SYMPOSIUM

Still Enigmatic: Innate Immunity in the Ctenophore Mnemiopsis leidyi

Nikki Traylor-Knowles,* Lauren E. Vandepas^{†,‡} and William E. Browne[§]

*Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, FL 33149, USA; [†]Benaroya Research Institute, 1201 9th Avenue, Seattle, WA 98101, USA; [‡]Department of Biology, University of Washington, Seattle, WA 98195, USA; [§]Department of Biology, University of Miami, Cox Science Building, 1301 Memorial Drive, Miami, FL 33146, USA

From the symposium "Chemical responses to the biotic and abiotic environment by early diverging metazoans revealed in the post-genomic age" presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2019 at Tampa, Florida.

¹E-mail: ntraylorknowles@rsmas.miami.edu

Synopsis Innate immunity is an ancient physiological response critical for protecting metazoans from invading pathogens. It is the primary pathogen defense mechanism among invertebrates. While innate immunity has been studied extensively in diverse invertebrate taxa, including mollusks, crustaceans, and cnidarians, this system has not been well characterized in ctenophores. The ctenophores comprise an exclusively marine, non-bilaterian lineage that diverged early during metazoan diversification. The phylogenetic position of ctenophore lineage suggests that characterization of the ctenophore innate immune system will reveal important features associated with the early evolution of the metazoan innate immune system. Here, we review current understanding of the ctenophore immune repertoire and identify innate immunity genes recovered from three ctenophore species. We also isolate and characterize *Mnemiopsis leidyi* cells that display macrophage-like behavior when challenged with bacteria. Our results indicate that ctenophores possess cells capable of phagocytosing microbes and that two distantly related ctenophores, *M. leidyi* and *Hormiphora californiensis*, possess many candidate innate immunity proteins.

Introduction

Phylogenetic placement of ctenophores and the role of immunity in non-bilaterian phyla

Ctenophora is a globally distributed phylum of gelatinous marine predators (Chun 1880; Harbison et al. 1978; Mills and Haddock 2007). A resurgent interest in ctenophore biology primarily stems from phylogenomic analyses highlighting their early divergence from other animals (Fig. 1A; Dunn et al. 2008; Shen et al. 2017; Whelan et al. 2017). The biradially symmetric body plan of ctenophores is composed of an outer ectodermal layer with eight ciliary ctene rows and an inner endodermal layer, separated by a thick collagenous mesogleal "middle" layer rich in extracellular matrix (Fig. 1B). Ctenophores have unique modifications of many traits observed in other animals. Due to their suite of distinctive traits, ctenophores have become an important group for providing phylogenetic insights to infer both the origins of, and changes associated with, early metazoan

character trait evolution (Jager et al. 2011; Dunn et al. 2014; Presnell et al. 2016; Norekian and Moroz 2019).

Innate immunity in non-bilaterians

The innate immune system is an ancient defensive mechanism for distinguishing self/non-self and detection/elimination of pathogens (Fujita 2002). It is comprised of physical epithelial barriers, cellular defenses, and humoral (circulating) proteins. When pathogens breach the primary physical barrier, specific cell types with immune function are activated. These cells express membrane proteins called pathogen recognition receptors (PRRs) that initiate a signaling cascade upon pathogen detection, leading to a broad immune response that includes engulfment of foreign pathogens by phagocytic cells (phagocytes) (Fig. 3; Dzik 2010; Gourbal et al. 2018). The humoral immune system is comprised of immune proteins capable of detecting and destroying pathogens

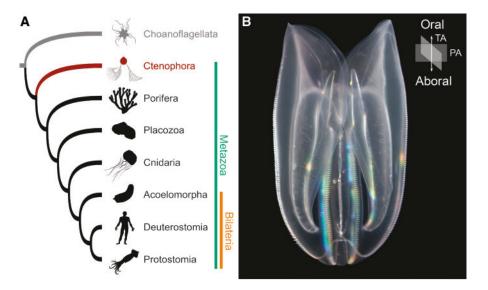


Fig. 1 The lobate ctenophore, *Mnemiopsis leidyi*. A) Metazoan relationships with choanoflagellates as outgroup, based on recent phylogenomic inference. B) Adult *M. leidyi* with schematic located at upper right depicting orientation of the tentacular axis (TA) and pharyngeal axis (PA). Light refraction causes the ctene row prism effect.

