WoR 
other than or in addition to computation on more than half (53%) of the problems 

Table 4
Frequency of Ways of Reasoning

Way-of-reasoning percentage use 
(By total number of problems)

Participant 
group

Order-
based

Analogy-
based Formal

Compu-
tational Emergent Other Unclear

NEN  0%  0%  0% 12% 90%  4%  2%
BIN 33% 11% 3% 9% 58%  5%  2%
PIN 38% 20% 13% 51% 16%  1%  1%
CT 19% 16% 24% 75%  1% <1% <1%
Overall 26% 13% 12% 41% 34% 2%  1%

Note. Because students can use more than one way of reasoning to solve a problem, row-percentage 
sums are larger than 100%.
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posed, confirming not only the expected vast use of the computational WoR but 
also showing considerable unexpected use of the other WoRs.

Additionally, we identified differences and similarities in the patterns of use of 
WoRs across participant groups (again, refer to Table 4). First, in order from NEN, 
BIN, PIN, and CT students, the use of the emergent WoR decreased and formal 
WoR increased. Second, the BIN, PIN, and CT groups all used order-based and 
analogy-based WoRs on one tenth to one third of the problems. Third, the number 
of problems solved using more than one productive WoR per problem increased 
by group, with PIN and CT students using more than one WoR per problem on 
about one fourth and one third of all problems posed, respectively.

Problem-Type Categories
We now turn to a discussion of problem types for integer addition and subtrac-

tion as our third main finding. We distinguished three categories of problems of 
the form a ± b = c by the signs of their values. Our analysis revealed that the 
problem types (a) differed in difficulty and (b) tended to evoke different WoRs.

Characterizing problem-type categories. One can use the flow chart (see 
Figure 1) to determine category placement of any open number sentence of the 
form a ± b = c (some describe a, b, and c as the start, change, and result values, 
respectively [Carpenter et al., 2014]). In the first problem category, all-negatives, 
all three values in the problem are negative (the start, change, and result are all 
negative, e.g., -5 +  = -8). In the second category, change-positive problems, b 
(the change value) is positive. The problems 3 –  = -6 and -2 + 8 =  are both 
change-positive because the b values of 9 and 8, respectively, are positive. 

In the third category, counterintuitive problems, b (the change value) is negative, 
but at least one of a (the start) and c (the result) is positive.4 For example, 6 +  = 4 
and -3 –  = 2 are counterintuitive problems because the b (change) values are 
negative, but the problems have at least one positive value. We named this class 
of problems counterintuitive because these problems contradict the overgeneral-
ization almost all young children make that addition makes larger or that subtrac-
tion makes smaller. Thus, the problems are counterintuitive for students who are 
attempting to solve these problems for the first time (Bishop et al., 2011).

The three categories of open number sentences, examples of problems we posed 
within each category, and the average percentage correct for each category are 
shown in Table 5. Our analysis revealed that some problem types were more chal-
lenging than others. The overall percentages correct (aggregated across participant 
groups) show that the easiest problems were the all-negatives (76.3% correct), 
followed by change-positive (61.1% correct), and counterintuitive (48.4% correct).

Why problem types matter: An analysis of BIN students. Although problem 
types have the potential to evoke particular WoRs for students in every participant 

4 Having at least one positive value is necessary to avoid being an all-negatives problem.
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group, we focus on the BIN participant group. This group is particularly relevant 
for the problem-type analysis because students in this group had heard of negative 
numbers but had not received school-based instruction about negative numbers. 
Thus, this group (more so than the other groups) provides a window into students’ 
initial ideas about solving problems with negative numbers. To support this claim, 
we consider the use of various procedures in the computational WoR for different 
participant groups. Whereas the PIN and CT students used procedures that are 
often taught in school (such as keep change change, equations, same-sign rule, 
and different-sign rule) 282 and 660 times, respectively, the BIN students used 
those same procedures only two times across all problems solved. Thus, we argue 
that because the BIN students did not use those commonly taught procedures, we 
had greater access to initial approaches for solving these problem types through 
them than through students in the other groups. Further, students using rules or 
procedures transformed problems to types different from the original problems. 
For example, a student who used the keep-change-change rule for the all-negatives 
problem -5 – -3 =  transformed the problem to -5 + +3 = , a change-positive 
problem. The student could then use various WoRs to solve the transformed 
problem (rather than the original problem), which would make linking the WoRs 
to the original form of the problem impossible. In contrast, the BIN students used 
almost no procedures that transformed the problems into different types, and thus 
their WoRs were directly related to the original versions of the problems.

