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Abstract

The potential energy surface (PES) describes the energy of a chemical system as

a function of its geometry and is a fundamental concept in computational chemistry.

A PES provides much useful information about the system, including the structures

and energies of various stationary points, such as local minima, maxima, and tran-

sition states. Construction of full-dimensional PESs for molecules with more than

ten atoms is computationally expensive and often not feasible. Previous work in our

group used sparse interpolation with polynomial basis functions to construct a surro-

gate reduced-dimensional PESs along chemically significant reaction coordinates, such

as bond lengths, bond angles, and torsion angles. However, polynomial interpolation

does not preserve the periodicity of the PES gradient with respect to angular compo-

nents of geometry, such as torsion angles, which can lead to nonphysical phenomena.

In this work, we construct a surrogate PES using trigonometric basis functions, for

a system where the selected reaction coordinates all correspond to the torsion angles,

resulting in a periodically repeating PES. We find that a trigonometric interpolation

basis not only guarantees periodicity of the gradient, but also results in slightly lower

approximation error than polynomial interpolation.

Introduction

The potential energy surface (PES) of an electronic state of a chemical system is a function

that maps the molecular geometry to the electronic energy within the Born–Oppenheimer

approximation.1,2 Local structures of a PES, such as minima and saddle points, provide the

geometry and energy information for stable and transition-state structures of a system. In

addition, global features of PESs, which can be investigated by theoretical analyses 3,4 and

via molecular-dynamics simulations,5–10 are useful for understanding chemical reactivity. In

order to construct a PES efficiently, different methods have been developed, such as modified

Shepard interpolation,11–13 permutationally invariant potential energy surface by linear least
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squares fitting,5–7,14–16 neural network approaches,17–19 Gaussian process,20,21 and the finite-

element method.22–24 Most of these techniques focus on constructing a full-dimensional PES,

which treats the potential energy of an N -atom system as a function of 3N − 6 internal

coordinates. Because the computational cost for constructing a PES increases rapidly with

N , these full-dimensional methods are restricted to small molecules only (i.e., N ≤ 10).

Fortunately, constructing a PES with all internal degrees of freedom (dofs) is not always

necessary for studying the chemical reactivity of large systems with tens to hundreds of

atoms. In many cases, only a small number of dofs, i.e., reaction coordinates (RCs), are

essential for describing the system’s chemical reactivity. 25 As a result, reduced-dimensional

PESs with a small number of RCs have been widely employed to study various processes

in large systems, such as the folding of polypeptides 26–28 and the intersystem crossing of

transition-metal complexes.4,29,30

Previously,10,31 we implemented the Smolyak sparse-grid interpolation algorithm 32,33 to

build the reduced-dimensional PESs, where the interpolation basis functions are Lagrange

polynomials with the Clenshaw–Curtis points. 34,35 This approach was shown to be efficient

for both PES constructions and single-point energy evaluations. 10,31 In addition, we devel-

oped a new molecular dynamics (MD) simulation method for reduced-dimensional PESs. 9

The new MD method relies on interpolated potential energy and coordinate functions, and

their derivatives (first-order for energy function and second-order for coordinate functions) to

solve the classical equations of motion in the Hamiltonian formalism. 36,37 As a result, to gen-

erate smooth MD trajectories, the interpolated energy function must have continuous first

derivatives, and the coordinate functions must have continuous second derivatives. These

smoothness conditions apply to the whole domain, including the crossing of the periodic

boundary.

The requirement for smoothness can be easily achieved within the domain for interpo-

lation functions with polynomial basis. In one dimension, a polynomial of degree N on a

closed interval [a, b] is N times non-trivially continuously differentiable in the interior (a, b).
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When RCs only contain non-periodic coordinates, such as bond lengths, bending angles and

normal coordinates, the MD trajectories are constrained within the interpolation domain

because of the high potential energy barrier at the boundary. In those cases, the polynomial

basis is capable of providing the desired smoothness.

On the other hand, internal rotations often play important roles in monomolecular reac-

tions, such as the photoisomerization of polymers and biomolecules, 38–40 hydrocarbon peri-

cyclic reactions,41 and spin crossover of transition metal complexes. 42,43 In many cases, one

or more torsion angles are the primary reaction coordinates for describing the reaction pro-

cess, while the remaining internal coordinates will only change slightly during the reaction

to assist the primary reaction coordinates.44–46 Reduced-dimensional PESs for these systems

have an additional requirement for continuity: periodicity at boundaries. Polynomial inter-

polation will preserve periodicity of the underlying function values but gives no guarantees

on the periodicity of the derivative. This causes the gradient of the surrogate PES to be

discontinuous when an internal rotation crosses the periodic boundary. The left and right

derivatives exist on either side, but they do not match. When a coordinate crosses the pe-

riodic boundary during an MD simulation, both kinetic energy and generalized forces will

change suddenly with the discontinuous gradient, 9 leading to an incorrect MD result. Thus,

an interpolation algorithm with other basis functions is necessary for modeling reactions

with periodic coordinates.

