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Truth discovery methods infer truths from multiple sources. These methods usually resolve conflicts
based on the information on the entity level. However, due to the existence of incompleteness
and the difficulty in entity matching, the information on the individual entity is often insufficient.
This motivates pattern discovery, which aims to mine useful patterns across entities from a global
perspective. In this paper, we introduce pattern discovery for truth discovery and formulate it as an
optimization problem. To solve such a problem, we propose an algorithm called PatternFinder that
jointly and iteratively learns the variables. Additionally, we also propose an optimized grouping strat-
egy to enhance its efficiency. Experimental results on simulated and real-world datasets demonstrate
the advantage of the proposed methods, which outperform the state-of-the-art baselines in terms of
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1. Introduction

It is critical to identify correct information from multi-source
conflicting data. Such a task is called truth discovery [1,2]. A
straightforward truth discovery approach is to conduct majority
voting or averaging. However, the most significant shortcom-
ing of such approaches is that they assume all the sources are
equally reliable. As information quality usually varies a lot among
different sources [2], such approaches may not achieve correct
results.

To improve the performance, various truth discovery meth-
ods [1,3-8] are proposed. In these methods, a common principle
is applied. That is, if an entity’s information provided by a source
is often supported by other sources, the source is regarded as a
reliable one, and in turn, its information is more likely to be true.
It can be inferred that for one entity, its correct values are found
by resolving the conflicts among multiple sources. Regardless of
the duplicate situation among different sources [3], for a set of
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entities, the greater the number of sources that provide informa-
tion for each entity, the more likely we can identify the reliable
sources and find the truths.

Unfortunately, when the evidence is insufficient on the entity
level, the picture is different. The insufficient evidence makes
it difficult for existing methods to identify the reliable sources
and find the truths, especially for entities covered mostly by
the unreliable sources. For the circumstance where there is
insufficient evidence on the entity level [9,10], we first analyze
its causes in three aspects, i.e., long-tail phenomenon, mismatching,
and incompleteness.

e Long-tail phenomenon. The phenomenon where the entities’
information is provided by very few sources is common
in applications [4,9]. For one source, it may contain the
information about a large number of entities. However, most
of the entities in this source may not have the corresponding
information in the other sources.

e Mismatching. In many applications, it is common that each
source has its own entity identifier and becomes an iso-
lated island of information [10]. To identify each entity’s
information from multiple sources, a natural way is to first
conduct entity matching. However, due to erroneous values
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Table 1
Patient information from three hospitals.
Name Age Condition Measure
¥ 0 Mike 23 Fever Febrifuge
1 0, - 35 Stroke Thrombolytic
X 03 Angela 30 Feven (fever) Febrifuge
2 04 Bob 20 Stroke Warfarin (thrombolytic)
e 05 Angela - Fever Febrifuge
3 05 Jim 41 Stoke (stroke) Thrombolytic
Table 2
Example patterns.
Applied set Condition Measure
{01, 03,05} Fever Febrifuge
{05, 04, 05} Stroke Thrombolytic

in the multi-source noisy data, it is hard to correctly link the
records [11-14], which also results in insufficient evidence
for the entities.

e Incompleteness. Due to the incomplete entry, inaccurate ex-
traction or heterogeneous schemas, it is very prevalent that
sources only provide information for a subset of attributes
about a given entity [15]. Thus, even if entity matching is
feasible and effective, enough information for each attribute
of the entities cannot be guaranteed.

Due to the existence of insufficient evidence on the entity level
in these three aspects, it is challenging to find the truths about
the multi-source unaligned data. We use an example to illustrate
how existing methods work that motivates our approach.

Example 1. Table 1 contains six records collected from three
hospitals {7, &>, A3}. Each record o specifies a patient described
by four attributes: name, age, condition, and measure, among
which the condition denotes the clinical symptom of the patient
and measure denotes the therapeutic drug for the patient. All
erroneous values are marked in italics and their correct values
are given in the following brackets. Note that we do not know
whether the records provided by the different hospitals refer to

“w o

the same patient, and missing values are represented as “-".

Based on this example, we can see that 04, 0,, 04, 05 tend
to refer to different patients, as they have dissimilar attribute
values. For 03 and os, though they may refer to the same person
(same name and measure), due to the wrong value “feven” of
the condition from o3 and the missing value of age from os,
there is not enough information to link o3 and o0s. As a result,
01, 07, 03, 04, 05, 0g Will be all treated as a record for a separate
entity. However, only one piece of information for each patient
is insufficient for the existing methods [3-8,16-19] to infer the
truths and identify the reliable sources. Given 0, provided by X1,
there are two circumstances: (1) &> and &3 may provide the same
information as 0, to support 0, to be true; (2) &, and A3 may
provide different information from o4, then the information pro-
vided by the most reliable source is true. Hence, more evidence
is needed from X, and A3. Without more evidence about these
patients, existing methods will consider 01, 0,, 03, 04, 05, 0¢ all to
be true, and fail to find the true value of 03, 04, and o, e.g., “fever”
for “feven” for the condition of 0. Moreover, considering these
records all to be true will draw a conclusion that all the sources
are reliable, while the fact is that X, and &3 are not very reliable
as they contain several errors.