Table 6 displays the mean percentage correct by problem type and the mean 
percentage use of a given WoR by problem type for BIN students. The overall 

Figure 1. Flowchart for categorization of problems of the form a ± b = c.
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trend in percentage correct for the problem types is consistent with those for all 
participants in the study (that is, for the entire data set, all-negatives problems were 
the easiest for students to solve, followed by change-positive and counterintuitive). 
However, for BIN students, the differences in accuracy across problem types are 
noteworthy. Although BIN students correctly solved almost three fourths of all-
negatives problems and one third of change-positive problems, they correctly 
solved fewer than one tenth of the counterintuitive problems. As a direct basis for 
comparing these two problem types, we asked the students to solve both the 
change-positive problem -3 + 6 =  and the counterintuitive problem 6 + -3 = .

 From an expert perspective, these problems are equivalent (one needs only to 
invoke the commutative property of addition); however, from a young person’s 
perspective, the problems differ. One half of the BIN students correctly solved 
the former, whereas only 13% correctly solved the latter.

As described in the Methods section, we used three 2 × 2 ANOVAs to test for 
differences in percentage correct across problem-type categories (controlling for 
grade level within the BIN group). We found that every percentage-correct pair-
wise-comparison among the problem types was significant

[FAll-negatives vs. Change-positive (1, 37) = 24.86, p < .0001;  
FAll-negatives vs. Counterintuitive (1, 37) = 124.06, p < .0001;  

FCounterintuitive vs. Change-positive (1, 37) = 43.99, p < .0001]. 

Table 5
Problem Types of the Form a ± b = c

Category Characterization
Sample 

problems
Average 

percentage correct
All-negatives All negative values  + -2 = -10

-5 +  = -8
-5 – -3 = 
-8 –  = -2

-5 – -5 =  a

76.30%

Change-positive b (change) value positive -3 + 6 = 
-2 +  = 4
3 –  = -6
-2 – 7 = 
-8 +  = 0

61.10%

Counterintuitive b (change) value negative, 
a (start), c (result), or both 

positive

6 + -3 = 
6 +  = 4
5 –  = 8
6 – -2 = 
3 +  = 0

48.40%

a 0 may be thought of as both positive and negative, and so this problem was determined to be all 
negatives because the approaches BIN students took were more similar to those for all-negatives 
than for counterintuitive problems.
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Additionally, we found no main effects for grade level. In other words, second 
graders did not differ from fourth graders in percentage correct overall or within 
the problem-type categories. The results of this analysis show that the three 
problem types differ in difficulty: All-negatives was the easiest type of problem, 
followed by change-positive, and counterintuitive was the most difficult problem 
type by a substantial margin.

We also conducted within-participant pairwise analyses of percentage use of 
each WoR among the three problem types.5 For example, we tested to determine 
whether the fact that BIN students used analogy-based reasoning on 34% of the 
all-negatives problems but on only 3% of the counterintuitive problems was statis-
tically significant. We present those findings in Table 7. Refer to the Methods 
section for additional details regarding the analyses. In the sections that follow, 
we describe the statistically significant problem-type comparisons and students’ 
WoRs to solve them.

Problem-type comparisons within analogy-based WoRs. We found statisti-
cally significant pairwise differences in the percentage use of analogy-based 
reasoning between all-negatives problems and each of the other two problem 
types. Moreover, we found no significant differences in the use of the analogy-
based WoR between change-positive and counterintuitive problem types. In other 
words, BIN students were more likely to use analogy-based reasoning on an all-
negatives problem than on one of the other problem types. These results indicate 
that structural features of the all-negatives problems may have evoked analogy-
based reasoning. We conjecture that problems with all negative values, as in -5 – -3 
= , are easier than other problem types to compare to a related problem involving 
only natural numbers (i.e., 5 – 3 = ) or to think about the given problem in terms 
of objects or contexts because all quantities are of the same sort. With an all-

Table 6
Percentage Correct and Use of WoR by Problem Type for BIN Students

Problem types of the form a ± b = c 
All-negatives Change-positive Counterintuitive

Percentage correct 74% 33%  9%
Percentage use of WoR

Analogy-based 34%  5%  3%
Order-based 29% 44% 21%
Computational  8% 12%  7%
Formal  4%  4%  2%
Emergent 45 % 50% 77%

5 We covaried any potential differences that may exist between the second and fourth graders.
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negatives problem, students are not forced to explicitly consider how opposite signs 
interact or even how to appropriately represent different signs. Instead, students 
can extend their understanding of addition and subtraction on natural numbers to 
the entire set of integers. Thus, all-negatives problems such as -5 + -1 =  and -8 
–  = -2 seem to lend themselves to students using an analogy-based-reasoning 
strategy such as negatives like positives, described earlier. As a basis for compar-
ison, students solved both -5 – -3 =  (all-negatives) and 6 – -2 =  (counterintui-
tive). Although both problems involve subtraction, have an unknown result, and 
involve a negative change value, 15 BIN students (38%) used an analogy-based 
approach for the first, whereas none used an analogy-based approach for the second.