In this work, we present a new sparse-grid interpolation method with a trigonometric

basis.34,47 Instead of constructing an interpolant with polynomial basis functions, we use

sines and cosines, which guarantee periodicity of the surrogate PES gradient with respect

to internal rotations. We employ the [W(Cp)(CO)3]2 molecule as a model to test our new

interpolation algorithm (see Figure 1). The energy barrier for gauche–anti interconversion of

the molecule is 15.2 kcal/mol,1 based on nuclear-resonance measurements.48 Two-dimensional

PESs were constructed with polynomial and trigonometric basis functions, where the RCs
11 kcal = 4.184 kJ.
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correspond to the rotation of [W(Cp)(CO)3] monomer (x1) and the rotation of a Cp ring

(x2). A comparison of the two PESs is presented to show the advantages of a trigonometric

basis for periodic coordinates.
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Figure 1: Model molecule used in this work, [W(Cp)(CO)3]2.

Computational Details

In this section, we describe how sparse grids can approximate a potential energy surface

(PES) for a molecule. The full PES En(q) is a function of q ∈ R3N−6 redundant geometry

coordinates, where N is the number of atoms. We first partition q = (x, ξ), where x ∈ Rd

are the design variables and ξ are remainder variables. Then we minimize over ξ to find the

relaxed PES:

En(x) = min
ξ
En(x, ξ) (1)

A priori chemical considerations or knowledge of the system guides the selection of the design

and remainder variables.

Equation (1) requires an optimization over ξ, as well as solving (approximately) the

Schrödinger equation for each q = (x, ξ) in the optimization iteration. Due to the computa-

tional expense involved, directly evaluating (1) in a dynamical simulation is impractical for

systems with N > 10, necessitating a surrogate model Es
n(x). Moreover, when En and ∇En

are periodic, the surrogate model Es
n and ∇Es

n must also be periodic. Sparse polynomial

interpolation can approximate a PES for dynamical simulations. 10 As noted previously in
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the literature,10 sparse interpolation improves the ratio of approximation accuracy to the

number of nodes, leading to a more efficient approximate PES with respect to the number

of expensive ab initio calculations. When populating the nodes, each ab initio calculation

is independent of the others, so the expensive part of the surrogate model is parallelizable.

However, a polynomial interpolation basis can—and, in practice, does—fail to enforce peri-

odicity of ∇Es
n, leading to nonphysical dynamics. We now describe a sparse interpolation

algorithm that uses a trigonometric interpolation basis, which enforces periodicity of ∇Es
n.

Sparse trigonometric interpolation

The sparse trigonometric interpolant of En(x) is

Es
n(x) = Gd

L[En](x) =
∑
‖i‖1≤L

(−1)L−‖i‖1
(

d− 1

L− ‖i‖1

)
U i[En](x) (2)

whereGd
L is the sparse trigonometric interpolation operator, i ∈ Nd

0 is a multi-index, and U i is

a tensor-product interpolation operator.34,47,49 The dimension is d, and L is the frequency of

exactness, where we interpret frequency analogously to polynomial total degree. To construct

the sparse interpolant, all we require is a set of model outputs fj at the sparse-grid nodes

xj . Though this up-front cost of evaluating (1) at these nodes may be high, it is a one-time

computation, and each evaluation of (2) is negligible in comparison.

While this may appear superficially similar to the algorithm in previous work on sparse

polynomial interpolation,10 our interpolation basis functions are tensor products of sines and

cosines with different frequencies, rather than Lagrange polynomials. We use the TASMA-

NIAN sparse-grid package in our computations. 34,50,51 The full mathematical details under-

lying (2) are in the Supporting Information for the interested reader. We now highlight five

important details.

First, trigonometric interpolation is sensible only when En is periodic with respect to

every component of x. Otherwise, Gibbs effects will appear at the domain boundary for the
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nonperiodic component.52 Continuity and piecewise differentiability are sufficient to ensure

that trigonometric interpolation converges uniformly. 53 Higher orders of differentiability will

increase the convergence rate.

Second, the choice of d and L uniquely determines the set of interpolation nodes H(d, L).

Figure 2 shows two such set of nodes, H(2, 2) and H(2, 3). The canonical domain is [0, 1]d,

but we map the nodes into an interval [ai, bi] that is suitable for the geometry coordinate

xi.34 For instance, with the dihedral rotation of a hexagonal group, a suitable domain would

be [0◦, 60◦].

Third, the set of nodes is nested with respect to L. This is advantageous because if we

decide to increase L to get more accuracy, we only need to evaluate Equation (1) for the

additional nodes. Figure 2 displays the nestedness property.