Observations. The above example indicates that truth discovery
methods will become less effective when faced with long-tail
phenomena, mismatching, and incompleteness issues on the entity

level. Fortunately, such entities may still find counterparts that
share similar patterns. Consider hospitals and social forums as
examples. Patients from different hospitals may be different, but
the properties (e.g., symptoms, medical history, demographics) of
patients with the same disease could be quite comparable; mul-
tiple online social forums may attract overlapping but different
sets of users, in which user communities and community patterns
may be shared across platforms. Therefore, when the evidence
is not sufficient on the entity level, the latent patterns shared
among different entities would be helpful to discover the truths
of the entities.

Pattern Discovery. Motivated by these observations, in this
study, we propose to leverage pattern discovery for truth discov-
ery on multi-source unaligned data. A pattern is a triple variable
that contains an applied set, an attribute set, and a value combi-
nation towards the attribute set. For each pattern, the applied set
precisely describes the scope that the pattern is suitable for. If a
record is in the applied set of a pattern, its values on the attribute
set match the value combination of the pattern.

Example 2. Table 2 shows two patterns whose attribute set con-
tains the condition and measure. For the first pattern, its applied
set is {04, 03, 05}, and the value combination is (fever, febrifuge).
It states that for {01, 03, 05}, their values for the condition and
measure should be “fever” and “febrifuge”, respectively. Consid-
ering 03, the value “feven” for the condition will be corrected to
“fever”. Similarly, the second pattern states that for {0,, 04, 05},
their values for the condition and measure should be “stroke” and
“thrombolytic”, respectively. The errors in 04 and og will then also
be corrected.

Based on this example, we can infer that, when the evidence
is insufficient on the entity level, matching the corresponding
patterns can help to improve the performance of truth discovery.
Therefore, it is crucial to design algorithms for all the entities
across sources so that the patterns shared among them can be
automatically discovered. However, discovering proper patterns
raises several challenges.

e As no oracle tells which attribute can make up the attribute
set of the patterns, the question is how to infer the attribute
set so that it can accurately cover all and only the significant
attributes.

e With errors in the multi-source records, the concern is how
to generate the value combinations concisely enough to be
close to the true ones.

o We need to accurately apply the patterns to each record, and
efficiently find the applied set for each pattern.

In this paper, we jointly address these issues. First, to obtain
the attribute set, we assign an attribute weight to each attribute.
The higher the weight of an attribute, the higher the possibility
that it belongs to the attribute set. Second, to ensure the accuracy
of the value combinations, a source weight is assigned to each
source, which indicates that the information provided by the
sources with higher weights are more reliable. Third, to find the
applied set for each pattern, we aim to infer the latent groups
which share the same pattern. The patterns can then be discov-
ered by inferring the group-level representatives and applied to
the group members. In summary, we model the pattern discovery
problem by an optimization framework, where the latent groups,
the group-level representatives, the source weights, and the at-
tribute weights are defined as four sets of variables. The objective
is to minimize the overall weighted deviation between the group-
level representatives and the multi-group records. We propose
an algorithm to solve the optimization problem by iteratively
updating the four sets of variables. Benefiting from the iterative
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procedure, we can achieve high-quality patterns on significant
attributes provided by reliable sources. By using a global analysis
of all the entities, the proposed algorithm can take advantage of
more evidence from the entities. The generated patterns will be
useful in detecting the high-level behavior of entities observed
from multiple perspectives, such as user community patterns of
multiple social networks [20], patient symptoms recorded and
diagnosed by multiple hospitals [21], and traffic features captured
by multiple sensors [22].

Contributions. We summarize our contributions as follows.

e We study pattern discovery for truth discovery. We formally
define patterns and then formulate an optimization problem
to discover the patterns.

e We propose an iterative algorithm called PatternFinder to
solve the problem by jointly inferring the latent groups,
the group-level representatives, the source weights, and the
attribute weights.

e To improve the efficiency, we enhance PatternFinder by an
optimized grouping strategy.

e We present extensive experiments with simulated and real-
world datasets. The experimental results clearly demon-
strate the advantages of PatternFinder compared to the base-
lines.

Organization. We analyze related work in Section 2 and define
the problem of pattern discovery in Section 3. Section 4 describes
the overall solution and the main component PatternFinder, fol-
lowed by the experimental results in Section 5. We conclude the
paper with final remarks in Section 6.

2. Related work

The traditional problem of truth discovery has been studied for
years to resolve conflicts among multiple sources [1,4]. Existing
approaches [3-8,16,18,19,23-29] adopt a common principle that
if the information provided by a source is often supported by
other sources, the source is regarded as a reliable one, and in turn,
its information is more likely to be true. Thus, for one entity, the
value provided by reliable sources will be regarded as correct.
To enlarge the scope of applications, these approaches consider
various scenarios. In [3,18], the authors analyze the relationship
among the sources, in which the sources are not independent,
and they may copy from each other. The proposed approaches
in [16,24,26,27] take into account the correlations among the
entities, such as temporal factors [16,26], common senses [24]
and functional dependency constraints [27]. The proposed ap-
proaches in [4,7] deal with the long-tail phenomenon, in which
most sources only provide a few claims, and only a few sources
make plenty of claims. The existence of multiple truths for a
single entity is considered in [6,8,19] in which the source relia-
bility is modeled as two-sided, i.e., sensitivity and specificity. The
difficulty of obtaining the truths is considered in [25]. Recently,
Beretta et al. considered the problem of leveraging the partial
order among the claims [23]. Zhang et al. considered the prob-
lem of truth discovery on textual data [28]. However, all these
approaches rely on the information provided on the entity level.
When the information on the entity level is incomplete, they will
fail to obtain the correct result. Different from these approaches,
such a case can be handled by our proposed framework, since we
can correct the errors by inferring the latent patterns existing in
the data from a global view.

