
Information Sciences 507 (2020) 386–403

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Multi-source data repairing powered by integrity constraints

and source reliability

Chen Ye

a , Hongzhi Wang

a , ∗, Kangjie Zheng

a , Jing Gao

b , Jianzhong Li a

a Harbin Institute of Technology, Harbin, China
b SUNY Buffalo, Buffalo, USA

a r t i c l e i n f o

Article history:

Received 12 December 2018

Revised 16 August 2019

Accepted 18 August 2019

Available online 22 August 2019

Keywords:

Data repairing

Conflict resolution

Denial constraints

a b s t r a c t

It is crucial to identify and resolve the inconsistencies and conflicts in data. To tackle the

inconsistencies, integrity constraints are involved to constrain the attribute values of re-

lated entities. As for the multi-source conflicts, the true values of each entity are iden-

tified by trusting the reliable sources. In practice, it is common that inconsistencies and

conflicts simultaneously appear. To deal with this case, traditional techniques would sep-

arately resolve the inconsistencies and conflicts, by conducting different approaches based

on the above principles. However, such a procedure may not be the appropriate solution.

Specifically, locally resolving conflicts for a certain entity may overlook the information

from its related entities, while enforcing constraints on related entities may miss correct

values of these entities in turn. To jointly resolve the inconsistencies and conflicts, this pa-

per proposes a novel technique powered by integrity constraints and source reliability. The

key component of our solution is to incorporate denial constraints, an expressive type of

integrity constraint, into the process of conflict resolution. We formulate it as an optimiza-

tion problem and develop an iterative algorithm to solve it. Benefiting from this algorithm,

the repaired result is not only supported by reliable sources but also satisfies the denial

constraints. Additionally, we also propose two optimal strategies to ensure that it is scal-

able under massive constraints. Experimental results on real-world datasets demonstrate

the high accuracy and scalability of the proposed approach.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Data quality improvement approaches have been studied for decades, among which inconsistencies and conflicts are

the two main issues to deal with. In a database, inconsistencies may occur among attribute values within a single entity

or between different pairwise entities [12] . While in multiple databases (sources), conflicts may occur when multi-source

attribute values are provided for the same entity [43] . To resolve multi-entity inconsistencies and multi-source conflicts,

constraint-based data repairing and conflict resolution play important roles.

Constraint-based data repairing is the process of enforcing integrity constraints or rules on the attribute values of

a set of entities [12] . The inconsistencies w.r.t. the constraints are then considered to be in violation. Different princi-

ples [4,9,14,21,32,35] have been proposed to repair these violations so that the repaired result satisfies the constraints.
∗ Corresponding author.

E-mail addresses: yech@hit.edu.cn (C. Ye), wangzh@hit.edu.cn (H. Wang), kangjie.zheng@gmail.com (K. Zheng), jing@buffalo.edu (J. Gao), lijzh@hit.edu.cn

(J. Li).

https://doi.org/10.1016/j.ins.2019.08.044

0020-0255/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2019.08.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2019.08.044&domain=pdf
mailto:yech@hit.edu.cn
mailto:wangzh@hit.edu.cn
mailto:kangjie.zheng@gmail.com
mailto:jing@buffalo.edu
mailto:lijzh@hit.edu.cn
https://doi.org/10.1016/j.ins.2019.08.044

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 387

Table 1

Tax information tables.

X 1 X 2 X 3

Entity zip city salary tax zip city salary tax zip city salary tax

Bob 10002 NYC 60000 5000 10003 NYC 60000 5000 10002 LA 60000 4950

Kate - - - - 10002 BUF 35000 3500 10002 NYC 30000 3000

Mike 14221 BUF 20000 30000 14221 BUF 23000 2000 14221 NYC 30000 3800

Table 2

Ground truth and data repairing results.

Ground Truth CRH HoloClean

Entity zip city salary tax zip city salary tax zip city salary tax

Bob 10002 NYC 60000 5000 10002 NYC 60000 5000 10002 NYC 60000 5000

Kate 10002 NYC 35000 3500 10002 BUF 35000 3500 10003 NYC 35000 3500

Mike 14221 BUF 24000 3000 14221 BUF 20109 28983 10002 NYC 23000 2000

Conflict resolution (i.e., truth discovery) aims to aggregate accurate information from multi-source data [24,25] . Traditional

work resolves conflicts typically by taking, e.g., the max , min , avg , any of attribute values, while state-of-the-art ap-

proaches [10,22,33,43,45,46] usually take the source reliability into consideration. That is, the aggregated result is obtained

by trusting the information provided by more reliable sources.

When the inconsistencies and conflicts simultaneously occur, a natural way is to separately conduct constraint-based

data repairing and conflict resolution methods. However, such a procedure may not be the best solution. Locally resolving

conflicts for a certain entity may overlook the information from its reliable entities, while enforcing constraints on related

entities may miss correct values of these entities in turn. We use an example to illustrate the drawbacks of separately

conducting two processes, and then motivate our approach.

Example 1. Consider three sources (databases) that provide the tax information of a group of people. Table 1 shows the

information tables X 1 , X 2 , and X 3 , which store all the information provided by sources S 1 , S 2 , and S 3 , respectively. We use

”-” to represent that the source does not provide any information for a specific person. Table 2 shows the ground truth and

data repairing results. The errors are highlighted in bold.

First, we focus on data repairing methods that rely on integrity constraints. Suppose that the following constraints apply

for the attribute values of the entities: (1) two persons with the same zip code live in the same city; (2) it is impossible for

one person to have his tax greater than his salary;

(3) two records referring to the same entity have the same zip, city, salary, and tax. Note that constraint (3) is used to

resolve the conflicts among multiple sources. A repaired result using a state-of-the-art method HoloClean [32] is shown

in Table 2 . Take Kate as an example, with constraint (1), HoloClean detects a violation among Bob’s zip, Bob’s city, Kate’s

zip, and Kate’s city in X 3 . These cells are then marked as dirty cells which need to be repaired. Considering the repaired

value for Kate’s zip, HoloClean takes the values which co-occur with the value of Kate’s city (i.e., “NYC”) in the data as

candidate repaired values (i.e., “10 0 02” from Bob’s zip in X 1 ; “10 0 03” from Bob’s zip in X 2 ; “14221” from Mike’s zip in X 3).

Based on the probability inference, HoloClean then repairs the value of Kate’s zip to “10 0 03”. Similar repairing processes

are performed for all the dirty cells under all the constraints. We can see that the repaired result of HoloClean satisfies the

given constraints. However, without extra information about the correct values, e.g., the reliability information of sources, it

is difficult to resolve the inconsistencies with the correct values. As a result, the data repairing approach tends to obtain a

consistent result without a guaranteed accuracy.

We then focus on conflict resolution methods that aim to estimate source reliability. Suppose that S 1 is more reliable

than S 2 , and S 2 is more reliable than S 3 . The truths should be closer to the information provided by S 1 . Considering the

result of the widely adopted method CRH [23] , compared to the ground truth, CRH achieves a high accuracy in most cases

by correctly identifying S 1 as reliable. However, when S 1 provides inaccurate values, e.g., the tax of Mike claimed by S 1 is

“30 0 0 0” whereas the ground truth is “30 0 0”, CRH will achieve the biased result “28983” by calculating the truth closer to

“30 0 0 0” compared with “20 0 0” provided by S 2 and “3800” provided by S 3 . Thus, without extra information, identifying the

correct values only by a source reliability estimation is also not reliable.

From the above example, we can infer that the information falls short for both processes by separately considering the

inconsistencies and conflicts. If we combine the information obtained in different processes, we can repair more errors in

multi-source data, i.e., identifying the correct values which are both consistent and reliable. In this paper, we introduce a

novel data repairing approach that simultaneously resolves inconsistencies and conflicts. Instead of considering each aspect

in isolation, we use all available information, i.e., integrity constraints and source reliability degrees, to suggest data repairs.

On the one hand, constraints are helpful to identify the errors made by reliable sources. On the other hand, multi-source

information gives extra evidence to resolve the violations.

388 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

Challenges. Data repairing jointly for inconsistencies and conflicts complements the evidence of both processes. However,

this idea also brings several challenges. (1) Which kind of constraint is beneficial and available for multi-source data? (2)

How to get the repaired result accurately from multi-source conflicting data under such constraints? (3) How to ensure the

scalability when the number of constraints is relatively large?

In the following sections, we address these challenges. For the first challenge, we adopt denial constraints (DCs) [6,13] ,

a universally quantified first-order logic formalism which can express a large number of effective and widely existing

constraints, such as check constraints [20] , functional dependencies (FDs) [4] , and conditional functional dependencies

(CFDs) [11] . Thus, various types of relationships among entities can be expressed through DCs. Additionally, DCs are eas-

ily achieved through consulting with domain experts and conducting existing DC discovery approaches [2,7] .

