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The main challenges in the design and analysis of jointed structures deal with the predic-
tion of dissipation across bolted interfaces. Since friction is thought to be one of the main
mechanisms for this, the current study investigates the utility of frictional parameter iden-
tification applied across different structures. Based on recent discoveries, a Surrogate
System Hypothesis has been formulated to systematize this: the hypothesis states in brief,
that the physical properties of a joint are independent of its structural context. The current
work seeks to obtain a better understanding of the underlying systems by evaluating a con-
fidence metric for the hypothesis for a relatively simple set of systems—physically per-
turbed configurations of the Brake-Reuß Beam. Interfacial friction is modeled using
whole jointed patches with distributed hysteretic (Iwan) elements and simulations are
conducted using the Quasi-Static Modal Analysis (QSMA) approach to estimate the modal
characteristics of the system response (amplitude dependence of natural frequency and
dissipation). Posing the estimation as a Multi-Objective Optimization Problem (MOOP) is
shown to reveal important features of both the employed constitutive model as well as
the structure that is modeled. Consequently, the approach is used to evaluate the epistemic
uncertainty inherent in three different friction models. The studies reveal that a confidence
metric for the hypothesis can be formulated in such a way that it is nearly independent of
the friction constitutive model that is employed.

� 2019 Published by Elsevier Ltd.
1. Introduction

Despite the pervasiveness of mechanical joints in assembled structures, the lack of accurate predictive models for such
systems has remained a persistent issue for the community. This is primarily due to the lack of knowledge of the physics
governing interfacial interactions, resulting in predictions of energy transmission/dissipation through interfaces being often
in error by several orders of magnitude [50,8]. The major difficulty in developing accurate computational models lies in the
multi-scale nature of interfacial interactions. Friction, for instance, whose effects are perceivable in the macro-scale, is
thought to be a phenomenon that is fundamentally established by the micro-scale properties of the interfaces. Refining
the model to include micro-scale irregularities has two major challenges: (1) uncertainty in the characterization of the inter-
face, and (2) computational cost. Efforts are being made to improve on both aspects in order to make joint modeling feasible.
Regarding the first challenge, there are multiple studies addressing issues in rough contact [26,20,19], validating hysteresis
measurement techniques [21], and developing methods of relating them to surface roughness, leading eventually to more
detailed constitutive models for friction [6]. Experimental characterization is often used to develop fully- or semi-
empirical models by using experimental measurements for parameter estimation [46,45].
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Nomenclature

C linear viscous damping matrix
K linear stiffness matrix
M linear inertia matrix
_q time derivative of quantity q
� design success tolerance
gk
0 kth low amplitude mode weight (modal coordinate)
xk

0 kth low amplitude mode frequency
xn natural frequency
/k
0 kth low amplitude mode shape

w tð Þ phase at time t
h stiction ratio
fn linear damping factor
A tð Þ displacement amplitude at time t (‘‘low-pass”)
D dissipation across frictional element
f tð Þ linear non-homogeneous forcing
Flk contribution of lth low amplitude modal forcing to kth low amplitude modal forcing
FS slipping force
FNL nonlinear forcing
j complex quantity

ffiffiffiffiffiffiffi
�1

p
K0 stress-stiffness matrix
KA stress-augmented stiffness matrix
Kb bolt stiffness of bolted structure
Km member stiffness of bolted structure
KT low amplitude sticking stiffness
KZ Z-(normal) directional stiffness
L1 qð Þ L1 deviation between predicted and experimented values of q
R; S;/max;v parameters of the four-parameter Iwan Model
u tð Þ displacement at time t (‘‘high-pass”)
ul
k contribution of lth low amplitude modal displacement to kth low amplitude modal forcing response

ANOVA ANalysis Of VAriance
BRB nominal Brake-Reuß beam
DOF degree-of freedom
LBRB length-modified Brake-Reuß beam
MOOP multi-objective optimization problem
MPC multi-point constraint
QSMA Quasi-Static Modal Analysis
SBRB stiffness-modified Brake-Reuß beam
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The second challenge presents an imminent problem from a system-level perspective since it is not computationally fea-
sible to develop models of large systems refined to very small length-scales. Efforts have been focused both on multi-scale
modeling [3,40] as well as the application of interface reduction techniques [34,43,24] & nonlinear reduced order modeling
[28]. Common solution techniques applied to the analysis of structures include the time integration technique and the har-
monic balance method. Time integration tends to be inefficient for large built-up structures [25], since jointed structures,
being lightly damped, will have to be integrated for a long time to sufficiently remove the effect of transients. On the other
hand, the harmonic balance method, based on a truncated asymptotic series expansion in the frequency domain, offers a
faster way to calculate steady state responses [11,41,44]. However, both of these techniques prove to be computationally
expensive for even small assemblies such that they present a significant limitation in the application of system identification
techniques, which are primarily developed for simpler geometries [1] (see [32,33,39,25] for a review of the state-of-the-art
in such methods). Even if the methods are adapted for real-world structures, adapting the methods will require in situ joint
characterization. Since this involves the fabrication of the complete system, it renders any design optimization prohibitively
expensive. In part, this is due to a lack of understanding of the interaction between the joint and its structural context.
Although there has been at least one experimental study [13] in this direction, it is still not entirely clear how nominally
identical joints can be expected to behave in dissimilar structures. It is presupposed that the far-field structure will influence
the loading of the joint leading to different response characteristics [5]. The current work attempts to assess the possibility of
using a joint parameter set estimated from one structure to model a nominally identical joint in another. This is intended to
potentially enable engineers to develop models based on lab-scale experimental structures to be applied for the design of
real world structures.



44 N.N. Balaji, M.R.W. Brake /Mechanical Systems and Signal Processing 126 (2019) 42–64
The amplitude dependence of modal parameters (frequency and dissipation) are used as the primary metric for the char-
acterization of nonlinearities in the current work. [23] developed a technique to study the behavior of perturbed linear
modes of a system in the presence of interfacial nonlinearity using quasi-static simulations alone. The low amplitude linear
mode shapes are incrementally updated in order to obtain modal behavior at higher amplitudes, lending to efficient calcu-
lation of nonlinear amplitude dependence of modal parameters. [2] suggested a further reduction, based on the assumption
that the changes in the mode shapes are negligible in the operating ranges of interest for bolted joints. Complementing this, a
theorem due to [51] may be used to prove that perturbations in viscous damping only leads to second order changes in the
mode shapes of mechanical systems. This was further extended in [42] to study the effects of non-viscous damping terms in
the system.

