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Abstract—Diagnosis prediction aims to predict the future
health status of patients according to their historical visit records,
which is an important yet challenging task in healthcare infor-
matics. Existing diagnosis prediction approaches mainly employ
recurrent neural networks (RNNs) with attention mechanisms
to make predictions. However, these approaches ignore the
importance of code descriptions, i.e., the medical definitions of
diagnosis codes. We believe that taking diagnosis code descrip-
tions into account can help the state-of-the-art models not only
to learn meaningful code representations, but also to improve
the predictive performance. Thus, in this paper, we propose
a simple, but general diagnosis prediction framework, which
includes two basic components: diagnosis code embedding and
predictive model. To learn the interpretable code embeddings, we
apply convolutional neural networks (CNNs) to model medical
descriptions of diagnosis codes extracted from online medical
websites. The learned medical embedding matrix is used to
embed the input visits into vector representations, which are
fed into the predictive models. Any existing diagnosis prediction
approach (referred to as the base model) can be cast into the
proposed framework as the predictive model (called the enhanced
model). We conduct experiments on two real medical datasets:
the MIMIC-III dataset and the Heart Failure claim dataset.
Experimental results show that the enhanced diagnosis prediction
approaches significantly improve the prediction performance.

I. INTRODUCTION

Due to the immense accumulation of Electronic Healthcare

Records (EHR), it is possible to directly predict patients’ fu-

ture health status according to their historical visit records [1]–

[14]. Especially, diagnosis prediction, which aims to predict

the diagnosis information of patients in the following visits,

attracts considerable attention from both healthcare providers

and researchers. The key challenge of diagnosis prediction task

is how to design an accurate and robust predictive model to

handle the temporal, high dimensional and noisy EHR data.

Recently, recurrent neural networks (RNN) based diagnosis

prediction models [2], [7], [8] have been broadly applied

to tackle these challenges. RETAIN [8] uses two recurrent

neural networks with attention mechanisms to model the

reverse time ordered EHR sequences. Dipole [2] enhances

the prediction accuracy by employing a bidirectional recurrent

neural network (BRNN) with different attention mechanisms.

The aforementioned models typically require large amounts

of EHR training data to guarantee the predictive performance.

However, there always exist medical codes of rare diseases,

which infrequently appear in the EHR data. To overcome this

issue, GRAM [7] has been proposed, which learns medical

code representations by exploiting medical ontology infor-

mation and the graph-based attention mechanism. For the

rare medical codes, GRAM can alleviate the difficulties of

learning their embeddings by considering their ancestors’

embeddings to guarantee the predictive performance. However,

the performance of GRAM heavily depends on the choice

of medical ontology. Thus, without specific input constraints,

how to learn robust embeddings for medical codes is still the

major challenge for accurate diagnosis prediction.

To resolve this challenge, we consider the “nature” of

diagnosis codes, i.e., their medical descriptions. Actually, each

diagnosis code has a formal description, which can be easily

obtained from the Internet, such as Wikipedia or online med-

ical websites. For example, from ICD9Data.com, the descrip-

tion of diagnosis code “428.32” is “Chronic diastolic heart
failure”, and “Rheumatic heart failure (congestive)” is the

description of diagnosis code “398.91”. Without considering

the medical meanings of diagnosis codes, they are treated as

two independent diseases in the EHR dataset. However, they

both describe the same disease, i.e., “heart failure”. Thus,

we strongly believe that incorporating the descriptions of
diagnosis codes should help the predictive models to improve

the prediction accuracy.

The other benefit of incorporating diagnosis code descrip-

tions is that it enables us to design a general diagnosis predic-
tion framework. The input data of all the existing diagnosis

prediction approaches are the same, i.e., a sequence of time-

ordered visits, and each visit consists of some diagnosis codes.

Thus, all the existing approaches, including, but not limited to

RETAIN, Dipole and GRAM, can be extended to incorporate

the descriptions of diagnosis codes to further improve their

predictive performance.