Fourth, the number size of H(d, L) grows like O(dL) for sufficiently large d.47 This is

in contrast with full-tensor interpolation having N nodes in each direction, which has Nd

nodes in total. Even for moderate dimensions (d ≈ 5), this cost reduction can be highly

advantageous.

Fifth, we may want more points in certain dimensions than in others—for example, if a

function is significantly less smooth along a particular dimension. In these cases, we replace

‖i‖1 in Equation (2) with i · α, where α is the anisotropy vector. See the Supporting

Information for more details.

Electronic structure calculations

All electronic structure calculations were carried out in the Gaussian 16 software package 54

with the B3LYP functional.55–58 The SDD pseudopotential and its associated basis set 59

were used for W, and the 3-21G basis set60–65 was used for H, C, and O in all calculations.

The 3-21G basis set was chosen to reduce the computational cost of PES construction and

validation. The optimized geometry produced by this level of theory agrees well with the

crystal structure48 of the [W(Cp)(CO)3]2 molecule (see Supporting Information, Table S1).
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(a) (b)

Figure 2: Sparse trigonometric grids in d = 2 for (a) L = 2, (b) L = 3.

Previous computational studies with 3-21G basis set and B3LYP functional on transition

metal complexes and organic molecules also showed their ability to reproduce optimized

structures, frequencies and PESs with the accuracy comparable to calculations with larger

basis sets.66–69 Most importantly, the performance of the interpolation algorithm presented

in this work is independent of the exact model chemistry utilized since the periodicity of

the constructed PES and its gradient will not depend on the level of theory employed in the

electronic structure calculations.

Frequency analysis was applied after each unconstrainted optimization to guarantee that

a stationary point of the correct type was found. The geometry of the molecule is defined in

Z-matrix format with four dummy atoms (see Figure 3 and Supporting Information Sec. 2).

Two dihedral angles, X1–W1–W2–X3 (x1) and C1–X1–W1–W2 (x2), were employed as the

design variables for the construction of the PES. The domains for interpolation are [0, 360)

for x1 and [0, 72) for x2. The following symmetry was employed to further reduce the number

of DFT calculations for the PES construction:

E(x1, x2) = E(360− x1, 72− x2) .

By exploiting this symmetry, we only need to run electronic structure calculations for nodes
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with x1 ∈ [0, 180] in order to populate the sparse-grid nodes.

Figure 3: Global minimum structure for [W(Cp)(CO)3]2. Atoms X1–X4 are dummy
atoms in the Z-matrix definition.

Results

We constructed two surrogate PESs for the ground state of the [W(Cp)(CO)3]2 molecule,

shown in Figure 1 with the design variables x1 and x2 labeled. One PES employs the

sparse polynomial interpolant used by Nance, Jakubikova, and Kelley. 10 The other utilizes

the sparse trigonometric interpolant of En(x), whose mathematical machinery is described

in the “Approximation of potential energy surfaces” section. The second approach has not

previously been deployed in surrogate PES modeling. We will test the following hypotheses:

that a sparse trigonometric interpolant

(a) yields a more accurate approximation than a polynomial interpolation basis, and

(b) enforces periodicity of ∇Es
n(x) to numerical accuracy.

Summary of main findings

Sparse grids for the trigonometric and polynomial interpolants are shown in Figure 4. In-

terpolation domains are x1 ∈ [0, 360] and x2 ∈ [0, 72] since x2 corresponds to the rotation

of a pentagonal group. The trigonometric grid has 135 points; the polynomial grid has 145
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points. After evaluating the true PES En(x) at each node shown in Figure 4, we invoked

a simple call to TASMANIAN34 to construct the surrogate potential energy surfaces shown

in Figure 5. Apart from the nodes (shown as black dots), the surfaces in Figure 5 look

similar to the eye along the x1 direction. Furthermore, the shape of the PES and the dif-

ferent minimum-energy paths in Figure 5 suggest that the rotation of the Cp ring (x2) is

coupled with the rotation of the [W(Cp)(CO)3] monomer (x1). Non-differentiability of the

true PES at the ridges along x1 = 120 and x1 = 240 slows the theoretical convergence rate

of interpolation error but does not pose problems otherwise. 47

0 120 240 360
0

24

48

72

0 120 240 360

0

24

48

72

Figure 4: Left: Anisotropic sparse grid for trigonometric interpolant (d = 2, L = 4,
α = (5, 6)). Note that we have more points along x1 than x2. Right: Sparse grid
for polynomial interpolant using Clenshaw–Curtis nodes (d = 2, L = 5).

Figure 5: Surrogate ground state (n = 0) PES corresponding to the sparse grids in
Figure 4. Interpolation nodes shown as black dots.