As in [37], this method is formally presented as Quasi-Static Modal Analysis (QSMA). Due to its computational efficiency,
it is possible to conduct more diverse searches in the parameter-space for empirical model parameter estimation. A persisting
challenge, however, is the determination of model parameters for a selected constitutive model. Even for simple models,
such as Coulomb friction or an elastic dry-friction (or Jenkins) element, measurements indicate a wide range of potentially
correct model parameters [27]. Recently, this has been treated as an optimization problem in a model updating context [36].
In Kuether and Najera[35], the authors have attempted this challenge by using a genetic algorithm implementation to esti-
mate the parameters for Segalman’s four-parameter Iwan model [49] applied to a prestressed interface undergoing tangen-
tial excitation. A limitation of this study is that the estimation problem was reduced into a single objective optimization
framework by weighting the errors in the frequency and the dissipation (damping factor) to obtain a single optimization
metric. Although mathematically valid, this approach misses out on various features of the underlying multi-objective prob-
lem (MOOP) [15]. The current work uses a more direct error metric in each modal parameter and attempts to look at the
estimation as a bi-objective optimization problem. It is shown that this standpoint enables one to extract relative features
between pairs of systems in ways that are thought to be relatively independent of the model. Starting with the premise that
when the model has associated epistemic uncertainties, families of optimal models are sought and studied in the parameter-
space instead of seeking a unique optimal model to fit the experimental observations. Intersections of such families in the
parameter-space identified from different systems is hypothesized to be influenced more by the nature of the systems them-
selves than the fitting model. The current paper presents numerical explorations of this idea, bringing out results for the dif-
ferent Brake-Reuß Beam configurations considered in [13] and outlining possible shortcomings.

The remainder of the paper is organized as follows: Section 2 introduces the statement of the surrogate system hypoth-
esis, Section 3 gives a brief overview of the different beam configurations for the current study, Section 4 provides the the-
oretical background for the computational aspects, Section 5 provides the numerical results for the systems under
consideration and Sections 6,2,3,4,5,6,7 outline the major takeaways as well as shortcomings of the current approach and
how they relate to the surrogate system hypothesis. Lastly, Section A presents the engineering drawings of the different
systems under investigation.
2. The surrogate system hypothesis

The surrogate system hypothesis states that the physical properties of a joint are independent of its structural context. As a
corollary to this, the hypothesis implies that a joint characterized in one assembly can be directly used to predict the
response of a different system with the same joint. It must be noted that this may be treated as fairly trivial for linear com-
ponents. For example, a linear spring is modeled as adding the same stiffness to the system irrespective of its disposition in a
dynamical system. However, the historical perspective on frictional components is that the system and the joint response are
fully convoluted. There have even been a few experimental studies discouraging a fully disconnected view (see, for example
[5]). This presents a conceptual difficulty in interpreting experimental data in the context of the performance of a real struc-
ture. More than proving the hypothesis, evaluating a confidence in its validity can be a means of providing a better under-
standing of the underlying system.

For the purposes of the current investigation, a real system is defined as any structure of interest with one or more jointed
interfaces, and a surrogate system is defined as a structure with a single jointed interface identical to one of the joints in the
real system. For instance, N different surrogate structures may be defined for a real system with N characteristically different
joints. The surrogate structures are carefully constructed laboratory models with just a single source of non-linearity: it’s
focal joint. As a starting point, all of the real structures considered here consist of just a single joint.
3. Systems of investigation

Fig. 1 presents schematic diagrams of three configurations of the Brake-Reuß Beams (BRBs) considered in [13] (see Sec-
tion A for engineering drawings). The nominal beam (BRB) consists of a pair of stepped beams bolted together through a
three-bolt lap joint. The other two configurations are physically perturbed designs of the BRB—the stiffness-modified beam
(SBRB), with far-field spring-like structures, and the length-modified beam (LBRB), with longer beams on either side. It must
be noted that the joint interfaces are geometrically congruent in all three structures, without any scaling applied. Further,
identical bolt torques (excluding experimental uncertainty) as well as assembly procedures are followed during the assem-
bly of all the structures.



Fig. 1. Three different configurations of the Brake-Reuß Beam: (a) Nominal (BRB), (b) Spring-modified (SBRB), and (c) Length-modified (LBRB) [13].
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3.1. Experimental characterization

The beams are suspended using bungee wires, in order to best realize fully free boundary conditions. With ten accelerom-
eters positioned along the beam, low impact hammer tests are used to extract the low amplitude mode-shapes experimen-
tally (see [13] for results of this). A schematic of the experimental setup used for the BRB is depicted in Fig. 2. Following this,
accelerometer data from higher amplitude hammer tests (ring down acceleration data) are transformed, using the experi-
mental mode shapes, to modal amplitudes. Then, a Hilbert transform method, based on the ‘‘FreeVib” procedure outlined
in [22], is used to obtain instantaneous modal amplitude, frequency and damping ratio estimates. Using the Hilbert trans-
form, any ring-down signal may be decomposed into an envelope and a phase (both real-valued functions of time) as
Fig. 2.
cords),
referred
u tð Þ ¼ A tð Þcos w tð Þð Þ
¼ Re A tð Þejw tð Þ� �

:
ð1Þ
A quasi-linear approximation is realized by setting the displacement variation (the ‘‘high-pass”, or high-frequency
response component) to be governed by a linear second order dynamical equation retaining the dependence of the coeffi-
cients only on the response amplitudes (the ‘‘low-pass”, or low-frequency response component). Mathematically, the gov-
erning equation is given as
€uþ 2fn Að Þxn Að Þ _uþxn Að Þ2 ¼ 0; ð2Þ
wherexn Að Þ and fn Að Þ represent the natural frequency and damping factor as functions of the response envelope amplitude
A. From linear theory for under-damped systems, the general solution of this may be expressed by
u tð Þ ¼ u0e�fnxnte�j xn

ffiffiffiffiffiffiffiffi
1�f2n

p
tþ/

� �
; ð3Þ
with u0 and / determining the initial conditions. Using the Hilbert transform functions A tð Þ and w tð Þ in conjunction with the
quasi-linear solution, it is possible to obtain the modal properties as follows:
xn tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw tð Þ
dt

� �2
þ d

dt logA tð Þ� �2r
u

dw tð Þ
dt

fn tð Þ ¼ � 1
xn

d logA tð Þ
dt

ð4Þ
Table 1 summarizes the natural frequency and linear damping ratio at the low amplitude levels for the first bending mode
in the structure. It can be observed that different low amplitude damping factors are measured for each beam.
Experimental Setup (BRB): Red squares represent locations of accelerometers; Green lines represent the locations of suspension (using bungee
and the blue arrow indicates the point of hammer input [13]. (For interpretation of the references to colour in this figure legend, the reader is
to the web version of this article.)



Table 1
Mean low amplitude modal parameters for the
first out-of-plane bending mode of the different
beam configurations.

Beam Frequency Damping factor
(Hz) (�10�6)

BRB 169.48 1665.9340
LBRB 80.82 924.3096
SBRB 91.96 946.0959
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Fig. 3 shows the results of the experimental studies indicating the deviations of the natural frequencies and damping fac-
tors from their low-amplitude values (given in Table 1) as functions of their modal displacement amplitudes. The data are
averaged from Hilbert transform fits on transient ring-down responses of seven independent hammer tests (without
disassembly).

