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Abstract

In many time-sensitive applications, knowing the clas-
sification results as early as possible while preserving
the accuracy is extremely important for further actions.
Shapelet-based early classification methods are popu-
lar due to their natural interpretability. However, most
of the existing shapelet-based methods ignore the dis-
tance information between the shapelets and the time
series. The distance information, though may contain
some noise, can reflect more information between the
shapelets and the time series. Some existing works
adopt the distance information, but are not robust to
the noise in the distance information. To tackle this
challenge, we present a novel distance transformation
based early classification (DTEC) framework, which
transfers the original time series into the distance space.
Upon the distance space, a probabilistic classifier is
trained, and a novel classification criterion confidence
area is proposed in order to overcome the noise brought
by the training phase and the dataset. The effective-
ness of the proposed framework is validated on three
time series benchmarks as well as the extensive datasets
selected from UCR time series archive.

1 Introduction

In many time-sensitive scenarios, people tend to know
the results as early as possible so that actions can be
taken in time. One important application is the acute
disease detection, especially heart failure detection. Ev-
ery year, about 735, 000 Americans have a heart attack
and about 610, 000 people die of heart disease1. The
medical professionals point out that when the heart at-
tack occurs, the more time that passes without treat-
ment, the greater the damage to the heart muscle2.
Therefore, the earlier the patients’ abnormal heart ac-
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tivities are detected, more timely the medical interven-
tion can be conducted. Hence, it is non-trivial to de-
velop classification methods that can provide early pre-
diction, while not sacrifice the classification accuracy.

Stimulated by the urgent demands of our daily life,
early time series classification gains much attention from
researchers in the recent years. The main goal of early
classification is to make the classification as early as pos-
sible with the satisfactory accuracy. In [29], Xing et. al.
point out that early time series classification is a trade-
off between accuracy and earliness. Furthermore, Ghal-
wash et. al. in [7] regard earliness, interpretability, and
uncertainty estimation as three highly desirable prop-
erties for the early time series classification methods.
Some existing works [28, 29, 25] sacrifice one property
for the others, and cannot guarantee all three proper-
ties at the same time. The most popular methods are
shapelet-based methods [30, 6, 7, 11], whose common
characteristic is that the threshold needs to be carefully
designed to determine whether a time series contains a
specific shapelet. However, in the case that there are no
obvious distinguish patterns between different classes, it
is hard to determine the threshold. Therefore, the dis-
tance information between the shapelets and the time
series becomes more valuable.

Sangnier et. al. adopt the distance (similarity) in-
formation between shapelets (landmark) and the time
series in [21]. However, this method still relies on the
user-defined classification criterion (i.e., when the model
can make classification decision) and is as well not ro-
bust to the noise existing in the distance transformation
process. Some other works are designed to find discrim-
inative timestamps [20], and at each detected discrim-
inative timestamps, classifiers are trained to estimate
the class probability. However, when the starting times-
tamp of training time series is not the same as the new
coming time series (i.e., the new coming time series is
not aligned with the training time series), the discrimi-
native timestamps of the new coming time series would
not coincide with that detected in the training time se-
ries. Thus it might account for the low accuracy or
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decisiondelayinthenewcomingtimeseries.
Totackletheabovechallenges, weproposethe

DistanceTransformationbasedEarlyClassification
(DTEC)framework. DTECtransferstimeseriesinto
thedistancespacewiththeshapeletsasitsbases,and
trainsaprobabilisticclassifier(i.e.,multi-classlogistic
regression)uponthedistancespace. Bytransforming
timeseriesintodistancespace,thedistanceinformation
betweenthetimeseriesandshapeletscanbefully
explored.Inordertoeliminatethepotentialnoisein
theprocessofdistancetransformationandclassifier
training, DTECdevisesanewclassificationcriterion
calledconfidencearea.Distinguishedfromtheexisting
classificationcriterionthatoutputstheresultonlyifthe
probabilityishigherthantheuserprovidedthreshold,
theconfidenceareatakesthesustainedstrengthof
theclassprobabilityintoaccount. Therefore,the
perturbationbroughtbynoisecanbealleviated,which
allowsamorereliableclassificationresult. Besides,to
obtaintheearlinessandinterpretabilityproperties,a
two-stepfeature(shapelet)selectionisembeddedinthe
trainingphase:Thefirststepisthecandidateshapelets
extractionwhichformsthebasesofthedistancespace;
Thesecondstepistheearliness-awaresparsegrouplasso
whichisappliedtoselectimportantandearlyshapelets
inthedecisionprocedure. Moreover,becausethe
timestampsexaminedbytheclassifieraredetermined
bythedistancevariationwhichonlydependsonthe
newcomingtimeseries,thetimestampalignmentissue
mentionedaboveisaddressed.