Problem-type comparisons within order-based reasoning. Students used order-
based reasoning on almost one half (44.29%) of the change-positive problems but 
on only about one third and one fifth of the all-negatives and counterintuitive 
problems, respectively. The differences between the use of order-based reasoning 
on change-positive problems compared with its use on all-negatives problems and 
counterintuitive problems were statistically significant. We suspect that change-
positive problems such as -2 +  = 4 and 3 –  = -6 tended to evoke more order-

Table 7
Pairwise Comparisons for Problem-Type Differences Within Each WoR (BIN students)

Way of 
reasoning Problem type Statistics

Analogy-based All-negatives vs. Change-positive F(1,37) = 24.69, p < .0001*
Analogy-based All-negatives vs. Counterintuitive F(1,37) = 31.21, p < .0001*
Analogy-based Change-positive vs. Counterintuitive F(1,37) = 2.48, p > .12
Order-based All-negatives vs. Change-positive F(1,37) = 35.04, p < .0001*
Order-based All-negatives vs. Counterintuitive F(1,37) = 4.93, p < .05
Order-based Change-positive vs. Counterintuitive F(1,37) = 78.99, p < .0001*
Computational All-negatives vs. Change-positive F(1,37) = 1.75, p > .19
Computational All-negatives vs. Counterintuitive F(1,37) = 0.60, p > .40
Computational Change-positive vs. Counterintuitive F(1,37) = 5.36, p < .03
Formal All-negatives vs. Change-positive F(1,37) = 0
Formal All-negatives vs. Counterintuitive F(1,37) = 2.24, p > .14
Formal Change-positive vs. Counterintuitive F(1,37) = 3.21, p > .08
Emergent All-negatives vs. Change-positive F(1,37) = 0.19, p > .60
Emergent All-negatives vs. Counterintuitive F(1,37) = 33.31, p < .0001*
Emergent Change-positive vs. Counterintuitive F(1,37) = 78.90, p < .0001*

*Statistically significant differences when test was conducted using the Bonferroni 
Adjustment at α = .0028 (the total number of pairwise comparisons was 18, including 
both percentage correct and percentage use). Each comparison was two-tailed.
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based reasoning than all-negatives problems or counterintuitive problems because 
of their structure. Because b (the change value) is positive for this problem type, 
addition and subtraction can be thought of in terms of motion to the right and left 
(or up and down), respectively, on the number line or counting up and down. Thus, 
the behavior of change-positive problems is consistent with the addition makes 
larger (AML) and subtraction makes smaller (SMS) generalizations that students 
may have made about adding and subtracting natural numbers. Moreover, these 
generalizations hold for operations with negative numbers so long as b (the change 
value) is positive (which it is for this problem type). For example, students solved 
both 3 –  = -6 (change-positive) and 5 –  = 8 (counterintuitive). Although both 
problems are subtraction and have an unknown subtrahend, they are classified as 
different problem types, and the BIN students differed in their approaches. 
Whereas 77% (30 of the 39) of the BIN students used order-based reasoning to 
solve the first problem, only 8% (3 of the 39) used order-based reasoning to solve 
the second (instead, 90% [35 of the 39] used emergent reasoning). Problems that 
conformed to the overgeneralization that addition makes larger and subtraction 
makes smaller seemed to support students in successfully extending the order-
based reasoning they used for natural numbers on these new types of problems. 
Many students were potentially able to solve change-positive problems by invoking 
their current views about the nature of addition and subtraction, successfully 
extending those ideas to negative numbers, so long as the change value was positive.