The decreasing trends in the natural frequencies and the increasing trends in the damping factors are typical of a jointed
system [54]: the system is ‘‘fully stuck” at low amplitudes, with maximal stiffness across the interface, and ‘‘partially
slipped” at higher amplitudes, with reduced interfacial stiffness. Looking at the frequency deviations, it can be seen that
the behaviors of the BRB and the LBRB almost line up against each other while the deviations for the SBRB are much lesser.
The maximal deviations in the natural frequencies of the models due to nonlinearity are approximately 2%. The damping
factor deviations show more perceivable nonlinear effects in the large increase with the modal amplitude. The deviations
in the SBRB are much lesser in comparison with the other two beams but none of the curves seem to fall on top of each other.
The main inference from these curves is that among the three structures, the SBRB is the one that ismost linear. There is some
similarity between the BRB and the LBRB but no conclusive statement may be made of this since the interface loading con-
ditions are fundamentally different.

4. Modeling approach

4.1. Structural modeling

The structural modeling uses the finite element mesh1 (a view of the mesh at the interface is depicted in Fig. 4b) that was
presented in [36]. Following the generation of the finite element mesh, a prestress analysis is conducted to capture the residual
stresses in the structure due to bolting it together. The augmented stiffness matrices (augmented in terms of including the pre-
stress effects) are then exported for the nonlinear analysis.

For modeling the bolted lap joint, Lacayo et al. [36] considered different interface representations. Owing to its compu-
tational advantages, the ‘‘whole-joint” approach [7] is used in the current study. As depicted in Fig. 4a, the interface is
divided into five patches (note that the grids here denote just the physical partitions in the model and not the underlying
mesh. See Fig. 4b for the interfacial mesh.). The displacements and rotations of each of these patches is coupled to a virtual
node with six degrees-of-freedom (DOFs). A set of multi-point constraints (MPCs) are formulated to set each DOF of the vir-
tual node to the average of the nodes in its corresponding patch. This procedure is not the same as rigidly tying all the nodes
of the patch together, as normal compliance is introduced via linear springs in the z-direction.

In order to model the interfacial nonlinearities, pairs of virtual nodes from corresponding patches are connected using
normal and tangential constitutive models. By contrast, node-to-node contact is much more expensive as every node on
the interface is associated with a corresponding node on the opposite face using a frictional constitutive model. The node
to node approach, although being more accurate, is prohibitively expensive in terms of computational requirements for
conducting analyses in the current spirit. [24] considers the impacts of some design decisions that may be useful to strike
a common ground between the two approaches.

Finite element models of the three beams are developed in ABAQUS with appropriate virtual nodes introduced for
interface reduction. Since these are bolted connections and all of the experimental data presented in Section 3 were from
assemblies with bolts torqued to approximately 20 N m, the equivalent bolt prestress force (calculated to 11,580 N for steel
bolt-washer-nuts, see [10]) is applied to the model. The material properties for all the components are modeled as linear
isotropic materials, with a Young’s modulus of 190 GPa, and a Poisson’s ratio of 0.29.

As stated above, static prestress analysis is first conducted on the full structure with a frictionless ‘‘hard” (no-penetration)
contact in order to obtain the interfacial normal pressure distribution. The solution in this step is used to construct a stress
stiffness matrix, which is augmented to the original stiffness matrix to represent the dynamical system about the prestressed
state (see [12] for examples). The incremental normal contact displacements about this state is modeled as being stiffened by
a linear spring. This is justified by the fact that the magnitudes of excitation are expected to produce negligible changes in
the interfacial normal pressures. Thus each patch will have an unknown normal stiffness parameter in addition to the fric-
tional parameters that will have to be estimated through the design exploration. The current model does not capture the
1 Details of the convergence study for this converged mesh are omitted here, and the interested reader is referred to [36] and its references.



Fig. 3. Experimental (a) frequency and (b) damping factor deviations from low-amplitude values, shown for the BRB ( ), LBRB ( ), and the SBRB
( ).

Fig. 4. (a) The five-patch whole-joint interface with correspondingly labeled regions, and (b) a view of the finite element mesh at the interface. By
symmetry, regions 1 and 5 are taken to have identical properties, as well as regions 2 and 4.
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kinematics of interfacial separation. For a more accurate study, better-suited normal contact formulations (like [38], for
example), must be adopted. But this will come at the cost of additional computational burden for the investigation. Follow-
ing this, a Hurty/Craig-Bampton fixed-interface component mode dynamic substructuring [29,14] is conducted, retaining all
of the degrees of freedom of the interface nodes (6 DOFs � 10 virtual nodes: 60 boundary DOFs) and 26 fixed interface com-
ponent modes to give a reduced system that is capable of capturing up to the first four bending modes of the beams
accurately.
4.2. Quasi-Static Modal Analysis

QSMA [37] is a simplification of the quasi-static analysis method expounded in [23]. The basic ideas of the procedure is
outlined here to bring out the essential principles of the approach.

The approach assumes a dynamic system of the form
M€uþ C _uþ Kuþ FNL u; _u; . . .ð Þ ¼ f tð Þ; ð5Þ
with matrices M; C, and K denoting the inertial, viscous damping and linear stiffness matrices respectively; u denoting the
vector of degrees of freedom, and FNL u; _u; . . .ð Þ and f tð Þ denoting the nonlinear state-dependent forcing and the non-
autonomous excitation terms respectively. Note that no time dependence is considered in FNL since all of the friction models
considered in the current work are fully autonomous in their formulation.

The nonlinear forcing terms from the interfacial friction are such that the forces are zeros when the displacements are
zero, i.e., FNL ! 0 in the limit of ui ! 0. For hysteretic models, this represents the backbone curve (see Section 4.3). Some
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of these models contribute a finite stiffness for small displacement amplitudes, represented by K0. Thus, the low amplitude
form of eq. (5) is
M€uþ C _uþ K þ K0½ �
zfflfflfflfflffl}|fflfflfflfflffl{KA

u ¼ f tð Þ; ð6Þ

which has the augmented low amplitude stiffness matrix KA. Being a fully linear system, the homogeneous part (f tð Þ ¼ 0)
may be decomposed into its oscillatory modesxk

0 and corresponding mode shapes /k
0, with k denoting modal index. For suf-

ficiently underdamped systems the mode shapes may be approximated to a second order accuracy as exponentially decaying
undamped mode shapes [51]. The undamped mode shapes consist of all of the DOFs oscillating in phase with one another,
i.e., the mode shape may be expressed as real vectors in a discretized model. Using modal summation to represent the solu-
tion as a linear combination of the mode shapes we have,
uL tð Þ ¼
XN
k¼0

gk
0/

k
0e

jxk
0t : ð7Þ
Here, j denotes the complex quantity
ffiffiffiffiffiffiffi
�1

p
, and gk

0 represents the contribution of a particular mode to the solution. Being a
self-adjoint system, the non-degenerate mode shapes are orthonormalized with respect to the inner product,
< /l
0;/

k
0 >¼ /l

0
T
M/k

0 ¼ 1 l ¼ k

0 otherwise:



ð8Þ
The inner product <;> is defined for the discretized system as a mass-weighted transpose multiplication. The mass
weighting is used since all the mode shapes considered will be normalized with respect to Mass. This allows for the trans-
formation of a vector of displacements û to its modal projection gk

0 as
gk
0 ¼ /k

0
T
Mû: ð9Þ
In studying the kth mode, all of the weighting coefficients gi
0; i – k, are set to 0, leading to uL tð Þ ¼ gk

0/
k
0e

jxk
0t . The first and

second derivatives of this solution are, _uL tð Þ ¼ jxk
0uL tð Þ and €uL tð Þ ¼ �xk

0
2
u tð Þ. The velocity has no real component, (recall that

it is 90� out of phase with the displacement and acceleration for un-damped oscillations). This can be used to neglect the
viscous terms in Eq. (5) when considering only the modal displacement.