In this paper, we propose a novel framework for diagnosis

prediction task. It should be noted that all of the state-of-

the-art diagnosis prediction approaches (referred to as base
models) can be cast into the proposed framework. These

base models enhanced by the proposed framework are thus

called enhanced models. Specifically, the proposed framework

consists of two components: diagnosis code embedding and

predictive model. The diagnosis code embedding component

aims to learn the medical representations of diagnosis codes

according to their descriptions. In particular, for each word in

the description, we obtain the pretrained vector representation

from fastText [15]. Then the concatenation of all the words
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in each diagnosis code description is fed into a convolutional

neural network (CNN) to generate the medical embeddings.

Based on the learned medical embeddings of diagnosis codes,

the predictive model component makes prediction. It first

embeds the input visit information into a visit-level vector

representation with the code embeddings, and then feeds this

vector into the predictive model, which can be any existing

diagnosis prediction approach.

II. DIAGNOSIS PREDICTION WITH CODE DESCRIPTIONS

A. Notations

We denote all the unique diagnosis codes from the EHR data

as a code set C = {c1, c2, · · · , c|C|}, where |C| is the number

of diagnosis codes. Let |P| denote the number of patients in

the EHR data. For the p-th patient who has T visit records,

the visiting information of this patient can be represented by a

sequence of visits V(p) = {V (p)
1 , V

(p)
2 , · · · , V (p)

T }. Each visit

V
(p)
t consists of multiple diagnosis codes, i.e., V

(p)
t ⊆ C,

which is denoted by a binary vector x
(p)
t ∈ {0, 1}|C|. The i-th

element of x
(p)
t is 1 if V

(p)
t contains the diagnosis code ci. For

simplicity, we drop the superscript (p) when it is unambiguous.

Each diagnosis code ci has a formal medical description,

which can be obtained from Wikipedia1 or ICD9Data.com2.

We denote all the unique words which are used to describe

all the diagnosis codes as W = {w1, w2, · · · , w|W|}, and

c′i ⊆ W as the description of ci, where |W| is the number of

unique words. With the aforementioned notations, the inputs

of the proposed framework are the set of code descriptions

{c′1, c′2, · · · , c′|C|} and the set of time-ordered sequences of

patient visits {x(p)
1 ,x

(p)
2 , · · · ,x(p)

T−1}|P|
p=1. For each timestep t,

we aim to predict the information of the (t+1)-th visit. Thus,

the outputs are {x(p)
2 ,x

(p)
3 , · · · ,x(p)

T }|P|
p=1.

B. Preliminaries

In this subsection, we first introduce the commonly used

techniques for modeling patients’ visits, and then list all the

state-of-the-art diagnosis prediction approaches.

Fully Connected Layer
Deep learning based models are commonly used to model

patients’ visits. Among existing models, fully connected layer

(FC) is the simplest approach, which is defined as follows:

ht = Wcvt + bc, (1)

where vt ∈ R
d is the input data, d is the input dimensionality,

Wc ∈ R
|C|×d and bc ∈ R

|C| are the learnable parameters.

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) have been shown to be

effective in modeling healthcare data [2], [7], [8], [12]. In

this paper, GRU is used to adaptively capture dependencies

among patient visit information. For simplicity, the GRU can

be represented by

ht = GRU(vt; Ω),

1https://en.wikipedia.org/wiki/List of ICD-9 codes
2http://www.icd9data.com/

where Ω denotes all the parameters of GRU.

Attention Mechanisms
Attention mechanisms aim to distinguish the importance

of different input data, and attention-based neural networks

have been successfully used in diagnosis prediction task,

including location-based attention [2], [8], general atten-

tion [2], concatenation-based attention [2], and graph-based

attention [7]. In the following, we introduce two commonly

used attention mechanisms: location-based and graph-based

attention.