For the second challenge, we formulate the data repairing problem as an optimization problem, where the source relia-

bility degrees and the repaired result are defined as two sets of unknown variables, and DCs are defined as constraints. The

objective is to minimize the overall weighted deviation between the repaired result and multi-source information under the

DCs, where each source is weighted by its reliability degree. We then propose an iterative algorithm to efficiently solve the

optimization problem.

For the third challenge, two optimal strategies are proposed to ensure the scalability of the proposed algorithm.

Contributions. We summarize our contributions as follows.

• In order to obtain an accurate repaired result, we adopt DCs for their wide existence and easy discovery. To the best of

our knowledge, this is the first study of the data repairing problem for jointly resolving inconsistencies and conflicts.
• We formulate the data repairing problem as an optimization problem and propose solutions by conducting an iterative

procedure to jointly infer the source reliability degrees and the repaired result under the DCs.
• To reduce the total execution time, we propose two scalable strategies for the iterative procedure by optimal grouping

entities and pruning candidate values.
• We conduct extensive experiments with four real-world datasets. The experimental results clearly demonstrate that the

proposed method outperforms both the constraint-based data repairing and conflict resolution baselines.

Organization. Related work is discussed in Section 2 . We introduce several concepts and define the data repairing prob-

lem in Section 3 . In Section 4 , we propose an iterative algorithm and scalable strategies to solve the problem. We conduct

extensive experiments on four real-world datasets, and validate the effectiveness and efficiency of the proposed method in

Section 5 . Finally, we summarize the paper in Section 6 .

2. Related work

Improving data quality is one of the most important issues in databases, and has been studied for years

[1,4,9,10,14,17,22,23,35,39,41,43,47–50] . In this section, we discuss two directions of work, namely, constraint-based data re-

pairing and conflict resolution (i.e., truth discovery), that are related to this paper.

Constraint-based Data Repairing.

Constraint-based data repairing is a useful tool to resolve inconsistencies within a database [11] . The main idea is to

use data dependencies to capture the semantic errors, and explicitly define a principle to correct these errors. To detect

and repair these errors, various data repairing methods have been proposed based on functional dependencies (FDs) [4,21] ,

functional dependencies (FDs) and inclusion dependencies (INDs) [4] , conditional functional dependencies (CFDs) [11] , con-

ditional inclusion dependencies (CINDs) [14] , denial constraints (DCs) [8,32] , editing rules [17] , fixing rules [35] , etc. As data

dependencies on their own are insufficient to correctly resolve the violations, master data [17] and confidence values placed

by users [4,9,16] are used to guide the process of repairing. To ensure the accuracy of the generated repairs, the help of user

confirmation is needed [17,27,39] . In contrast to these methods, our method does not need any prior knowledge or supervi-

sion. Taking advantage of the information of DCs and source reliability degrees, our method is able to find a repaired result

not only consistent but also achieves a high accuracy, which cannot be handled by the existing data repairing methods.

Conflict Resolution.

Conflict resolution aims to combine data from multiple sources into a single representation [3] . Traditional methods

resolve conflicts typically by selecting the max , min , avg , any value [15] . This work differs from the traditional ones by

taking the source reliability degrees into consideration, and do not assume the availability of timestamps.

There has been work on truth discovery [24,25,43] , which tries to infer the true facts as well as the source reliability

degrees from the data without any supervision. Various scenarios have been considered in truth discovery, such as depen-

dent data sources [10,44] , correlation between entities [26] , continuous and heterogeneous data types [23,45] , long-tailed

data [22,37] , hardness of obtaining the correct data [18,33] , multiple truths problem [31,36,46] , and incorporating prior

knowledge [29,30] . Among these scenarios, as far as we know, the only direction of work similar to ours is [29,30] pro-

posed by Pasternack et al. However, their work focuses on incorporating common-sense knowledge which often does not

hold true. Thus, the accuracy of these methods could not be guaranteed. In contrast, our approach focuses on incorporating

DCs [8] , which are widely used to capture the inconsistencies and conflicts among the real-world entities. The problem is

formulated as an optimization framework, and the proposed solutions have theoretical guarantees. Moreover, with the help

of DCs, the proposed approach is able to repair the errors among related entities in different data types (e.g., categorical

data and continuous data), which cannot be handled by the above methods.

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 389

Table 3

Table of notations.

Symbol Definition

L The number of entities

P The number of attributes

K The number of sources

v k
l p

The value of the p th attribute for the l th entity provided by the k th source

X k The information table which contains the values of P attributes for L entities provided by the k th source

w k The reliability score of the k th source

W The set of reliability scores towards K sources

v ∗
l p

The repaired value of the p th attribute for the l th entity

X ∗ The repaired table which contains all repaired values of P attributes for L entities

� The set of DCs defined on X ∗
ϕ A DC from �

B The set of operators defined on ϕ

� An operator from B

C z A clause of ϕ

r(v ∗
im

) A constant c ∗
im

or a variable v ∗
jn

which made up of C z with v ∗
im

v ∗
im

� r(v ∗
im

) The form of C z

3. Problem definition

In this section, we define the problem of data repairing for inconsistencies and conflicts. We first introduce some con-

cepts adopted in this paper. The problem is then defined. Table 3 summarizes the notations used in this paper.

Suppose L entities are provided by K sources, and each entity is made up of P attributes. The value of the p th attribute for

the l th entity provided by the k th source is denoted as v k
l p

. The information table provided by the k th source is denoted as

X k , where v k
l p

is its lp th entry. The repaired value of the p th attribute of the l th entity is denoted as v ∗
l p

. Given K information

tables {X 1 , X 2 , . . . , X k } , the repaired result of all the entities on all the attributes are stored in a repaired table X

∗, whose

lp th entry is v ∗
l p

. Source weights are denoted as W = { w 1 , w 2 , . . . , w K } in which w k is the reliability score of the k th source.

A higher w k indicates that the k th source is more reliable, and the values provided by this source are more likely to be

accurate.

Given a set of operators B = { = , <, >, � = , ≤, ≥} , the DCs are first-order formulas over the repaired result. Each DC takes

the form ϕ : ¬ (C 1 ∧ · · · ∧ C Z) , where each clause C z is of the form v ∗
im

� r(v ∗
im

) , r(v ∗
im

) represents c ∗
im

or v ∗
jn

, c ∗
im

is a constant,

� ∈ B, m, n refer to the m th, n th attribute, and i, j = 1 , . . . , L 1 . The repaired table X

∗ satisfies ϕ, denoted as X

∗ |� ϕ, if the

values in X

∗ meet all the requirements defined in ϕ.

Example 2. Recall the constraints in Example 1 : (1) two persons with the same zip code live in the same city; (2) it is

impossible for one person to have his tax greater than his salary. They can be expressed as follows.

ϕ 1 : ¬ (v ∗i 1 = v ∗j1 ∧ v ∗i 2 � = v ∗j2) , i, j = 1 , . . . , L, (1)

ϕ 2 : ¬ (v ∗i 3 < v ∗i 4) , i = 1 , . . . , L. (2)

With the help of DCs, various relationships within one entity or multiple entities are formulated into a uniform format,

which can be conveniently incorporated as constraints into the process of conflict resolution. Benefiting from this, the errors

can be repaired based on multi-source information for each entity, as well as the trustworthy information from its related

entities. Thus, with the consideration of the DCs involvement and source reliability estimation, the data repairing problem

is defined as follows.

Problem definition. Given the source information tables {X 1 , X 2 , . . . , X k } towards a set of entities and a set � of DCs

defined on the attribute values of these entities, the problem is to find the repaired table X

∗ and the source weights W
such that X

∗ satisfies � as well as gets close to the ground truth.

Furthermore, we formalize this data repairing problem as follows.

min

X ∗, W

g(X

∗, W) =

K ∑

k =1

w k

L ∑

l=1

P ∑

p=1

d
(
v ∗l p , v

k
l p

)
s.t.

K ∑

k =1

exp (−w k) = 1 (3)
1 Note that in this paper, we are only interested in DCs with at most two entities. DCs involving more entities are less likely in real life and incur a

bigger predicate space to find the correct values [7] .