Retaining the displacement as an unknown, substituting the velocity and acceleration in the original nonlinear equation

(Eq. (5)), and setting the extant forcing term f tð Þ to zero yields the quasi-static modal form for the kth mode,
Kuk þ FNL uk; _uk; . . .ð Þ ¼ aM/k
0: ð10Þ
The constant product xk
0
2gk

0 is lumped into the modal forcing amplitude a. The subscript of u denotes the mode at which
it is being excited. As a is varied from zero to a positive value, Eq. (10) represents the quasi-static loading of the system in the
‘‘shape” of its kth mode-shape over a range of modal amplitudes. The solution u is then transformed into the modal-space to

obtain the contributions of any lth mode of the system. In short, the modal forcing and displacement may be given as
Fl
k ¼ a /l

0
T
M/k

0

h i
¼ a ; l ¼ k

0 ; l – k



ul
k ¼ /l

0
T
Mûk;

ð11Þ
where Fl
k and ul

k denote the contribution of the lth mode on the quasi-static force and deformation of a system excited at its
kth mode. Usually, uk

k will be the greatest component in this. Using this in addition to the Masing conditions, it is possible to
construct the hysteretic backbone curve for the friction model and thus calculate the natural frequency and damping factors
of the nonlinear system at forcing level a. The subscripts 0 indicates that these calculations are based on the linearized low-
amplitude (‘‘stuck” interface) modes.

4.3. Friction models

Four friction models are considered for the current study: the single Jenkins element, a distributed four-parameter Iwan
Model [49], a distributed five-parameter Iwan model [53], and a ‘‘middle-stuck” four-parameter Iwan Model. All of these
may be classified as Masing models [9], which stipulate that for a steady-state response,

� The forward part of the hysteresis curve is identical to the reverse part of the hysteresis curve, only stretched by a factor of
two and reflected across the axes when oscillating between two extremes.
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� The equation of any hysteretic response curve is determined from the last point of the loading cycle before reversal and
requiring that if the loading curve crosses a previous loading curve, it must correspond to the previous loading curve.

The above are often termed as Masing’s conditions and offer an effective way of relating the hysteretic backbone to the
hysteresis loop. This is an essential requirement for the current approach since QSMA models just the backbone curve.

Fig. 5a depicts an illustrative hysteresis curve for a generic Masing model with a backbone f uð Þ (with displacement u). The
loading and unloading curves f l uð Þ and f u uð Þ are related via
Fig. 5.
backbo
f l uð Þ ¼ �f 0 þ 2f u0þu
2

� �
f u uð Þ ¼ þf 0 � 2f u0�u

2

� �
:

ð12Þ
The energy dissipated per unit cycle (along the hysteresis curve at steady state) is given as the cyclic integral of the hys-
teresis path, i.e., the area under the hysteresis loop in Fig. 5a. It can be shown that
D u0ð Þ ¼ H u0
�u0

f l uð Þ � f u uð Þð Þdu
¼ �4f 0u0 þ 8

R u0
0 f tð Þdt;

ð13Þ
where the integral term is the area under the backbone up to a displacement u0.

4.3.1. The Jenkins element
The single Jenkins model, whose backbone is depicted in Fig. 5b, is a linear spring connected serially to a frictional slider.

The element behaves linearly until the spring force becomes equal to the threshold of the slider, after which it starts sliding
with a constant force. Every pair of nodes connected with a Jenkins element is characterized by 2 parameters, the linear stiff-
ness KT , and the slipping force FS. The forcing (backbone) and dissipation follow
f uð Þ ¼ KTu; KTu < FS

FS; KTu P FS; and



ð14Þ

D uð Þ ¼ �4FSuþ 8 1
2

F2S
KT

þ FS u� FS
KT

� �� �
if KTu P FSð Þ

¼
0; KTu < FS

4FS u� FS
KT

� �
; KTu P FS:

( ð15Þ
Implementing Jenkins models with normal stiffness in three unique patches leads to a total of 9 parameters that must be
estimated.

4.3.2. The four-parameter Iwan element
The Iwan class of models were originally introduced in the context of plasticity [31,30], but were later adapted for mod-

eling frictional interactions[49]. The Iwan model is composed of a distribution of elementary Masing elements described by
one or more continuously varied parameters. The integrated effect of these is then used to obtain a more detailed model.

The four-parameter Iwan model[49] is constructed using a parallel arrangement of Jenkins elements. After scaling the
terms, the distributions are parameterized with the slider strengths /. The reduced equations represent the force from a
Friction constitutive modeling that shows (a) an illustrative hysteresis curve of a Masing model, (b) a Jenkins model, and (c) a stiction Jenkins model
ne.
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set of parallel Jenkins elements with unit stiffness and different slipping strengths. Here, q /ð Þd/ represents the count of ele-
ments with strength / 2 /;/þ d/½ Þ. The distribution proposed in[49] was
q /ð Þ ¼ R/v H /ð Þ � H /� /maxð Þ½ � þ Sd /� /maxð Þ; ð16Þ
where /max represents the ‘‘macroslip strength”, 3þ v represents the power law slope of the dissipation, and R & S are math-
ematical constants. These four parameters completely describe the frictional interactions between a pair of points linked
through the four-parameter Iwan element. The backbone and the cycle dissipation for the above four-parameter Iwan model
is
f uð Þ ¼
R u
0 /q /ð Þd/þ u

R /max
u q /ð Þd/; u < /maxR /max

0 /q /ð Þd/; u P /max

(
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D uð Þ ¼
R u
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ð19Þ
For the patch formulation, this will result in 15 parameters to be estimated.
4.3.3. The five-parameter Iwan element
In [53], a stick-slip formulation is introduced to the Iwan element by modifying the Jenkins element to include an addi-

tional parameter h to model stiction by positing that the slipped element force is different from the slippage strength by a
multiplicative factor
h ¼ Fd
S

Fs
S

6 1:0: ð20Þ
The superscripts d and s denote the dynamic (slipped) force and the static (strength) force respectively. An illustrative
backbone is depicted for a single stiction Jenkins element in Fig. 5c. Using an identical treatment as for the four-
parameter Iwan element, the backbone and cyclic dissipation is,
f uð Þ ¼
R u
0 h/q /ð Þd/þ u
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ð22Þ
The backbone expression has been previously derived in [53], but the dissipation expression is distinct from the published
result due to the prior work not rigidly enforcing the Masing conditions. This leads to an 18 parameter estimation problem
for the whole-joint modeled Brake-Reuß Beam interfaces.