• Location-based Attention. Location-based attention mech-

anism [2], [8] is to calculate the attention score for each visit,

which solely depends on the current hidden state hi ∈ R
g

(1 ≤ i ≤ t) as follows:

αi = W�
αhi + bα, (2)

where Wα ∈ R
g and bα ∈ R are the parameters to be

learned. According to Eq. (2), we can obtain an attention

weight vector α = [α1, α2, · · · , αt] for the t visits. Then the

softmax function is used to normalize α. Finally, we can obtain

the context vector ct according to the attention weight vector

α and the hidden states from h1 to ht as follows:

ct =

t∑
i=1

αihi. (3)

We can observe that the context vector ct is the weighted sum

of all the visit information from time 1 to t.
• Graph-based Attention. Graph-based attention [7] is pro-

posed to learn robust representations of diagnosis codes even

when the data volume is constrained, which explicitly employs

the parent-child relationship among diagnosis codes with the

given medical ontology to learn code embeddings.

Given a medical ontology G which is a directed acyclic

graph (DAG), each leaf node of G is a diagnosis code ci and

each non-leaf node belongs to the set Ĉ. Each leaf node has a

basic learnable embedding vector ei ∈ R
d (1 ≤ i ≤ |C|), while

e|C|+1, · · · , e|C|+|Ĉ| represent the basic embeddings of the

internal nodes c|C|+1, · · · , c|C|+|Ĉ|. Let A(i) be the node set

of ci and its ancestors, then the final embedding of diagnosis

code ci denoted by gi ∈ R
d can be obtained as follows:

gi =
∑

j∈A(i)

αijej ,
∑

j∈A(i)

αij = 1, (4)

where

αij =
exp(θ(ei, ej))∑

k∈A(i) exp(θ(ei, ek))
.

θ(·, ·) is a scalar value and defined as

θ(ei, ej) = u�
a tanh(Wa

[
ei
ej

]
+ ba),

where ua ∈ R
l, Wa ∈ R

l×2d and ba ∈ R
l are parameters to

be learned. Finally, graph-based attention mechanism gener-

ates the medical code embeddings G = {g1,g2, · · · ,g|C|} ∈
R

d×|C|.
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Base Models
Since the proposed framework is general, all the existing di-

agnosis prediction approaches can be cast into this framework

and treated as base models. Table I shows the summary of

all the state-of-the-art approaches with the aforementioned

techniques. The detailed implementation of these base models

is introduced in the following section.

TABLE I
BASE MODELS FOR DIAGNOSIS PREDICTION.

Base Model
Visit Modeling Attention Mechanism

FC GRU Location Graph

MLP
√

RNN [2], [7], [8]
√

RNNa [2]
√ √

Dipole [2]
√ √

RETAIN [8]
√ √

GRAM [7]
√ √

C. The Proposed Framework

Different from graph-based attention mechanism which

specifies the relationships of diagnosis codes with the given

medical ontology, we aim to learn the diagnosis code embed-

dings directly from their medical descriptions. The main com-

ponents of the proposed diagnosis prediction framework are di-
agnosis code embedding and predictive model. Diagnosis code

embedding component is to learn the medical embeddings with

code descriptions, which can embed the visit information into

a vector representation. Predictive model component aims to

predict the future visit information according to the embedded

visit representations. Obviously, the proposed framework can

be trained end-to-end. Next, we provide the details of these

two components.

Diagnosis Code Embedding
To embed the description of each diagnosis code into a vector

representation, Convolutional Neural Networks (CNN) [16]

can be employed. The benefit of applying CNN is to utilize

layers with convolving filters to extract local features, which

has shown its superior ability for natural language processing

tasks, such as sentence modeling [17] and sentence classifica-

tion [18].

Figure 1 shows the variant of the CNN architecture to embed

each diagnosis code description c′i into a vector representation

ei. We first obtain the pre-trained embedding of each word

wj denoted as lj ∈ R
k from fastText [15], where k is

the dimensionality. The description c′i with length n (padded

where necessary) is represented as

l1:n = l1 ⊕ l2 ⊕ · · · ⊕ ln, (5)

where ⊕ is the concatenation operator. Let h denote the size of

a word window, and then li:i+h−1 represents the concatenation

of h words from li to li+h−1. A filter Wf ∈ R
h×k is applied

on the window of h words to produce a new feature fi ∈ R

with the ReLU activation function as follows:

fi = ReLU(Wf li:i+h−1 + bf ), (6)

n × k representation of 
diagnosis code description 

(428.43)