Another line of related work is known as multi-view cluster-
ing [30-35], which aims to obtain an accurate clustering result
by taking advantage of information from multiple views. The key
of multi-view clustering is to explore diverse information from

multiple feature sets, and simultaneously uncover the consistent
cluster structure of the dataset. Our pattern discovery method
shares a similar goal, which aims to find a common pattern
across various sources. Comparing these multi-view clustering
methods, our methods do not assume that observations from
different sources are aligned, and we also take source reliability
into account when deriving the group-level truths.

There has also been a large body of work on entity reso-
lution [11,12,36], which aims to identify the records in one or
multiple data sources that correspond to the same real-world
entity. In contrast to that line of work, we do not identify multi-
source information for one specific entity. Instead, we focus on
the discovery of latent patterns shared among the entities. As
we take the source reliability into account in the discovery pro-
cedure, the latent groups achieved by our methods can also be
treated as the meaningful blocks in the entity matching, which
will improve the performance of entity matching across multiple
sources of heterogeneous data.

3. Problem definition

We first define useful terms for the multi-source data and then
give the problem definition.

An entity is a person or thing of interest. An attribute is a
feature used to describe the entity. A data item is a paired entity-
attribute. A data source describes the place where information
about data items can be collected. A claim is a value of a data
item provided by a data source. A record contains all the claims
about an entity provided by a data source. Suppose there are K
data sources, each of which contains several records for a set of
entities. The entities being observed by different sources could
be different. Even if some entities are overlapping, we do not
know the link across their sources. Suppose that each record has
M attributes {Aq,...,Ay}. The ith record is denoted as o; =
{vi1, vio, ..., vim}, Where v;, is the value of record o; subject to
An. Let X, = {oi}?:kl denote the record collection of the kth source,
where N is the total number of records in the kth source. A record
collection D = | J, X« made up of n = ", N records from K
sources is then generated.

Definition 1 (Patterns). A pattern ¢; defined on D is a triple
variable (R, X, t;x) where

1. R, is an applied set which is made up of records o; € D;

2. X is a set of attributes in {Aq, ..., Au};

3. tix is a value combination on X. For each attribute A, € X,
tim is a constant value in the domain of A,, specified in D.

We can infer that, to avoid one record appearing in the applied
set of two patterns, each pair of applied sets of the patterns
must be disjoint. Thus, the problem of pattern discovery can be
treated as a task of inferring the latent groups, which is defined
as follows.

Definition 2 (Latent Groups). Given the number L of the latent
groups, G is a n x L partition matrix whose element g; denotes
the group indicators for o; € D, i.e., g = 1, if 0; belongs to group
I, otherwise g; = 0. The latent groups {Cq, G5, ..., C;} are then
formed, where the Ith group C; is made up of records o; whose
group indicators g; = 1.

Example 3. As shown in Table 2, given L = 2, C; = {04, 03, 05}
and C; = {0,, 04, 0} are two latent groups formed by the records
in Table 1.

Given the latent groups, the patterns are found by inferring the
group-level representatives and applied to the group members.
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Definition 3 (Group-level Representatives). For group Cj, the group-
level representative is denoted as ¢; = {cj1, ¢z, . .., Cim}, Where
Cim is the most representative value, i.e., group-level truth, for A,
among C;. In total, the collection of the group-level representa-
tives is C = {cq, €2, ..., CL}.

Example 4. Consider Example 3. ¢; and ¢, are the group-level
representatives for the latent group C; and G, respectively.

Benefiting from the inference of the latent groups and the
group-level representatives, for each pattern ¢, R; corresponds to
the group C;, and tjx is achieved from the group-level represen-
tative c; specific to the attribute set X. To find the proper X and
C, an attribute weight and a source weight are assigned to each
attribute and each source, respectively.

Definition 4 (Attribute Weights). Attribute weights are denoted as
P = {p1, p2, ..., pm} in which p,, is the significance score of A,.
A higher p;, indicates that A, is more significant and more likely
to be a part of X.

Example 5. Consider Table 1. Suppose that the attribute weights
of four attributes are p; = p, = 0.06, p; = 0.23, and p4 = 0.65,
we consider that the condition and measure with higher weights
compose the attribute set X with a higher probability.

Remark. With the existence of patterns, a direct observation is
that, in each latent group, records may share similar values on
several attributes and these attributes form X. Therefore, to infer
X, we estimate p,, for A, by evaluating the differences between
the group members’ values and the corresponding group-level
truths. If the differences are small, p;, should be high, and A, is
more likely to a part of X.

Definition 5 (Source Weights). Source weights are denoted as
W = {wi, wa,...,wg} in which wy is the reliability score of
the kth source. A higher wy indicates that the kth source is more
reliable, and claims provided by this source are more likely to be
the group-level truths.