Table 2
Summary of the contact models considered.

S.No. Name Number of Unknowns Remarks

1. Jenkins 2þ 1ð Þ � 3 ¼ 9 Stick-Perfect slip elements
2. Four-Parameter Iwan 4þ 1ð Þ � 3 ¼ 15 Micro-slip elements
3. Five-Parameter Iwan 5þ 1ð Þ � 3 ¼ 18 Micro-slip elements with Stiction
4. Middle-Stuck Four-Parameter Iwan 4þ 1ð Þ � 2þ 2 ¼ 12 Micro-slip (+ fully stuck) elements
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4.3.4. The middle-stuck four-parameter Iwan model
Since the innermost region in the interface (region 3 in Fig. 4a) is expected to have large normal force, this model uses

linear springs in this region and the four-parameter Iwan models in the other four. Thus, this modeling approach will result
in a total of 12 parameters that will have to be estimated.

Table 2 summarizes the four interfacial contact formulations considered for the current study. Strictly, the last formula-
tion is not a fundamentally different contact model than formulation 2; it merely represents an exploration into the idea that
the central patch may in fact always be in the ‘‘fully stuck” state, while accounting for the nonlinearity in the other patches.

4.3.5. Modal parameter estimation
Once a set of quasi-static simulations are conducted, the nonlinear natural frequency is estimated using the secant stiff-

ness from the modal backbone (force-displacement curve)
x ¼
ffiffiffiffiffiffiffiffiffi
f uð Þ
u

r
; ð23Þ
where u is the modal displacement amplitude, and f :ð Þ is the backbone (uk
k and a respectively, as per previous notation). The

total dissipation DTotal is expressed as a sum of the dissipation across each of the nonlinear elements in the structure, Di,
added to the dissipation due to the underlying viscous damping factor f (estimated from low amplitude tests)
DTotal ¼
XNe
n¼1

Di uð Þ þ 2pu2x2f; ð24Þ
The factor 2pu2x2 comes from linear vibration theory (see any standard text like [52]), where the damping factor per
cycle for a forced damped linear harmonic oscillator is
fn ¼ D
2pxxnu2 ; ð25Þ
withx andxn denoting the forced and natural frequencies respectively. Since the QSMA framework is equivalent to exciting
the system at its natural frequency, the subscripts are dropped, leading to the corresponding term in Eq. (24). Following this,
Eq. (25) is used to obtain the total equivalent damping factor for the system.

4.4. Pareto optimization

An important difference between previous attempts at characterizing joints using design exploration and the current
work is in the objectives of the optimization problem. Where previous works such as [35] have weighted the frequency
and damping deviations to obtain a single objective formulation, the present work retains the two as independent objectives.

An important idea in multi objective optimization is the concept of dominance of solutions. A set of solutions are said to
be non-dominated if no solution in the set performs better than any other solution in the set in terms of all of the objectives
[15]. This set, also commonly referred to as a Pareto set/front, lies in a space one rank below the objective-space (or error-
space), eg., for a bi-objective problem, the Pareto front is a curve (1D), for a tri-objective problem it’s a surface (2D), etc. Prob-
lems with a single point in the Pareto set imply that the objectives need not be treated independently and that optimizing
one is sufficient to optimize the other. In most scenarios, however, this is not the case and the Pareto set consists of multiple
solutions (or ‘‘designs”). Although weighing the objectives is a classical method for obtaining a unique optimizer for the
problem, the choice of the weights is directly related to the portion of the Pareto set that will be highlighted. Another impor-
tant issue is diversity in the population of both the design- as well as the error-space. Although the Pareto front may look
sufficiently distributed in the error-space, the designs may be biased in the design-space. This issue gets more pronounced
with larger design variables (see discussions on the ‘‘curse of dimensionality”, [47]).

Although significant advances have been made in evolutionary algorithms for MOOPs [16], unbiased design space pop-
ulation is a persisting issue in the community. The current investigation populates the design-space using a latin hyper-
cube (LHS) based random sampling and evaluates the performance of each design before determining the correct designs.
From [18] it can be inferred that as the dimension of the design-space increases, the number of data points to obtain an unbi-
ased sampling of the whole domain increases geometrically. Thus design exploration becomes more difficult as the number
of parameters to estimate increases.



Fig. 6. Pareto fronts for four-parameter Iwan models modeling the interfaces of the three BRB configurations shown in Fig. 1.
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Fig. 6 depicts the NSGA-II (Non-dominated Sorting Genetic Algorithm II [16]) populated Pareto fronts in terms of the root-
mean-squared errors for the three beams with interfaces modeled using the four-parameter Iwan models. A hard minimum
can be observed in the damping factor for all of the beams, with the magnitude of the minimum larger for the LBRB and the
SBRB. This is because the damping factor predictions can only get as accurate as the low amplitude damping factor estimate
is. Since there are no analytic methods of estimating the viscous damping factor, the low amplitude value from the BRB tests
is used. The corresponding numbers for the other two beams show deviations within the same order of magnitude. Another
important feature is the shape of the Pareto fronts—for a minimization problem, these are termed as non-convex fronts,
which indicates the insufficiency of the model in matching the experimental frequency and dissipation observations. In other
words, the Pareto front is interpreted as a metric for evaluating the epistemic uncertainty inherent to the modeling frame-
work. For example, presence of prestress was observed to greatly influence the shape of the pareto front (see Section 5.2.1). It
is hypothesized that as the sources of epistemic uncertainty are removed from the model, the two response parameters will
cease to be independent of each other, and the Pareto front will shrink to a single optimal design. That is, as the model form
error is reduced, the area under the Pareto front will be reduced. As an example of this, in Section 5.2, the Pareto fronts cal-
culated with the four-parameter Iwan model are consistently closer to the origin than those calculated with Jenkins ele-
ments for all three systems studied. This certainly indicates that there is some improvement in using the Iwan elements
over the single Jenkins elements for whole joint simulations.
4.4.1. Methodology
Using the three-patch formulation (in which the parameters for pairs of patches 1 and 5 and 2 and 4 are taken as identical

by symmetry), the Jenkins, middle-stuck 4-parameter Iwan, 4-parameter Iwan, and 5-parameter Iwan element approaches
lead to 9, 12, 15, and 18 parameter formulations for the MOOP as previously noted. All of the current studies are performed
by initializing these spaces with 5� 106 LHS design points. Designs performing with a maximal error in frequency of 2 Hz
(approximately half the maximum deviation in the BRB) and in damping factor of 5� 10�3 (half an order of magnitude of the
linear damping factor) are deemed as successful in fitting the current set of experimental data.

