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ABSTRACT
Relation classification is a basic yet important task in natural lan-
guage processing. Existing relation classification approaches mainly
rely on distant supervision, which assumes that a bag of sentences
mentioning a pair of entities and extracted from a given corpus
should express the same relation type of this entity pair. The train-
ing of these models needs a lot of high-quality bag-level data. How-
ever, in some specific domains, such as medical domain, it is diffi-
cult to obtain sufficient and high-quality sentences in a text corpus
that mention two entities with a certain medical relation between
them. In such a case, it is hard for existing discriminative mod-
els to capture the representative features (i.e., common patterns)
from diversely expressed entity pairs with a given relation. Thus,
the classification performance cannot be guaranteed when limited
features are obtained from the corpus. To address this challenge,
in this paper, we propose to employ a generative model, called
conditional variational autoencoder (CVAE), to handle the pattern
sparsity. We define that each relation has an individually learned la-
tent distribution from all possible sentences expressing this relation.
As these distributions are learned based on the purpose of input
reconstruction, the model’s classification ability may not be strong
enough and should be improved. By distinguishing the differences
among different relation distributions, a margin-based regularizer
is designed, which leads to a margin-based CVAE (MCVAE) that can
significantly enhance the classification ability. Besides, MCVAE can
automatically generate semantically meaningful patterns that de-
scribe the given relations. Experiments on two real-world datasets
validate the effectiveness of the proposed MCVAE on the tasks of
relation classification and relation-specific pattern generation.
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1 INTRODUCTION
Relation classification is a core task in natural language processing
(NLP), which aims to identify semantic relations between a pair of
entities in the given sentence. Relation classification can be widely
used for multiple NLP tasks, such as knowledge graph completion
and question answering. Traditional relation classification mod-
els [13, 27, 39] usually require high-quality annotated data, which
makes them impossible to be applied to large-scale datasets.

Recently, distant supervision approach [26] has been proposed,
which assumes that if a pair of entities has a relation in a knowledge
base, then all the sentences that contain the two entities express this
relation. This approach makes it easy to collect multiple sentences
for different entity pairs and their relations, but it is hard to control
the quality of the collected data. To remove the effect of “noisy” sen-
tences, many approaches are proposed [8, 14, 15, 23, 31, 32, 37, 40].
All these studies are discriminative models, which aim to extract
the accurate feature representations of relations to improve the pre-
diction performance. However, if the quality of the input data is not
very high, then they may not correctly capture the characteristics
of the target, which will lead to unsatisfactory performance.

The quality of the collect data mainly depends on both the di-
versity of relation expressions and the quantity of sentences men-
tioning each entity pair. For a relation, it may be related to multiple
entity pairs in the knowledge base. The extracted sentences men-
tioning those pairs may use different expressions to describe the
semantic meanings of the relation. If only a small part of commonly
used expressions appear in the training data, it is hard for exist-
ing discriminative models to recognize the other possible expressions
in the testing procedure. This issue stems from the drawback of
discriminative models, i.e., they are not designed to facilitate the
generalization ability.

On the other hand, discriminative models focus on capturing
those expressions with high occurrences among different sentences,
i.e., recognizing relation patterns. In common domains, there may
exist enough sentences with mentioned entity pairs on the same re-
lation that can be used for the discovery of clear patterns. However,
in specific domains, such as medical domain, given a pair of medical
entities extracted from a medical knowledge base, to recognize the
relation between the two entities, we need to extract sentences
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from a given corpus. Unfortunately, the text corpus used for medi-
cal sentence extraction is usually not big. Though we can extract
sentences for multiple entity pairs, the number of clean patterns
among these sentences is limited, which leads to the sparsity of
relation patterns and further decreases the quality of the dataset.
Therefore, how to design a model that can handle the diversity of
relation expressions and sparsity of relation patterns in the
training dataset is a challenge for relation classification.