Problem-type comparisons within emergent WoRs. In contrast to change-
positive problems, problems with negative b-values contradict the overgeneraliza-
tions that addition makes larger and subtraction makes smaller. Every problem in 
this category is counterintuitive in that for addition problems the result is smaller 
than the starting value and for subtraction problems the result is larger than the 
starting value (that is, addition makes smaller and subtraction makes larger). The 
challenges of confronting these contradictions may explain not only why counter-
intuitive problems such as 6 + -3 =  and 5 –  = 8 were the hardest questions 
for this participant group to solve (they completed an average of fewer than 10% 
correctly) but also why they evoked emergent reasoning significantly more often 
than all-negatives problems or change-positive problems (see relevant pairwise 
comparisons in Table 7). BIN students solved more than three fourths of the prob-
lems in the counterintuitive category using emergent reasoning, but they used 
emergent reasoning on one half or fewer of the problems in the change-positive 
and all-negatives categories. To illustrate this relationship, we asked students to 
solve 6 +  = 4 (counterintuitive) and -2 +  = 4 (change-positive). Although both 
problems are addition, have an unknown change value, and have the same addends 
(6 and -2), 37 of 39 BIN students (95%) used emergent reasoning to complete the 
first problem, and only 10 of 39 (26%) used emergent reasoning to complete the 
second problem. Instead, as one might expect, 23 of 39 (59%) used order-based 
reasoning to complete the change-positive problem of -2 +  = 4.
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In summary, we used multiple ANOVAs to investigate the relative difficulties 
of our problems by problem-type category as well as to determine differences in 
the use of a given WoR across problem types. We found that some problems were 
easier than others for students and that particular WoRs were used more frequently 
with specific problem types. For BIN students, all-negatives problems were the 
easiest problems, and analogy-based reasoning was more likely than other WoRs 
to be used to solve these types of problems. Change-positive problems were the 
next easiest for BIN students, and order-based reasoning was more likely than 
other WoRs to be used on them. Finally, counterintuitive problems were the most 
difficult, and emergent reasoning was the most likely WoR to be used to solve 
counterintuitive problems. Our results show that the problem-type categories that 
emerged from our analysis do differentiate both students’ success in correctly 
solving these problems and their approaches to solving them.

Two types of change-positive problems. Because of the differential success 
and conceptual differences (from a student’s perspective) in solving problems 
within the change-positive category, we further differentiated this category by 
examining those problems that cross zero and those that do not. For example, 
3 –  = -6 is a cross-zero problem because the starting and ending values are on 
opposite sides of zero, and, as a result, the solution involves crossing zero. In 
contrast, to solve negative-side problems, like -2 – 7 = , one does not cross zero. 
For example, a common order-based approach for completing -2 – 7 =  is to start 
at -2 on the number line, move left seven units, and end at -9, thus staying on the 
negative side of the number line. Like cross-zero problems, negative-side problems 
conform to the overgeneralizations that addition makes larger and subtraction 
makes smaller (e.g., for the negative-side problem -2 – 7 = , the difference, -9, 
is smaller than the minuend, -2). Table 8 shows that although students used order-
based reasoning more than any other productive WoR for both subcategories of 
change-positive problems, they were less successful on negative-side problems 
than on cross-zero problems: 42% correct versus 19% correct, respectively 
[F(1,37) = 18.91, p < .0001]. Further, students were more likely to use an emergent 
way of reasoning to solve negative-side problems than cross-zero problems 
[F(1,37) = 28.12, p < .0001].

Consider the cross-zero problem 3 –  = -6 and the negative-side problem 
-2 –  = -8. These problems are similar in that they have a positive but unknown 
b-value (change value), involve subtraction, have a result that is negative, and, from 
an expert perspective, conform to the notion that subtraction makes smaller. The 
problems are different in that the first problem crosses zero, whereas the second 
does not. Moreover, this pair of problems conforms to the relative-difficulty 
pattern for the cross-zero and negative-side problems: 56% of the BIN students 
correctly solved 3 –  = -6, but only 21% correctly solved -2 –  = -8. We conjec-
ture that the cross-zero problem was solved correctly more often than the negative-
side problem for the following reasons: Most students knew that negative numbers 
were smaller than positive numbers (Whitacre et al., 2017), and because cross-zero 
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problems start and end on opposite sides of the number line, students could readily 
identify that addition made the sum larger and subtraction decreased the starting 
value. In contrast, when solving negative-side problems, students had to contend 
with notions of bigger and smaller that may not have been evoked for the cross-
zero problems. For example, on the negative-side problem -2 –  = -8, 54% of the 
BIN students claimed that the problem had no possible answer. These students 
reasoned that subtraction should make smaller, but because they believed -8 was 
greater than -2, solving the problem was impossible for them. Although -8 is less 
than -2, -8 has a greater magnitude than -2 and thus presents special conceptual 
challenges for students (Bofferding, 2014; Whitacre et al., 2016). Although some 
students were able to invoke an order-based strategy and, for example, move six 
units from -2 to -8 on the number line to get an answer of 6, the negative-side 
problems were answered incorrectly more often than the cross-zero problems.