Example 6. Consider Table 1. Suppose that the source weights of
three sources are w; = 0.6, w, = 0.3, and w3 = 0.1, we consider
that the records provided by source 1 are more reliable than
the records provided by source 2 and source 3, and the claims
provided by source 1 are regarded as the group-level truths.

Remark. Different sources usually have different reliability de-
grees. The existing truth discovery methods [2,3] are proposed to
estimate the source reliability. The main idea is that the sources
providing a larger number of true claims will be assigned higher
reliability degrees (a.k.a, source weights), and the claims provided
by the reliable sources will be regarded as the correct values. For
the proposed method, the difference from existing methods is
that we estimate the source weights by evaluating the true values
subject to a set X of significant attributes with high attribute
weights. Therefore, when errors are involved in X, we can obtain
the correct tyx by treating the claims provided by the reliable
sources as true values.

Problem definition. Given a collection D of unaligned records
from K sources and L latent groups, we attempt to accurately
infer the group indicators G, the group-level representatives C,
the attribute weights P, as well as the source weights W, such
that the patterns with maximum precision can be achieved.

4. Methodology

In this section, we formally introduce the approach of pattern
discovery for truth discovery. We first provide the whole solution
overview in Section 4.1. To achieve accurate patterns, we propose
an optimization framework in Section 4.2 and solve it through the
iterative algorithm PatternFinder in Section 4.3. To improve the
efficiency, we then develop a scalable strategy for PatternFinder
in Section 4.4. Finally, we discuss how to generate patterns and
truths according to the output of PatternFinder in Section 4.5.

4.1. Solution overview

For the multi-source unaligned data, facing the insufficient
information for one entity, it is difficult to infer its true value.
To tackle this issue, we propose to discover the patterns existing
in the multi-source data. Therefore, the true values of different
entities sharing similar properties could be inferred from one pat-
tern. To achieve the accurate patterns, we attempt to learn four
variables, i.e., the latent groups G, the group-level representatives
C, the attribute weights P, and the source weights W. The applied
sets and the attribute set of the patterns are then representatively
inferred from the latent groups G and the attribute weights P.
Meanwhile, the value combinations of the patterns are deter-
mined according to the group-level representatives C specific to
the attribute set.

Fig. 1 is an illustration of the entire solution. The core compo-
nent is the PatternFinder algorithm, which jointly learns the four
variables g, ¢, P, and W from the multi-source unaligned data. To
improve the efficiency, we developed an optimization grouping
strategy. The patterns are then achieved by the pattern generation
module, and the truths are found by the truth generation module.

4.2. Optimization framework

We next propose an optimization framework to jointly learn
the group indicators, the group-level representatives, the at-
tribute weights, and the source weights. The basic idea is that
for each latent group, reliable sources provide trustworthy claims
and significant attributes form the attribute set of patterns. The
group-level representatives should then be close to the claims
from reliable sources on significant attributes. Thus, we should
minimize the overall weighted deviation from the group-level
representatives to the multi-group records, where each source
is weighted by its reliability, and each attribute is weighted by
its importance. Based on this principle, we propose the following
optimization framework.

L K M
g’gl'[l)nwf(g’ C,P, W)= Z Z Z 8ilWi X;pmdm(vim7 Cim)
m=

I=1 k=1 ojeX}
u ’ (1
+ o) pmlog(pm)
m=1
subject to
Siagi=1g€{01}1<i<n,
Y Pm=10<pn <1, )

ff;l exp(—wy) = 1.

We are trying to search for the values for the following four
sets of unknown variables: group indicators G, group-level rep-
resentatives C, attribute weights P, and source weights W, by
minimizing the objective function f(G, C, P, W). There are three
types of functions that need to be plugged into this framework.
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Fig. 1. The whole solution overview.

e Loss function. dp, refers to a loss function defined based on
the data type of A,. This function measures the distance
between v;;,, and ¢, If the attribute is numerical, then

Am(Vim, Cm) = (Cim — Uim)2~ (3)
If the attribute is categorical, then
1 if vim # Cim,
dim(Vim, = . 4
m{Vim: Cim) {0 otherwise. @)

e Balance function. A negative attribute weight entropy term
is added to the framework as a balance function, where a
given positive parameter « is used to control the attribute
weight distribution. A large o means that more attributes
contribute to the grouping, while a small « allows only
significant attributes to contribute to the grouping;

e Regularization function. To constrain the group indicators g,
the attribute weights P, and the source weights W into
a certain range, we specify the regularization functions in
Eq. (2). We use the exponential function to constrain W, as it
is a reasonable constraint function that leads to meaningful
source weights [4];

Intuitively, if a source is more reliable (i.e., wy is high) and
an attribute A,, is more significant (i.e., p,;, is high), we trust the
source’s information on A, more in determining the group-level
truths. That is, we give a higher penalty when the group-level
truth ¢, deviates from the value v;,, provided by the kth source.
On the other hand, the penalty is lower when v, is either from
unreliable sources with a smaller wy or towards insignificant
attributes with a smaller py,.

4.3. Pattern-Finder Algorithm

According to the optimization framework, the group indicators
G, the group-level representatives C, the attribute weights P,
and the source weights W are learned together by optimizing
the objective function through a joint procedure. However, it is
difficult to directly calculate the four sets of variables. Therefore,
we iteratively updated the values of one set to minimize the
objective function while keeping the values of the other sets
unchanged until convergence. This iterative four-step procedure,
referred as the block coordinate approach [37], will keep reducing
the value of the objective function. To minimize the objective
function in Eq. (1), we iteratively conducted the following steps.