To tackle this challenge, instead of using discriminative mod-
els to capture the representative features of relations, we design a
generative model, named MCVAE, which employs a Margin-based
Conditional Variational AutoEncoder. The benefit of applying a
generative model to solve a classification problem is that the gen-
eralization ability of generative models is significantly better than
that of discriminative ones. Furthermore, such an ability helps gen-
erative models to handle the issue of pattern sparsity. Particularly,
the proposed MCVAE consists of four modules: An encoder is
used to learn the embeddings of input sentences. By concatenating
the embeddings with the given relation, the encoder outputs the
mean vector and the diagonal vector of covariance matrix for con-
structing the latent space of the given relation. A decoder aims to
reconstruct the input sentence using a sample drawn from the con-
structed latent space. Motived by [22], a margin-based regularizer
is designed to model the differences among different constructed
latent spaces of relations and further increase the ability of classifi-
cation. Finally, a generator is adopted to generate sentences and
patterns for the given relation type based on the trained model. Ex-
perimental results on two datasets show that the proposed MCVAE
outperforms existing relation classification models and produces
meaningful patterns which describe the given relations. Here, we
highlight our contributions as follows:

• To the best of our knowledge, this is the first work to design
a generative model for solving the problems of expression
diversity and pattern sparsity in the relation classification
task.
• The proposed model not only accurately identifies the rela-
tion types of the input sentences with the designed margin-
based regularizer, but also generates meaningful sentences
and patterns for the given relations using the conditional
variational autoencoder.
• Experiments on two real world datasets demonstrate the
effectiveness of the proposed MCVAE for both relation clas-
sification and relation-specific sentence generation.

2 RELATED WORK
In this section, we review existing work from two aspects: relation
classification and deep generative models.

Relation Extraction or Classification [1, 3, 10, 20, 21, 28, 29, 33,
34, 42] is an important sub-task of Information Extraction (IE).
IE can be done in unsupervised [2, 7, 9] or semi-supervised do-
main [4, 36], and even in the form of OpenIE [16], where facts are
extracted from the data along with the relation phrases, i.e., without
predefined ontology or relation classes. Supervised relation clas-
sification aims to identify the relation between two entities with
the given text. Many models are developed to solve this problem,

such as deep learning based models with distant supervision tech-
nique [8, 14, 15, 23, 31, 32, 37, 40]. Distant supervision is proposed in
[26] to collect large-scale datasets for training, but inevitably there
is noise in the collected data. To reduce the effect of the noise in the
data, many studies cast the problem of relation classification as a
multiple instance learning problem [14, 32, 40]. Recently, sentence-
level attention mechanism over multiple instances are proposed to
assign lower weights to those noisy sentences [15, 23, 24]. Moreover,
reinforcement learning-based sentence selection approaches [8, 31]
are introduced to further improve the performance.

Deep generative models, such as generative adversarial networks
(GAN) [11], have attracted much attention recently. Different from
GAN, which generates data based on the arbitrary noise, variational
autoencoder (VAE) tries to model the underlying probability distri-
bution of data by constructing the latent variables, which makes it
possible to generate new samples from the learned distributions.
Actually, there are many VAE-based models [18, 38] that can be
used to generate different kinds of data, such as images [12, 30],
natural languages [5, 25] and structured medical entity pairs [41].

The aforementioned models either only focus on classification
or generation. Different from them, the proposed model can handle
both classification and generation simultaneously. The generative
ability is obtained by the designed conditional variational autoen-
coder, while the ability of classification is achieved by the designed
margin-based regularizer.