that circulate at low levels throughout the animal (Dzik 2010; Lubbers et al. 2017). Classical receptorinitiated signaling pathways and proteins critical to innate immune system function include: members of the NF- κ B/Toll-like receptor (TLR) pathway, NOD-like receptors (NLR), lectins, and perforin-2 (P2)/MPEG-1 (Fig. 2 and Supplementary Table S1). Many proteins associated with these pathways have been identified in non-bilaterians, including corals and sponges (Wiens et al. 2005; Gauthier et al. 2010; Detournay et al. 2012; Richter et al. 2018; Kamm et al. 2019) and a restricted complement appear to have pre-metazoan origins (Richter et al. 2018).

In contrast, our understanding of the immune gene repertoire in ctenophores is sparse. A limited number of candidate immune genes have been identified in the genome of the cyclippid ctenophore Pleurobrachia bachei: 56 scavenger receptors, 2 peptidoglycan recognition proteins, interferon regulatory factor (IRF), and proteins containing a membrane attack complex component/perforin (MACPF) domain (Moroz et al. 2014). The lobate ctenophore Mnemiopsis leidyi, when challenged with Gram-negative or Gram-positive bacteria, upregulates lectins and complement factor b genes, indicating an innate immune response (Bolte et al. 2013). It has been shown that ctenophores interact with unique bacterial and viral communities, but how these relationships are maintained is not known (Daniels and Breitbart 2012; Breitbart et al. 2015). The presence of these microbial associations suggests that ctenophores have a cellular innate immune

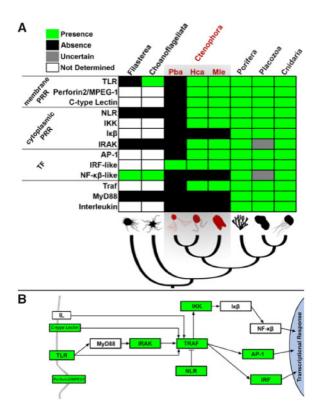


Fig. 2 Components of major innate immune signaling pathways. A) Components of classical immune signaling pathways found in non-bilaterian, choanoflagellate and filasterea genomes. Some immune genes appear to be absent in *Pleurobrachia (Pba)* (black) but present in *Mnemiopsis* (*Mle*) and *Hormiphora* (*Hca*) (green). B) Simplified signaling cascade following TLR stimulation. Pathway components identified in ctenophores are highlighted in green.

system capable of both regulating pathogens as well as maintaining symbiotic microbial partners (Harvill 2013).

Ctenophore immunity 813

Although relatively little is known about the biology of ctenophore immunity, these findings suggest that ctenophores likely possess an immune system with components similar to other metazoans. However, beyond the limited identification of putative candidate immune genes, cellular mechanisms associated with the immune response in ctenophores remain undescribed. In this report, we identify additional putative innate immunity candidate homologs in M. leidyi and Hormiphora californiensis, two distantly related ctenophores. We also directly challenge cells isolated from the lobate ctenophore M. leidyi with a microbial pathogen and identify a motile cell population capable of microbial phagocytosis. We compare these new observations with what is known in other non-bilaterians and highlight remaining gaps in our current knowledge of ctenophore immune biology.

Materials and methods

Identification of putative immune gene homologs

To identify putative homologous protein sequences, M. leidyi genome protein models 2.2 (Ryan et al. 2013; Moreland et al. 2014) and H. californiensis transcriptome (Francis et al. 2015) were scanned for candidate immune proteins using BLASTp (Supplementary Table S1). Sequences from human and Nematostella vectensis were used as initial queries. All recovered M. leidyi sequences, regardless of E-value, were reciprocally blasted against the BLASTp non-redundant protein sequences database. After reciprocal blast, sequences were kept if a similar protein was identified with a cut off value $\leq 3e^{-05}$. Additionally, previously published genomes of P. bachei, Amphimedon queenslandica, Monosiga brevicollis, Trichoplax adhaerens, and N. vectensis were queried via the NCBI Genome database (Putnam et al. 2007; King et al. 2008; Srivastava et al. 2008, 2010; Moroz et al. 2014).