In summary, we identified three main problem types of differing difficulty that 
evoked or have the potential to evoke different WoRs. These problem types are 
identified by the signs of the values in the problems and the locations of signed 
values. In the next section, we extend our work on problem types and examine the 
degree to which students flexibly reasoned about the open number sentences.

Flexibility
For our analysis, recall that we used Star and Newton’s (2009) definition of 

flexibility: “knowledge of multiple solutions [or strategies] as well as the ability 
and tendency to selectively choose the most appropriate ones for a given problem 
and a particular problem-solving goal” (2009, p. 558). In this section, we describe 
both the degree of flexibility of students in the BIN, PIN, and CT participant 
groups6 and the relationship between flexibility and accuracy when we share our 
fourth, and last, finding.

Table 8
Ways of Reasoning Used by BIN Students on Change-Positive Problems

Change-positive
Cross-zero Negative-side

Percentage correct 41.76% 18.59%
Percentage use for WoR

Order-based 47.62% 38.46%
Analogy-based  3.30%  8.33%
Computational 14.29%  8.97%
Formal  5.49%  1.28%
Emergent 41.03% 65.38%

6 Recall that participants in the NEN group provided no evidence of knowledge of negative num-
bers and that they provided 0 instances of the use of order-based, analogy-based, and formal reason-
ing. Thus, they are excluded from this analysis.



603Lamb, Bishop, Philipp, Whitacre, and Schappelle

Table 9 displays the percentage of students in each participant group with flex-
ibility scores of 0, 1, 2, 3, and 4. The maximum number of WoRs that a student 
could use is four because we excluded the emergent WoR (the only WoR wherein 
strategies were locally restricted to the domain of whole numbers) from this 
analysis. The values reflect the percentage of students who provided evidence that 
they selectively used a WoR (used a WoR three or more times) on problems for 
which the WoR was aligned with the problem type. For example, a student was 
determined to have selectively used an order-based way of reasoning if the student 
used that WoR on at least three change-positive problems. Similarly, a student had 
to have used analogy-based reasoning on at least three all-negatives problem7 to 
have selectively used analogy-based reasoning, used computational reasoning at 
least three times on counterintuitive problems to have selectively used computa-
tional reasoning, and used formal reasoning at least three times on any problem 
to have selectively used formal reasoning, given that formal reasoning can be 
appropriately applied to all problem types. Computational reasoning was deemed 
a way of reasoning aligned with solving counterintuitive problems given that the 
use of a computation on problems of this type is an effective, efficient way to solve 
these problem types.

The BIN students selectively used, on average, 1.31 WoRs across all open 
number sentences posed in the interview, and almost all (87%) selectively used 
one or two WoRs. The PIN students selectively used, on average, 2.40 WoRs, and 
almost half (45%) selectively used three appropriate WoRs. Finally, the CT 
students selectively used, on average, 2.75 WoRs; half of them (48%) selectively 
used three appropriate WoRs, and about two thirds (68%) selectively used either 
three or four appropriate WoRs.

In Table 10, we further explore flexibility by sharing information about the 
percentage of appropriate problems for which students selectively used each WoR. 
Almost every PIN and CT student used a computational WoR on at least three 
problems for which its use would be considered aligned with the problem type, 

7 Because we identified that many PI and CT students often appropriately treated one meaning of 
the minus sign (i.e., binary operator [subtraction], unary operator [opposite of], or nonoperator [sign 
of the number]) as if it were another (Lamb et al., 2012), we also included in this count instances of 
analogy-based reasoning on the following problems: -8 – 3 = , -2 –  = -8, and -2 – 7 = , prob-
lems for which some students claimed that two negatives were in the problem.

Table 9
Flexibility by Group

Participant 
group n

Flexibility score
Mean0 1 2 3 4

BIN 39 10% 51% 36%  3%  0% 1.31
PIN 40  0% 15% 35% 45%  5% 2.40
CT 40  0% 13% 20% 48% 20% 2.75
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and 40% or more of them selectively used each of formal, analogy-based, and 
order-based WoRs. In contrast, about three fourths of the BIN students used  
order-based reasoning on at least three problems.