3 THE PROPOSED MODEL: MCVAE
In this paper, we introduce a novel margin-based conditional varia-
tional autoencoder (MCVAE) for distant supervised relation classi-
fication task. It is a fact that the relation between a pair of entities
can be expressed by many ways (i.e., expression diversity). Thus,
using a continuous vector to model a relation with multiple expres-
sions is not enough. Moreover, the number of sentences used for
relation classification may be small, which results in the problem
of pattern sparsity. To solve these challenges, we propose to use a
generative model for modeling the diverse expressions of relations.
The benefits of the proposed MCVAE model are three-fold: (1) The
relations are embedded into distributions, instead of vectors, which
directly increases the ability of generalization; (2) given a relation,
the proposed model is able to generate sentences on this relation,
which may contain the frequently used patterns for this relation;
and (3) the model can guarantee the prediction performance by
modeling the differences among relation distributions. Next, we
will introduce the details of the proposed MCVAE architecture.

3.1 Model Overview
Figure 1 shows the architecture of the proposed MCVAE. It consists
of four modules: encoder, decoder, regularizer, and generator. The
encoder module takes a relation r and a sentence x = {wi } as
input data, where {wi } represents a set of ordered words. For each
wordwi , an embedding layer is employed to map the discrete word
to a continuous vector representation. An RNN is then used to
encode the whole sentence (i.e., a set of word embeddings) to a
hidden vector. Combining the hidden vector with the input relation
r , we can construct a latent space represented by the means and
the diagonal vectors of covariances. The latent variable z can be
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Figure 1: The Proposed MCVAE Model.

drawn from the learned latent space, which is one of the inputs of
the decoder, and the other input is the label of the relation r .

The decoder tries its best to reconstruct the original input x
based on another RNN. Through training the reconstruction loss
and the KL-divergence as described in CVAE, we can learn all the
parameters. However, a drawback of the naive model is that the con-
structed latent spaces for different relations are indistinguishable. In
other words, the model does not have the ability for classifying the
input data. To gain such an ability, we design a novel margin-based
regularizer. The intuition behind the regularizer is that we want
to increase the margins among latent spaces of different relations.

By training the proposed model MCVAE, we can generate sen-
tences based on the given the relation types with the generator.
The generator has the same structure with the decoder. However,
instead of reconstructing the original inputs, it directly generates
samples from the learned latent spaces of relations. The details of
different modules are introduced in the following sections.

3.2 Encoder
Traditional relation classification models embeds a “bag” of sen-
tences, which contains the same entity pair, into a common vector
representation for the given entity pair. Different from existing
models, we consider the sentence-level embeddings. We believe
that each extracted sentence with distant supervision more or less
expresses the relation between two entities.

For each wordwi ∈ x, a word embedding layer is used to map it
to a continuous vector vi = fEMB (wi ) ∈ R

d , where d is the size of
the word embeddings, and vi is the input of the encoder RNN. In
particular, we employ the Gated Recurrent Unit (GRU) [6] as the
encoder network in the proposed model. The output of the encoder
is a hidden vector h ∈ Rд produced by the GRU, which is defined
as follows:

h = fENC (x) = GRUENC (V;φ), (1)

whereд is the dimensionality,V ∈ Rs×d is the matrix of all the word
embeddings, s is the length of the input x, and φ is the parameter
set of the GRU.

Based on the latent representation of the input x and its relation r ,
we can construct the latent space Qϕ (z|x, r ) of the given relation r ,
which is represented by the mean µ and σ , and z is a sample drawn
from the latent space. Towards this goal, we first concatenate the
hidden vector h and the one-hot vector r ∈ Rn , and then use two
separate linear functions to learn µ and σ as follows:

µ = [h; r] ·Wµ + bµ , (2)

σ = [h; r] ·Wσ + bσ , (3)

where n denotes the number of relations, Wµ , Wσ ∈ R
(д+n)×m

and bµ , bσ ∈ Rm are the parameters to be learned, andm is the
number of dimensions. With the learned µ and σ , we can obtained
the latent space of the given relation r . Next, we will introduce how
to reconstruct the input sentence x with the learned µ and σ .