To quantify the error of our two surrogates versus the true PES, we randomly sampled

200 values of (x1, x2) from a uniform distribution on [0, 360]× [0, 72] using MATLAB’s rand
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command, displayed in Figure 6. For each validation point, we performed a constrained

optimization at the B3LYP/(SDD,3-21G) level of theory and compared the DFT-calculated

energy to a single-point evaluation of the surrogate PES. We display the root-mean-square

error (RMSE) and maximum absolute error (MAE) in Table 1. The 95% confidence interval

for RMSE is calculated by treating the mean-squared error as a χ2 random variable with

200 degrees of freedom.70
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Figure 6: Left: 200 validation points. The points are colored based on the trigono-
metric surrogate PES error relative to the DFT-calculated energies. Right: Lo-
cation of DFT extrema (minima are downward-pointing triangles, maxima are
upward-pointing triangles, and saddle points are dots).

Table 1: Error against true values of PES at 200 points drawn from
uniform distribution on [0, 360]× [0, 72]. Units are kcal/mol.

Trigonometric Polynomial
RMSE 0.70 1.26

RMSE 95% conf. int. (0.63, 0.77) (1.15, 1.40)
MAE 2.15 4.14

In addition, we compared the energy and geometry of minima, maxima and saddle points

on the two surrogate PESs with the fully optimized DFT structures. We display the DFT

extrema on top of a contour plot of the trigonometric surrogate in Figure 6. As described

in the methodology section, DFT-optimized structures are characterized by the number of

imaginary frequencies (i.e., zero for minima, one for saddle points, and two for maxima on a

two-dimensional PES). Details of the electronic structure calculations that produced these
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structures are described in Supporting Information Sec. 2. The optimized dihedral angles

and relative energies for those stationary points are summarized in Table 2. The error from

the trigonometric interpolant is smaller than the error of polynomial interpolant.

Table 2: Dihedral angles and relative energies of stationary points from
PESs and DFT optimizations. The energy in the table is relative to the
minimum-energy conformation with x1 close to 180 degrees. Units of x1
and x2 are degrees; units of Erel are kcal/mol.

Type DFT Trigonometric Polynomial
x1 x2 Erel x1 x2 Erel x1 x2 Erel

max 0.2 69.7 20.7 2.9 64.9 20.7 4.1 66.3 20.8
saddle 1.7 32.4 19.9 −2.0 35.5 19.9 −1.9 39.0 19.9
min 61.1 71.9 5.1 63.0 70.1 5.2 66.6 72.7 4.6

saddle 60.0 35.6 7.5 56.5 38.1 8.1 62.3 35.7 7.7
max 118.1 64.8 23.4 119.3 60.6 23.1 121.7 82.2 20.8
saddle 114.3 30.6 21.8 118.8 25.6 19.6 122.2 49.2 18.7
min 181.3 68.9 0.0 180.0 71.8 0.0 177.6 68.4 0.0

saddle 180.8 32.9 3.3 180.1 36.1 4.1 180.4 33.1 3.3
RMSE 2.7 3.6 0.9 4.4 9.4 1.4

Next, we examined the mismatch of the surrogate PES gradient. We compute the maxi-

mum x1-gradient mismatch as

max
x2∈[0,72]

|fx1(0, x2)− fx1(360, x2)|

where fx1(0, x2) is understood to be a derivative from the right, and fx1(360, x2) is a derivative

from the left. The maximum x2-gradient mismatch is computed analogously. These results

are shown in Table 3. The numerical error of forward and backward differences is O(h), where

h is the step size. Therefore, since the maximum mismatches in the trigonometric case are

indeed O(h), they are numerically zero. In contrast, the mismatches in the polynomial case

are far larger than O(h).
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Table 3: Gradient mismatches for trigonometric and Clenshaw–Curtis
bases. Right/left derivatives approximated by forward/backward differ-
ences with step size h = 10−5.

Trigonometric Polynomial
Max x1-gradient mismatch 9.02× 10−6 2.05× 10−1

Max x2-gradient mismatch 2.99× 10−5 9.62× 10−1

Discussion

The visual results in Figure 5 look reasonable for the two choices of surrogate. There are

peaks when x1 = 120 and x1 = 240, and a global minimum occurs at x1 = 180 as expected

from empirical studies.48 The real significance is in Tables 1 and 2, which demonstrate that

the error for the trigonometric interpolant is smaller (by ∼0.5 kcal/mol on average) than

the error for the polynomial interpolant. The maximum absolute error is almost exactly

2 kcal/mol smaller for the trigonometric interpolant. Recall that the trigonometric sparse

grid has 135 nodes and the polynomial sparse grid has 145 nodes. Sparse trigonometric

interpolation results in a more accurate surrogate PES than sparse polynomial interpolation

at no increase in the number of evaluations of En(x) (as measured by the number of nodes).

Additionally, the numerical results in Table 3 indicate that ∇Es
n(x) is periodic when

we use the trigonometric interpolation basis. The discretization error for forward/backward

differences is O(h), which is precisely what we observe for the trigonometric basis. For

the Clenshaw–Curtis polynomial basis, we observe a real-life example of ∇Es
n failing to be

periodic. Importantly, this failure occurs even though ∇En is periodic (since x1 and x2

are rotations). Thus, for applications where it is an absolute necessity that the surrogate

PES gradient be periodic, a polynomial interpolant should not be used. Furthermore, the

discussion in the previous paragraph indicates that, due to improved accuracy at no extra

cost, one should consider using a trigonometric interpolation basis even when periodicity of

the gradient is not a rigid requirement.