390 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

X

∗ |� ϕ, ϕ ∈ �,

where d (·) is the loss function to measure the distance between the information tables and the repaired result. For contin-

uous data,

d
(
v ∗l p , v

k
l p

)
=

(
v ∗l p − v k l p

)2
. (4)

For categorical data,

d
(
v ∗l p , v

k
l p

)
=

{
1 if v ∗

l p
� = v k

l p
;

0 otherwise .
(5)

The basic idea behind the proposed model is that the repaired result needs to be provided by reliable sources as well as

satisfying the DCs. To achieve this goal, the repaired values (i.e., v ∗
l p

) should be close to the values (i.e., v k
l p

) supported by

reliable sources (i.e., w k is high) and meet all the requirements of ϕ for each ϕ ∈�. Thus, we need to minimize the weighted

deviation from the values provided by the conflicting sources to the repaired values, where each source is weighted by its

source weight, and the repaired values are constrained by the DCs in �.

We prove the hardness of the multi-source data repairing problem defined in Eq. (3) as follows.

Theorem 1. The multi-source data repairing problem defined in Eq. (3) is NP-complete, even for a small number of DCs.

Proof. For the DCs ϕ ∈ � whose clauses involved with the operator � ∈ { = , � = } , we prove the theorem by reducing from the

Graph-3-color-ability problem, which is NP-complete [19] . For a graph with n vertices, consider 2 n + 2 Skolem constants:

a, b, a 1 , . . . , a n , b 1 , . . . , b n . We use the pair (a i , b i) to encode the color of the vertex i : (a, a) stands for 1, (a, b) for 2, and (b,

a) for 3. We then have the following DCs: For each vertex i , a i = a ∨ a i = b, b i = a ∨ b i = b, and a i = a ∨ b i = a . For each edge

(i, j), a i � = a j ∨ b i � = b j . Moreover, there is a clause a � = b . These DCs are satisfiable iff. the graph admits a 3-coloring.

For the DCs ϕ ∈ � whose clauses are involved with the operator � ∈ { < , ≤ , > , ≥ }, we prove the theorem by reducing

from the Betweenness problem, which is NP-complete [28] . Given a finite set A of n elements and a collection S of ordered

triples (a, b, c) of distinct elements from A , the problem is to determine whether there is a 1-1 function f : A → { 1 , . . . , n }
such that for each (a, b, c) ∈ S , we have either f (a) < f (b) < f (c) or f (c) < f (b) < f (a). The set A is accordingly represented by the

set of indices { 1 , . . . , n } and the collection S . The Skolem constants are a 1 , . . . , a n . We have the following DCs: For every

i � = j, a i < a j ∨ a j < a i , encoding that f is 1-1. For every (i, j, l) ∈ S , (a i < a j ∧ a j < a l) ∨ (a l < a j ∧ a j < a i). Note that the last formula

can be rewritten as four DCs defined on every (i, j), (j, i), (j, l) and (l, j). This reduction encodes a 1-1 function from A onto

{ x 1 , . . . , x n } , an n -element subset of the domain. Because the domain is linearly ordered, a 1-1 function f from A to { 1 , . . . , n }
can be defined as f (i) = index of x i in { x 1 , . . . , x n } . These DCs are then satisfiable iff. the function f exists. �

4. Data repairing for inconsistencies and conflicts

In this section, we propose CTD , an iterative approach which considers C onflicts T ogether with D ependencies, to solve

the data repairing problem in Section 3 . For the convenience of solving the problem by optimization methods, we first con-

vert the DCs to arithmetic constraints in Section 4.1 . We then give solutions for the constrained problem in Section 4.2 .

Finally, the algorithm CTD is proposed with scalable strategies to ensure its efficiency under massive constraints in

Section 4.3 .

4.1. Denial constraint transformation

The DCs defined by first-order formulas make it difficult to solve the optimization framework in Eq. (3) with techniques

in the optimization methods [5] . Thus, in this section, we attempt to convert first-order formulas to arithmetic constraints

for the ease of optimization.

For each DC ϕ, we first convert its first-order formula ϕ : ¬ (C 1 ∧ · · · ∧ C Z) into the disjunctive normal form for the con-

venience of handling each clause separately, i.e. ϕ : ¬ C 1 ∨ · · · ∨ ¬ C Z . As each clause C z is of the form v ∗
im

� r(v ∗
im

) , we get:

ϕ : v ∗im 1
�̄r

(
v ∗im 1

)
∨ · · · ∨ ¬ v ∗im Z

�̄r
(
v ∗im Z

)
, (6)

for i = 1 , . . . , L, where �̄ is the inverse of the operator �, and v ∗
im z

�̄r(v ∗
im z

) denotes the z th clause. For the clauses with

different operators �̄, we add different functions f
�̄

, which are shown in Table 4 . Each function is characterized with a sign

function sgn (x), where

sgn (x) =

{

1 if x > 0 ;
0 if x = 0 ;
−1 if x < 0 .

(7)

By assigning different clauses with different functions, we can conclude that ¬C z is true if f
�̄

(¬ C z) ≥ 0 . Otherwise, f
�̄

(¬ C z) =
−1 . With these functions, a set of arithmetic constraints are created towards ϕ based on Eq. (6) :

Z ∑

z=1

f �̄
(
v ∗im z

, r(v ∗im z
)
)

≥ −Z + 1 , (8)

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 391

Table 4

Operator transformation.

Operator(�) Inverse (̄�) Function f True False

= � = sgn (v ∗
im

− r(v ∗
im

)) 2 − 1 0 −1

� = = −sgn (v ∗
im

− r(v ∗
im

)) 2 0 −1

> ≤ −sgn (v ∗
im

− r(v ∗
im

)) 0, 1 −1

< ≥ sgn (v ∗
im

− r(v ∗
im

)) 0, 1 −1

≥ < sgn (v ∗
im

− r(v ∗
im

)) 2 − sgn (v ∗
im

− r(v ∗
im

)) − 1 1 −1

≤ > sgn (v ∗
im

− r(v ∗
im

)) 2 + sgn (v ∗
im

− r(v ∗
im

)) − 1 1 −1

Table 5

Denial constraint classification.

DC Without constants With constants

Single entity Check constraint Domain constraint

Pairwise entities FD CFD

for i = 1 , . . . , L, which indicates that for each ϕ, it is satisfied if at least one clause is true.

We then show the arithmetic constraints generated for some typical DCs. We classify each DC according to two dimen-

sions: (1) the DC defined on the single entity or pairwise entities, (2) the DC contains constants or only has variables. Table 5

shows a representative for each category. Next, we introduce the arithmetic constraints generated for these representatives.

Check constraint. A check constraint ϕc specifies a requirement that must be met between a pair of attributes within an

entity. It refers to a DC defined on the single entity and has only variables, each of whose clause is of the form v ∗
im

� v ∗
in

.

According to Eq. (8) , a set of arithmetic constraints are created towards ϕc :

sgn (v ∗im

− v ∗in) ≥ 0 , (9)

for i = 1 , . . . , L, where one clause specific on the m th attribute and the n th attribute exists in ϕc , and < is the operator �

of the clause.

Domain constraint. A domain constraint ϕd specifies a requirement that must be met between the value of an attribute

and a constant within an entity. It refers to a DC defined on a single entity and has constants, each of whose clause is of

the form v ∗
im

� c ∗
im

. According to Eq. (8) , a set of arithmetic constraints are created towards ϕd :

sgn (v ∗im

− c ∗im

) ≥ 0 , (10)

for i = 1 , . . . , L, where one clause specific on the m th attribute exists in ϕd , and < is the operator � of the clause.

Functional dependency. An FD ϕf defines the relationship among attributes across different entities. It refers to a DC

defined on pairwise entities and has only variables. Each clause in such a DC is of the form v ∗
im

� v ∗
jm

, where � ∈ { = , � = } .
According to Eq. (8) , a set of arithmetic constraints is created towards ϕf :

sgn (v ∗im

− v ∗jm

) 2 − sgn (v ∗in − v ∗jn)
2 ≥ 0 , (11)

for i, j = 1 , . . . , L, i � = j, where two clauses separately associating with the m th, the n th attribute, and = , � = are the operators

of the clauses, respectively.

Conditional functional dependency. A CFD ϕcf is an extension of an FD ϕf , which has both constants and variables. Each

clause of a CFD is of the form v ∗
im

� c ∗
im

or v ∗
im

� v ∗
jm

, where � ∈ { = , � = } . According to Eq. (8) , a set of arithmetic constraints

are created towards ϕcf :

sgn (v ∗im

− c ∗im

) 2 + sgn (v ∗in − v ∗jn)
2 − sgn (v ∗io − v ∗jo)

2 ≥ 0 , (12)

for i, j = 1 , . . . , L, i � = j, where three clauses separately associating with the m th, n th, o th attribute, among which the first

clause is involved with constant c ∗
im

, and = , = , � = are the operators of the clauses, respectively.