3.3 Decoder
Given µ and σ , we can directly sample a latent variable z ∈ Rm
from the constructed relation space N (µ,σ ). However, the direct
sampling dose not make the whole model differentiable, which
leads to the failure of existing optimization approaches to compute
the gradients. To address this problem, we follow the method in [19]
and apply the reparameterization trick. It works as follows: Instead
of directly sampling from N (µ,σ ), we first sample from a standard
normal distribution ϵ ∼ N (0, I), and then obtain a reparameteried
z = µ + σ ⊙ ϵ , where ⊙ represents the element-wise multiplication.
Since sampling from ϵ dose not depend on the network, it makes
the proposed model differentiable again.

The decoder aims to reconstruct the input x with a recurrent
neural network, which means that the input and output must be
sequences. To decode the input sentence x , we need to add two
special symbols: ⟨sos⟩ (the start of the sequence) and ⟨eos⟩ (the end
of the sequence). The input of the decoder is ⟨sos⟩+x, and the target
is x + ⟨eos⟩.

Since reconstructing relation-specific sentences is the goal of the
designed decoder, the relation information should be considered
in the decoding procedure, and the decoder can be denoted as
Pθ (x+⟨eos⟩|z, r ). To this end, we first concatenate the latent variable
z and the one-hot relation vector r, and then convert it to a new
vector h′ ∈ Rд with a linear function. The mapped vector h′ is
considered as the initial hidden state of the decoder RNN. Similar
to the encoder, we need to embed the input words into continuous
vector representations. Here, we use dropout technique [35] to
remove the irrelevant information on the word embeddings of
the decoder input, and then these embeddings V′ ∈ R(s+1)×d are
treated as the inputs of the decoder RNN. Mathematically, we use
the following formulation to represent the decoder RNN:

C = fDEC (⟨sos⟩ + x) = GRUDEC (V′, h′;φ ′), (4)

whereC ∈ R(s+1)×д , andφ ′ is the parameter set of the decoder RNN.
To generate discrete words, we need to obtain the probability of
each word using a softmax layer after a linear mapping as follows:

O = softmax(CWo + bo ), (5)

where O ∈ R(s+1)×|V | is the probability matrix,Wo ∈ R
д×|V | and

bo ∈ R |V | are parameters to be learned, and |V | is the vocabulary
size. Cross entropy between the probability matrix O and the target
x + ⟨eos⟩ can be used to optimize the objective. To simplify the
notations, we remove the special symbols (i.e., ⟨sos⟩ and ⟨eos⟩) in
the following sections. We use x to represent the input and output
of the decoder.

3.4 Training with Large-Margin Regularizer
Given the encoder and decoder, and following the loss of CVAE,
we can define the reconstruction loss to minimize the variational
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lower bound:
LENC+DEC (x, r ;θ ,ϕ) =
− KL(Qϕ (z|x, r )∥Pθ (z|r )) + E[log Pθ (x|z, r )].

(6)

The first term is in charge of measuring the difference between the
prior distribution Pθ (z|r ) and a sample distributionQϕ (z|x, r ) with
KL-divergence loss. Actually, the unknown true distribution can be
simplified by a prior distribution Pθ (z|r ). The second term is the
reconstruction loss from the decoder. Let Pθ (z|r ) ∼ N (0, I) be the
prior distribution, and then the KL-divergence can be rewritten as
follows:

− KL(Qϕ (z|r )∥Pθ (z|r )) = −KL(N (µ,σ )∥N (0, I))

= −
1
2

m∑
i=1

(− log(σi ) + σi + µ2i − 1).
(7)

Since the exponential term is more stable than the log term, in the
experiments, we use log(σ ) to model σ , i.e,

− KL(Qϕ (z|r )∥Pθ (z|r )) = −
1
2

m∑
i=1

(−σi + exp(σi ) + µ2i − 1). (8)