For each interpolation basis, we observed a significantly larger error for the two struc-
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tures with x1 close to 120 degrees. The larger errors occur because optimized geometries

in this region mix two possible conformations: the locked conformation and the unlocked

conformation (see Figure 7). When x1 is smaller than 120 degrees, one CO group of one

[W(Cp)(CO)3] monomer is pointing at the center of two CO groups of the other monomer in

the lowest energy conformations, because such conformations minimize the steric effect for

conformations with small x1 values. For the same reason, at large x1 values, the unlocked

conformation is more favorable than the locked conformation. As a result, the optimized

geometries differ on opposite sides of 120 degrees. The cusp of the true PES makes this local

region poorly described by the PES approximation with x1 and x2. Furthermore, due to the

global definition of the interpolation basis functions, the quality of the entire surrogate is

affected.

Figure 7: Locked and unlocked structures near x1 = 120 and x2 = 0.

As a caveat, the trigonometric interpolation algorithm we presented should only be used

in problems where the PES is periodic in all components of x (i.e., all interesting geometry

features are bond angles or dihedral angles). Approximating a non-periodic function with

sines and cosines leads to poor accuracy at the edges of the domain, known as the Gibbs

phenomenon.52
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Conclusion

Periodic coordinates, such as internal rotations, often play important roles in chemical reac-

tions. In order to construct a proper PES with those coordinates for MD simulations, the

interpolation algorithm must provide continuous function values and gradients, both within

the domain and crossing the boundaries. Conventional interpolation algorithms using poly-

nomial basis functions do not guarantee the continuity of the gradient.

In this paper, we have presented a sparse interpolation algorithm that preserves the peri-

odicity of the surrogate PES gradient. This algorithm uses sines and cosines as interpolation

basis functions. We tested the interpolation algorithm by constructing a two-dimensional

surface for a tungsten molecule, [W(Cp)(CO)3]2. Compared to sparse interpolation with a

polynomial basis, the trigonometric basis we have employed provides smaller errors for both

approximated energies and the stationary geometries from DFT calculations. Additionally,

the framework of sparse interpolation improves the ratio of approximation accuracy to the

number of nodes, leading to a more efficient approximate PES with respect to the number

of expensive ab initio calculations.

To extend the applicability of this approach, we are currently investigating ways to con-

struct a surrogate PES with both rotations and bond lengths as degrees of freedom. This

algorithm would use polynomial basis functions on bond lengths and trigonometric basis

functions on bond angles and dihedral angles.

Supporting Information

Mathematic details of sparse trigonometric interpolation, Gaussian 16 input, comparison of

calculated and crystal structures (pdf). Data for trigonometric and polynomial PESs (xlsx).

15



Acknowledgement

We gratefully acknowledge support from the National Science Foundation under Grants No.

OAC-1740309 and DMS-174564 (C.T.K.), CHE-1554855 (C.L. and E.J.), and an NSF Grad-

uate Research Fellowship under DGE-1746939 (Z.M.). This work used the Extreme Science

and Engineering Discovery Environment (XSEDE) Bridges at the Pittsburgh Supercomput-

ing Center through Allocation No. TG-DMS180043 and the High-Performance Computing

Center at NCSU. XSEDE is supported by NSF ACI-1548562. 71

References

(1) Born, M.; Fock, V. Beweis des Adiabatensatzes. Z. Phys. 1928, 51, 165–180.

(2) Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. – Berlin

1927, 389, 457–484.

(3) Glasstone, S.; Eyring, H.; Laidler, K. J. The Theory of Rate Processes ; McGraw-Hill,

New York, 1941.

(4) Nance, J.; Bowman, D. N.; Mukherjee, S.; Kelley, C. T.; Jakubikova, E. Insights into the

Spin-State Transitions in [Fe(tpy)2]2+: Importance of the Terpyridine Rocking Motion.

Inorg. Chem. 2015, 54, 11259–11268.

(5) Albaugh, A.; Boateng, H. A.; Bradshaw, R. T.; Demerdash, O. N.; Dziedzic, J.; Mao, Y.;

Margul, D. T.; Swails, J.; Zeng, Q.; Case, D. A. et al. Advanced Potential Energy

Surfaces for Molecular Simulation. J. Phys. Chem. B 2016, 120, 9811–9832.

(6) Bowman, J. M.; Czakó, G.; Fu, B. High-Dimensional Ab Initio Potential Energy Sur-

faces for Reaction Dynamics Calculations. Phys. Chem. Chem. Phys. 2011, 13, 8094–

8111.