Step 1: Attribute weights update. With the initial estimates of
G, ¢, and W, we first weigh each attribute based on the differ-
ences between the group members’ values and the corresponding
group-level truths. We then obtain an initial estimate of the
attribute weights by assigning higher weights to the attributes

with smaller differences. At this step, we fix the values for g, C,
and W, and compute the attribute weights that jointly minimize
the objective function in Eq. (1) subject to the regularization
constraint in Eq. (2). Through Lagrange multipliers, we derive:

el 5
P el ] 7
where

K
Dy = Z Z Zgilwkdm(vim» Cim)- (6)

I=1 k=1 iexy

Step 2: Group indicators update. After the update of the attribute
weights, we update the group indicators so that records sharing
similar values on the attributes with higher weights are clustered
into the same group. At this step, the values for ¢, P, and W
are fixed, and each record o; € D is assigned to a group which
minimizes the weighted distance between the group members’
values and the corresponding group-level truths according to
Theorem 1.

Theorem 1. Suppose that C, P, and W are fixed, the group indicator
gii towards the record o; € D is achieved by

fSy<Syfor1<l <L,

where Sy = Y m_, Pndin(Vim, Crm), 7)
gr =0, forl #1

gi =1,

Proof. Since C, P, and W are fixed, the optimization problem
Eq. (1) has only one set G with variables. With the regularization
constraint in Eq. (2), it is obvious that for a record o;, when we
assign g; according to Eq. (7), the item Z,L=1 Z’mw=1 ZiwiPmdm(Vim,
Cim) is minimal. As the records from multiple sources are in-
dependent of each other, the objective function in Eq. (1) is
minimal.

Remark. Under the assumption that each pair of applied sets
of the patterns to be disjoint, each record belongs to at most
one group (i.e., one pattern), where g is assigned to 0 or 1.
However, there does exist the situation that a single record may
be associated with multiple patterns. To handle this case, similar
to extending K-means to Fuzzy-C-means [38], we adjust the scope
of the group indicator gy to be [0, 1] instead of {0, 1}. g; can then
be updated. Through this adjustment, for each record o;, it will
be associated with multiple groups (i.e., multiple patterns) whose
group indicators g; > 0.

Step 3: Group-level representatives update. After the update of
the group indicators, we update the group-level representatives.
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When g, P, and W are fixed, the group-level truths are updated
based on the members in the groups. Each member is weighted
by the source that provides it. Therefore, the more accurate
group-level truths are discovered by trusting the information
provided by the sources with higher weights.

For the numerical data, when G, P, and W are fixed, based
on the loss function defined in Eq. (3), the group-level truth ¢y,
should be:

Zf:l Zie){k SilWkVim
Cim = K .
k=1 ZieXk Silwi

For the categorical data, when G, P, and W are fixed, based
on the loss function defined in Eq. (4), the group-level truth ¢y,
should be the value that receives the highest weighted votes
among all possible values (mode value):

(8)

Cim <— arg maxz Zg”wk h(v, vim), 9)

k=1 ieXxy
where h(x,y) = 1if x =y, and 0 otherwise.

Step 4: Source weights update. After the updates of G, C, and
P, we update the weight of each source according to the differ-
ences between the values it provided and the group-level truths,
where each attribute is weighted by P. That is to say, when
more consideration is given to the differences towards significant
attributes, the source, which provides more correct values on
the significant attributes, will be assigned to a higher weight.
Therefore, by trusting the information provided by the sources
with higher weights, we can more correctly achieve the group-
level truths on significant attributes. At this step, G, C, and P
are fixed. To minimize the objective function in Eq. (1) with
the regularization constraint in Eq. (2), we derive the following
equation using Lagrange multipliers.

ZL] Zoigxk 8il Z’,\,/,Izl Pndm(Vim, Cim)
wi=—log T < i . (10)
Zl:l Zk’:l Zoie/\fk/ il Zm:l PmAm(Vim, Cim)

The pseudo code of this framework is summarized in Algo-
rithm 1. We start with initial estimates on the group indicators
G, the group-level representatives C, and the source weights W,
then iteratively conduct the above four steps until convergence.

Algorithm 1: The PatternFinder algorithm

Input: A collection D of unaligned records, L latent groups, and the
balance parameter «.

Output: The group indicators G, the group-level representatives C,
the attribute weights P, and the source weights w.

1: Initialize G and C

2: Initialize W

3: repeat

4:  Update P according to Eq. (5)

5 Update G according to Eq. (7)

6: for each group C; do

7

8

for each attribute A, do
: Update ¢y, according to Eq. (8) and Eq. (9)
9:  Update W according to Eq. (10)
10: until the convergence criterion is satisfied
11: return G, C, P, and W.

In the following parts, we first discuss two important is-
sues that make PatternFinder more practical including initializa-
tion and convergence. We then analyze the time complexity of
PatternFinder.

Initialization. For the initialization of the source weights, we
simply assign the same weight for each source. The initialization

of the latent groups and the group-level representatives can be
obtained using the existing clustering approaches. Clusters are
treated as the latent groups, and the centers of the clusters are the
group-level representatives. In our experiments, we find that the
result from K — means is typically a good start. The attribute set
is regarded as the feature matrix for each entity, and the number
of clusters is set according to the elbow method [39], which is
experimentally validated in Section 5.2.