The maximal deviation may be formalized as the L1 deviation, which is defined as
L1 qð Þ ¼ maxijqmodel
i � qexpmt

i j; ð26Þ
where q denotes a set of parameter predictions compared against the experiment and the superscripts identify the experi-
ment and the model. For the current application, q is one of frequency or damping factor. Defining the tolerance level � as
above, the success criterion is written as
L1 qð Þ 6 �: ð27Þ

The L1 metric is chosen here since the specification of the maximum deviation bound can arise naturally from the desired

accuracy in an application. This is equivalent to drawing a rectangle in the error space and selecting the designs that fall
within its bounds. Calling this subspace of the selected designs as the acceptance region, an ideal surrogate system must
have an acceptance region falling entirely within the acceptance region of its corresponding real structure. Any less than
ideal surrogate system may be characterized by the relative size of the intersection of the two acceptance regions. This char-
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acterization, referred henceforth as the confidence of surrogacy, is numerically estimated as the fraction of the number of
designs in the acceptance region (from the random sampling) of the surrogate system that also lie in the acceptance region
of the real system. The method, while not unbiased, will be used as a first estimate to assess the surrogate system hypothesis.

Representing the unknown parameters as X 2 Rn, and using MI #Rn to represent the acceptance region for beam I in the
parameter space, the above definition for the surrogacy coefficient between beams I & J may be written as
Fig. 7.
SCI;J ¼ E P X 2 MJ|fflfflfflffl{zfflfflfflffl}
AJ

jX 2 MIÞ|fflfflfflfflffl{zfflfflfflfflffl}
AI

0B@
375 ¼ P AJjAI

� �
:

264 ð28Þ
Since all the calculations in the current work are conducted using random populations, the estimator for the metric cSCI;J is
given by the estimator for the expectation of the event AJ conditional to the event AI . This is given by
cSCI;J ¼ E
P X2MI\MJð Þ

P X2MIð Þ
� �

u

P
n
II xnð ÞIJ xnð ÞX
n
II xnð Þ

ð29Þ

with; II xnð Þ ¼ 1 xn 2 MI

0 otherwise

(
:

5. Results

5.1. Prestress and linear analysis

Fig. 7a presents the contact pressure distribution on the interface of the BRB after the static prestress analysis is per-
formed in ABAQUS. The interface is modeled using a frictionless ‘‘hard” contact model. A cross-sectional view of the stresses
Interface contact pressure of the BRB prestressed with a frictionless ‘‘hard” interface contact model: (a) surface normal, (b) Half beam cross-section.
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developed is presented in Fig. 7b along with a reference frustum line of 30�. It can be seen that the angle approximately cap-
tures the cross-sectional pressure distribution.

From the simplified frustum idealization (see [10]), the normal directional member stiffness is
Fig. 8.
referen
Km ¼ pEd tana
2 log 2t tanaþ D�dð Þð Þ Dþdð Þ

2t tanaþ Dþdð Þð Þ D�dð Þ

 
u7:5� 108Nm�1:

ð30Þ
The bolt stiffness, assuming a uniform cross section for the bolt, is approximated as,
Kb ¼ AbE
lb

u3:7� 108Nm�1:
ð31Þ
In the above, the quantities E; d;D; t;Ab; lb, and a are the Young’s modulus (190� 109 GPa), hole diameter (8.43 mm),
washer diameter (17.46 mm), half-beam thickness (12.7 mm), bolt cross sectional area (49:5 mm2), length of bolt in tension
(25.4 mm), and frustum angle (30�). The total normal stiffness of each joint is approximately Kb þ Km and comes out to be in
the order of 109 N m�1. While the above analysis is a coarse approximation, it helps narrow the bounds for parameter vari-
ation in the studies that follow. The normal directional stiffness is retained as a parameter to be estimated due to the high
deviation expected from this approximation.

Fig. 8 presents the (scaled) first mode shape of the frequency analysis conducted on the prestressed system. It can be seen
that the mode shapes of the BRB and the LBRB are qualitatively similar, but the SBRB appears to have a fundamentally dif-
ferent loading pattern in the joint-region. The current study is restricted to studying the results of the QSMA conducted on
the depicted first bending mode over different amplitude ranges.

5.2. Nonlinear parameter estimation

Figs. 9–11 depict the performance of 5� 106 LHS designs for the Jenkins, four-parameter Iwan, and the five-parameter
Iwan models respectively. The middle-stuck formulation is not depicted since its characteristics are nearly identical to that
of the four-parameter Iwan model. Table 3 summarizes the parameter limits used (as applicable) for each model. In each of
the figures, the first column (figs. (a), (d), (g)) shows the error-space (using the maximum absolute deviations, or the L-
infinity norms to define the space, L1 x½ � � L1 f½ �) where, a box denoting the acceptance criterion is drawn over the design
evaluations. Further, the performances of the Pareto front designs of all of the beams are connected by a line in each plot.
While the Pareto designs of the SBRB are far outside of the acceptance region for the BRB and the LBRB, most of the designs
from the Pareto fronts of the BRB and LBRB fall within the acceptance region for the SBRB. This hints at the presence of
asymmetry in the concept of surrogacy, i.e., the BRB could be a good surrogate system for the SBRB while the SBRB may
be a poor surrogate system for the BRB.

The second and third columns in the figures (figs. (b), (e), (h) and figs. (c), (f), (i)) show the actual response curves cor-
responding to three representative designs from the Pareto sets, which indicate a trade-off between predicting the frequency
and the damping factor evolution. In the damping factor plots for the LBRB and the SBRB, there exists a minimum error in the
Linear mode shapes of (a) the BRB, (b) the SBRB, and the (c) the LBRB (Contours colored by displacement magnitude). (For interpretation of the
ces to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 9. Performance plots for the Jenkins model applied to the BRB ((a)–(c)), LBRB ((d)–(f)), & SBRB ((g)–(i)). Shown are the Pareto fronts ((a), (d), (g)) in the
error space of Dx1 & Df1 , and the modal amplitude dependence of x ((b), (e), (h)) and f ((c), (f), (i)).
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damping factors from the linear regime in all cases. This is due to using the damping factor of the nominal beam (BRB, see
Table 1). The effect of using a different damping factor is explored at the end of the current section.

Since the Jenkins element consists of a ‘‘jump” between the stick and slip regimes, a non-smooth trend is present in the
characteristic plots. The frequency and the damping factor are constant up to a critical displacement amplitude, after which
they exhibit nonlinear effects. This can not be corroborated with physical observations and is a consequence of epistemic
uncertainties characteristic to the Jenkins element. As previously noted, the location of the Pareto front is a strong qualitative
indicator of the modeling uncertainty in the particular scenario. A closer inspection of the Pareto fronts in Figs. 9 and 10 is
used to infer that the four-parameter Iwan element approach is more suitable than the Jenkins element approach for the
current application. As expected, the response curves for the Iwan models are relatively smoother. It must be emphasized
that the above issues with the Jenkins elements are due to the whole-joint-patched formulation and will be reduced/minimal
in other contexts such as a node to node contact discretization.