Isolation of ctenophore cells

Founder animals for the laboratory culture of *M. leidyi* were collected in Miami, FL, USA. Animals were maintained as previously described (Presnell et al. 2016; Vandepas et al. 2017). Single cell isolations were achieved using both explants and maceration of adult animal tissue following Vandepas et al. (2017).

Phagocytosis assays and live cell imaging

Isolated cells were incubated either in media containing 10 ng/μL Hoechst 33342 and 500 nM Lysosensor Green (Thermo Fisher Scientific, USA) or 100 nM

LysoTracker (Red DND-99, Molecular Probes). Cells were then incubated for 20 min with either 0.3 mg/mL pHrodo Red *Escherichia coli* particles (Thermo Fisher Scientific) or 0.1 μ g/ μ L Alexa488 conjugated BioParticles and washed. Cells were imaged with a Nikon Ti (Eclipse) inverted microscope with Ultraview Spinning Disc (CSU-X1) confocal scanner (Perkin Elmer) and Axio Imager.Z2 (Zeiss). Images were captured with an Orca-ER Camera using Volocity software (Perkin Elmer) and AxioCam MRm Rev3 using Zen Blue software (Zeiss), and post-assembled in Adobe Photoshop (Adobe).

To track cells in wounding experiments, animals were incubated in 3 mg/L neutral red (Sigma–Aldrich) for 24 h prior to wounding the ectoderm epithelium by scalpel. Tissues were then exposed to Alexa488 conjugated BioParticles (Thermo Fisher Scientific) and imaged 15 min post-wounding. Images were acquired using a SteREO Discovery.V8 with AxioCam MRc Rev3, using Zen Blue software (Zeiss), and post-assembled in Adobe Photoshop (Adobe).

Results and discussion

Innate immune protein searches

Our searches for putative immune protein homologs were based on reciprocal BLASTp searches directed against the genomes of M. brevicollis, M. leidyi, P. bachei, N. vectensis, and A. queenslandica as well as a transcriptome from H. californiensis (Supplementary Table S1). The absence of putative homologous genes cannot be verified based solely on sequence similarity, thus our conclusions regarding apparent absences of putative homologous immune protein sequences from reciprocal BLASTp searches alone are limited. Additionally, while it is possible that apparent absences of specific immune genes in Pleurobrachia are biologically meaningful, it is also possible that those absences are due to assembly ascertainment bias. Thus, we focus our results and discussion on putative immunity protein homologs that were recovered from the M. leidyi genome and H. californiensis transcriptome for comparison to other non-bilaterians (Fig. 2).

Toll-like receptors

TLRs are a class of membrane bound PRRs that sense microbial pathogen-associated molecular patterns (PAMPs) through the utilization of an extracellular domain composed of leucine-rich repeats (LRRs) that selectively bind to an array of pathogens. A nearly complete suite of genes involved in the

canonical TLR signaling cascade have been identified in cnidarians (Miller et al. 2007; Putnam et al. 2007; Poole and Weis 2014). Components of the TLR signaling pathway have also been identified in sponges (Wiens et al. 2006; Gauthier et al. 2010); however, these putative TLR homologs appear to lack the LRR domain required for canonical pathogen cell wall binding (Gauthier et al. 2010; Nie et al. 2018). Putative TLR homologs have been identified in choanoflagellates, suggesting cell surface recognition-mediated TLR interactions appear to predate the origin of the Metazoa (Richter et al. 2018). While domains associated with TLRs have not been recovered from initial screens of the P. bachei reference genome (Moroz et al. 2014), we identified two putative TLR homologs in both M. leidyi and H. californiensis that contain predicted LRR domains typically required for mediating microbial pathogen interactions (Ng et al. 2011; Fig. 2 and Supplementary Table S1).