16



(7) Brown, A.; Braams, B. J.; Christoffel, K.; Jin, Z.; Bowman, J. M. Classical and Qua-

siclassical Spectral Analysis of CH5
+ Using an Ab Initio Potential Energy Surface. J.

Chem. Phys. 2003, 119, 8790–8793.

(8) Yagi, K.; Taketsugu, T.; Hirao, K. Generation of Full-Dimensional Potential Energy

Surface of Intramolecular Hydrogen Atom Transfer in Malonaldehyde and Tunneling

Dynamics. J. Chem. Phys. 2001, 115, 10647–10655.

(9) Liu, C.; Kelley, C. T.; Jakubikova, E. Molecular Dynamics Simulations on Relaxed

Reduced-Dimensional Potential Energy Surfaces. J. Phys. Chem. A 2019, 4543–4554.

(10) Nance, J.; Jakubikova, E.; Kelley, C. T. Reaction Path Following with Sparse Interpo-

lation. J. Chem. Theory Comput. 2014, 10, 2942–2949.

(11) Collins, M. A. Molecular Potential-Energy Surfaces for Chemical Reaction Dynamics.

Theor. Chem. Acc. 2002, 108, 313–324.

(12) Collins, M. A. Molecular Potential Energy Surfaces by Interpolation. Lec. Notes Com-

put. Sc. 2003, 159–167.

(13) Collins, M. A.; Parsons, D. F. Implications of Rotation–Inversion–Permutation Invari-

ance for Analytic Molecular Potential Energy Surfaces. J. Chem. Phys. 1993, 99, 6756–

6772.

(14) Braams, B. J.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces in

High Dimensionality. Int. Rev. Phys. Chem. 2009, 28, 577–606.

(15) Chen, Q.; Bowman, J. M. Quantum and Classical IR Spectra of (HCOOH)2, (DCOOH)2

and (DCOOD)2 Using Ab Initio Potential Energy and Dipole Moment Surfaces. Faraday

Discuss. 2018, 33–49.

(16) Qu, C.; Yu, Q.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces.

Annu. Rev. Phys. Chem. 2018, 69, 151–175.

17



(17) Jiang, B.; Li, J.; Guo, H. Potential Energy Surfaces from High Fidelity Fitting of Ab

Initio Points: The Permutation Invariant Polynomial–Neural Network Approach. Int.

Rev. Phys. Chem. 2016, 35, 479–506.

(18) Lorenz, S.; Groß, A.; Scheffler, M. Representing High-Dimensional Potential-Energy

Surfaces for Reactions at Surfaces by Neural Networks. Chem. Phys. Lett. 2004, 395,

210–215.

(19) Manzhos, S.; Dawes, R.; Carrington, T. Neural Network-Based Approaches for Building

High Dimensional and Quantum Dynamics-Friendly Potential Energy Surfaces. Int. J.

Quantum Chem. 2014, 115, 1012–1020.

(20) Cui, J.; Krems, R. V. Gaussian Process Model for Collision Dynamics of Complex

Molecules. Phys. Rev. Lett. 2015, 115, 073202.

(21) Uteva, E.; Graham, R. S.; Wilkinson, R. D.; Wheatley, R. J. Interpolation of Inter-

molecular Potentials Using Gaussian Processes. J. Chem. Phys. 2017, 147, 161706.

(22) Berweger, C. D.; van Gunsteren, W. F.; Müller-Plathe, F. Molecular Dynamics Simu-

lation with an Ab Initio Potential Energy Function and Finite Element Interpolation:

The Photoisomerization of cis-Stilbene in Solution. J. Chem. Phys. 1998, 108, 8773–

8781.

(23) Berweger, C. D.; van Gunsteren, W. F.; Müller-Plathe, F. The Photoisomerization

of cis-Stilbene Does Not Follow the Minimum Energy Path. Angew. Chem. Int. Edit.

1999, 38, 2609–2611.

(24) Berweger, C. D.; van Gunsteren, W. F.; Müller–Plathe, F. Finite Element Interpola-

tion for Combined Classical/Quantum Mechanical Molecular Dynamics Simulations. J.

Comput. Chem. 1998, 18, 1484–1495.

18



(25) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L. Transition Path Sampling:

Throwing Ropes over Rough Mountain Passes, in the Dark. Annu. Rev. Phys. Chem.

2002, 53, 291–318.

(26) Dill, K. A.; Phillips, A. T.; Rosen, J. B. Protein Structure Prediction and Potential

Energy Landscape Analysis Using Continuous Global Minimization. P. Comput. Mol.

Biol. 1997, 109–117.

(27) Komatsuzaki, T.; Hoshino, K.; Matsunaga, Y.; Rylance, G. J.; Johnston, R. L.;

Wales, D. J. How Many Dimensions Are Required to Approximate the Potential Energy

Landscape of a Model Protein? J. Chem. Phys. 2005, 122, 084714.