Convergence. We prove the convergence of PatternFinder as
follows.

Theorem 2. PatternFinder algorithm converges.

Proof. For the optimization problem in Eq. (1), it can be inferred
that the unique minimum with respect to one set of variables is
achieved when the other three sets of variables are fixed. Thus,
for the four steps generated by PatternFinder, the objective value
is minimal at each step. According to the proposition on the
convergence of the block coordinate descent [37], the proposed
iterative procedure will converge to a stationary point.

Time complexity. In each iteration, PatternFinder computes G
for each record according to the current estimates of C, P, and
W. Thus, the running time is linear with O(LMn), where L is the
number of latent groups, M is the number of attributes and n
is the total number of records. In total, the time complexity of
PatternFinder is O(rLMn), where r is the number of iterations.
When L and M are fixed, the time complexity is linear with
respect to n, which is experimentally validated in Section 5.2.

4.4. Optimized grouping strategy

In this section, we develop an optimized grouping strategy
to improve the efficiency of PatternFinder. We first provide the
observations to PatternFinder and then propose this strategy.

Observations. In Algorithm 1, according to Eq. (7), during the
process of updating G, we need to update the group indicators
of each record o; by calculating an item Sy (1 < I' < L) for
every group-level representative c¢y. o; can then be clustered to
group C; (giy = 1) which has the minimum value S;;. To simplify
the discussion, we denote S;; as B;. It can be inferred that, when
L is large, the process will be too costly to scale well for a
large amount of data. Therefore, we present a scalable strategy
to reduce the calculations in this process by making use of the
information achieved in the previous iterations.

Let j be the current iteration and j— 1, j — 2 be the previous it-
erations. For a record 0;, B (’) is the product of P and the distance
between o; and c, ) As 73 always slightly changes after the first
several iterations, the change will not significantly influence the
update of the group indicators. Therefore, we set a threshold &
to evaluate the change A(PY — pPU=D), If A(PY) — PU-D)) < g,
we consider that the quate of ¢, is the only factor affecting the
change from B ) to B;

We then analyze the update of ¢;, which involves two cases.
(1) The current distance between o0; and C}U Dis no greater than
the previous distance between o; and c?’ . It is obvious that if o;
is closer to cf’_l), it will be far apart from the other group-level
representatives. Therefore, 0; will stay in group I, and there is no
need to calculate the distances between o0; and other group-level
representatives. (2) The current distance between o; and c}(’
is greater than the previous dlstance between o0; and c, 2
this case, as o; is far apart from c%’ , there may exist a group l/
with a smaller distance. Thus, we need to calculate the distances
between o; and the other group-level representatives, and assign
0; to the nearest group by Eq. (7).

Based on the above analysis, the process of updating G is
shown in Algorithm 2. It reduces the running time of updating
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Algorithm 2: Optimized grouping strategy
Input: A collection D of unaligned records, the given parameter &,
B0 = (BIV BYV ... BIV), gD, ¢U-D, and PO in the
(j — 1)-th iteration, and P? in the (j)-th iteration.
Output: 80 = {Bﬁ”, BY. ... By}, gV,
1: if A(PY — PU=D) < & then
2: for each 0; € D do

3: Compute Sf[) <« Zl‘nle p(,{;)dm(v,-m, c,(,’;”), where
(g V=1,1<1<1)

4 if S < BV then

5: gi(,i) 1

6: Blg) <« Si(lj)

7: foreach1 <! <LNIl #1do

8: gl.(,’;) «~0

9: else

10: Update the group indicator gi(,i) according to Eq. (7)

11: BY « s, where | < {lgV) =1,1<1 <1}

12: else

13:  Update the group indicator g% according to Eq. (7)
14:  Update BY

15: return BY, g0,

the group indicators with respect to each o;. In each iteration, if
0; stays in the current group, it requires O(1) time, otherwise,
it requires O(L). Suppose that half of the records update their
group indicators, this then requires O(MnL/2). Since PatternFinder
converges to a stationary point, the number of records updating
their group indicators decreases in each iteration. Thus, the total
cost is at most LMn ) _;_, 1/r, where r is the number of iterations.
For a large number of iterations, LMn ) _;_, 1/r is much less than
rLMn.

4.5. Pattern and truth generation

Given the output of PatternFinder, we discuss the pattern and
truth generation approaches as follows.

Pattern generation. Recall that a pattern ¢ is a triple variable
that contains an applied set R;, an attribute set X and a value
combination tx. Given the output G, C, P, and W of PatternFinder,
the pattern ¢ is generated as follows.

1. R; corresponds to C; achieved from G;

2. X is made up of attributes A, with a higher p,;,, where the
number of attributes in X can be specified by the users. In our
experiments, we consider A, € X when p;; > ﬁ which implies
that if p,, is larger than the average weight ﬁ‘ Ap is added to X;

3. tix corresponds to the value combination of ¢; on X.