2 Methodology

Inthissection,wefirstdefinetheearlyclassification
problem,followedbytheintroductionoftheproposed
DTECframework. Therestofthissectionillustrates
eachcomponentoftheframeworkindetail.

2.1 ProblemSetting.AtimeserieswithlengthT
isdenotedasS={s1,s2,...,sT}. Thesubsequence
isasubsetofthefulltimeseriescontainingconsec-
utivetimestamps,andthesubsequenceofSranging
fromtimestampitotimestampjisnotatedasSi,j=
{si,si+1,...,sj}.Theearlyclassificationaimstoclas-
sifySaccuratelyasearlyaspossible.

2.2 Framework.

Timestampt t+1

Training Data 
Transformation

Decision Function 
Training

Distance 
Calculation

Decision 
Function

Output 
Classification 
Result

Classification 
Criteria 

Able to 
Classify

Not Able to Classify: 
Go to Next Timestamp

Training

Decision

TestTimeSeries

Training
Data

Candidate 
Shapelet
Extraction

Figure1illustratestheproposed
framework.Itcontainstwocomponents,thetraining
phaseandthedecisionphase. Thetrainingphasecan
beoffline.Inthetrainingphase,thecandidateshapelets
arefirstextractedfromthetrainingdatasettoformthe
basesofthedistancespace. Next,thetrainingtime
seriesaretransferredintothedistancespace. Upon
thedistancespace,aprobabilisticclassifier(i.e.,the

decisionfunction)istrained. Inthedecisionphase,
thealreadyobservedsubsequenceinthenewcoming
timeseriesisfirsttransferredtodistancespaceand
thenfedintothedecisionfunction.Ifitisreadyto
makedecisionsaccordingtotheclassificationcriterion,
thesystemoutputstheresult. Otherwise,thesystem
waitsforthenexttimestampandrepeatthedecision
phase.Thefollowingsectionsintroduceeachcomponent
indetail.

Figure1:DETCFramework

2.3 Candidate Shapelet Extraction.Shapelets
refertothetimeseriessubsequences,whichareinsome
sensemaximalrepresentativeofaclass[31,16,9,26].
Inearlyclassification,thetraditional waystofind
shapeletsexaminealltheframesavailableinthedataset
[30,21],whichistime-consuming. Anotherdrawback
ofthetraditionalshapeletextractionisthatthresholds
needtobecarefullydesignedtodeterminewhethera
timeseriescontainstheshapelet[6],which maynot
bedesirablewhensomeclassesdonotcontaindistin-
guishablepatterns. Weproposeanewwaytoselect
shaplelets, whichdoesn’theavilydependonthede-
signofthethreshold. Theproposedshapeletselec-
tionmethodcontainstwoparts. Thefirstoneisthe
coarse-grainedselection,namelycandidateshapeletex-
traction,introducedinthissection. Theotherpartis
thefine-grainedshapeletselectionembeddedinthede-
cisionfunctiontrainingprocedurebyaddingearliness-
awaresparsegrouplassoregularization,presentedin
Section2.5.
Therearethreestepsinthecandidateshapelet

extraction:referencetimeseriesselection,subsequence
sampling,andcandidateshapeletselection.
Reference TimeSeriesSelection. Thenaive

waytoselectreferencetimeseriesistorandomlyselect
severaltimeseriesfromeachclass. Alternatively,to
avoidmissingimportantpatterns,weclusterthetime
seriesinthesameclassusingthemethodsmentioned
in[32,24,1],andselectseveralrepresentativesfrom
eachclusterasthereferencetimeseries.
SubsequenceSampling.Nextstepistosample

subsequencesfromthereferencetimeseriesset. Let
L = {L1,L2,...,Ln}denotethelengthset, where
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each element is the length of the subsequence to be
sampled. For each reference time series, we sample N
subsequences for every length Li in L. The class of
the sampled subsequence is the same as the time series
that the subsequence is sampled from. The earliness of
the sampled subsequence is the ratio of the timestamp
where the subsequence appears and the length of entire
time series, i.e., E (Si,j) = j

`(S) , where Si,j is the

subsequence sampled from S, and `(S) is the length of
time series S. The smaller the earliness is, the earlier
the subsequence appears.

Candidate Shapelet Selection. Before introduc-
ing the last step, we give the definition of the distance
of subsequences of possibly different lengths:
(2.1)

d
(
Si,j ,Sk,l

)
=


if j − i ≥ l − k:

min
m=i,...,j−(l−k)

∥∥Sm,m+(l−k) − Sk,l
∥∥
2

;

if j − i < l − k:
min

m=k,...,l−(j−i)

∥∥Sm,m+(j−i) − Si,j
∥∥
2
.