The relationship between flexibility and performance. Because of the rela-
tionships that we identified between WoRs and problem types, we wondered how 
WoRs and performance might be related. If some problem types lend themselves 
to particular WoRs, would those students who had multiple WoRs at their disposal 
and used them with particular problem types be better equipped to correctly solve 
problems? In investigating this relationship between percentage correct and flex-
ibility, we found that flexibility was positively correlated with performance in our 
data, both across participant groups (r = .384, one-tailed, p < .01) and within 
participant groups (r = .277, .534, .345 for BIN, PIN, and CT, respectively, one-
tailed, all p-values < .05 ). We wondered about potential alternative explanations 
for these correlations between flexibility and success. For example, might the PIN 
and CT students’ increased use of computational and formal reasoning relative to 
the BIN students’ use (see Table 4) be underlying mechanisms that account for the 
improved performance? However, we believe that the statistically significant 
correlations within every participant group (even those groups with and without 
high rates of the use of computational reasoning) provide sound evidence for our 
assumption that the overarching degree of flexibility, rather than an increased use 
of a particular WoR, explains improved student performance. That said, we are 
open to the possibility that mechanisms we did not measure may underlie students’ 
flexibility and that such mechanisms could account for some students being both 
more flexible and more accurate than others.

In summary, we have documented statistically significant moderate-to-strong 
correlations across and within participant groups between flexibility and perfor-
mance on integers open number sentences, and we found that the correlations were 
strongest in the PIN group.

Participant-Group Summaries
We now briefly summarize our findings related to each participant group. First, 

NEN students struggled to answer any problems; almost exclusively used emergent 
reasoning to solve them; and provided no instances of using order-based, analogy-
based, or formal WoRs. Second, although BIN students were also likely to use 
emergent reasoning to solve problems, they also correctly solved about one third 

Table 10
Percentage of Students Who Selectively Used Each WoR

Group Order-based Analogy-based Computational Formal
BIN 74% 41%  5% 10%
PIN 63% 40% 85% 53%
CT 40% 55% 100% 80%
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of all problems, used order-based reasoning more than any of the other productive 
WoRs, and used all productive WoRs. They were not flexible in their problem-
solving approaches, with more than half of the students selectively using only one 
WoR. Although many BIN students were able to solve all-negatives and change-
positive problems, they correctly solved very few counterintuitive problems. Third, 
the PIN students had the greatest range in performance and the strongest correla-
tion between flexible use of the WoRs and performance. They solved more than 
half of all problems using a computational WoR and used each of the other WoRs 
on between one eighth and one third of the problems. They were the only students 
who were much more successful in completing addition than subtraction open 
number sentences. Fourth, the CT students, selected to represent the upper range 
of expertise with respect to integer addition and subtraction at the high school level, 
answered almost every problem correctly, used computational reasoning more than 
any other productive WoR, almost never used emergent reasoning, and were the 
most flexible in their problem solving. The finding that CT students were both the 
most flexible in their WoRs and the most accurate indicates that particular WoRs 
are not necessarily replaced by other, more sophisticated WoRs.

Summary of Findings
In response to our research questions, we found that across participant groups, 

students used five broad WoRs: order-based, analogy-based, computational, formal, 
and emergent. In relation to the WoRs, we identified three major problem types: all-
negatives, change-positive, and counterintuitive. The problem types are distinguished 
on the bases of the signs of the numbers and the locations of the signed numbers, and 
we found that they evoked or have the potential to evoke particular WoRs. Finally, 
we found that the students’ average degree of flexibility increased in order of BIN, 
PIN, and CT students. Moreover, flexibility and performance were positively corre-
lated both within and across participant groups. In the discussion, we share implica-
tions from these findings with respect to the teaching and learning of integers.

Discussion
Findings from our cross-sectional study indicate that the WoRs Framework can 

be applied to the integer reasoning of students in elementary, middle, and high 
school and that integers problem types may help teachers anticipate students’ 
performance and approaches. Both the WoRs and the problem-types frameworks 
provide structures that teachers, researchers, and professional developers may be 
able to leverage when working to develop and investigate students’ understanding 
of integer addition and subtraction. Additionally, we found that students have the 
capacity to grapple with sophisticated mathematical ideas when completing inte-
gers addition and subtraction open number sentences. We suggest that our study 
provides three types of resources for educators: (a) WoRs and problem-types 
frameworks, (b) characterization and development of flexibility, and (c) develop-
ment of a trajectory of learning about integers.
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Ways of Reasoning and Problem-Types Frameworks
Ways of Reasoning Framework. Teachers have a great deal of knowledge about 