Pattern application. It is convenient to discover truths by pat-
terns. Given D and a set of patterns, for each o; in R, if A, € X,
the truth vj;, of vin is tjy. We then achieve the truth set D, made
up of the truths v, where 0; € D and A, € X.

m?
5. Experiments

In this section, we evaluate the proposed methods using both
simulated and real-world datasets. The experimental results
clearly demonstrate the advantages of the proposed methods
in pattern discovery and truth discovery in terms of both ef-
fectiveness and efficiency. We first discuss the experimental
setup in Section 5.1, and then present experimental results for
the simulated and real-world datasets in Sections 5.2 and 5.3,
respectively.

5.1. Experimental setup

5.1.1. Algorithms

For the proposed methods, we evaluate the basic version
PatternFinder and the scalable version PatternFinder + OP with
the optimized grouping strategy proposed in Section 4.4.

For the baseline methods, as our methods find the truths
for multi-source unaligned data, the goal can also be achieved
orderly or jointly by performing entity resolution (ER) and truth
discovery (TD) methods. For the orderly baselines, we separately
implement the following ER and TD approaches, and first record
the performance of ER approaches, then the TD approaches.

ER baselines:

e Link: This is a naive entity resolution method. For each pair
of records, it computes a value similarity for each attribute
and takes the average. It links two records if the average
similarity is more than the given threshold of 0.9 and then
considers all linked records as representing one entity.

e R-Swoosh [40]: This approach uses a boolean pairwise match
function to compare records and uses a pairwise merge
function to merge two records that match into a composite
record. It returns a partition of records by merging records
which have a similarity of at least 0.9.

e Lego [41]: It formalizes an iterative model where blocks are
processed in an iterative fashion until no block contains any
matching records. We use R-Swoosh as the core entity res-
olution algorithm, which follows the same setting described
in [41].

e Magellan [36]: It develops an open-world ER system, which
relies on many other systems to provide the fullest amount
of support to the ER user. As it is designed for ER between
two sources, we run it several times to achieve the result of
record linking over multiple sources.

TD baselines:

e Vote: We use voting as a baseline method. Voting chooses
the values for each attribute for each entity that is provided
by the largest number of sources as the final results.

e CRH [5]: This approach models the conflicts resolution prob-
lem for data of the heterogeneous types. It derives a two-
step iterative procedure including the computation of truths
and source weights as a solution to an optimization prob-
lem.

Joint baseline:

e Cluster [42]: It models the entity resolution problem as a
k-partite graph clustering problem. By making each cluster
including at most one single value for each attribute, the
clustering process can jointly conduct entity resolution and
truth discovery.!

All the experimental results are conducted using a Linux ma-
chine with 8G RAM and Inter Core i5 processor. We implemented
all the methods including our methods and the baselines in
Matlab. For PatternFinder and PatternFinder+OP, we ran them 10
times and report the average results.

1 Due to its efficiency issues, we failed to achieve any result for both the
simulated and real-world datasets in 48 h. Thus, we omit the performance of
this method in the result presentation.
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5.1.2. Performance measures

As the proposed methods study pattern discovery for truth
discovery, we evaluate the accuracy of the pattern discovery as
well as the truth discovery.

Pattern discovery accuracy. For each pattern, it is crucial to
discover the correct value combination, as this value combination
is used to match all the records in the applied set. Thus, we
evaluate the accuracy of the value combinations of patterns as
the accuracy of the pattern discovery. The accuracy is measured
by precision and recall. We denote the set of value combinations
existing in the dataset by G, for the golden standard, and denote
the set of value combinations of patterns by D, for an approach.
Precision is calculated by precision = IS ‘” ‘” | denotmg the propor-
tion of the corrected value combinations to the number of all the
value combmatlons found by the approach. Recall is calculated
by recall = , representing the proportion of the corrected
value comblnaﬁons to the number of all the value combinations
existing in the dataset.

Truth discovery accuracy. To evaluate the performance of pat-
tern application in Section 4.5, we also measure the accuracy of
truth discovery. More specifically, the truths of the entities in
the attribute set X can be directly obtained from the patterns.
We denote the truth set by D, for an approach which contains
the truths in the attribute set X for each record, and G, for
the golden standard. We measure the truth discovery accuracy
by ErrorRate = 1 — ‘legll’“ which denotes the percentage of the
estimated truths achieved by the approach that are different from
the ground truths.

5.2. Experiments using simulated datasets

To show the performance of the proposed methods and the
baseline methods using the data of different characteristics, we
first experiment using the simulated data generated from two
real-world datasets.

Hospital.2 Hospital is a real-word dataset used in [43 44]. It
contains 105 K records with 6 categorical attributes’: Patient
Number (PN), Hospital Name (HN), Condition, Measure Code (MC),
Measure Name (MN), and Sample.

Bus.? Bus is a real-word dataset used in [43]. It contains 108K
records with 7 categorical attributes: Bus Number (BN), Station
Name (SN), Locality Code (LC), Locality Name (LN), Parent Locality
Name (PN), Easting, and Northing.

5.2.1. Dirty data simulation

The original dataset is regarded as the ground truth, and we
generate five conflicting sources by injecting different levels of
noise into the ground truth. To simulate the real-world problem
setting, for an entity, each source has a 50% probability to provide
its information. For a given attribute value of an entity, we flip
its value to another value based on the source’s noise rate. After
the simulation, a collection D of records is then formed, which
contains the records from five sources with various degrees of
the noise rate 8 = {0.1,0.5,0.9, 1.3, 1.7}. A lower 8 indicates a
lower chance that the ground truth is altered to generate records.