As discussed in the decoder, the cross entropy loss can be used, i.e.,

E[log Pθ (x|z, r )] = −
s+1∑
j=1

(
y⊤j log(Oj ) + (1 − yj )⊤ log(1 − Oj )

)
,

(9)
where yj is the one-hot representation of the j-th word in x+ ⟨eos⟩,
and Oj is the estimated probability of the j-th word. Using both
Eq. (8) and Eq. (9), we can optimize the model with the gradient-
based optimizer, such as Adam [17]. However, this basic model
does not have the ability of classification. The reason is that all
the relation distributions are close to the prior distribution N (0, I),
which means that different relation spaces are mixed together. Thus,
for a given sentence, it is hard for the basic model to assign the
correct category label.

To gain the ability of distinguishing different relation types, the
proposed model requires to learn the differences among relation
spaces. In the proposed MCVAE, we add a large-margin regularizer
into the objective of LENC+DEC. There are n relation types, and
for each sentence, it has a relation type r . In the encoder, we can
obtain the mean vector µr ∈ Rm of the relation distribution r . To
ensure the classification ability of the proposed model, µr should
be far away from the mean vectors of other relation distributions.
Meanwhile, N (µr ,σr ) should be closer to the prior distribution
N (0, I) . Following these motivations, we design a margin-based
regularizer, which is defined as follows:

LREG = max(α + fD (µr ) − β, 0), (10)

where α > 0 is the predefined margin, fD () is the distance function
(i.e., fD (µr ) =

∑m
i=1 µ

2
r i ) to calculate the distance between the mean

vector µr and the mean of the prior vector 0 ∈ Rm . β is defined as
follows:

β = min( fD (µ1), · · · , fD (µr−1), fD (µr+1), · · · , fD (µn )). (11)

From the designed regularizer (Eq. (10)), we can observe that if
fD (µr ) > β − α , then LREG > 0. In this case, the proposed model
should penalize the loss ofLREG, which indicates that the difference
value between fD (µr ) and β is at least α . The final loss function of

the proposed MCVAE used in the training procedure is formulated
as follows:

LMCVAE = LENC+DEC + LREG. (12)

In the testing procedure, assume that there is a bag of sentences
{x1, · · · , xt } which mentions a pair of entities. For each sentence
xi , we first use the encoder to obtain the mean vector according
to Eq. (2) for each relation r , and then calculate the distance using
fD (µr ). Since we have n relations, for each sentence, n distances
can be obtained and are denoted as di = [fD (µ1), · · · , fD (µn )].
As there are t sentences in the bag, we aggregate all the distance
vectors d1, · · · , dt to obtain an average vector davд ∈ Rn . Finally,
we use the index corresponding to the minimum value in davд as
the predicted label r̂ .

3.5 Generator
Based on the trained model, we can generate sentences which are
related to a specific relation. Here, we use a density-based sampling
approach for the generator to sample ẑ directly from the distribution
of relations’ latent spaces as [41]. The intuition of using density-
based sampling approach is that the dense area (i.e., the area around
the mean vector) contains “patterns” to express the relation r . A
pattern means that a phrase or a set of words frequently appears
in the sentences that express the relation r . Therefore, using the
patterns in the dense area of the latent space, the generator can
generate multiple meaningful sentences. The benefit of applying
the density-based sampling method is that we do not need to cast a
sentence with its relation into the encoder for learning µ and σ for
the generator.

Particularly, given a relation type r , its one-hot vector represen-
tation can be obtained, which is denoted as r ∈ Rn . The following
step is to sample a latent variable ẑ from the latent space Pθ (ẑ|r ). If
the model is well-trained, then the latent variable ẑ will be drawn
from Pθ (ẑ|r ) ∼ N (0, I). The concatenation of ẑ and r and the em-
bedding of ⟨sos⟩ are the inputs of the generator RNN, which has the
same architecture with the decoder RNN, to generate the first word.
The output of the generator RNN and the embedding of the first
generated word are used to produce the second word. By repeating
this procedure, the generator will generate the whole sentence.