Fig. 10. Performance plots for the four-parameter Iwan model applied to the BRB ((a)–(c)), LBRB ((d)–(f)), & SBRB ((g)–(i)). Shown are the Pareto fronts ((a),
(d), (g)) in the error space of Dx1 & Df1 , and the modal amplitude dependence of x ((b), (e), (h)) and f ((c), (f), (i)).
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Table 4 shows three optimal design parameters (marked in Fig. 10) for the BRB simulated using the four-parameter Iwan
models. The parameters do not show any signs of clustering; for instance, FS values of region 2 are in the order of 109 N for
the first and last designs but in the order of 102 N for the second. Further, the normal directional stiffness is off from the
idealized estimate in Section 5.1 by as much as 3 orders of magnitude in the lower side and around 2 in the upper side.
The challenges, as already noted, in conducting non-parametric parameter distribution studies are the issues with unbiased
design population and the curse of dimensionality. Due to the lack of physicality of the parameters, coupled with the fact
that the system never enters macroslip (which could give a better estimate of FS), direct experimental estimation of the
parameters is not straightforward.

5.2.1. The effect of prestress
In order to demonstrate the influence of the bolt prestress on the modeling uncertainties, Fig. 12 depicts the Pareto fronts

for the SBRB modeled using the four-parameter Iwan models with and without the application of prestress. The no prestress



Fig. 11. Performance plots for the five-parameter Iwan model applied to the BRB ((a)–(c)), LBRB ((d)–(f)), & SBRB ((g)–(i)). Shown are the Pareto fronts ((a),
(d), (g)) in the error space of Dx1 & Df1 , and the modal amplitude dependence of x ((b), (e), (h)) and f ((c), (f), (i)).

Table 3
Parameter limits for design exploration.

Parameter Min. Max. Sampling

FS 101 N 1011 N Log-scale

KT 102 N m�1 1014 N m�1 Log-scale

v �0:99 �0:01 Linear-scale
b 10�4 104 Log-scale

h 0:0 1:0 Linear-scale
KZ 102 N m�1 1014 N m�1 Log-scale
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Table 4
Illustrative optimal designs of the four-parameter Iwan Model for the BRB. Three rows per design denote interface regions 1, 2 & 3 respectively (as depicted in
Fig. 4a).

Design ID. FS (N) KT (N m�1) v b Kz (N m�1)

1 4:4727� 102 8:1842� 108 �0:4854 1:4275� 10�5 1:0341� 106

5:9343� 109 1:1501� 107 �0:7244 1:4375� 10�1 1:2433� 106

3:0034� 104 2:2452� 106 �0:9682 1:0108� 101 5:0676� 105

2 5:2100� 102 8:2470� 108 �0:8623 7:2518� 10�2 1:0682� 1010

7:3669� 102 7:2860� 1011 �0:2776 7:7126� 10�4 8:5965� 1010

1:2316� 103 8:3824� 105 �0:2244 3:0248� 10�4 4:3511� 108

3 4:5916� 102 7:3298� 108 �0:4188 1:6614� 100 3:4173� 108

2:0927� 109 1:2864� 105 �0:1401 1:0702� 10�2 3:5579� 108

1:3745� 102 5:2988� 102 �0:0636 2:4733� 103 4:1171� 109

Fig. 12. The effect of prestress on the Pareto curve for the SBRB, with the interface modeled using four-parameter Iwan models.
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model was created by skipping the initial static analysis step (detailed in Section 4.1) before the substructure generation. As
a result, the matrices for this system correspond to a structure that does not include prestress augmentation (KA in Eq. (6)).
Thus, this model is useful in highlighting the contribution of the prestress augmentation to the dynamic response of the
structure.

It can be observed that it was not possible to tune the system for frequency deviations below around 25 Hz when the
prestress is ignored. The prestressed system, on the other hand, shows that the models are capable of being tuned for fre-
quency to a much lower deviation value. There are some other influences in the damping factor deviations too. This effect
is observed to a lesser extent in the other beams, in terms of altering the Pareto fronts, but because of the nature of the load-
ing (mode shape) of the SBRB, it is comparatively accentuated here. Therefore, subsequent modeling efforts should include
the stiffness augmented due to prestress.
5.2.2. Confidence of surrogacy
In order to estimate the confidence of surrogacy of a ‘‘surrogate” system A with respect to a ‘‘real” system B, the accepted

designs of system A are all used to model system B and their performances are recorded. Here, A and B could be any of the
systems investigated. Selection is performed among this set (L1 criteria used here) and the ratio of the number of accepted
designs to the total number of designs (accepted from system A) is calculated as the confidence of surrogacy.

Table 5 tabulates the surrogacy confidence estimates for the four friction models described previously. It must be noted
that the low amplitude viscous damping factor used for all of the models here corresponds to the BRB (see Table 1). For the
given three beams, nine distinct surrogate-real pairs are considered, giving rise to the matrix form of the tables. The rows



Table 5
Pairwise surrogacy confidence estimates for the (a) Jenkins, (b) 4-parameter Iwan, (c) 5-parameter Iwan, and (d) middle-stuck 4-parameter Iwan models with
flin ¼ 1665:9340� 10�6. S-Surrogate system, R-Real system.
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denote the beam considered as the surrogate system and the columns denote the beam considered as the real system. Two
immediate conclusions are apparent from the tabulation:

1. The estimates show greater sensitivity to the beam pair than the modeling approach.
2. Surrogacy is a one-way relationship, i.e., a non-commutative property.

The implication of the first property is that this shows that there is an inherent metric that can be estimated independent
of how the system is modeled. With all of the uncertainties associated with friction constitutive modeling, it is not trivial to
decide the most applicable one. The current results provide a metric that can be used to evaluate the ability of one structure
to act as a ‘‘test-bed” for another. For example, the surrogacy confidence of the BRB for the LBRB is estimated as 99:03%

(averaged over the four models). This implies that parameter estimates from experimental data of the BRB alone is
99:03% certain to model the LBRB to comparable accuracy. Thus, to make design decisions for the LBRB, the beam itself does
not need to be tested if the confidence in the surrogacy of the BRB is deemed sufficient.

One ramification of the ability to quantify the confidence is that future design efforts could use a set of known joint mod-
els measured from well-suited surrogate systems to predict the response of a novel structure accurately, and to optimize a
design with known confidence. Further, in applications where fabrication and testing of prototypes or design iterations is
expensive and time consuming, this approach of modeling with parameters deduced from a surrogate structure should sig-
nificantly reduce project costs and durations. It can be seen that while the BRB has the highest surrogacy confidence values
with respect the other two beams, the corresponding values of the SBRB are significantly less. This indicates that by design,
the SBRB is a poor choice for a surrogate structure while the BRB comes out to be the best one.