their students’ mathematical ideas, but without conceptual frameworks for inter-
preting those ideas, they are often unable to make use of this knowledge in their 
teaching. We know that organized conceptual frameworks for classifying students’ 
mathematical ideas provide lenses for teachers and researchers to attune to 
students’ ideas and develop a structure for assessing and supporting students’ 
understanding (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter et al., 
2014; Carpenter et al., 2003; Empson & Levi, 2011). The degree with which 
students in our cross-sectional investigation used the WoRs indicates that the 
framework can be used across grade levels K–12. Additionally, we have not seen 
many of the most productive strategies within the framework, such as treating 
negatives like positives, inferring the sign of the number prior to determining the 
final answer, or invoking logical necessity (Bishop et al., 2011, Bishop et al., 2016a) 
in textbooks or other curricular materials. Thus, access to the framework may 
provide a new way for teachers to classify the reasoning their students use so that 
they can build on that reasoning.

The role of problem types in supporting students’ learning. Understanding 
how classes of problems may influence students’ approaches may be critical 
knowledge for teachers and researchers to gain to support and investigate students’ 
learning. In our work, we identified three problem types—change positive, all 
negatives, and counterintuitive—that have the potential to evoke particular WoRs 
and that are differentially challenging for students to solve. When teachers and 
researchers are equipped with a structure for organizing both WoRs and problem 
types that may evoke particular WoRs, they may be able to provide specific, 
timely, research-based support to students (cf. Carpenter et al., 2014). Additionally, 
this study is the first in which change- and start-unknown problems were used to 
investigate integer addition and subtraction (cf. Vlassis, 2002, 2008, who investi-
gated change-unknown problems in the context of solving algebraic equations). 
In particular, counterintuitive change-unknown problems such as 6 +  = 4 and 
5 –  = 8 explicitly highlight the common AML/SMS overgeneralization. Prior 
to instruction, most students will claim that these problems cannot be solved. 
These problems can serve a pedagogical role by focusing students’ attention on 
this conundrum: Is it possible to add and arrive at an answer that is less than the 
starting value, and is it possible to subtract and get a difference larger than the 
minuend? These particular types of open number sentences may play a pivotal 
role in supporting the extension of students’ numerical domains to permit negative 
numbers to serve as change values in open number sentences.

Acquiring Flexibility and Developing Rich Understanding of Integer 
Addition and Subtraction

We believe that acquiring flexibility when adding and subtracting integers 
should be a goal for every student. We found that flexibility is not only theoreti-
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cally but also practically important: The more flexible students were in using the 
WoRs, the more accurate they were. Although we found a moderate-to-strong 
correlation between flexibility and accuracy, we did not establish causality. 
However, in other content areas, we know that students can learn to become more 
flexible (Berk et al., 2009; Star & Rittle-Johnson, 2008; Star & Seifert, 2006), and 
we suspect that the same may be true for integer addition and subtraction. In this 
article, we provide an operational characterization of flexibility that may serve as 
a guide for teachers to provide opportunities for their students to become more 
flexible in their approaches to solving integer addition and subtraction problems, 
thus providing opportunities for students to recognize features of problems that 
might make one approach more efficient than another.

To help develop flexibility, we suggest that more time be devoted to teaching 
about signed numbers. Given that learning about signed numbers has the potential 
to provide opportunities for students to explore and learn about new number 
systems; engage with structure and equivalent expressions; support students in 
learning algebra; and justify, reason, and conjecture, we suggest that additional 
time spent learning to grapple with integers will pay dividends in other content 
areas as well. We do not suggest a particular length of time for the study of integers 
but maintain that the current time devoted to the topic is insufficient.

A Developmental Trajectory of Learning About Integers
At the outset of our work, we wondered whether we would identify a hierarchical 

progression of relatively sophisticated WoRs in which one way of reasoning would 
replace another over time. Our cross-sectional findings indicate, however, that one 
productive way of reasoning is not necessarily replaced by others. Instead, powerful 
integer reasoning entails being able to flexibly invoke each of the four productive 
WoRs. Although CT students used a computational WoR more often than the other 
WoRs, they also productively used the other three productive WoRs, and they tended 
to use particular WoRs flexibly by attending to specific features of the open number 
sentences. That said, we view the role of the fifth WoR, emergent, as critical for 
teachers and researchers to understand and build from to facilitate students’ sense-
making approaches while they develop understanding of the other four WoRs.