If we assume the length of Si,j is shorter than Sk,l,
the distance of the two subsequences is the minimum
`2 distance between Si,j and all length j − i + 1
subsequences of Sk,l.

With the distance function defined above, we can
calculate the distance between every sampled subse-
quence and all the time series in the dataset. For ev-
ery sampled subsequence, the distances can be divided
into two lists. One is the in-class distance list, which
contains the distances to the time series that share the
same class with the subsequence. The other is the out-
class distance list, which records the distances to the
time series whose classes are not the same as the sub-
sequence. For subsequence Si,j , if the third quartile of
in-class distance list is less than the first quartile of out-
class distance list, then Si,j is selected as the candidate
shapelet. This preliminary selection procedure is rea-
sonable as a good shapelet should have small in-class
distance and large out-class distance.

The selected subsequences form the candidate
shapelet set. For notation simplicity, the candidate
shapelet set is denoted as C = {Ch}Hh=1, where Ch is
the h-th selected candidate shapelet and H is the total
number of subsequences in the candidate shapelet set.
And the earliness vector of the candidate shapelet set is
denoted as E = [e1, e2, . . . , eH ], where eh is the earliness
of the candidate shapelet Ch.

2.4 Data Transformation and Label Assign-
ment. Data transformation is related to both training
phase and decision phase. In the training phase, the
time series are transferred offline, while in the decision
phase, the distance transformation is applied online, i.e.,

when a new timestamp comes, the system updates the
distance between the observed subsequence and the can-
didate shapelet set.

Compared with the traditional methods that use
a threshold to determine whether a time series con-
tains the shapelet, we project the time series into the
distance space with candidate shapelets as its bases,
in order to fully explore the distance information be-
tween the time series and the candidate shapelet set.

The projection procedure is T : S1,T
C−→ D, where

S1,T ∈ R1×T and D ∈ R(T−`C+1)×H . `C is the max-
imum subsequence length in the candidate shapelet set,
and Di,j = d (S1,`C+i−1, Cj).

Change-Point. According to Eqn. (2.1), the
distance matrix is non-increasing over time: Di,h ≥
Di+1,h,∀i = `C , . . . , T −1;h = 1, 2, . . . ,H. Thus, we can
define the change point as: The timestamp t is a change-
point if ∃h, s.t. Dt,h < Dt−1,h. Only the change-points
are taken into consideration, because if one timestamp
is not a change-point, the transferred distance remains
the same since the last change-point.

Label Assignment. In the training set, labels are
needed at each timestamp. we assume that the label
at each timestamp is gradually close to the label at the
last timestamp, since in the distance space, the distance
matrix D is non-increasing. Thus, the label Yt,j , which
is the probability that time series S belongs to the j-
th class at each timestamp t, is assigned as: If t = 1:
Y1,j = 1

K , where K is the number of total classes; If

t is a change-point: Yt,KS = 1
K + K−1

K

∑H
j=1(D1,j−Dt,j)∑H
j=1(D1,j−DT,j)

and Yt,j 6=KS = 1
K−1 (1−Yt,KS ), where KS is the class

index that S belongs to.

2.5 Decision Function. We adopt the multinomial
logistic regression as the decision function, for its ability
to output the probability of each class. If there are K
classes in total, the decision function at timestamp t is
defined as follows:
(2.2)

Pr(S1,t = K) =
1

1 +
∑K−1
k=1 exp(Wk,1 + Wk,2:H+1D

′
t,:)

;

Pr(S1,t = k, k 6= K) = Pr(S1,t = K) exp
(
Wk,1 + Wk,2:H+1D

′
t,:

)
,

where W is the parameter matrix and W ∈ RK−1,H+1.
D′t,: denotes the t-th row vector in distance matrix D′.

Loss Function. By dividing Pr(S1,t = K) and
taking the logarithm to both sides of Eqn. (2.2), we get:

∀k 6= K, ln
Pr(S1,t=k)
Pr(S1,t=K) = Wk,1 + Wk,2:H+1D

′
t,:. With

the help of the above equation, the final loss function is
summarized in the following equation:
(2.3)∑Q
q=1 ||D(q)W′ − L(q)||2F + λ1||Wdiag(E)||2,1 + (1− λ1)||W||1,
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where D(q)isthedistance matrixofq-thtimese-
riesS(q)inthetrainingset;L(q)∈RNq×(K−1),and