Example 3. Considering Example 2 , ϕ1 is an FD and ϕ2 is a check constraint. Two sets of constraints can then be created

by Eq. (11) and Eq. (9) , respectively.

sgn (v ∗i 1 − v ∗j1)
2 − sgn (v ∗i 2 − v ∗j2)

2 ≥ 0 , i, j = 1 , . . . , L, i � = j, (13)

sgn (v ∗i 3 − v ∗i 4) ≥ 0 , i = 1 , . . . , L. (14)

4.2. Proposed solution

Given a set � of DCs, the arithmetic constraints are created towards � based on Eq. (8) . The optimization problem

Eq. (3) is rewritten as follows.

min

X ∗, W

g(X

∗, W) =

K ∑

k =1

w k

L ∑

l=1

P ∑

p=1

d(v ∗l p , v
k
l p)

392 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

s.t.

K ∑

k =1

exp (−w k) = 1 (15)

Z ϕ ∑

z=1

f �̄(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) ≥ −Z ϕ + 1 , i = 1 , . . . , L, ϕ ∈ �.

For this problem, two sets of unknown variables X

∗, W should be learned together by minimizing the objective function

in Eq. (15) . However, due to the hardness of the problem, the computational complexity is too high to be afforded. Thus,

we choose to iteratively update the values of one set to minimize the objective function while maintaining the values

of another set until convergence, which refers to the block coordinate descent approach [38] . To minimize the objective

function in Eq. (15) , the algorithm iteratively conducts two steps.

Step 1: Source Weights Update. With an initial estimation of the repaired table X

∗, the source weights W are updated

by minimizing the objective function with constraints related to W as follows.

W ← arg min

W

g(X

∗, W) (16)

s.t.

K ∑

k =1

exp (−w k) = 1 ,

We derive the following equation through Lagrange multipliers for the source weights.

w k = log

(∑ K
k =1

∑ L
l=1

∑ P
p=1 d(v ∗

l p
, v k

l p
) ∑ L

l=1

∑ P
p=1 d(v ∗

l p
, v k

l p
)

)

. (17)

Step 2: Repaired Result Update. In this step, the source weights W are fixed. The repaired table X

∗ is updated by

minimizing the objective function with the constraints related to X

∗:

X

∗ ← arg min

X ∗
g(X

∗, W) (18)

s.t.

Z ϕ ∑

z=1

f �̄(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) ≥ −Z ϕ + 1 , i = 1 , . . . , L, ϕ ∈ �,

which is the key optimization problem to be solved in the remaining part of this subsection.

Due to the existence of inequality constraints in Eq. (18) , we minimize the objective function with the corresponding

Karush-Kuhn-Tucker (KKT) conditions [5] . As the KKT conditions differ under the DCs defined on the single entity and

pairwise entities, we propose solutions towards these types of DCs.

DCs defined on single entity. When DCs are defined within one entity, i.e., r(v ∗
im

) is in form v ∗
in

or c ∗
im

, and for each DC,

L constraints are created by varying i from 1 to L . The main conditions are then as follows.

� v ∗
lp

L (X

∗, λ) = 0 (19)

−
Z ϕ ∑

z=1

f �̄(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) − Z ϕ + 1 ≤ 0 (20)

λϕ
i

(

−
Z ϕ ∑

z=1

f �̄

(
v ∗

im

ϕ
z
, r(v ∗

im

ϕ
z
)
)

− Z ϕ + 1

)

= 0 (21)

λϕ
i

≥ 0 , i = 1 , . . . , L, ϕ ∈ �, (22)

where

L (X

∗, λ) =

K ∑

k =1

w k

L ∑

i =1

M ∑

m =1

d
(
v ∗l p , v

k
l p

)
+

L ∑

i =1

λϕ
i

(

−
Z ϕ ∑

z=1

f �̄

(
v ∗

im

ϕ
z
, r(v ∗

im

ϕ
z
)
)

− Z ϕ + 1

)

, (23)

λ = { λϕ
i
} ϕ∈ �

i =1 ,L
are the Lagrangian multipliers.

According to Eq. (21) , λϕ
i

= 0 and − ∑ Z ϕ
z=1

f
�̄

(v ∗
im

ϕ , r(v ∗
im

ϕ)) − Z ϕ + 1 = 0 state the following two cases.

z z

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 393

Fig. 1. Curves of u 1 (x) and u 2 (x).

(1) λϕ
i

= 0 . In this case, Eq. (20) should be satisfied, indicating that the DCs are inactive. The repaired values v ∗
l p

∈ X

∗ are

then derived by solving Eq. (19) , where

L (X

∗, λ) =

K ∑

k =1

w k

L ∑

i =1

M ∑

m =1

d
(
v ∗l p , v

k
l p

)
(24)

For continuous data,

v ∗l p =

∑ K
k =1 w k v k l p ∑ K

k =1 w k

. (25)

For categorical data,

v ∗l p = arg max
v

K ∑

k =1

w k h

(
v , v k l p

)
, (26)

where h (x, y) = 1 if x = y, and 0 otherwise.

(2) − ∑ Z ϕ
z=1

f
�̄

(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) − Z ϕ + 1 = 0 , indicating that the DCs are active. In this case, the values obtained by

Eqs. (25) and (26) do not satisfy Eq. (20) . Otherwise, in order to satisfy Eq. (21) , λϕ
i

should be 0, referring to case (1).

To simplify the discussion, we denote the set of these values as X

∗
a . These values v ∗

l p
∈ X

∗
a are then derived by:

X

∗
a ← arg min

X ∗a
g(X

∗
a , W) (27)

s.t.

Z ϕ ∑

z=1

f �̄

(
v ∗

im

ϕ
z
, r(v ∗

im

ϕ
z
)
)

− Z ϕ + 1 = 0 ,

where Lagrange multipliers can be adopted to solve the problem.

Remark. To make the constraints continuous and differentiable, which allows us to minimize the objective function un-

der the constraints, we approximate them by replacing the function u 1 (x) = sgn (x) with u 2 (x) =

2
1+ exp (−θx)

− 1 . The idea

behind the approximation is that we can approximate the function u 1 (x) = sgn (x) by function u 2 (x) =

2
1+ exp (−θx)

− 1 when

x ∈ (−1 , 1) . Here θ represents the steepness of the curve. We can see from Fig. 1 that u 2 (x) is a good approximation for

u 1 (x).

We then derive the equations to update the repaired result towards typical DCs defined on the single entity, i.e., check

constraints and domain constraints, for instance.

Check constraints. When the constraints are created by Eq. (9) , the repaired values are updated as follows.

v ∗l p =

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

∑ K
k =1 w k

(
v k

lm

+ v k
l p

)
2

∑ K
k =1 w k

p = n and

̂ v ∗
l p

> ̂

 v ∗
lm

;∑ K
k =1 w k

(
v k

l p
+ v k

ln

)
2

∑ K
k =1 w k

p = m and

̂ v ∗
ln

> ̂

 v ∗
l p

;
̂ v ∗

l p
others ,

(28)

where ̂ v ∗
l p

, ̂ v ∗
lm

, ̂ v ∗
ln

are computed according to Eq. (25) .

Domain constraints. When the constraints are created by Eq. (10) , the repaired values are updated by:

v ∗l p =

{
c ∗

l p
p = m and

̂ v ∗
l p

< c ∗
l p

;̂ v ∗
l p

others ,
(29)

where ̂ v ∗
l p

are calculated according to Eq. (25) .

394 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

 ̂

DCs on pairwise entities. When the DCs are defined among multiple entities, i.e., r(v ∗
im

) is in the form v ∗
jn

or c ∗
im

, the L 2

constraints are created at most for each DC by varying i, j from 1 to L . The main conditions are then as follows.

� v ∗
lp

L (X

∗, λ) = 0 (30)

−
Z ϕ ∑

z=1

f �̄(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) − Z ϕ + 1 ≤ 0 (31)

λϕ
i j
(−

Z ϕ ∑

z=1

f �̄(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) − Z ϕ + 1) = 0 (32)

λϕ
i j

≥ 0 , i, j = 1 , . . . , L, ϕ ∈ �, (33)

where

L (X

∗, λ) =

K ∑

k =1

w k

L ∑

i =1

M ∑

m =1

d(x ∗im

, x k im

)

+

L ∑

i =1

λϕ
i j

(

−
Z ϕ ∑

z=1

f �̄(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) − Z ϕ + 1

)

, (34)

λ = { λϕ
i j
} ϕ∈ �

i, j=1 ,L
are the Lagrangian multipliers.

Similar to the problem defined in the single-entity DCs, updating the repaired result involves two cases.

(1) λϕ
i j

= 0 , indicating that the DCs are inactive. This makes L (X , λ) the same as case (1) in Section 4.2 . Thus, the update

of repaired result stays the same with Eqs. (25) and (26) .