Convolutional layer with 
multiple filter widths and 

feature maps

Max-over-time 
pooling

Failure

Acute

On

Chronic

Combined

Systolic

And

Diastolic

Heart

Fig. 1. An Example of CNN Architecture for Diagnosis Code Embedding.
The word window sizes are 2 (red line) and 3 (blue line) respectively, i.e.,
q = 2. For each word window, there are 2 filters in the example, i.e., m = 2.
The dimensionality of this code embedding is 4, i.e., d = mq = 4.

where bf ∈ R is a bias term, and ReLU(f) = max(f, 0). This

filter is applied to each possible window of words in the whole

description {l1:h, l2:h+1, · · · , ln−h+1:n} to generate a feature

map f ∈ R
n−h+1 as follows:

f = [f1, f2, · · · , fn−h+1]. (7)

Next, max pooling technique [19] is used over the feature

map to obtain the most important feature, i.e., f̂ = max(f). In

this way, one filter produces one feature. To obtain multiple

features, we use m filters with varying window sizes. Here, we

use q to denote the number of different window sizes. All the

extracted features are concatenated to represent the embedding

of each diagnosis code ei ∈ R
d (d = mq). Finally, we can

obtain the diagnosis code embedding matrix E ∈ R
d×|C|,

where ei is the i-th column of E.

The advantage of the proposed CNN-based diagnosis code

embedding approach is that it easily makes the diagnosis codes

with similar meanings obtain similar vector representations.

Thus, for those diagnosis codes without sufficient training

EHR data, they still can learn reasonable vector representa-

tions, which further helps the model to improve the predictive

performance. In the following, we will introduce how to use

the produced medical embeddings for the diagnosis prediction

task.

Predictive Model
Based on the learned diagnosis code embedding matrix E, we

can predict patients’ future visit information with a predictive

model. Given a visit xt ∈ {0, 1}|C|, we first embed xt into a

vector representation vt ∈ R
d with E as follows:

vt = tanh(Ext + bv), (8)

where bv ∈ R
d is the bias vector to be learned. Then vt is

fed into the predictive model to predict the (t + 1)-th visit

information, i.e., ŷt. Next, we cast state-of-the-art diagnosis

prediction approaches into the proposed framework as the

predictive models.

• Enhanced MLP (MLP+). The simplest predictive model

is only using a Multilayer Perceptron (MLP) with two layers:

a fully-connected layer and a softmax layer, i.e.,

ŷt = softmax(ht), (9)



1073

where ht is obtained from Eq. (1). This model works well

when both the number of diagnosis codes and patients’ visits

are small. However, MLP+ does not use historical visit

information for the prediction. To overcome the shortage of

MLP+, we employ Recurrent Neural Networks (RNN) to

handle more complicated scenarios.

• Enhanced RNN (RNN+). For RNN+, the visit embedding

vector vt is fed into a GRU, which produces a hidden state

ht ∈ R
g as follows:

ht = GRU(vt; Ω). (10)

Then the hidden state ht is fed through the softmax layer to

predict the (t+ 1)-th visit information as follows:

ŷt = softmax(Wcht + bc), (11)

where Wc ∈ R
|C|×g and bc ∈ R

|C|. Note that RNN+ only

uses the t-th hidden state to make the prediction, which does

not utilize the information of visits from time 1 to t − 1. To

consider all the information before the prediction, attention-

based models are proposed in the following.

• Enhanced Attention-based RNN (RNNa+). According to

Eq. (10), we can obtain all the hidden states h1,h2, · · · ,ht.

Then location-based attention mechanism is applied to obtain

the context vector ct with Eq. (3). Finally, the context vector

ct is fed into the softmax layer to make predictions as follows:

ŷt = softmax(Wcct + bc). (12)

• Enhanced Dipole (Dipole+). Actually, one drawback

of RNN is that prediction performance will drop when the

length of sequence is very large [20]. To overcome this draw-

back, Dipole [2], which uses bidirectional recurrent networks

(BRNN) with attention mechanisms, is proposed to improve

the prediction performance.