L
(q)
i,k=ln

Y
(q)
i,k

Y
(q)
i,K

,whereNqdenotesthenumberofchange

pointsinq-thtimeseriesS(q);diag(E)denotesthedi-
agonal matrixwhose maindiagonalelementsarethe
earlinessvectorE;||·||2,1denotesthe 2,1norm,and

||Wdiag(E)||2,1=
H+1
i=1 ||(Wdiag(E)):,i||F;Forcom-

putationconvenience,weaddelement1inthefirstplace
ofeachrowvectorinD(q),andaddelement0inthefirst
placeoftheearlinessvectorEasthecorrespondingdata
totheinterceptW:,1.
ThefirstpartofEqn.(2.3)isthedistancebetween

thegroundtruthlabelandthepredictedlabel. The
nexttwopartsareearliness-awaresparsegrouplasso.
AseverycolumnintheparameterW representsone
candidateshapelet,the 2,1normisappliedtoselect
candidateshapeletbasedontheearlinessandtheclas-
sificationtask. Thel1normaimstomakeW sparse
withineachcolumnvector.Ingeneral,theearliness-
awaresparsegrouplassoselectsimportantearlycandi-
dateshapeletbasedontheclassificationtask.
EfficientOptimization.Itisobservedthatthere

arethreedifferentnormsinEqn.(2.3),soweadopt
theideaofalternatingdirectionmethodofmultipliers
(ADMM)[5]tosplitthelossfunctionintoseveralsub-
problemsthatareeasiertosolve.
FirstweintroduceauxiliaryvariablesAandB,and

rewritetheoptimizationproblemasfollows:
(2.4)

min
W ,A,B

Q

q=1

||D(q)W −L(q)||2F+λ1||Adiag(E)||2,1+(1−λ1)||B||1,

s.t.W =AandW =B.

TheargumentedLagrangianoftheoptimizationis:
(2.5)

L=

Q

q=1

||D(q)W −L(q)||2F+λ1||Adiag(E)||
2
F+(1−λ1)||B||1

+ρtrace(UT(W −A))+
ρ

2
(||W −A||2F)

+ρtrace(VT(W −B))+
ρ

2
(||W −B||2F),

whereU,Varethedualvariablesassociatedwiththe
constrainandρ>0isthepenaltyparameter.
Theaboveproblemcanbesolvedasfollows:

(2.6)

W t+1 =argmin
W

L(W,At,Bt,Ut,Vt),

At+1 =argmin
A

L(W t+1,A,Ut,Bt,Vt),

Bt+1 =argmin
A

L(W t+1,At+1,Ut,B,Vt),

Ut+1 =Ut+(W t+1−At+1),

Vt+1 =Vt+(W t+1−Bt+1),

wheretdenotesthet-thiteration.

Updating W. Therelevanttermsof W in
Lare:

P
q=1||D

(q)W −L(q)||2F+ρtrace((U
t)(W −

At))+ρ2(||W −At||2F)+ρtrace((V
t)(W −Bt))+

ρ
2(||W −B

t||2F).Theabovetermscanberewrittenas:
Q
q=1||D

(q)W −L(q)||2F+
ρ
2||W −A

t+Ut||2F+
ρ
2||W −

Bt+Vt||2F.TheclosedformsolutionofW is:
(2.7)

W t+1 =

Q

q=1

LD(q)+
1

2
ρAt−

1

2
ρUt+

1

2
ρBt−

1

2
ρVt

× (D(q))D(q)+2ρI
−1
.

Updating A. Therelevanttermsof A inL
are:λ2||Adiag(E)||2,1+ρtrace((U)

t(Wt+1 −A))+
ρ
2(||W

t+1−A||2F).Theaboveequationcanbesimplified
as: λ2||Adiag(E)||2,1+

ρ
2||W

t+1 −A+Ut||2F.The

closedformsolutionofAis:At+1:,i = 1− 2λ2Ei
ρ||C||2 +

C,

whereEiisthei-thelementintheearlinessvector
E;C =W:,i+U:,i;and(·)+ isdefinedas:(x)+ =
x ifx>0,
0 ifx≤0.
UpdatingB. TherelevanttermsinLare:(1−

λ1)||B||1+ρtrace(V
T(W−B))+ρ2(||W−B||

2
F).Similar

toupdatingA,theclosedformtoupdateBis:
(2.8)

Bi,j=






(W i,j+Vi,j)−
1−λ1
ρ

if(W +U)i,j≥
1−λ1
ρ
;

(W i,j+Vi,j)+
1−λ1
ρ

if(W +U)i,j≤−
1−λ1
ρ
;

0 otherwise.

2.6 Classification Criterion.

0 20 40 60

Timestamp

0

0.2

0.4

0.6

0.8

1

Pr
ob
ab
il
it
y

class 1 class 2 class 3

A(1, 20)A(1, 20)

Thelaststepofthe
decisionphaseisfiguringoutwhentomakeclassification
decision,i.e.,atthecurrenttimestamp,whetherthe
systemcanoutputtheclassificationresult.