Perforin-2/MPEG-1

P2/MPEG-1 is a glycoprotein that forms pores in the cell membrane of Gram-negative bacteria, causing them to lyse (Osińska et al. 2014). P2/MPEG-1 consists of both a MACPF domain and a P2 domain (McCormack and Podack 2015). In the sponge Suberites domuncula, P2/MPEG-1 is activated in response to lipopolysaccharides (Wiens et al. 2005). Within the P. bachei genome, seven genes were reported to contain MACPF domains, but none possess a P2 domain suggesting they lack a true functional P2/MPEG-1 homolog. In contrast, in M. leidyi and H. californiensis we identified a putative P2/ MPEG-1 homolog that contains both the MACPF domain and P2 domain (Fig. 2 and Supplementary Table S1). The presence of P2/MPEG-1 in both ctenophores suggests that this protein may have a more ancient role in attacking Gram-negative bacteria than previously hypothesized (McCormack and Podack 2015).

NOD-like receptors

NLRs are cytosolic PRRs that surveil extracellular and endosomal spaces. In humans, NLRC3 is an important negative regulator of the inflammatory response through the inhibition of the TLR-activated NF- κ B pathway (Schneider et al. 2012). In cnidarians, the NLR system is complex, with a diverse set of paralogs (Shinzato et al. 2011). While no NLR homolog has been recovered from the *P. bachei* genome (Moroz et al. 2014), we identified a single homolog for a NLR showing sequence similarity to human NLRC3 from both *M. leidyi* and *H.*

californiensis (Fig. 2 and Supplementary Table S1). The apparent paucity of identifiable NLRs in ctenophores is suggestive of a simplified cytosolic defense system relative to other metazoan lineages (Lange et al. 2011; Shinzato et al. 2011; Yuen et al. 2014).

$NF-\kappa B$ pathway

The NF- κ B pathway plays a central role in innate immunity. Characterized by the transcription factor NF- κ B, this pathway is activated by dissociation of NF- κ B from its inhibitor I κ -B (Gilmore and Wolenski 2012). NF- κ B and many constituent pathway components are present in several non-bilaterian taxa, including the sponge A. queenslandica and the cnidarians N. vectensis, A. digitifera, and Hydra (Wolenski et al. 2011; Gilmore and Wolenski 2012). Searches of the P. bachei genome yielded no putative homologs for any NF- κ B pathway components Supplementary Table 1 and Fig. 2B; Moroz et al. 2014). In contrast, we recovered several putative homologs for NF-κB pathway components from M. leidyi and H. californiensis including TRAF, IRAK, and IKK. Interestingly, no studies to date in ctenophores have recovered MyD88, NF- κ B, and I κ -B homologs (Fig. 2 and Supplementary Table S1). Previously, NF- κB was identified Capsaspora and A. queenslandica (Sebé-Pedrós et al. 2010; Gilmore and Wolenski 2012; Richter et al. 2018), suggesting that ctenophores have lost this transcription factor and other proteins containing Rel homology domains.

Transcription factors IRF and AP-1

IRF and activator protein-1 (AP-1) are proinflammatory transcription factors involved in activating downstream innate immune factors (Rauscher et al. 1988; Yanai et al. 2012). Four IRF sequences were recovered from initial screens of the P. bachei reference genome as well as two partial sequences from Pleurobrachia pileus (Nehyba et al 2009; Moroz et al. 2014). Our searches of M. leidyi and H. californiensis recovered a single putative IRF homolog (Fig. 2 and Supplementary Table S1). To form a functional AP-1, heterodimerization of Fos and Jun proteins must occur (Rauscher et al. 1988). A single putative Fos protein and a single putative Jun protein were identified from M. leidyi and H. californiensis suggesting a similar heterodimerization interaction may result in a functional AP-1 homolog in ctenophores.