Given the visit embeddings from v1 to vt, a BRNN

can learn two sets of hidden states: forward hidden states−→
h 1, · · · ,−→h t and backward hidden states

←−
h 1, · · · ,←−h t. By

concatenating
−→
h t and

←−
h t, we can obtain the final hidden state

ht = [
−→
h t;

←−
h t]

� (ht ∈ R
2g). Then location-based attention

mechanism is used to produce the context vector ct ∈ R
2g

with Eq. (2) (Wα ∈ R
2g). With the learned ct, Dipole+ can

predict the (t + 1)-th visit information with a softmax layer,

i.e., Eq. (12) with Wc ∈ R
|C|×2g .

• Enhanced RETAIN (RETAIN+). RETAIN [8] is an inter-

pretable diagnosis prediction model, which uses two reverse
time-ordered GRUs and attention mechanisms to calculate the

contribution scores of all the appeared diagnosis codes before

the prediction.

The visit-level attention scores can be obtained using

Eq. (2). For the code-level attention scores, RETAIN employs

the following function:

βt = tanh(Wβht + bβ), (13)

where Wβ ∈ R
d×g and bβ ∈ R

d are parameters. Then the

context vector ct ∈ R
d is obtained as follows:

ct =

t∑
i=1

αiβi ◦ vi. (14)

With the generated context vector ct and Eq. (12) (Wc ∈ R
d),

RETAIN+ can predict the (t+ 1)-th patient’s health status.

• Enhanced GRAM (GRAM+). GRAM [7] is the state-

of-the-art approach to learn reasonable and robust representa-

tions of diagnosis codes with medical ontologies. To enhance

GRAM with the proposed framework, instead of randomly

assigning the basic embedding vectors e1, · · · , e|C|, we use

diagnosis code descriptions to learn those embeddings, i.e.,

E. Note that the non-leaf nodes are still randomly assigned

basic embeddings.

With the learned diagnosis code embedding matrix G as

described in Section II-B, we can obtain visit-level embedding

vt with Eq. (8) (i.e., replacing E to G). Using Eq. (10) and

Eq. (11), GRAM+ predicts the (t+ 1)-th visit information.

III. EXPERIMENTS

A. Real-World Datasets

Two medical claim datasets are used in our experiments to

validate the proposed framework, which are the MIMIC-III

dataset and the Heart Failure dataset.

• The MIMIC-III dataset, a publicly available EHR dataset,

consists of medical records of 7,499 intensive care unit (ICU)

patients over 11 years. For this dataset, we chose the patients

who made at least two visits.

• The Heart Failure dataset is an insurance claim dataset,

which has 4,925 patients and 341,865 visits from the year

2004 to 2015. The patient visits were grouped by week [2],

and we chose patients who made at least two visits. Table II

shows more details about the two datasets.

Diagnosis prediction task aims to predict the diagnosis

information of the next visit. In our experiments, we intend

to predict the diagnosis categories as [2], [7], instead of

predicting the real diagnosis codes. Predicting category in-

formation not only increases the training speed and predictive

performance, but also guarantees the sufficient granularity of

all the diagnoses. The nodes in the second hierarchy of the

ICD9 codes are used as the category labels 3. For example,

the category label of diagnosis code “428.43: Acute on chronic

combined systolic and diastolic heart failure” is “Diseases of

the circulatory system (390-459)”.

B. Experimental Setup

We first introduce the state-of-the-art diagnosis prediction

approaches as base models, then describe the measures to

evaluate the prediction results of all the approaches, and finally

present the details of our experiment implementation.

3Note that the hierarchy of CCS (https://www.hcup-
us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt) can also be used
as category labels [7]. These two kinds of grouping methods can obtain
similar predictive performance.
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TABLE II
STATISTICS OF MIMIC-III AND HEART FAILURE DATASETS.