(2) − ∑ Z ϕ
z=1

f
�̄

(v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) − Z ϕ + 1 = 0 , indicating that the DCs are active. Similar to case (2) in Section 4.2 , the values

obtained by Eqs. (25) and (26) do not satisfy Eq. (31) . Thus, we also derive the repaired table X

∗
a by solving Eq. (27) .

However, the difference from the single-entity case is that the constraints towards pair-wise entities make the relationship

among the attribute values more complex. More specifically, the value of the attribute of one entity may influence the value

of the corresponding attribute of another entity. Thus, the calculation of the optimal correct values will be too costly to be

afforded [12] .

To deal with this issue, we only update the repaired values involved in the functions f = (v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) with the opera-

tor “ � = ” while maintaining the update of the others’ values according to case (1), which corresponds to the modifications

performed only on the right-hand of the constraints [4] (e.g., FDs) in the area of data repairing.

For instance, we derive the repaired value update towards the typical DCs defined on the pairwise entities, i.e., the CFDs.

Note that the FDs is a special case of the CFDs, and thus the equation to update the repaired values in the CFDs can also be

used for the FDs.

Conditional functional dependency. When the constraints are created by Eq. (12) , the repaired values are updated according

to:

v ∗l p =

{
arg max v

∑ K
k =1 w k (h (v , v k

io
) + h (v , v k

jo
)) case (a) ;̂ v ∗

l p
case (b) .

(35)

Case (a) refers to l = i or l = j, p = o, where ̂ v ∗
im

= c ∗
im

, ̂ v ∗
in

= ̂

 v ∗
jn

, v ∗
io

� = v ∗
jo
, and case (b) refers to the others. Here

 v ∗
im

, ̂ v ∗
jm

, ̂ v ∗
jn

, ̂ v ∗
io
, ̂ v ∗

jo
, ̂ v ∗

l p
are calculated by Eq. (26) .

4.3. The CTD algorithm

With the solution proposed in Section 4.2 , we summarize the pseudo code of our data repairing algorithm CTD in

Algorithm 1 . We start with an initial estimation of the source weights (Line 1) and then iteratively conduct the source

weights update and repaired result update steps until convergence (Lines 2–12). The convergence criterion is that the

decrease in the objective function is small enough compared with the previous iterations, which has the same setting

as [22,23] .

Example 4. Consider Example 1 . Using the same databases and constraints, the CTD updates the source weights and the

repaired result until the convergence criterion is satisfied. We show the repaired results of the CTD for the first three

iterations in Table 6 .

Take the inference of Mike’s salary and Mike’s tax as an example. Suppose that the source weights are W = { 0 . 344 , 2 . 83 ∗
10 −2 , 10 −5 } in the third iteration. In case (1), according to Eq (25) , the repaired values for Mike’s salary and Mike’s tax are

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 395

Algorithm 1: CTD Algorithm.

Input: Data from K sources, a set � of DCs

Output: The repaired table X

∗ = { v ∗
l p
} L,M

l=1 ,p=1
, source weights W = { w 1 , . . . , w K }

1: Initialize the source weights W
2: while convergence criterion is not satisfied do

3: for l ← 1 to L do

4: for p ← 1 to M do

5: Calculate ̂ v ∗
l p

according to Eqs. (25) and (26)

6: if ̂ v ∗
l p

does not satisfy Eqs. (20) and (31) then

7: Update v ∗
l p

according to Eq. (27)

8: else

9: Update v ∗
l p

= ̂

 v ∗
l p

10: for k ← 1 to K do

11: Update the weight of the k th source w k by Eq. (17)

12: return X

∗ and W

Table 6

The repaired results for the first three iterations.

Iteration 1 Iteration 2 Iteration 3

Entity zip city salary tax zip city salary tax zip city salary tax

Bob 10002 NYC 60000 4983 10002 NYC 60000 5000 10002 NYC 60000 5000

Kate 10002 NYC 32500 3250 10002 NYC 35000 3500 10002 NYC 35000 3500

Mike 14221 BUF 24333 11933 14221 BUF 24051 24051 14221 BUF 24051 24051

“20227” and “27876”, respectively. It can be easily inferred that 20227 < 27876, which violates constraint (2). The repaired

values are then updated to “24051” and “24051” according to case (2), i.e., Eq. (28) for the check constraints. Compared to

the ground truth in Table 2 , the repaired result gets more and more accurate with more iterations. The CTD converges after

three iterations and performs better than the CRH and HoloClean .

To show the properties of the algorithm, we first prove its convergence and analyze the time complexity. we then propose

two scalable strategies to ensure its efficiency when faced with massive constraints.

Finally, we discuss two important issues to make the algorithm practical, i.e., missing values and noisy DCs.

Convergence. Using several types of loss functions and DCs discussed in this paper, we prove the convergence of the

CTD as follows.

Theorem 2. When Eq. (9) or/and Eq. (10) is/are adopted as the constraints and Eq. (4) is used as the loss function, the conver-

gence of the CTD algorithm is guaranteed.

Proof. For the optimization problem in Eq. (15) , it can be easily inferred that the unique minimum with respect to W is

achieved when X

∗ is fixed and a unique minimum with respect to X

∗ is achieved when W is fixed [5] . Therefore, according

to the proposition on the convergence of the block coordinate descent [38] , CTD will converge to a stationary point of the

proposed problem. �

Time Complexity . In each iteration, CTD first computes the repaired value for each attribute of each entity in case (1),

whose time complexity is O(KLM) , where K is the number of sources, L is the number of entities, and M is the number of

attributes (Lines 1–5). For case (2), it needs at most O(L 2 M) if it is constrained by a pairwise level DC (Lines 6–9). The time

complexity of the source weights update is also O(KLM) , which needs to traversal the whole data from the K sources (Lines

10–12). Thus, the running time is at most O (r KLM + r L 2 M) , where r is the number of iterations. When L is large, CTD will

become too costly to scale well for a large amount of data. To handle this issue, we discuss the scalable strategies in the

following part to make the CTD more practical.

Scalable Strategies The running time of the CTD will become relatively large when the DCs are defined on pairwise

entities (in Algorithm 1 Line 7), as they constrain the relationship between every pairwise entity in the truth table. Thus,

we discuss two strategies to reduce the cost for such DCs.

Optimal Grouping. Instead of repairing the attribute values for each pairwise entity, we group the entities sharing the

same values on a part of the attributes (i.e., the attributes involved in the functions f � = (v ∗
im

ϕ
z
, r(v ∗

im

ϕ
z
)) with the operator

“ = ”). We then update the values of the other attributes of these entities once.

Domain Pruning of Candidate Values. During the process of searching, when the candidate values for an entity are

too many, it could be hard to find the best repair which minimizes the objective function in Eq. (27) . Thus, we prune

the domain of the candidate values. Suppose for X

∗
a = { v ∗

io
, v ∗

jo
} , C combinations { v io c , v jo c } C c=1

of the candidate values

396 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

from { v k
io
} K

k =1
and { v k

jo
} K

k =1
satisfy Eqs. (20) and (31) . To minimize Eq. (27) , the probability that { v io c , v jo c } are the val-

ues is then

∑ K
k =1 w k

∑

l∈{ i, j} h (v lo c , v k lo
) . Here we denote such probability for combinations as p 1 , . . . , p C . Clearly, if p max =

max { p 1 , . . . , p c } > |X

∗
a | − (p 1 + · · · + p c) , the correct values should be { v io max

, v jo max
} , and the probabilities for the (c + 1) th

to the C th combinations no longer need to be calculated.

With such scalable strategies, the time complexity of the repaired result calculation in case (1) as well as the source

weight calculation is unchanged, which are both O (r KLM) , where r is the number of iterations, K is the number of sources,

L is the number of entities, and M is the number of attributes. For case (2), updating the repaired values under a pairwise DC

only needs O(rLM) . This is because we group the tuples according to the repaired values of a part of attributes and update

the repaired values of the other attribute once, which costs O(LM) using the hash table. In summary, the time complexity

of CTD is O (r KLM) , which is much less than O (r KLM + r L 2 M) , as in real life, L
 K .

Missing Values. For the sake of simplicity, in the proposed framework of Eq. (3) , we assume that the information of all

the attributes of all the entities is provided by all the sources. It can be easily modified to handle missing values when

different sources provide information for different subsets of the entities on different subsets of the attributes. When the

number of values provided by different sources is quite different, we can normalize the overall distance of each source

by the number of its providing values. Note that the missing values in the source information table {X 1 , . . . , X k } do not

affect the operation (= , � = , ≤, ≥, >, <) between the repaired values in the repaired table X

∗. According to the repaired result

calculation approach (Eqs. (25) and (26)) in case (1), the repaired value is calculated based on the corresponding values

provided by all the sources. Thus, the repaired value can be obtained as long as one source provides its value. With the

repaired values, the operation can then be normally applied.