Motile phagocytic cells

Immune cells are typically motile, with pseudopodialike processes that engulf foreign material, as well as apoptotic or necrotic cells (Horsthemke et al. 2017). Ctenophore immunity 815

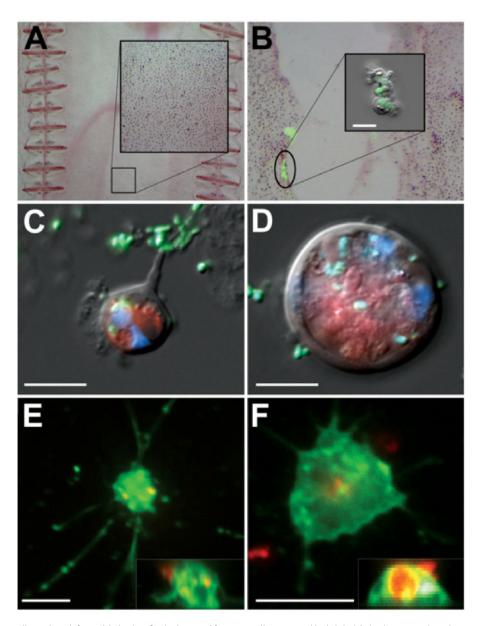


Fig. 3 Phagocytic cells isolated from M. leidyi. Scale bar is 10 μm in all images. A) Adult M. leidyi stained with neutral red vital dye which preferentially accumulates in lysosomes. Inset is magnified view of ectodermal epithelial sheet prior to wounding. B) Same ectodermal field inset from (A) 15min post-wound and seeded with Alexa488 conjugated E. coli. Oval and inset show isolated phagocyte cells with engulfed/internalized fluorescent bacteria. C, D) Combined brightfield (DIC) and fluorescent images of ctenophore phagocytic cell types. Nuclei are labelled with Hoescht (blue), bacteria are labelled with Alexa488 (green), and lysosomes are labelled with Lysotracker (red). C) A motile phagocytic cell displaying extended pseudopodia interacting with and trapping bacteria. The cell has also ingested bacteria. D) Multinucleated round, endodermally-derived digestive cell. E) An isolated phagocytic cell displaying long pseudopodia. The cell has ingested E. coli (red). Inset z-plane cross-section shows bacteria located within the cell body. F) An isolated stellate cell that has engulfed fluorescent bacteria. Inset z-plane cross-section shows bacteria are concentrated within the cell.

With the recent establishment of methods for maintaining and experimentally manipulating ctenophore cells in primary culture (Presnell et al. 2016; Vandepas et al. 2017), we have identified a class of highly motile cells displaying amoebocytelike morphology (Fig. 3C–F). These cells move throughout the mesoglea and converge in areas under the dermis that have been experimentally

wounded (Fig. 3A, B). When challenged with live or heat-killed bacteria, *in vivo* and *in vitro*, these motile amoebocyte-like cells display both pinocytic and phagocytic behavior in which bacteria are quickly engulfed over the course of minutes (Fig. 3). The engulfed bacteria are subsequently shuttled into acidic compartments within cells (Fig. 3E, F, insets).

Previously, Franc (1985) described several varieties of mesogleal cells in the ctenophores *Beroe* and *Pleurobrachia*. Some of these cells contain electrondense granules, as well as similar amoebocyte-like morphologies and phagocytic behavior to the motile phagocytic cells observed in *M. leidyi* in this study (Franc 1985; Hernandez-Nicaise 1991; Fig. 3). While the functional significance of these mesogleal cells was not described in this earlier work, our results strongly support a role in pathogen response for motile phagocytic cells in *M. leidyi*.

Round digestive cells

Previously, ciliated digestive cells were shown to line defined territories within the gastrovascular canals of M. leidyi and other ctenophore taxa (Hernandez-Nicaise 1991; Presnell et al. 2016; Vandepas et al. 2017). In the current study, ciliated digestive cells were exposed to bacteria in vitro and displayed phagocytic behavior (Fig. 3D). Whether this behavior is indicative of digestion, immunity, or both is currently unclear. In diverse metazoan taxa, digestive cells are involved in mounting immune responses and have been proposed to share a common origin with immune cells (Mason et al. 2008; Ahluwalia et al. 2018). It is plausible that the observed phagocytosis of bacteria by ctenophore digestive cells is a generalized behavior in which any potential food items are engulfed. Given the potential for multiple physiological roles of digestive cells, a robust characterization of ctenophore digestive cell behavior would further our understanding of whether cells in the gut epithelium are sensing and engulfing pathogens, simply digesting potential food particles, or both. Transcriptomic analysis of these cell types will be useful in identifying whether ctenophore digestive cells express immunity and/or inflammatory response genes.