We return now to Sam’s and Ann’s strategies provided at the beginning of the 
article to share how emergent reasoning might be leveraged to promote more 
sophisticated WoRs. Recall that Sam, a second grader, claimed that 6 +  = 4 had 
no solution because addition should make the sum the same or larger. Ann, a 
seventh grader, also recognized that addition made larger, but her understanding 
was more nuanced. Ann shared that her answer was -2 “because . . . you can’t have 
a positive number [points to the blank] to get a number that is less than the first 
number. So you would have to have a negative number right there [points to the 
blank].” The difference between Sam’s emergent WoR and Ann’s formal WoR is 
not that Ann’s reasoning drew on a replacement of, or on a conceptualization 
entirely different from, Sam’s reasoning. On the contrary, Sam’s claim formed the 
basis for Ann’s response when Ann argued, in essence, that addition makes larger. 
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One important difference between Sam’s reasoning and Ann’s is that Ann bounded 
her claim regarding the conditions under which addition makes larger when she 
shared that “you can’t have a positive [emphasis added] number [points to the 
blank] to get a number that is less than the first number.” She extended this 
reasoning further by sharing her knowledge of the conditions under which addition 
can make smaller: “So you would have to have a negative number right there 
[points to the blank].” Sam’s response reflects reasoning that we heard from almost 
every second and fourth grader we interviewed. Moreover, kernels of Sam’s 
response were present in almost every instance of the strategy within the formal 
WoR, inferring the sign. Rather than attempting to replace Sam’s reasoning about 
addition and subtraction, we recommend treating this emergent milestone as one 
that forms an important basis for the development of a more sophisticated response.

Limitations and Final Thoughts
Although we were able to answer some questions about students’ approaches to 

solving integer addition and subtraction problems, others emerged. For example, we 
wondered whether and how success rates and approaches would change when PIN 
and CT students solved problems with magnitudes larger than 20 or when noninteger 
real numbers were used. Additionally, we investigated the approaches of college-
track students in Grade 11, but we wonder how the results would have differed if we 
had included a representative sample of all 11th-grade students in our study. In future 
work, we see a need to explore students’ approaches for integer multiplication and 
division problems and on integer algebraic expressions (e.g., -4(x – 5)).

In closing, we used the WoRs Framework to share how a broad cross-section of 
students solved addition and subtraction open number sentences; we identified 
three problem types that have the potential to evoke WoRs; and we conducted 
cross-sectional analyses to document the importance of flexibility for students’ 
understanding of signed numbers. On the bases of our findings, we believe that 
no single best model or way of reasoning leads to students’ success in solving open 
number sentences. Instead, we encourage teachers and researchers to come to 
understand the WoRs and the problem types to support students in developing 
productive WoRs about integers addition and subtraction problems, recognizing 
that even the emergent WoR has seeds from which productive WoRs can grow.
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APPENDIX 
Integers Problem-Solving Interview

Introductory Questions
1)  Name a big number. Can you name a bigger number?

2)  Name a small number. Can you name a smaller number? If the child responds, 
“Zero,” ask, “Is there a number smaller than zero?”

3)  Can you count backward, starting at 5? If child stops at 0 or 1, ask, “Can you 
keep counting back?”

4)  What can you tell me about negative numbers? (Ask only if the student has 
previously mentioned the term negative.)

Control Problems, Natural Numbers only Open Number Sentences*
5) 5 + 6 =           6) 4 +  = 9          7)  – 4 = 6          8) 8 –  = 4

Open Number Sentences**
(The CT, PIN, and BIN participant groups solved each of the following 25 prob-
lems. The NEN students were posed only questions 9–14 and 23–28 to reduce their 
time and, potentially, stress when solving problems with negative numbers for 
which they had no background.)

9) 3 – 5 =  10) 6 +  = 4  11) 5 –  = 8 

12)  + 6 = 2 13) -3 + 6 = 	 14) -8 – 3 = 

16) -2 +  = 4 17)  – 5 = -1 18) -9 +  = -4

19) -2 –  = -8 20) -5 +  = -8 21) -3 –  = 2

22) -8 –  = -2 23) -8 +  = 0 24) -5 + -1 = 

25) -5 – -3 =  26) 6 – -2 =  27) 6 + -3 = 

28) 3 +  = 0 30) -5 – -5 =  31) -7 – -9 = 

32)  + -7 = -3 33)  + -2 = -10 34) 3 –  = -6

35) -2 – 7 = 

 *Findings presented in the article did not include percentage correct for the control prob-
lems. Students solved the control problems 5–8 so that we could more reliably attribute 
any challenges in solving problems 9–35 to difficulties with negative numbers rather than 
to challenges in understanding the structure of open number sentences. CT students 
correctly solved 100% of the control problems; PIN students, 98%; BIN students, 95%; 
and NEN students, 88%.
**Questions 15 and 29 are not open number sentences.