0 20 40 60

Timestamp

0

0.2

0.4

0.6

0.8

1
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class 1 class 2 class 3

A(1, 40)A(1, 40)

(a)IncorrectClassificationCase(b)ClassificationDelayCase

Figure2:TwoProblems
Thecommonwayoutputstheclassificationresult

whentheprobabilityishigherthanathreshold. How-
ever,weobservetwoissuesthatoccurduringtheclas-
sificationprocedure,whichmightbetriggeredbythe
noiseinthedistancetransformationandtheclassifier
training.Thefirstissueistheincorrectclassificationat
theinitialtimestamps.Duetothelackofinformation,it
ispossiblethathighprobabilityisassignedtotheincor-
rectclass.AsshowninFigure2a,ifwesetthethreshold
as0.7(theblackdash-line),thetimeseriesisincorrectly
classifiedasclass3.Theotherissueistheclassification
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delay. If the highest probability reaches the threshold
at a very late stage, then the model would be unable
to classify the time series early. An example is shown
in Figure 2b. Though the probability that the time se-
ries belongs to class 1 is always higher than the other
two classes after some initial timestamps, the model is
unable to output the classification result until the last
few timestamps when the highest probability reaches
the threshold.

To tackle these two observed problems, we pro-
pose a new classification criterion called confidence area.
Confidence area measures the sustained strength of the
class probability so that not only the class probability
value but also the lasting time of the highest probability
are taken into consideration. Let pki denote the proba-
bility that the time series belongs to class k at times-
tamp i. The confidence area of class k at timestamp t,
denoted as A(k, t), is defined as:
(2.9)

A(k, t) =


∑t
i=tk

(
pki −max

{
pji

}
j 6=k

)
If pki ≥ max

{
pji

}
j 6=k

,

0 Otherwise,

where tk is the timestamp that P ki ≥ max
{
pji

}
j 6=k

,

∀tk ≤ i ≤ t, and if i < tk, pki < max
{
pji

}
j 6=k

. If

the probability of class k is the highest probability from
timestamp tk to t, A(k, t) is defined as the area between
the largest and the second largest class probability. Oth-
erwise, A(k, t) is zero. The grid area in Figure 2 shows
the calculation of the confidence area. In Figure 2a, the
black grid area is the confidence area of class 1 at times-
tamp 20, A(20, 1). And in Figure 2b, the black grid area
is the confidence area of the class 1 at time stamp 40,
A(40, 1). If the confidence area of class k is greater than
the predefined threshold, the system outputs the classi-
fication result as class k at that timestamp.

Confidence area can effectively avoid the problems
that the classic classification criteria has. As mentioned
above, the two cases in Figure 2 suffer from incorrect
classification (Figure 2a) and classification delay (Fig-
ure 2b) issues under the traditional classification crite-
rion (if set the threshold as 0.7 ). These two issues can
be solved by using confidence area: for incorrect clas-
sification case, though the value of class 3 is very high
at the initial stage, the lasting time of class 3 staying
in the highest probability is short. Thus, the system
doesn’t output the result as class 3, because the con-
fidence area of class 3 is very small. For classification
delay case, though the value of class 1 is not very high,
the lasting time that class 1 owns the highest probabil-
ity is long, which means the system will output class 1
as the classification result once the confidence area of
class 1 reaches the threshold.

3 Experiment

3.1 Experiment Setup. In this section, experiment
setup is presented to ensure the fairness of the compar-
ison between DTEC and the baseline methods.

Datasets. Three datasets, CBF, TwoLeadECG
and Coffee are selected from UCR time series archive3

to show the performance of DTEC in detail. Besides, we
also validate DTEC on the first 35 datasets from UCR
time series archive which are also used in [20].

Performance Measures. In early classification
scenario, the error rate and the the total timestamps
used to classify(i.e., earliness) are non-ignorable when
evaluating the performance. The error rate is defined
as the portion of time series records that are incorrectly
classified. The lower the error rate, the better the
performance. The earliness is defined as the average
percentage of the time used, which is formulated as
Earliness = 1

Q

∑Q
q=1

tq
Tq

, where Q is the number of time

series, tq and Tq are the decision time and the total
length of the q-th time series respectively. The smaller
the earliness is, the better the performance is.