Conclusion

In this report, we present new evidence that the ctenophores M. leidyi (family Bolinopsidae) and H. californiensis (family Pleurobrachiidae) possess many putative homologs to immune proteins not previously identified in Р. bachei (family Pleurobrachiidae; Moroz et al. 2014). Rigorous phylogenetic analyses will be crucial for elucidating the orthology/paralogy relationships among putative members of the major immune gene families found in non-bilaterian taxa. For example, our identification of candidate homologs to TRAF, IRAK, and IKK proteins in ctenophores suggests that an indepth analysis of the evolutionary relationships between suites of proteins involved in intracellular immune responses and animal taxa will be critical for identifying potential lineage-specific losses and duplication events among TLR pathway components. Similarly, the identification of putative homologous protein sequences to IRF and AP-1 transcription factors highlights a need for further investigation of potential immune regulatory effector Assessment of putative immune cell types and cellular behavior in ctenophores has been limited (Franc 1985; Hernandez-Nicaise 1991). Here we present new evidence for microbial phagocytosis by two distinct M. leidyi cell types, one of which displays an amoebocyte-like morphology typical macrophage-type immune cells (Fig. 3). These phagocytic stellate cells are highly motile and capable of extensive migration throughout the organism (Fig. 3A, B). Further genetic and cell biological investigations are necessary to determine whether ctenophores possess multiple immune cell types capable of initiating distinct immune responses or behaviors in response to specific pathogens and different modes of infection.

Our results represent an initial step in understanding the immune protein repertoire and cellular behaviors associated with microbial phagocytosis in M. leidyi. Future studies focused on analyses of gene expression in the motile phagocytic cell types identified by this study will play a role in illuminating immune cell behavior and anti-microbial defense mechanisms deployed by ctenophores. Similarly an in-depth analysis of putative intracellular immune pathway signaling components in ctenophore immune cells would elucidate whether conserved signaling mechanisms, such as MAPK pathway activity are engaged in response to pathogens. To improve our broad understanding of cellular defenses in the metazoan ancestor and innate immunity evolution during subsequent metazoan lineage diversification, several additional critical aspects of cellular immune defenses that remain unexplored in ctenophores require further examination, including encapsulation, opsonization, and free radical function. Filling the gaps between gene sequence and cellular behaviors associated with immunity will inform our understanding of pathogen defense mechanism repertoires and the evolution of innate immunity. The early divergence of the ctenophore lineage from other animals, coupled with recent advances for performing cellular-level assays, provide a unique opportunity to explore both conserved and novel aspects of the animal immune system through deep evolutionary time in this enigmatic clade.

Ctenophore immunity 817

Author contributions

N.T.-K., W.E.B.: conceptualization. L.E.V. and W.E.B.: methodology. All authors contributed to data acquisition and drafting of this manuscript.

Acknowledgments

We thank Caroline Stefani for confocal microscope support and live cell imaging optimization and Adam Lacy-Hulbert for additional laboratory resources. We are appreciative to Christy Schnitzler for discussions and insights on the exciting and enigmatic world of ctenophore immunity. We thank Kaylee Blanchard for additional cell culture support.

Funding

This work was supported in part by startup funds from the University of Miami, Rosenstiel School of Marine and Atmospheric Science [to N.T.-K.] and the University of Miami's College of Arts and Sciences [to W.E.B.]; a Doctoral Dissertation Improvement Grant (DDIG) from the National Science Foundation and resources from the Benaroya Research Institute [to L.E.V.].

Supplementary data

Supplementary data are available at ICB online.