(28) Parchaňský, V.; Kapitán, J.; Kaminský, J.; Šebestík, J.; Bouř, P. Ramachandran Plot

for Alanine Dipeptide as Determined from Raman Optical Activity. J. Phys. Chem.

Lett. 2013, 4, 2763–2768.

(29) Boilleau, C.; Suaud, N.; Guihéry, N. Ab Initio Study of the Influence of Structural Pa-

rameters on the Potential Energy Surfaces of Spin-Crossover Fe(II) Model Compounds.

J. Chem. Phys. 2012, 137, 224304.

(30) Sousa, C.; de Graaf, C.; Rudavskyi, A.; Broer, R.; Tatchen, J.; Etinski, M.; Mar-

ian, C. M. Ultrafast Deactivation Mechanism of the Excited Singlet in the Light-Induced

Spin Crossover of [Fe(2,2 ’-bipyridine)3]2+. Chem. – Eur. J. 2013, 19, 17541–51.

(31) Nance, J.; Kelley, C. T. A Sparse Interpolation Algorithm for Dynamical Simulations

in Computational Chemistry. SIAM J. Sci. Comput. 2015, 37, S137–S156.

(32) Judd, K. L.; Maliar, L.; Maliar, S.; Valero, R. Smolyak Method for Solving Dynamic

Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain. J.

Econ. Dyn. Control 2014, 44, 92–123.

19



(33) Smolyak, S. A. Quadrature and Interpolation Formulas for Tensor Products of Certain

Classes of Functions. Dokl. Akad. Nauk. 1963, 148, 1042–1045.

(34) Stoyanov, M. TASMANIAN Sparse Grids (version 6.0). Oak Ridge National Laboratory,

Oak Ridge, TN, 2019; https://tasmanian.ornl.gov.

(35) Clenshaw, C. W.; Curtis, A. R. A Method for Numerical Integration on an Automatic

Computer. Numer. Math. 1960, 2, 197–205.

(36) Deriglazov, A. Classical Mechanics ; Springer-Verlag, Berlin, 2016.

(37) Lanczos, C. The Variational Principles of Mechanics ; Courier Corporation, 2012.

(38) Liu, R. S. H.; Hammond, G. S. Examples of Hula-Twist in Photochemical cis–trans

Isomerization. Chem. – Eur. J. 2001, 7, 4536–4545.

(39) Liu, R. S.; Asato, A. E. The Primary Process of Vision and the Structure of

Bathorhodopsin: A Mechanism for Photoisomerization of Polyenes. P. Natl. Acad. Sci.

USA 1985, 82, 259–263.

(40) Yamabe, T.; Akagi, K.; Ohzeki, K.; Fukui, K.; Shirakawa, H. Isomerization Mechanisms

from cis to trans Form in Polyacetylene. J. Phys. Chem. Solids 1982, 43, 577–581.

(41) Houk, K. N.; Li, Y.; Evanseck, J. D. Transition Structures of Hydrocarbon Pericyclic

Reactions. Angew. Chem. Int. Edit. 1992, 31, 682–708.

(42) Ashley, D. C.; Jakubikova, E. Ray-Dutt and Bailar Twists in Fe(II)-Tris(2,2’-

bipyridine): Spin States, Sterics, and Fe–N Bond Strengths. Inorg. Chem. 2018, 57,

5585–5596.

(43) Purcell, K. F. Pseudorotational Intersystem Crossing in d6 Complexes. J. Am. Chem.

Soc. 1979, 101, 5147–5152.

20



(44) Li, W.; Ma, A. Reaction Mechanism and Reaction Coordinates from the Viewpoint of

Energy Flow. J. Chem. Phys. 2016, 144, 114103.

(45) Tavadze, P.; Avendaño Franco, G.; Ren, P.; Wen, X.; Li, Y.; Lewis, J. P. A Machine-

Driven Hunt for Global Reaction Coordinates of Azobenzene Photoisomerization. J.

Am. Chem. Soc. 2018, 140, 285–290.

(46) Wiedbrauk, S.; Maerz, B.; Samoylova, E.; Reiner, A.; Trommer, F.; Mayer, P.;

Zinth, W.; Dube, H. Twisted Hemithioindigo Photoswitches: Solvent Polarity Deter-

mines the Type of Light-Induced Rotations. J. Am. Chem. Soc. 2016, 138, 12219–

12227.

(47) Hallatschek, K. Fouriertransformation auf Dünnen Gittern mit Hierarchischen Basen.

Numer. Math. 1992, 63, 83–97.

(48) Adams, R. D.; Collins, D. M.; Cotton, F. A. Molecular Structures and Barriers to Inter-

nal Rotation in Bis(η5-cyclopentadienyl)hexacarbonylditungsten and Its Molybdenum

Analog. Inorg. Chem. 1974, 13, 1086–1090.