Nevertheless, when considering the error rate and
the earliness separately, we probably face a dilemma
that how to choose between two models, one with low
error rate but taking more time and the other one with
high error rate and taking less time. To solve this
dilemma, we propose a new measurement called the Fα
score, which is defined as: Fα = 1

1−α
Error Rate+

α
Earliness

. The

smaller the Fα score is, the better the model performs.
α is a user-defined parameter ranging from 0 to 1, which
reflects the importance degree of the error rate and the
earliness. When α = 0.5, the error rate and earliness
are equally important. When α ≥ 0.5, the earliness
is more important than the error rate. Otherwise, the
error rate gains more importance. By introducing α,
we can customize the model comparison based on the
demand of the real-world task.

Baseline Methods. The baselines in the exper-
iment are ECDIRE, RelClass, ECTS and EDSC.
ECDIRE [20] is a three steps early classification
method. In the first step, the discriminative classes and
timestamps are selected. The second step is the pre-
diction reliability control step. And in the last step, a
set of classifiers are trained for each timestamp selected
in the first step. The code of ECDIRE is downloaded
from the authors’ website4. RelClass [21] applies early
classification method upon proximity space represen-
tation. The differences between the proposed method
DTEC and RelClass are that DTEC provides a two-

3http://www.cs.ucr.edu/~eamonn/time_series_data/
4http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/

ECDIRE.html

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited490

D
ow

nl
oa

de
d 

11
/0

5/
19

 to
 3

8.
95

.2
48

.5
0.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Table 1: Performance Comparison on CBF, TwoLeadECG and Coffee

Method
CBF TwoLeadECG Coffee

Error Rate Earliness Fαscore Error Rate Earliness Fαscore Error Rate Earliness Fαscore

ECDIRE 0.11 0.2855 0.1588 0.19 0.6938 0.2983 0.04 0.8214 0.0763
RelClass 0.36 0.2308 0.2813 0.28 0.8363 0.4195 0.11 0.3844 0.1711
ECTS 0.15 0.7150 0.3306 0.27 0.6443 0.3805 0.25 0.8394 0.3853
EDSC 0.16 0.3185 0.2130 0.12 0.4685 0.1911 0.25 0.5423 0.3422
DTEC 0.08 0.4883 0.1375 0.05 0.4672 0.0903 0.04 0.6299 0.0752

steps shapelet selection. Moreover, in DTEC, the clas-
sification criteria also takes the bias of the training pro-
cedure into consideration. The authors of RelClass pro-
vide their code on their website5. ECTS [28, 29] is an
1-NN based early classification framework and EDSC
[30] is the first interpretable early classification method.

3.2 Result Analysis. The parameters in the base-
line methods are set as suggested in the original paper.
The threshold of the confidence area in DTEC is set as
6 and α in Fα is set as 0.5, which indicates the error rate
shares equal importance with earliness. The following
sections present the result analysis in detail.

Performance Comparison. Table 1 shows the
results on three datasets. It is observed that under the
Fα measurement, DTEC has the best performance on
the three datasets. Detailed analysis is as follows:

Regarding the error rate and earliness, we find the
dilemma mentioned above: On CBF dataset, RelClass
has the best earliness with high error rate; DTEC
has less than 10% error rate with more time to make
the decision. The Fα provides a way to measure the
error rate and the earliness together. By assigning the
equal importance to the error rate and the earliness,
DTEC has a smaller Fα score. Therefore, it has better
performance. It is reasonable to choose DTEC on CBF
dataset, because if a model, like RelClass, outputs the
inaccurate classification result at the very early stage,
it may mislead the further actions.

RelClass adopts the distances between landmarks
(namely shapelet) and the time series over time, but
it brings noise into the transferred space. Without
appropriate mechanism to correct, the noise will affect
the accuracy of the classification result. Besides, it only
uses the distance in the last timestamps to train the
classifier, which cannot model the propagation of each
class over time and also may bring in some bias into
the classifier. DTEC assigns labels to every change-
points so that the classifier has more training data.
Moreover, DTEC designs a confidence area classification

5http://www.mayagupta.org/publications/Early_

Classification_For_Web.zip.

criteria by considering the sustained strength of the
class probability, to eliminate the noise brought by the
training phase. These help DTEC outperform Relclass
in terms of error rate and Fα score on the three datasets.

In addition to Relclass, we also observe the high
error rate of EDSC and ETCS on Coffee Dataset. When
using EDSC and ETCS, it is required to determine
whether a time series belongs to one group or contains
one specific shapelet. However, when the differences
between classes are minor, it would lead to less clarity
on the determination stage and generate classification
errors, which is clearly reflected by the performance of
the three datasets. Among the three datasets, CBF has
the most distinguishable patterns between three classes,
TwoLeadECG follows and the Coffee has the least
obvious patterns. Compared with EDSC and ETSC,
DTEC explores the distances between a time series
and the candidate shapelets, so that the differences
between two classes can be reflected in the distance
space. Therefore, DTEC achieves the best performance
on the Coffee dataset.