References

- Ahluwalia B, Moraes L, Magnusson MK, Öhman L. 2018. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand J Gastroenterol 53:379–89.
- Bolte S, Roth O, Philipp EE, Saphörster J, Rosenstiel P, Reusch H, Thorsten B. 2013. Specific immune priming in the invasive ctenophore *Mnemiopsis leidyi*. Biol Lett 9:20130864.
- Breitbart M, Benner BE, Jernigan PE, Rosario K, Birsa LM, Harbeitner RC, Fulford S, Graham C, Walters A, Goldsmith DB, et al. 2015. Discovery, prevalence, and persistence of novel circular single-stranded DNA viruses in the ctenophores *Mnemiopsis leidyi* and *Beroe ovata*. Front Microbiol 6:1427.
- Chun C. 1880. Die ctenophoren des golfes von Neapel, und der angrenzenden meeres-abschnitte. Leipzig: W. Engelmann.
- Daniels C, Breitbart M. 2012. Bacterial communities associated with the ctenophores *Mnemiopsis leidyi* and *Beroe ovata*. FEMS Microbiol Ecol 82:90–101.
- Detournay O, Schnitzler CE, Poole A, Weis VM. 2012. Regulation of cnidarian–dinoflagellate mutualisms: evidence that activation of a host $TGF\beta$ innate immune pathway promotes tolerance of the symbiont. Dev Comp Immunol 38:525–37.

Dunn CW, Giribet G, Edgecombe GD, Hejnol A. 2014. Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst 45:371–95.

- Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745.
- Dzik J. 2010. The ancestry and cumulative evolution of immune reactions. Acta Biochim Pol 57:443–66.
- Franc J-M. 1985. La mésoglée des cténaires: approches ultrastructurale, biochimique et métabolique. Lyon, France: University of Claude Bernard.
- Francis WR, Shaner NC, Christianson LM, Powers ML, Haddock S. 2015. Occurrence of isopenicillin-N-synthase homologs in bioluminescent ctenophores and implications for coelenterazine biosynthesis. PLoS ONE 10:e0128742.
- Fujita T. 2002. Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2:346.
- Gauthier MEA, Du Pasquier L, Degnan BM. 2010. The genome of the sponge *Amphimedon queenslandica* provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev 12:519–33.
- Gilmore TD, Wolenski FS. 2012. NF-κB: where did it come from and why? Immunol Rev 246:14–35.
- Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. 2018. Innate immune memory: an evolutionary perspective. Immunol Rev 283:21–40.
- Harbison GR, Madin LP, Swanberg NR. 1978. On the natural history and distribution of oceanic ctenophores. Deep Sea Res 25:233–56.
- Harvill ET. 2013. Cultivating our "frienemies": viewing immunity as microbiome management. mBio 4:e00027–13.
- Hernandez-Nicaise M. 1991. Microscopic anatomy of the invertebrates. Vol 2: the Placozoa, Porifera, Cnidaria and Ctenophora. New York: Wiley-Liss Inc.
- Horsthemke M, Bachg AC, Groll K, Moyzio S, Müther B, Hemkemeyer SA, Wedlich-Söldner R, Sixt M, Tacke S, Bähler M, et al. 2017. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. JBC 292:7258–73.
- Jager M, Chiori R, Alié A, Dayraud C, Quéinnec E, Manuel M. 2011. New insights on ctenophore neural anatomy: immunofluorescence study in *Pleurobrachia pileus* (Müller, 1776). J Exp Zool B Mol Dev Evol 316B:171–87.
- Kamm K, Schierwater B, DeSalle R. 2019. Innate immunity in the simplest animals placozoans. BMC Genomics 20:5.
- King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, et al. 2008. The genome of the choanoflagellate *Monosiga brevicollis* and the origin of metazoans. Nature 451:783.
- Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA,
 Miller DJ, Rahn T, Weiss Y, Bosch TCG, Rosenstiel P.
 2011. Defining the origins of the NOD-like receptor system
 at the base of animal evolution. Mol Biol Evol
 28:1687–702
- Lubbers R, van Essen MF, van Kooten C, Trouw LA. 2017. Production of complement components by cells of the immune system. Clin Exp Immunol 188:183–94.
- Mason K, Huffnagle G, Noverr M, Kao J. 2008. Overview of gut immunology. In: Huffnagle GB, Noverr MC, editors. GI microbiota and regulation of the immune system.

Advances in Experimental Medicine and Biology. New York (NY): Springer. P. 1–14.