4 EXPERIMENTS
In this section, we conduct experiments to show the effectiveness
of the proposed model MCVAE.

4.1 Experimental Setting
In this subsection, we introduce the datasets, baselines, parameter
settings and evaluation measures.
• Datasets. In our experiments, we adopt two datasets. The first

one is a widely used public available dataset, called NYT1, generated
by [32]. For this dataset, we remove the sentences in the NA relation.
For each entity pair, at most 500 sentences are kept. Finally, there
are 136,844 sentences and 19,539 entity pairs (bags) in the training
dataset. In the testing dataset, we have 6,437 sentences and 1,755
entity pairs. The total number of relation types is 54, which are
extracted from Freebase.

1http://iesl.cs.umass.edu/riedel/ecml/
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The other dataset, named MedBook, is generated from medi-
cal books with Tencent medical knowledge graph. In the training
dataset, there are 8,509 sentences and 2,213 entity pairs. The testing
dataset contains 592 entity pairs with 740 sentences, and there are
14 relations in the MedBook dataset.
• Baselines. Since the proposed MCVAE is a generative model,

and there is no existing work for relation classification task using
generative models. Thus, we use the variant of the proposed model
as a baseline method, which is CVAE. CVAE removes the proposed
large-margin regularizer from the proposed MCVAE. The proposed
model can be used for not only sentence generation but also relation
classification. Therefore, we compare MCVAE with discriminative
models for relation classification: PRNN+AVG and PRNN+ATT.
PRNN+ATT uses attention mechanism over sentences in a bag as
the way in [23]. The only difference is that we use RNN instead
of CNN. The reason is that the proposed model is based on RNN,
and designing a CNN-based generative model is our future work.
PRNN+AVG learns the embeddings of entity pairs by averaging
representations of all the sentences in the same bag.
• Parameter Settings. For the NYT dataset, we use a pretrained

word embeddings2. The parameters are set as follows: For each
sentence, the max length s is 70; the size of word embeddings d is
50; the hidden size of RNN д is 256; the size of the latent spaces
of relationsm is 16; and the margin α = 5. The learning rate for
Adam is 0.001, and the dropout rate for the decoder inputs is 0.5.
The batch size is 256 on the NYT dataset and 32 on the MedBook
dataset. The number of epochs is set as 50 for both datasets.
• Evaluation Measures. To fairly evaluate the proposed MC-

VAE, we utilize two measures: accuracy and weighted F1 score. The
number of entity pairs for different relations in the testing dataset
is significantly different, so the weighted F1 score is introduced,
which considers the number of instances when calculating the score.
The higher the measures, the better the performance.

4.2 Performance of Relation Classification
Table 1 shows the results for relation classification task on the
two datasets. We can observe that the overall performance of the
proposed MCVAE is better than that of the baselines.

Table 1: Performance of Different Methods.

Method NYT MedBook
Accuracy Weighted F1 Accuracy Weighted F1

PRNN+AVG 0.4650 0.2951 0.2010 0.0775
PRNN+ATT 0.5031 0.5019 0.1537 0.0975

CVAE 0.0501 0.0537 0.2010 0.2180
MCVAE 0.5288 0.4875 0.3108 0.2821

On the NYT dataset, the variant of the proposed MCVAE, i.e.,
CVAE, has the worst performance. Both the accuracy and weighted
F1 value are largely lower than those of other approaches. The
reasons are two-fold: (1) When CVAE is well trained, all the la-
tent spaces of different relations are close to the prior distribu-
tion N (0, I). It means that CVAE only focuses on how to gener-
ate new sentences based on the given relations, instead of paying

2https://github.com/thunlp/NRE

attention to classification. Thus, the latent spaces of different re-
lations may be mixed together. In such a case, using the learned
µ’s for classifying different relations is impossible. (2) There are
a lot of shared common words to describe multiple relations on
this dataset. For example, the relations, /people/person/nationality,
/people/person/place_of_birth and /people/person/place_lived, may
share many context words, which leads to the failure of CVAE on
the relation classification task. However, by adding the proposed
large-margin regularizer with CVAE, the proposed MCVAE can sig-
nificantly improve the performance. This demonstrates that when
using generative models to do the classification tasks, it is essential
for them to consider the differences among different classes.