ECDIRE RelClass ECTS EDSC DTEC

Methods
0

0.2

0.4

0.6

0.8

1

F
 S

co
re

Figure 3: Performances on Extensive Datasets

ECDIRE is a newly proposed early classification
method. It trains different classifiers for different times-
tamps. Nevertheless, when the starting timestamps in
the test time series are not aligned with the training
set, the discriminative timestamps found in the first
step would result in missing of the best timestamp for
decision making in the test time series. The perfor-
mance of ECDIRE on dataset TwoLeadECG and Cof-
fee reflects the case. On TwoLeadECG, ECDIRE makes
more mistakes on classification than DTEC, and takes
a longer time to classify. Moreover, on Coffee dataset,
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Figure 4: Selected Shapelets on CBF Dataset

ECDIRE achieves the same accuracy with DTEC, but
uses much more time to make the classification decision.
It means DTEC can capture important feature earlier
than ECDIRE while preserving the accuracy.

Result Analysis on Extensive Datasets. To
further compare the performance of DTEC and base-
lines, we also conduct experiments on the first 35
datasets from UCR time series archive. We summarize
the results in Figure 3. It is observed that on the ex-
tensive datasets, DTEC outperforms RelClass, ETSC,
and EDSC, and has comparable results with the best
baseline ECDIRE.

3.2.1 Analysis on Shapelet Selection. The goal
of this section is to experimentally validate that DTEC
can select important early features. To better illustrate
the feature selection in DTEC, we choose the dataset
CBF as the example, because CBF dataset has clear
patterns between the three classes and the selected
shapelet can be better visualized.

To intuitively show the shapelets selected by DTEC,
the most important shapelets of each class are visualized
in Figure 4, on which the blue line represents the
time series and the red line represents the selected
shapelet. From the figure, we can observe that the
selected shapelet captures the characteristic of each
class. In class 1 (Figure 4a), the most discriminative
pattern is located between timestamp 20 and 40, and the
selected shapelet capture that change. Similarly, in class
3 (Figure 4c), the shapelet successfully captures the
pattern located from timestamp 20 to 70. Different from
class 1 and 3, the shapelet selected in class 2 (Figure
4b) captures the gradually increasing trend which is the
most important difference between the other classes.

One interesting finding is that for class 2 (Figure
4b), there is a sharp-decreasing pattern, but DTEC
doesn’t assign a very high weight to this kind of
shapelet. There are three reasons for that. First, the
gradually increasing shapelet is enough to distinguish
class 2; Second, it appears later than the gradually de-
creasing pattern. The other reason is that the sharp

decreasing pattern is also observed in some time series
of class 1, and assigning a high weight to the shapelet
containing sharp decreasing pattern would confuse class
2 with class 1. This finding directly demonstrates that
DTEC can select early distinguishable shapelet.

3.2.2 Analysis on Confidence Area and Param-
eter Sensitivity. In this section, we explore the effec-
tiveness of the classification criterion confidence area.
We mainly focus on whether the confidence area can
solve the problems mentioned in Section 2.6 as well as
the parameter sensitivity of the confidence area.

Confidence Area Analysis. Figure 6 shows the
incorrect classification problem and classification delay
problem under the traditional classification criterion in
CBF dataset. In both cases, the true label is class 1.
If we set the threshold of the traditional classification
criterion as 0.7, in case 1 (Figure 6a), the class 3 prob-
ability is higher than 0.7 at timestamp 1, which leads
to an incorrect classification result. In case 2 (Figure
6b), the probability of class 1 is always above the oth-
ers and reaches 0.7 at the very late stage, which causes
classification delay. The DTEC outputs the classifica-
tion result as class 1 correctly at timestamp 28 in case
1. And in case 2, DTEC outputs class 1 at timestamp
41 in case 2, which is earlier than the time when the
highest probability reaches 0.7. By considering the sus-
tained strength of the class probability, DTEC can avoid
the incorrect classification and the classification delay
problem. Therefore, imposing confidence area as the
classification criterion is meaningful.

Parameter sensitivity. In terms of the confidence
area, intuitively, the higher the confidence area thresh-
old is, the higher the confidence is, and the more time
is used to make the classification. Ideally, the change
degree of three measurements with respect to the confi-
dence area threshold should be low so that the algorithm
is not sensitive to the threshold. To evaluate the sen-
sitivity, we change the confidence area threshold from
3 to 8. The results of the error rate, earliness and Fα
score on three datasets are shown in Figure 5. From
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Figure6:TwoProblemsObservedinCBFDataset

thefigure,itisobservedthatwiththeincreaseofthe
confidenceareathreshold,thechangingtrendsofaccu-
racy,earliness,andFαscorearethesameaswhatwe
claimedabove,butthechangingrangeisverysmall.
ThereforeDTECisnotverysensitivetotheconfidence
areathresholdandbestvaluefortheconfidencearea
thresholdisbetween5and7.