Noisy DCs. Another important issue is the correctness of the DCs. In the proposed framework Eq. (3) , the DCs are used

to repair the multi-source noisy data. If the DCs are imprecise, it will be difficult to guarantee the accuracy of the repaired

result. However, DCs could also be dirty in real-world scenarios [34] . To solve this issue, for the case when both DCs and

data are imprecise, the multi-source data repairing problem (Eq. (3)) can be adjusted to a θ-tolerant multi-source data

repairing problem, with tolerance on the DC variances: Given the source information tables {X 1 , X 2 , . . . , X k } towards a set

of entities and a set � of DCs defined on the attribute values of these entities, the problem is to find the repaired table X

∗

and the source weights W such that (1) g(X

∗, W) is minimized, and (2) X

∗ satisfies �′ , for some constraint variant �′ of �

with �(�, �′) ≤ θ . Different sets of �′ of the DC variants can be generated [34] , and the repaired result update approach

can be applied to each �′ . The repaired table X

′ under �′ with the minimum g(X

′ , W) is then the final result X

∗.

5. Experiments

In this section, we evaluate the proposed method using four real-world datasets. The experimental results clearly demon-

strated the advantages of the proposed method by considering both the source weight estimation and DCs in data repairing.

We first discuss the experimental setup in Section 5.1 . We then show the experimental results in terms of effectiveness and

efficiency in Sections 5.2 and 5.3 , respectively.

5.1. Experimental setup

Datasets. To comprehensively test the proposed methods, we conducted extensive experiments on four real-world

datasets.

Weather. The weather data [23,26] , obtained over a two-month period starting from October 2013, consists of the weather

data from nine sources and the ground truths. The data have three attributes: High Temperature (HT), Low Temperature

(LT) and Weather Condition (WC) , among which the first two are continuous, and the last is categorical. A domain con-

straint is defined as; it is impossible that the WC is Snowy while LT is more than 55 ◦F 2 . We use this dataset to test how

effective the CTD is when the denial constraint is a domain constraint.

Flight. The flight data [24] , obtained over a one-month period starting from December 2011, consists of departure and

arrival information for 1200 flights from 38 sources. The ground truths are also available. We preprocess the data to convert

the time information into minutes and treat it as a continuous type. A check constraint is defined as; it is impossible that

the actual departure time is earlier than (i.e., less than) the scheduled departure time. We use this dataset to test how effective

the CTD is when the denial constraint is a check constraint.

Stock. The stock data [24] , obtained every work day in July 2011, consists of 10 0 0 stock symbols from 55 sources with

the ground truths also provided. We treat the data as the categorical type and a set of CFDs is defined as; two stock records

with the same symbol have the same 52wk High , 52wk Low and EPS . The constant table contains the 52wk High , 52wk

Low and EPS of 161 stocks in the same period from each official website. We use this dataset to test how effective the CTD

is when the denial constraint is a conditional functional dependency.

Restaurant. The restaurant data [40,42] consists of a list of 6324 restaurants’ information from 5 websites (sources) with

the ground truths also provided. The data has 5 categorical attributes: Restaurant Name (RN) , Building Number (BN) ,

Street Name (SN) , Zip Code (ZC) , and Phone Number (PN) . An FD is defined as; two restaurants with the same SN
2 The setting number is reasonable as the snow will change over to rain if LT ≥ 55 ◦F

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 397

Table 7

Performance comparison on weather and flight datasets.

Weather Flight

Methods Accuracy Precision Recall F1-score MAE RMSE MAE RMSE

CTD 0.7594 0.7415 0.5610 0.6387 4.8526 7.8648 23.2841 111.4840

CATD 0.7043 0.6970 0.4914 0.5764 4.9453 8.0207 24.5089 115.7255

CRH 0.7318 0.7379 0.5110 0.6038 4.8529 7.8661 25.9699 116.4947

GTM N/A N/A N/A N/A 5.3220 8.2676 24.1043 112.1847

HoloClean 0.5414 0.4010 0.2504 0.3083 5.5875 8.5996 0 . 0 # 0 . 0 #

HoloClean ∗ 0.5464 0.4095 0.2551 0.3144 5.6326 8.6352 0 . 0 # 0 . 0 #

HoloClean accidentally terminated without results.

and BN have the same ZC . We use this dataset to test how effective the CTD is when the denial constraint is a functional

dependency.

Algorithms. For the proposed methods, we test the CTD with two scalable strategies. The baseline methods are listed as

follows.

Truth discovery baselines .

CRH [23] : This approach models the conflict resolution problem by solving an optimization problem. The solution con-

sists of a two-step iterative procedure to update the truths and source weights.

CATD [22] : This approach also models the conflict resolution problem by solving an optimization problem which extends

the source weights with confidence intervals to account for the sparsity in the source observations.

GTM [45] : This is a Bayesian probabilistic approach designed for continuous data, while other methods can apply to

different types of data. However, as an important method in truth discovery, we still include it in the comparison. Constraint-

based data repairing baseline .

HoloClean [32] : This is a constraint-based data repairing approach driven by a probabilistic inference, which allows

users to flexibly define multiple types of DCs. When considering the candidate repaired value for a target entity’s attribute

c , the value v c ′ of the attribute c ′ for the same entity is taken into account as evidence. The probability that all the values

in the domain of c that co-occur with the value v c ′ is calculated as:

P r[v | v c ′] =

#(v , v c ′) appear together in D

v c ′ appears in D

.

In the experiments, extra DCs are defined to ensure the unique attribute value for each entity. HoloClean is shown to

outperform the other data repairing methods. Thus, we chose to compare the CTD against this method.

HoloClean

∗: This is a HoloClean version with the consideration of source weight. More specifically, when considering the

candidate repaired value for a target entity’s attribute c , the probability that all the values in the domain of c co-occurring

with the value v c ′ is calculated as:

P r[v | v c ′] =

∑

S k supported (v , v c ′) w k ∑

S k supported v c ′ w k

,

in which the source weights W = { w 1 , . . . , w K } are obtained from CRH [23] .

Evaluation measures. In this experiment, we focus on both the categorical and continuous data. To evaluate the perfor-

mance of the proposed method and the baseline methods, we adopt the following measures for these two data types.

Categorical data. We use Accuracy, Precision, Recall , and F1-score as the performance measures of an approach. Let truth

be the set of erroneous attribute values in {X 1 , . . . , X k } and found be the set of repaired attribute values according to X

∗.

Accuracy is computed as the percentage of the approach’s outputs X

∗ which are the same as the ground truths. Precision is

calculated as precision =

| truth ∩ f ound|
| f ound| , denoting the proportion of corrected attribute values to the number of all the attribute

values that are repaired. Recall is calculated as recall =

| truth ∩ f ound|
| truth | , representing the proportion of corrected attribute values

to the number of all the erroneous attribute values. The F1-score is the harmonic mean of Precision and Recall.

Continuous data. We calculated the following metrics on the approach’s outputs by comparing them with the ground

truths, Mean of Absolute Error (MAE) and Root of Mean Squared Error (RMSE) [26] . MAE uses the L 1 −norm distance that

penalizes more on smaller errors, while RMSE adopts the L 2 −norm distance that gives more penalty to the bigger errors.

5.2. Effectiveness evaluation

To study the effectiveness of the proposed method, we first show the overall performance of the proposed method as

well as the baseline methods. We then study the effectiveness from the following perspectives: (1) the effect of the coverage

rate of sources, (2) the effect of the number of sources, (3) the effect of the number of DCs, and (4) robustness evaluation.

Performance comparison. Tables 7 and 8 summarize the results for all the methods using the four real-world datasets.

In terms of effectiveness, the proposed CTD method achieves the best performance on all datasets, and the improvement

398 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

Table 8

Performance comparison on stock and restaurant datasets.