Compared with the discriminative models, the performance of
the proposed MCVAE is better than that of PRNN+AVG, and is com-
parable with PRNN+ATT. Since the number of sentences for each
entity pair is large on the NYT dataset, the attention mechanism can
effectively assign greater weights to those sentences semantically
expressing the given relations. Moreover, the classifier can correctly
capture the characteristics of different relations. Thus, PRNN+ATT
can achieve better performance compared with PRNN+AVG. Dif-
ferent from the learning procedure of discriminative models, the
proposed MCVAE tries to enhance the ability of generalization.
It means that MCVAE aims to use latent distributions to model
different expressions of relations. MCVAE intends to put all the
words or patterns describing the same relation together, but designs
a margin-based regularizer to distinguish the differences among
different distributions.

On the MedBook dataset, since the number of sentences in each
bag (i.e., entity pair) is small, which leads to the bad performance
of using attention mechanism. Thus, PRNN+AVG performs bet-
ter than PRNN+ATT. However, both the proposed MCVAE and its
variant CVAE achieve better performance than PRNN+AVG and
PRNN+ATT. It is because on this dataset, for the same relation,
there are many different expressions, and the occurrence of those
expressions is much lower than that on the NYT dataset. Without
the generalization ability being facilitated, discriminative models
are less likely to capture features that are generalizable for classifi-
cation during the test phase. However, for the generative models,
they can collect all the related features to construct the relation dis-
tributions. Since the dataset is not big, even for CVAE, the learned
relation distributions are still distinguishable. Therefore, the gener-
ative models outperform existing discriminative models. It shows
the advantage of employing the designed margin-based regularizer
for relation classification task.

4.3 Case Study
The benefit of the proposed MCVAE is that it not only guarantees
the performance for relation classification, but also generates sen-
tences that express the semantics of the given relations. To validate
this claim, we conduct a case study on the NYT dataset. Given a
relation type, the proposed MCVAE can produce sentences with the
designed generator. In this case study, we show the sentences gen-
erated from the following four relations: /people/person/nationality,
/people/person/place_lived, /business/company/founders, and /loca-
tion/us_state/capital. The generated sentences are shown in Table 2.
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Table 2: Case Study on the NYT Dataset.

Relation Generated Sentences

/people/person/nationality

(1) he was born in <unk> , germany , and raised in 1958 , england , and received a bachelor
(2) president hamid_karzai of afghanistan said he believed that he had been <unk> by the
taliban and passport
(3) president bush <unk> prime minister , ariel_sharon , said that he had spoken that the united
states would not be

/people/person/place_lived
(1) <unk> , the former senator from north_carolina , said he was <unk> by the
(2) a former senator from nebraska , said he was <unk> by the senate speaker
(3) the former governor of massachusetts , who was elected to represent the senate seat <unk>

/business/company/founders
(1) but <unk> , the founder of microsoft , has been
(2) the news_corporation <unk> chairman , rupert_murdoch , objected to the news_corporation
(3) but larry_page , google <unk> chief executive , said that

/location/us_state/capital

(1) showdown in ethiopia <unk> capital of addis_ababa , ethiopia
(2) new_york wants to endorse the state of albany , the state of new_york , which has been broa-
dcast in albany
(3) <unk> <unk> , born in columbus , ohio , on august 10 , 2005 .