4 Relatedwork

Thehighdemandofaccurateearlyclassificationinreal
lifepromotesthedevelopmentofearlytimeseriesclas-
sificationmethods[27,22,3,19,18].In[28],Xinget.
al.firstproposetheconceptof MPL(MinimumPre-
dictionLength)combinedwith1-NNclassificationto
classifytimeseriesearly.Later,theshapeletisadopted
toauxiliaryclassificationinEDSCmethod[30],which
makestheclassification modelinterpretable. In[7],
Ghalwash.et.al.pointoutthatearliness,interpretabil-
ity,anduncertaintyestimationarethreeidealprop-
ertiesforearlyclassificationmethods,andextendthe
EDSCwithuncertaintyestimationavailable.Becauseof
theinterpretability,manyshapeletbasedmethodshave
beenproposed[21,11,12,6,13]. Almostallshapelet
basedmethodsneedtodesignthethresholdtodeter-
minewhetheratimeseriescontainsaspecificshapelet,
whilethedistanceinformationbetweentimeseriesand
shapeletisignored. Relclass[21]istheonlyonethat
utilizesthedistanceinformationandproposestheRel-
Classmethod. However,RelClassisnotrobusttothe
noiseexistinginthedistanceinformation.

Exceptfortheshapeletbasedmethods,Ghalwash.
et.al.proposetotraindifferenthybridHMM/SVM
modelsonfixedlengthsegmentswithdifferentstart-
ingpoints[8]. However,thiskindofmethodlacksthe
interpretability.In[20],Moriet.al.proposesECDIRE
totraindifferentclassifiersfordifferentdiscriminative
timestamps,andonlyexaminethediscriminativetimes-
tamps.However,ECDIREdependsalotonthealign-
mentoftimestampsbetweenthetrainingdatasetand
thetestdataset.
Thenatureofearlyclassificationmethods,thatac-

curateclassificationresultcanbeprovidedasearlyas
possible,hasstimulatedalotofapplications: early
trafficclassificationonthenetwork[4],earlyclassifica-
tiononmotionrecognition[14,15,17],earlydiagnosis
[6,2,23],earlyodordetection[10],andsoon.
InourapproachDTEC,thedistanceinformation

isadoptedtoperformatwo-phaseearlytimeseries
classification,andinterpretableimportantfeaturesare
extractedefficiently. Moreover,anewclassification
criterionconfidenceareaisproposedtoeliminatethe
effectofnoisebroughtbythetrainingphase.

5 Conclusion

Inmanyapplications,knowingtheclassificationresult
asearlyaspossibleiscriticalbecausefutureactionscan
betakeninadvance.Therefore,earlytimeseriesclassi-
ficationisessentialfortime-sensitiveapplications.How-
ever,existingshapeletbasedearlyclassificationmeth-
odseitherignorethedistanceinformationorarenotro-
bust.Inthispaper,wepresentanoveltwo-phaseearly
timeseriesclassificationframeworkDTEC.Bytrans-
ferringthetimeseriesintothedistancespace,aprob-
abilisticclassifieristrainedtooutputtheclasslabel
anditsprobability. Besides,anewclassificationcrite-
rion,namedconfidencearea,isproposedtoeliminate
thenoiseandbiasbroughtfromtheclassifierandthe
dataset.Throughexperiments,itisdemonstratedthat
DTECcanachievehighaccuracyandpreservetheear-
linessundertheFαscoremeasure.
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[4] A. Dainotti, A. Pescapé, and C. Sansone. Early classi-
fication of network traffic through multi-classification.
Traffic Monitoring and Analysis, pages 122–135, 2011.

[5] D. Gabay and B. Mercier. A dual algorithm for the
solution of nonlinear variational problems via finite
element approximation. Computers & Mathematics
with Applications, pages 17–40, 1976.

[6] M. F. Ghalwash, V. Radosavljevic, and Z. Obradovic.
Extraction of interpretable multivariate patterns for
early diagnostics. In Proc. ICDM’13, 2013.

[7] M. F. Ghalwash, V. Radosavljevic, and Z. Obradovic.
Utilizing temporal patterns for estimating uncertainty
in interpretable early decision making. In Proc.
KDD’14, 2014.

[8] M. F. Ghalwash, D. Ramljak, and Z. Obradović. Early
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