(49) Griebel, M.; Hamaekers, J. In Sparse Grids and Applications – Munich 2012 ; Garcke, J.,

Pflüger, D., Eds.; Lecture Notes in Computational Science and Engineering; Springer

International Publishing Switzerland, 2014; Chapter 4, pp 75–107.

(50) Stoyanov, M. Hierarchy-Direction Selective Approach for Locally Adaptive Sparse Grids ;

2013.

(51) Stoyanov, M. K.; Webster, C. G. A Dynamically Adaptive Sparse Grids Method

for Quasi-Optimal Interpolation of Multidimensional Functions. Comput. Math. Appl.

2016, 71, 2449–2465.

(52) Helmberg, G. The Gibbs Phenomenon for Fourier Interpolation. J. Approx. Theory

1994, 78, 41–63.

21



(53) Morrow, Z.; Stoyanov, M. A Method for Dimensionally Adaptive Sparse Trigonometric

Interpolation of Periodic Functions. 2019, arXiv:1908.10672. arXiv.org e-Print archive.

https://arxiv.org/abs/1908.10672 (accessed Sep. 27, 2019).

(54) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian

16 Revision A.03. 2016; Gaussian Inc. Wallingford CT.

(55) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange.

J. Chem. Phys. 1993, 98, 5648–5652.

(56) Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J.

Chem. Phys. 1993, 98, 1372–1377.

(57) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy

Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.

(58) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation

of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional

Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.

(59) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss, H. Pseudopotential Approaches to Ca,

Sr, and Ba Hydrides. Why Are Some Alkaline Earth MX2 Compounds Bent? J. Chem.

Phys. 1991, 94, 1360–1366.

(60) Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-Consistent Molecular Orbital Methods.

21. Small Split-Valence Basis Sets for First-Row Elements. J. Am. Chem. Soc. 1980,

102, 939–947.

(61) Dobbs, K. D.; Hehre, W. J. Molecular Orbital Theory of the Properties of Inorganic and

Organometallic Compounds. 4. Extended Basis Sets for Third-Row and Fourth-Row,

Main-Group Elements. J. Comput. Chem. 1986, 7, 359–378.

22



(62) Dobbs, K. D.; Hehre, W. J. Molecular Orbital Theory of the Properties of Inorganic and

Organometallic Compounds. 5. Extended Basis Sets for First-Row Transition Metals.

J. Comput. Chem. 1987, 8, 861–879.

(63) Dobbs, K. D.; Hehre, W. J. Molecular Orbital Theory of the Properties of Inorganic

and Organometallic Compounds. 6. Extended Basis Sets for Second-Row Transition

Metals. J. Comput. Chem. 1987, 8, 880–893.

(64) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-Consistent

Molecular-Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Ele-

ments. J. Am. Chem. Soc. 1982, 104, 2797–2803.

(65) Pietro, W. J.; Francl, M. M.; Hehre, W. J.; DeFrees, D. J.; Pople, J. A.; Binkley, J. S.

Self-Consistent Molecular Orbital Methods. 24. Supplemented Small Split-Valence Basis

Sets for Second-Row Elements. J. Am. Chem. Soc. 1982, 104, 5039–5048.

(66) Estiú, G.; Rama, J.; Pereira, A.; Cachau, R. E.; Ventura, O. N. A Theoretical Study of

Excited State Proton Transfer in 3-hydroxychromone and Related Molecules. J. Mol.

Struc. Theochem 1999, 487, 221–230.

(67) Kukovec, B.-M.; Kodrin, I.; Mihalić, Z.; Furić, K.; Popović, Z. Cis–trans Isomerism

in Cobalt(II) Complexes with 3-hydroxypicolinic Acid. Structural, DFT and Thermal

Studies. Inorg. Chim. Acta 2010, 363, 1887–1896.

(68) Versiani Cabral, O.; Téllez S, C. A.; Giannerini, T.; Felcman, J. Fourier-Transform

Infrared Spectrum of Aspartate Hydroxo-aqua Nickel (II) Complex and DFT-B3LYP/3-

21G and 6-311G Structural and Vibrational Calculations. Spectrochim. Acta A 2005,

61, 337–345.

(69) Zandler, M. E.; D’Souza, F. The Remarkable Ability of B3LYP/3-21G(*) Calcula-

tions to Describe Geometry, Spectral and Electrochemical Properties of Molecular and

Supramolecular Porphyrin–Fullerene Conjugates. C. R. Chim. 2006, 9, 960–981.

23



(70) Faber, N. M. Estimating the Uncertainty in Estimates of Root Mean Square error of

Prediction: Application to Determining the Size of an Adequate Test Set in Multivariate

Calibration. Chemometr. Intell. Lab. 1999, 49, 79 – 89.

(71) Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazle-

wood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D. et al. XSEDE: Accelerating Scientific

Discovery. Comput. Sci. Eng. 2014, 16, 62–74.

TOC Graphic

24