Stock Restaurant

Methods Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

CTD 0.9064 0.7282 0.5840 0.6482 0.9440 0.8333 0.4724 0.6030

CATD 0.8347 0.5209 0.4277 0.4697 0.9398 0.8013 0.4314 0.5609

CRH 0.8947 0.6924 0.5576 0.6177 0.9398 0.8013 0.4314 0.5609

GTM N/A N/A N/A N/A N/A N/A N/A N/A

HoloClean 0 . 0 # 0 . 0 # 0 . 0 # 0 . 0 # 0.9366 0.6646 0.3886 0.4904

HoloClean ∗ 0 . 0 # 0 . 0 # 0 . 0 # 0 . 0 # 0.9403 0.8051 0.4492 0.5767

HoloClean accidentally terminated without results.

is significant. For instance, for the Weather dataset, compared to the best CRH baseline, CTD ’s Accuracy, Precision, Recall,

and F1-score increased by 2.76%, 0.36%, 5%, and 3.49%, respectively; For the Flight dataset, compared with the best base-

line GTM , the MAE and the RMSE of the CTD decreased by 3.4% and 0.62%, respectively. Among the baseline methods,

HoloClean simply aggregates the multi-source information without considering the source reliability. Thus, it has the worst

performance. HoloClean

∗ resolves the inconsistencies by considering the source reliability, and thus the performance is

better than HoloClean . However, the improvement is not obvious. Although the source reliability is adopted as the prior

knowledge to generate repair candidates, its core probabilistic model treats each entity’s attribute as an irrelevant individ-

ual and builds the relationship through the given constraints. During this process, the influence of the source weights is

not considered. GTM estimates the source reliability only by continuous data which may not have sufficient information,

and thus leads to a bad performance for the Weather dataset. CATD and CRH are more appropriate for the tasks with

various data types. Our proposed CTD method repairs the data based on both the source weight estimations and DCs. By

considering both inconsistencies and conflicts existing in multi-source data, it achieves the best performance.

The effect of sources’ coverage rate. We first compared the effectiveness of the different approaches under various

coverage rates of the sources. The rate is defined as the percentage of the number of sources providing information for each

entity. The results are shown in Fig. 2 . It can be seen that the proposed CTD method achieves a significantly lower MAE,

RMSE and higher Accuracy, Precision, Recall, and F1-score in most cases. Moreover, when the coverage rate is low (e.g.,

0.2), CTD performs much better than the other baselines. For instance, for the Flight dataset, compared to the best CATD

baseline, the MAE and the RMSE of CTD decreased by 2.9% and 2.8%, respectively. The results confirm the idea proposed

in this paper, i.e., the less reliable information we have for some entities (i.e., reliable sources provide no information), the

greater the DCs can help to find their correct values.

The effect of the number of sources. To explore the influence of the number of sources on the overall performance, we

also studied the effectiveness of the proposed method by varying the number of sources. The results are shown in Fig. 3 .

With the increase in the number of sources, the overall trend of the RMSE and MAE of all the methods decreases, and

the overall trend of the Accuracy, Precision, Recall, and F1-score of all the methods increases. Among these methods, the

proposed CTD method performs the best in most cases. However, the improvement is not obvious compared to the other

baseline methods, especially under the condition with fewer sources.

The reason is that when the number of sources is limited (i.e., reliable sources may not be available), the effectiveness

of discovering the correct values for most entities cannot be ensured, which also influences the performance of the CTD .

The effect of the number of constraints. To show the improvement of the effectiveness regarding the number of DCs,

we studied the effectiveness of the proposed CTD method by varying the number of CFDs on the Stock dataset. The results

are shown in Fig. 4 .

It can be seen that with the increase in the number of constraints, the Accuracy, Precision, Recall, and F1-score of CTD

increase, indicating the power of applying DCs during data repairing.

Additionally, as we discussed above, on the other three datasets, the proposed method achieves significant improvement

by only defining one DC. Thus, it can be inferred that the performance of the proposed method can be further improved

when more DCs are available.

Robustness evaluation. To further show the robustness of the proposed algorithm CTD , we randomly split each dataset

10 times using a fix splitting ratio and report the average performance with standard deviations. The results are shown in

Fig. 5 . It can be seen that with the increase in the splitting ratio, the Accuracy, Precision, Recall, and F1-score of CTD arise,

and the MAE and RMSE decrease in most cases. As for the standard deviation, when the splitting ratio is low/high, the

standard deviation tends to be relatively large/small. The reason is that CTD can find more correct values when sufficient

information is available (i.e., splitting ratio is high), which also leads to a stable performance. When the splitting ratio is

low, the performance fluctuates depending on the limited data. Specifically, if the data contain enough correct values, more

erroneous values could be repaired through the DCs and reliable sources. Otherwise, the performance tends to decrease.

Overall, the standard deviation is acceptable. For categorical data, the standard deviation is less than 0.1 in most cases. For

continuous data, the standard deviation from the average performance is also small. The experimental results indicate the

robustness of the CTD .

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 399

Fig. 2. Performance comparison w.r.t. varying coverage rate.

5.3. Efficiency evaluation

In this part, we evaluate the efficiency of the proposed method and the baseline methods. We first explore their conver-

gence and then show their running time.

Convergence speed. As the proposed CTD method takes advantage of an iterative procedure, we test the convergence

of the CTD as well as the iterative baseline methods, CATD and CRH . Fig. 6 shows the change in the objective value of

each method with respect to each iteration for the Stock and Restaurant datasets. We can see that the objective values of

the CTD and CRH decrease fast within the first three iterations and then reach a stable stage. The reason for the fast

converging speed of the CTD is that the proposed objective function in Eq. (3) is biconvex. Thus, we need to alternatively

optimize each variable. Due to the large gradients in the first three iterations, the variables dramatically change, resulting in

the fast decrease in the objective value. The experimental result indicates that the CTD converges as quickly as the baseline

methods. We omit the results for the Weather and Flight datasets, as they have similar performances.

Running time. Table 9 summarizes the running time for all the methods of the four real-world datasets. We observe

that HoloClean and HoloClean

∗ are inefficient, as they use a DeepDive framework which takes extra time to process the

data. More specifically, HoloClean

∗ takes a longer time than HoloClean due to the extra calculation according to the source

weights. The proposed method CTD is slightly slower than the best baseline CRH , as CTD needs extra time to process the

400 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

Fig. 3. Performance comparison w.r.t. # sources.

Fig. 4. Performance comparison w.r.t. # constraints.

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 401

Fig. 5. Robustness evaluation.

Fig. 6. Convergence speed.

402 C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403

Table 9

Running time (sec).

Methods Weather Flight Stock Restaurant

CTD 0.3638 64.9816 127.6632 5.8098

CATD 0.6128 135.3192 548.3 17.4143

CRH 0.3533 61.4282 129.8724 5.5681

GTM 0.3673 68.8928 N/A N/A

HoloClean 28.2849 0 . 0 # 0 . 0 # 162.4258

HoloClean ∗ 31.4736 0 . 0 # 0 . 0 # 175.3412

HoloClean accidentally terminated without results.

DCs. Considering its improvement in effectiveness, the CTD does not sacrifice too much on its efficiency, and it is still faster

than CATD , GTM , HoloClean , and HoloClean

∗.

6. Conclusion

In this paper, we propose a novel data repairing approach for both inconsistencies and conflicts. We formulate the data

repairing problem as an optimization problem and create constraints for the DCs. To solve this problem, we derive a two-

step iterative algorithm called the CTD to iteratively update the source weights and the repaired results, and four concrete

cases using different classes of DCs as examples. We also develop two optimal strategies to ensure the scalability of the

proposed algorithm. The experimental results of the real-world datasets verify the effectiveness and efficiency of the pro-

posed framework under the different challenging scenarios. In the future, we plan to extend the framework so that it can

automatically discover DCs for data repairing.

Declaration of Competing Interest

None.

Acknowledgments

This paper was partially supported by NSFC grant U1509216 , U186 6 602 , 61602129 , NSF IIS-1553411 , NSF-IIS 1747614 and

Microsoft Research Asia.

References

[1] L. Bertossi , S. Kolahi , L.V. Lakshmanan , Data cleaning and query answering with matching dependencies and matching functions, Theory Comput. Syst.
52 (3) (2013) 441–482 .

[2] T. Bleifuß, S. Kruse , F. Naumann , Efficient denial constraint discovery with hydra, PVLDB 11 (3) (2017) 311–323 .
[3] J. Bleiholder , F. Naumann , Data fusion, ACM Comput. Surv. 41 (1) (2008) 1–41 .

[4] P. Bohannon , W. Fan , M. Flaster , R. Rastogi , A cost-based model and effective heuristic for repairing constraints by value modification, in: Proc. of
SIGMOD, 2005, pp. 143–154 .

[5] S. Boyd , L. Vandenberghe , Convex Optimization, Cambridge University Press, 2004 .

[6] J. Chomicki , J. Marcinkowski , Minimal-change integrity maintenance using tuple deletions, Inf. Comput. 197 (1–2) (2005) 90–121 .
[7] X. Chu , I.F. Ilyas , P. Papotti , Discovering denial constraints, PVLDB 6 (13) (2013) 1498–1509 .

[8] X. Chu , I.F. Ilyas , P. Papotti , Holistic data cleaning: Put violations into context, in: Proc. of ICDE, 2013 .
[9] G. Cong , W. Fan , F. Geerts , X. Jia , S. Ma , Improving data quality: Consistency and accuracy, in: Proc. of VLDB, 2007, pp. 315–326 .