Dataset MIMIC-III Heart Failure

# of patients 7,499 4,925
# of visits 19,911 341,865
Avg. visits per patient 2.66 69.41
# of unique ICD9 codes 4,880 6,747
Avg. # of diagnosis codes per visit 13.06 3.92
Max # of diagnosis codes per visit 39 54
# of words in code descriptions 2,800 3,397
# of category codes 171 149
Avg. # of category codes per visit 10.16 3.33
Max # of category codes per visit 30 33

Base Models
In our experiments, we use the following six approaches as

base models: MLP, RNN, RNNa [2], Dipole [2], RETAIN [8],

and GRAM [7]. For all the base models, we all design the

corresponding enhanced approaches for comparison.

Evaluation Measures
To fairly evaluate the performance of all the diagnosis pre-

diction approaches, we validate the results with the measure

accuracy@k. Given a visit Vt which contains multiple category

labels, if the target label is in the top k guesses, then we get 1

and 0 otherwise. Thus, accuracy@k is defined by the number

of correct label predictions divided by the total number of

label predictions. The greater values, the better performance.

In the experiments, we vary k from 5 to 30.

Implementation Details
We extract the diagnosis code descriptions from

ICD9Data.com. All the approaches are implemented with

Theano 0.9.0 [21]. We randomly divide the datasets into the

training, validation and testing sets in a 0.75:0.10:0.15 ratio.

The validation set is used to determine the best values of

parameters in the 100 training iterations. For training models,

we use Adadelta [22] with a min-batch of 100 patients. The

regularization (l2 norm with the coefficient 0.001) is used for

all the approaches. In order to fairly compare the performance,

we set the same g = 128 (i.e., the dimensionality of hidden

states) for all the base models and the enhanced approaches

except MLP and MLP+. For the proposed approaches on

both datasets, the size of word embeddings is 300, the word

windows (h’s) are set as 2, 3 and 4, and thus q = 3. For

each word window, we use m = 100 filters. For all the base

models, we set d = 180 on the MIMIC-III dataset and 150
on the Heart Failure dataset. For GRAM, l is 100.

C. Results of Diagnosis Prediction

Table III lists the accuracy with different k’s. We can

observe that the enhanced diagnosis prediction approaches

improve the prediction performance on both the MIMIC-III

and Heart Failure datasets.

Performance Analysis for the MIMIC-III Dataset
On the MIMIC-III dataset, the overall performance of all the

enhanced diagnosis prediction approaches is better than that

of all the base models. Among all the proposed approaches,

RETAIN+ and MLP+ achieve higher accuracy. MLP+ does

not use recurrent neural networks and directly predicts the

future diagnosis information with the learned visit embedding

vt. RETAIN+ utilizes the context vector which learns from

visit-level and code-level attention scores, and the learned visit

embeddings to make the final predictions. However, all the

remaining proposed approaches use the hidden states outputted

from GRUs to predict the next visit information. From the

above analysis, we can conclude that directly adding visit

embeddings into the final prediction can improve the predictive

performance on the MIMIC-III dataset. This is reasonable

because the average length of visits is small on the MIMIC-

III dataset. The shorter visits may not help the RNN-based

models to learn correct hidden states, and thus those methods

can not achieve the highest accuracy.

This observation can also be found from the performance

of all the base models. Compared with the naive base model

MLP, the precision or accuracy of all the four RNN-based

approaches is lower, including RNN, RNNa, Dipole and

RETAIN. This again confirms that RNN-based models can-

not work well with short sequences. Among all the RNN-

based approaches, location-based attention models, RNNa

and Dipole, perform worse than RNN and RETAIN, which

shows that learning attention mechanisms needs abundant

EHR data. Compared with RNN, both the precision and

accuracy of RETAIN are still higher. This demonstrates that

directly using visit embedding in the final prediction may

achieve better performance for the datasets with shorter visit

sequences. GRAM can achieve comparable performance with

the naive base model MLP. It proves that employing external

information can compensate for the lack of training EHR data

in diagnosis prediction task.

Performance Analysis for the Heart Failure Dataset
On the Heart Failure dataset, the enhanced approaches still

perform better than the corresponding base models, especially

GRAM+ which achieves much higher accuracy than other

approaches. The reason is that GRAM+ not only uses medical

ontologies to learn robust diagnosis code embeddings, but also

employs code descriptions to further improve the performance,

which can be validated from the comparison between the

performance of GRAM and GRAM+.