From Table 2, we can observe that the proposed MCVAE indeed
generates some meaningful patterns on the given relations. Al-
though there are some noisy cases, such as the third sentence in
relation /people/person/nationality and the first sentence in relation
/location/us_state/capital, most generated sentences are reasonable.
For the relation /people/person/place_lived, there is a clear pattern
extracted by the proposed MCVAE, i.e., “the former [title] of [lo-
cation name]”. This observation can also be found in the relation
/business/company/founders. When expressing the relation between
company and founders, the proposedMCVAE can recognize the key
phases: “the founder of [company name]”, “chairman”, “[company
name] chief executive”, and so on. Even for the noisy cases, we can
observe the ability of generalization of the proposed MCVAE. For
example, the first sentence in relation /location/us_state/capital is
obviously wrong. Since the target relation is about the states in
USA and their capitals, the country is not “ethiopia”. Though the
relation of the generated sentence is different from the target one,
the relation between “addis_ababa” and “ethiopia” is indeed related
to capitals.

4.4 Relation Pattern Generation
It is obvious that the generated sentences shown in Table 2 contain
noisy information, and it may be hard for us to discover clear
patterns that describe the given relations from the noisy generated
sentences. To further enhance the understandability and readability
of the discovered patterns, we conduct another experiment on the
NYT dataset. In this experiment, for each entity, we first extract its
types from Freebase and manually assign a type to it according to
the semantic meaning of the relation. Next, we replace the entities
in the sentences with their types. Finally, we run the proposed
MCVAE on the new typed NYT dataset with the same parameter
settings.

The accuracy on the typedNYT dataset is 0.7761, and theweighted
F1 value is 0.7358, which are much greater than those on the orig-
inal NYT dataset. The reason is that after mapping the entities
into their types, the proposed MCVAE can effectively recognize the
patterns of different relations, and the margin-based regularizer

Table 3: Generated Patterns on the Typed NYT Dataset.

Relation Generated Patterns

/people/person/nationality
(1) the deputy president of $LOCATION , $PEOPLE
(2) president $PEOPLE of $LOCATION
(3) the former prime minister of $LOCATION , $PEOPLE

/people/person/place_lived
(1) senator $PEOPLE of $LOCATION
(2) representative $PEOPLE of $LOCATION
(3) $PEOPLE , the $LOCATION borough president

/business/company/founders
(1) $PEOPLE , the founder of $BUSINESS
(2) $PEOPLE , the chief executive of $BUSINESS
(3) the company owned by $PEOPLE , $BUSINESS

/location/us_state/capital
(1) located in $LOCATION , $LOCATION
(2) who was born in $LOCATION , $LOCATION
(3) who lives in $LOCATION , $LOCATION

can successfully distinguish these latent distributions of relations.
Similar to the case study conducted on the original NYT dataset,
we list some patterns extracted by the proposed MCVAE on the
new typed NYT dataset shown in Table 3. From Table 3, we can
observe that the generated patterns are highly related to the seman-
tic expressions of all the four listed relations. Based on the results
in this experiment, we can safely conclude that the proposed MC-
VAE is able to generate meaningful and distinguishable patterns
for different relation categories.

5 CONCLUSIONS
In this paper, we propose a novel generative model for relation
classification task, which can handle the problems of both expres-
sion diversity and pattern sparsity. The proposed MCVAE not only
guarantees the classification performance, but also generates use-
ful patterns which describe the semantic meanings of relations.
MCVAE consists of four modules: encoder, decoder, regularizer
and generator. The encoder embeds each input sentence into a
vector representation, which is further adopted for constructing
the latent space of the given relation. The decoder is in charge
of reconstructing the input sentences with a designed decoder
RNN. The designed regularizer is the core module of the proposed
MCVAE, which equips MCVAE with the ability of distinguishing
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different relation distributions. The generator is employed to gen-
erate sentences based on the given relations. Experiments on two
real datasets demonstrate the effectiveness of the proposed MCVAE
and the strong ability of generation.
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