- McCormack R, Podack ER. 2015. Perforin-2/MPEG1 and other pore-forming proteins throughout evolution. J Leukoc Biol 98:761–8.
- Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch T. 2007. The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss. Genome Biol 8:R59.
- Mills CE, Haddock SHD. 2007. Ctenophora. In: Carlton JT, editor. Light and Smith's Manual: Intertidal Invertebrates of the Central California Coast, 4th edn. Berkeley, CA: University of California Press. p. 189–99.
- Moreland RT, Nguyen A-D, Ryan JF, Schnitzler CE, Koch BJ, Siewert K, Wolfsberg TG, Baxevanis AD. 2014. A customized web portal for the genome of the ctenophore *Mnemiopsis leidyi*. BMC Genomics 15:316.
- Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM, et al. 2014. The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109.
- Nehyba J, Hrdličková R, Bose HR. 2009. Dynamic evolution of immune system regulators: the history of the interferon regulatory factor family. Mol Biol Evol 26:2539–50.
- Ng ACY, Eisenberg JM, Heath RJW, Huett A, Robinson CM, Nau GJ, Xavier RJ. 2011. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc Natl Acad Sci U S A 108:4631–8.
- Nie L, Cai S-Y, Shao J-Z, Chen J. 2018. Toll-like receptors, associated biological roles, and signaling networks in nonmammals. Front Immunol 9:1523.
- Norekian TP, Moroz LL. 2019. Neuromuscular organization of the Ctenophore *Pleurobrachia bachei*. J Comp Neurol 527:406–36.
- Osińska I, Popko K, Demkow U. 2014. Perforin: an important player in immune response. Cent Eur J Immunol 39:109–15.
- Poole AZ, Weis VM. 2014. TIR-domain-containing protein repertoire of nine Anthozoan species reveals coral-specific expansions and uncharacterized proteins. Dev Comp Immunol 46:480–8.
- Presnell JS, Vandepas LE, Warren KJ, Swalla BJ, Amemiya CT, Browne WE. 2016. The presence of a functionally tripartite through-gut in ctenophora has implications for metazoan character trait evolution. Curr Biol 26:2814–20.
- Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al. 2007. Sea anemone genome reveals ancestral Eumetazoan gene repertoire and genomic organization. Science 317:86–94.
- Rauscher F, Voulalas P, Franza B, Curran T. 1988. Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev 2:1687–99.
- Richter DJ, Fozouni P, Eisen MB, King N. 2018. Gene family innovation, conservation and loss on the animal stem lineage. eLife 7:e34226.
- Ryan JF, Pang K, Schnitzler CE, Nguyen A-D, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Smith SA, et al. 2013. The genome of the ctenophore—*Mnemiopsis*

- *leidyi*—and its implications for cell type evolution. Science 342:1242592.
- Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, Davis BK, Allen IC, Holl EK, Ye Z, et al. 2012. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat Immunol 13:823.
- Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. 2010. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan *Capsaspora* owczarzaki. Mol Biol Evol 28:1241–54.
- Shen X-X, Hittinger CT, Rokas A. 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol 1:126.
- Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, et al. 2011. Using the *Acropora digitifera* genome to understand coral responses to environmental change. Nature 476:320–3.
- Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454:955.
- Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, et al. 2010. The *Amphimedon queenslandica* genome and the evolution of animal complexity. Nature 466:720.
- Vandepas LE, Warren KJ, Amemiya CT, Browne WE. 2017. Establishing and maintaining primary cell cultures derived from the ctenophore *Mnemiopsis leidyi*. J Exp Biol 220:1197–201.
- Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM. 2017. Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 1:1737–46.
- Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller W. 2005. Innate immune defense of the sponge *Suberites domuncula* against bacteria involves a MyD88-dependent signaling pathway: induction of a perforin-like molecule. J Biol Chem 280:27949–59.
- Wiens M, Korzhev M, Perović-Ottstadt S, Luthringer B, Brandt D, Klein S, Müller W. 2006. Toll-like receptors are part of the innate immune defense system of sponges (Demospongiae: Porifera). Mol Biol Evol 24:792–804.
- Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JR, Gilmore TD. 2011. Characterization of the core elements of the NF-κB signaling pathway of the sea anemone *Nematostella vectensis*. Mol Cell Biol 31:1076–87.
- Yanai H, Ban T, Taniguchi T. 2012. High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol 33:633–40.
- Yuen B, Bayes JM, Degnan SM. 2014. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol 31:106–20.