Among all the approaches, the accuracy of RETAIN is the

lowest, which shows that directly using the visit-level embed-

dings in the final prediction may not work on the Heart Failure

dataset, which can also be observed from the performance of

MLP. However, taking code descriptions into consideration,

the performance enormously increases. When k = 5, the

accuracy of RETAIN improves 42%. The performance of MLP
is better than that of RETAIN, but it is still lower than other

RNN variants. This illustrates that with complicated EHR

datasets, simply using multilayer perceptrons cannot work

well. Though learning medical embeddings of diagnosis codes

improves the predictive performance, the accuracy of MLP+ is

still lower than that of most approaches. This directly validates

that applying recurrent neural networks to diagnosis prediction

task is reasonable.
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TABLE III
RESULTS OF DIAGNOSIS PREDICTION TASK.

Dataset @k MLP MLP+ RNN RNN+ RNNa RNNa+ Dipole Dipole+ RETAIN RETAIN+ GRAM GRAM+

M
IM

IC
-I

II

5 0.3104 0.3181 0.2952 0.3193 0.2910 0.3162 0.2941 0.3155 0.3056 0.3198∗ 0.3072 0.3183
10 0.5040 0.5138 0.4796 0.5111 0.4693 0.5085 0.4767 0.5086 0.4980 0.5160∗ 0.5003 0.5138
15 0.6286 0.6352 0.6019 0.6335 0.5889 0.6290 0.5971 0.6325 0.6258 0.6360∗ 0.6267 0.6348
20 0.7114 0.7239∗ 0.6894 0.7198 0.6822 0.7144 0.6845 0.7168 0.7129 0.7202 0.7130 0.7196
25 0.7754 0.7852∗ 0.7545 0.7804 0.7491 0.7785 0.7501 0.7795 0.7735 0.7806 0.7728 0.7794
30 0.8214 0.8294∗ 0.8040 0.8279 0.7987 0.8269 0.7990 0.8280 0.8198 0.8286 0.8220 0.8283

H
ea

rt
F

ai
lu

re

5 0.4580 0.5132 0.5599 0.5960 0.5699 0.5882 0.5687 0.5868 0.4085 0.5808 0.6152 0.6227∗
10 0.6266 0.6412 0.6835 0.7169 0.6920 0.7109 0.6953 0.7105 0.5460 0.7042 0.7393 0.7455∗
15 0.7124 0.7254 0.7603 0.7876 0.7645 0.7845 0.7702 0.7841 0.6512 0.7765 0.8088 0.8130∗
20 0.7717 0.7827 0.8132 0.8355 0.8153 0.8334 0.8209 0.8307 0.7162 0.8261 0.8544 0.8580∗
25 0.8206 0.8283 0.8516 0.8698 0.8532 0.8673 0.8580 0.8655 0.7684 0.8622 0.8872 0.8902∗
30 0.8572 0.8635 0.8812 0.8958 0.8825 0.8943 0.8860 0.8923 0.8100 0.8899 0.9113 0.9134∗

∗ denotes the highest accuracy among all the approaches on the same k.

For the two location-based attention approaches, RNNa

and Dipole, the performance is better than that of RNN,

which demonstrates that attention mechanisms can help the

models to enhance the predictive ability. Comparison between

RNNa and Dipole confirms that when the length of visit

sequences is large, bidirectional recurrent neural networks can

remember more useful information and perform better than

one directional recurrent neural networks.

Based on all the above analysis, we can safely conclude that

learning diagnosis code embeddings with descriptions indeed

helps all the state-of-the-art diagnosis prediction approaches to

significantly improve the performance on different real world

datasets.

IV. CONCLUSIONS

In this paper, we propose a novel and effective diagnosis

prediction framework, which takes the medical meanings of

diagnosis codes into account when predicting patients’ future

visit information. Experimental results on two real world

medical datasets prove the effectiveness and robustness of the

proposed framework for diagnosis prediction task.
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