[10] X.L. Dong , L. Berti-Equille , D. Srivastava , Truth discovery and copying detection in a dynamic world, PVLDB 2 (1) (2009) 562–573 .
[11] W. Fan , Dependencies revisited for improving data quality, in: Proc. of PODS, 2008, pp. 159–170 .

[12] W. Fan , Data quality: from theory to practice, SIGMOD Record 44 (3) (2015) 7–18 .

[13] W. Fan , F. Geerts , Foundations of data quality management, Synth. Lect. Data Manage. 4 (5) (2012) 1–217 .
[14] W. Fan , F. Geerts , X. Jia , A. Kementsietsidis , Conditional functional dependencies for capturing data inconsistencies, TODS 33 (2) (2008) 6 .

[15] W. Fan , F. Geerts , N. Tang , W. Yu , Inferring data currency and consistency for conflict resolution, in: Proc. of ICDE, 2013, pp. 470–481 .
[16] W. Fan , X. Jia , J. Li , S. Ma , Reasoning about record matching rules, PVLDB 2 (1) (2009) 407–418 .

[17] W. Fan , J. Li , S. Ma , N. Tang , W. Yu , Towards certain fixes with editing rules and master data, PVLDB 3 (1–2) (2010) 173–184 .
[18] A. Galland , S. Abiteboul , A. Marian , P. Senellart , Corroborating information from disagreeing views, in: Proc. of WSDM, 2010, pp. 131–140 .

[19] M.R. Garey , D.S. Johnson , L.J. Stockmeyer , Some simplified np-complete graph problems, Theor. Comput. Sci. 1 (3) (1976) 237–267 .

[20] J. Gryz , B. Schiefer , J. Zheng , C. Zuzarte , Discovery and application of check constraints in DB2, in: Proc. of ICDE, 2001, pp. 551–556 .
[21] S. Kolahi , L.V. Lakshmanan , On approximating optimum repairs for functional dependency violations, in: Proc. of ICDT, 2009, pp. 53–62 .

[22] Q. Li , Y. Li , J. Gao , L. Su , B. Zhao , M. Demirbas , W. Fan , J. Han , A confidence-aware approach for truth discovery on long-tail data, PVLDB 8 (4) (2014)
425–436 .

[23] Q. Li , Y. Li , J. Gao , B. Zhao , W. Fan , J. Han , Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation, in: Proc. of
SIGMOD, 2014, pp. 1187–1198 .

[24] X. Li , X.L. Dong , K.B. Lyons , W. Meng , D. Srivastava , Truth finding on the deep web: is the problem solved? PVLDB (2013) .

[25] Y. Li , J. Gao , C. Meng , Q. Li , L. Su , B. Zhao , W. Fan , J. Han , A survey on truth discovery, Proc. of SIGKDD 17 (12) (2015) 1–16 .
[26] Y. Li , Q. Li , J. Gao , L. Su , B. Zhao , W. Fan , J. Han , On the discovery of evolving truth, in: Proc. of SIGKDD, 2015, pp. 675–684 .

[27] C. Mayfield , J. Neville , S. Prabhakar , ERACER: a database approach for statistical inference and data cleaning, in: Proc. of SIGMOD, 2010, pp. 75–86 .
[28] J. Opatrny , Total ordering problem, SIAM J. Comput. 8 (1) (1979) 111–114 .

[29] J. Pasternack , D. Roth , Knowing what to believe (when you already know something), in: Proc. of ICCL, 2010, pp. 877–885 .
[30] J. Pasternack , D. Roth , Making better informed trust decisions with generalized fact-finding, in: Proc. of IJCAI, 2011, pp. 2324–2329 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0012
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0012
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0019
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0019
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0019
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0019
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0029
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0029
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0029
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0030
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0030
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0030

C. Ye, H. Wang and K. Zheng et al. / Information Sciences 507 (2020) 386–403 403

[31] R. Pochampally , A. Das Sarma , X.L. Dong , A. Meliou , D. Srivastava , Fusing data with correlations, in: Proc. of SIGMOD, 2014, pp. 433–4 4 4 .
[32] T. Rekatsinas , X. Chu , I.F. Ilyas , C. Ré, HoloClean: holistic data repairs with probabilistic inference, PVLDB 10 (11) (2017) 1190–1201 .

[33] T. Rekatsinas , M. Joglekar , H. Garcia-Molina , A. Parameswaran , C. Ré, SLiMFast: guaranteed results for data fusion and source reliability, in: Proc. of
SIGMOD, 2017, pp. 1399–1414 .

[34] S. Song , H. Zhu , J. Wang , Constraint-variance tolerant data repairing, in: Proc. of SIGMOD, 2016, pp. 877–892 .
[35] J. Wang , N. Tang , Towards dependable data repairing with fixing rules, in: Proc. of SIGMOD, 2014, pp. 457–468 .

[36] X. Wang , Q.Z. Sheng , L. Yao , X. Li , X.S. Fang , X. Xu , B. Benatallah , Truth discovery via exploiting implications from multi-source data, in: Proc. of CIKM,

2016, pp. 861–870 .
[37] H. Xiao , J. Gao , Q. Li , F. Ma , L. Su , Y. Feng , A. Zhang , Towards confidence in the truth: a bootstrapping based truth discovery approach, in: Proc. of

SIGKDD, 2016, pp. 1935–1944 .
[38] Y. Xu , W. Yin , A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and

completion, SIAM J. Imaging Sci. 6 (3) (2013) 1758–1789 .
[39] M. Yakout , A.K. Elmagarmid , J. Neville , M. Ouzzani , I.F. Ilyas , Guided data repair, PVLDB 4 (5) (2011) 279–289 .

[40] C. Ye, H. Wang, T. Ma, J. Gao, H. Zhang, J. Li, AutoRepair: an automatic repairing approach over multi-source data, Knowl. Inf. Syst. (2018), doi: 10.1007/
s10115- 018- 1284- 9 .

[41] C. Ye , H. Wang , J. Li , H. Gao , S. Cheng , Crowdsourcing-enhanced missing values imputation based on Bayesian network, in: Proc. of DASFAA, 2016,

pp. 67–81 .
[42] C. Ye , H. Wang , T. Ma , J. Gao , H. Zhang , J. Li , PatternFinder: pattern discovery for truth discovery, Knowl.-Based Syst. 176 (2019) 97–109 .

[43] X. Yin , J. Han , S.Y. Philip , Truth discovery with multiple conflicting information providers on the web, TKDE 20 (6) (2008) 796–808 .
[44] H. Zhang , Q. Li , F. Ma , H. Xiao , Y. Li , J. Gao , L. Su , Influence-aware truth discovery, in: Proc. of CIKM, 2016, pp. 851–860 .

[45] B. Zhao , J. Han , A probabilistic model for estimating real-valued truth from conflicting sources, in: Proc. of QDB, 2012 .
[46] B. Zhao , B.I. Rubinstein , J. Gemmell , J. Han , A Bayesian approach to discovering truth from conflicting sources for data integration, PVLDB 5 (6) (2012)

550–561 .

[47] Y. Zhou , J. He , Crowdsourcing via tensor augmentation and completion, in: Proc. of IJCAI, 2016, pp. 2435–2441 .
[48] Y. Zhou , J. He , A randomized approach for crowdsourcing in the presence of multiple views, in: Proc. of ICDM, 2017, pp. 685–694 .

[49] Y. Zhou , A.R. Nelakurthi , J. He , Unlearn what you have learned: adaptive crowd teaching with exponentially decayed memory learners, in: Proc. of
SIGKDD, 2018, pp. 2817–2826 .

[50] Y. Zhou , L. Ying , J. He , Multic 2 : an optimization framework for learning from task and worker dual heterogeneity, in: Proc. of SIAM, 2017, pp. 579–587 .

http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0032
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0032
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0032
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0032
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0032
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0035
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0035
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0035
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0039
https://doi.org/10.1007/s10115-018-1284-9
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0043
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0043
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0043
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0043
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0044
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0045
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0045
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0045
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0047
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0047
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0047
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0048
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0048
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0048
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0049
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0049
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0049
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0049
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0050
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0050
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0050
http://refhub.elsevier.com/S0020-0255(19)30784-4/sbref0050

	Multi-source data repairing powered by integrity constraints and source reliability
	1 Introduction
	2 Related work
	3 Problem definition
	4 Data repairing for inconsistencies and conflicts
	4.1 Denial constraint transformation
	4.2 Proposed solution
	4.3 The CTD algorithm

	5 Experiments
	5.1 Experimental setup
	5.2 Effectiveness evaluation
	5.3 Efficiency evaluation

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