In order to study the dependence of these estimates on the different factors in each estimation process, an analysis of
variance (ANOVA) test was set up posing the surrogate beams, the real beams, the friction model, and the linear damping
ratio as four factors. The current study explores the three beams as the levels for the beam factors, the four friction models
as the levels for the friction model factor, and the three linearized damping ratios (from Table 1) as the levels for the lin-
earized damping ratio factor. Table 6 presents the results of the four-way ANOVA test. With over 97% confidence, the friction
Table 6
ANOVA Table (4-way) for surrogacy confidence.

Factor Df Sum Sq. Mean Sq. F value Pr(>F)

Beam S 2 31.23 15.616 267.533 < 2� 10�16

Beam R 2 56.80 28.399 486.523 < 2� 10�16

Friction Model 3 0.01 0.005 0.081 0.971
Linearized f 2 0.00 0.000 0.000 1.000

Residuals 1070 62.46 0.058
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model and linear damping factor have no influence on the coefficient of surrogacy, The choice of system for the surrogate,
though, is paramount for the coefficient of surrogacy (with a likelihood of being rejected < 2� 10�16%).

The second property is reflected in the asymmetry in the coefficients SCA;B – SCB;A revealing that the surrogacy of one
structure for another does not estimate the surrogacy in the opposite way. Therefore, a carefully designed surrogate struc-
ture could be made to have high surrogacy confidence for a wide range of real structures.

Upon inspection of the estimates in Table 5 and the response curves in Fig. 3 the fact that the LBRB has a surrogacy of only
around 34% for the BRB while the BRB has more than a 98% surrogacy for the LBRB is somewhat surprising at first. The
response of the LBRB seems to be different from that of the BRB since it appears to be operating at a much higher level of
dissipation change than the BRB for each modal amplitude level. This suggests that the modal amplitude may not be the right
parameterization for the response curves since the joint loading state for a given modal amplitude is not identical for differ-
ent structures. A better parameterization should capture the expected loading on the interface more closely.
6. Discussions

Despite the fact that the contact modeling approach adopted in the current work is simplistic, it has been demonstrated
that it is sufficient to make meaningful predictions for a bolted structure, provided the parameters may be tuned satisfac-
torily. The nature of the Pareto front is taken as an indicator of the ‘‘tunability” of a particular contact model to represent
the response of a given structure, and the surrogacy estimate represents the applicability of the so-tuned parameters across
different structures and/or loading cases.

An important factor in the adopted estimation procedure is the acceptance bounds placed in the error space—modifying
this was seen to slowly perturb the confidence estimates until the properties break down. Thus, owing to the inherent mod-
eling uncertainties, the existence of optimal error bounds is inferred to provide the most robust confidence estimates. As an
extension of the current work, the surrogacy confidences between two modes of the same structure could be assessed, which
will be useful to determine whether or not studying just a single mode will be sufficient to characterize the complete system
(see [4] for preliminary results).

Besides this, one significant issue with using sophisticated constitutive models for modeling friction in jointed structures
comes from the fact that most of these will be parametrized by non-physical mathematical constants. This makes the param-
eter identification problemmore complicated leading to difficulties in interpreting empirical models. Posing this as an MOOP
is shown to reveal important features of both the employed constitutive model as well as the structure it is used to model. As
noted above, the Pareto front in the error-space is related to the efficacy of the model to describe the experimental obser-
vations. In addition to the model, many factors are believed to contribute to the structure to this end; the joint reduction
approach, the solution methodology, etc. Although it is beyond the scope of the current work to assess the effects each of
these has, the Pareto fronts provide a valuable method of understanding how appropriate a particular modeling approach
is to make predictive models.

An important physical aspect is that the dynamics of an assembled system are expected to be dependent upon the normal
contact force within the interfaces. In this study, however, normal force dependency was not directly investigated due to the
limitations of the considered models. Moreover, by fixing the model parameters for each patch over the vibration cycle, it is
assumed that the contact stresses do not change as the structure vibrates. There have, however, been experimental studies
that zemblanitously show that this assumption is incorrect (see, for example, [48]). The effect of prestress on the model esti-
mation must be studied in further detail. Extending the approach to normal-force dependent friction models may require
alternate simulation methods since these are no longer Masing models, which violates a requirement for QSMA. The avail-
able alternatives include transient simulations and frequency domain solvers. Using either of these, especially for the more
sophisticated friction models, will result in very large computational times making design exploration in the current spirit
prohibitively expensive. A slightly modified approach would be the quasi-static direct hysteretic modeling, wherein the full
hysteresis curve is simulated quasi-statically. The system is taken through the backbone to the peak displacement, and
quasi-statically unloaded and reloaded to trace the complete hysteresis loop. Demonstrated to be applicable for elastic
dry friction models in [17] the authors are currently investigating the applicability of this approach to a general hysteretic
constitutive law.
7. Conclusions

The paper has two major contributions: the definition & testing of a surrogate system hypothesis for jointed systems, and
a numerical estimator for the developed metric.

This paper defines the surrogate system hypothesis as stating that the physical properties of a joint are identical irrespec-
tive of its structural context. The implications of this hypothesis could be in contrast with the whole joint modeling approach
used commonly over the last two decades in which the properties of a joint are deduced as part of the structure, not as an
isolated interface. In order to test this hypothesis, a quantitative metric has been defined so as to evaluate the applicability of
experimental observations from one jointed structure to another. Estimates of these are shown to be relatively independent
of the frictional models used to model the interfaces, and hence, the estimation of these constants provides a way of studying
the structures under the purview of a design-space.
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An estimate of the surrogacy metric is formulated and demonstrated to be applicable for a set of bolted lap-joint struc-
tures with identical interfaces. Going forward, however, it will be of relevance to come up with alternative and possibly
cheaper approaches for the estimation. The suitability of evolutionary algorithms will have to be assessed more rigorously.
Preliminary efforts showed that improper implementations may lead to random clustering in the design-space. This could
lead to high biases in the confidence estimates and have very high dependence on the initial population.

In the absence of a better estimation strategy, the estimation process must be carried out for models with varying sophis-
tication in terms of finer contact patches or better interface models. As already mentioned, an important drawback in scaling
up the procedure to more patches/parameters is the computational overhead it incurs. As the parameter space grows (in
dimensionality), the number of designs that will have to be sampled to span the entire space sufficiently will increase geo-
metrically, making the outlined procedure ill-suited for the application. This can, however, be countered in part by employ-
ing more physical contact models, such as rough contact models (see [26], for instance) and implementing them in a
traction-consistent formulation (such as the models presented in [17]), keeping the total number of unknowns to a small
number, while preserving interfacial kinematics.

In assessing the surrogate system hypothesis for jointed structures, it can be concluded that it is possible to quantify and
estimate the surrogacy potential of any structure to model any other structure using empirical design exploration. Further,
this approach may have potential applications in other areas of nonlinear systems too.
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Appendix A. Engineering drawings

See Figs. 13–15.
Fig. 13. Nominal Brake-Reuß beam (BRB).



Fig. 15. Stiffness-modified Brake-Reuß beam (SBRB).

Fig. 14. Length-modified Brake-Reuß beam (LBRB).
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