2 http://www.hospitalcompare.hhs.gov/.

3 Note that we use categorical attributes in our experiments, as most of our
baselines [40-42] can only be applied to categorical data. However, our methods
can also deal with numerical attributes.

4 http://data.gov.uk/data.

5.2.2. Effectiveness of parameters

In this part, we first test the performance of our methods
subject to different settings of the parameters, then compare it
with the baseline methods of different data sizes. Due to the
efficiency issues of the baselines, we randomly select a part of
the original records (min 2.5k, max 20k) to test them.

The effect of the number L of the latent groups. Integrating the
tuning of L into the entire optimization framework may increase
the computational complexity which leads to bad results. As the
number L of the latent groups is relatively isolated from the rest
of the variables in Eq. (1), we set L as a hyper input parameter
of PatternFinder. Recall that we use the output of K-means as
the initialization of PatternFinder, where the number L of the
latent groups is set as the number of clusters for K-means. To
choose the optimal number of clusters for K-means, we apply
the elbow method [39]. That is, we run K-means for a range of
L, and compute the sum of squared errors (SSE) for each L. SSE
is computed as the sum of the squared distance between each
record member of a group and its group-level representatives.
Fig. 2 shows the SSE for each L on both datasets. It can be inferred
that each line chart looks like an arm, and then we choose the
“elbow” on the arm as the number of clusters (i.e., the number of
the latent groups). For the hospital dataset, L is set as 30, while
for the bus dataset, L is set as 200.

The effect of balance parameter «. As the accurate estimation
for the attribute weights and the source weights is the key to
obtain the correct patterns, we further show the attribute weights
and the source weights of PatternFinder by various « values. The
balance parameter « is set as {1k, 2k, 4k, 8k}. For each «, we
report the result of the attribute weights, source weights, and the
overall performance in Fig. 3.

From Fig. 3(a)(d), we can infer that with the decrease in «,
the variance of P rapidly rises in both datasets. The experimental
results can be explained from Eq. (5): As o decreases, only a
few attributes play important roles in the process of pattern
discovery. However, we can see that the weights of the significant
attributes stand out in every situation: For the Hospital dataset,
the significant attributes are Condition (ID 3), MC (ID 4), and MN
(ID 5); For the Bus dataset, the significant attributes are LC (ID 3),
LN (ID 4) and PN (ID 5). It can be inferred that PatternFinder is not
too sensitive to the setting of parameter «. As long as the pattern
exists among the attributes, PatternFinder is able to discover it.

We also study the distribution of the source weights accord-
ing to different settings of «, which are shown in Fig. 3(b)(e).
The x-axis is the noise rate 8 = {0.1,0.5,0.9, 1.3, 1.7} set for
each source and the y-axis is the source weights ¥V achieved by
PatternFinder. We use a logscale to perform W and calculate the
Pearson correlation coefficient p between g and log . We can
see that the Pearson correlation coefficient p tends to —1 for dif-
ferent « values, which implies that W estimated by PatternFinder
is precise enough to remain consistent with the sources’ noise
rate we generally set.

Finally, Fig. 3(c) and (f) show the precision, recall, and Error-
Rate of PatternFinder for different settings of «. We can see that
PatternFinder performs the best when « = 2k for the Hospital
dataset and « = 4k for the Bus dataset. The reason is that in
these settings, p reaches —0.9902 and —0.9850, respectively. The
experimental results indicate that our method can successfully
distinguish good sources from bad ones, and accordingly, derive
the correct patterns based on the good sources.

The effect of threshold £. To show the performance of the
scalable version PatternFinder + OP, we varied the threshold &.
We set the balance parameter « as 2k and 4k on the two datasets,
and varied the threshold & from 0 to 0.2 by a step of 0.05.
The recall, precision, ErrorRate, and runtime compared for the
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Fig. 3. Performance w.r.t. threshold «.

basic version PatternFinder are shown in Fig. 4. From Fig. 4(a)(c),
we can see that with the increase in threshold &, the ErrorRate
slightly rises for both datasets. On the other hand, the recall and
precision slightly decrease. However, the rise of the ErrorRate
and drop of the precision and recall are acceptable in contrast
for the improvement in the efficiency. As shown in Fig. 4(b)(d),
the optimization strategy leads to a runtime improvement up to
35% and 33% for the two datasets, respectively. The reason is that
we reduce the calculations of updating G by making use of the
information in the previous iterations.

The effect of data sizes. We varied the data sizes from 2.5k to
20k to test the performance of our methods and the baselines,
and the results are shown in Fig. 5. For PatternFinder, we set
a as 2k and 4k on the two datasets, respectively. Note that
we omit the performance of PatternFinder + OP for its similar
performance to PatternFinder, which can be inferred from Fig. 4.
Based on Fig. 5(a)(d), we can see that PatternFinder achieves a
significantly lower ErrorRate than the baselines. This is because
the accurate estimation of the source weights gives a better
guidance to find the truths for the attributes of the patterns.
Moreover, with the increase in the data sizes, the ErrorRate

of PatternFinder decreases while that of the baselines methods
rises. The reason is that PatternFinder finds the correct patterns
in a global view. Thus, a larger data size results in a lower
ErrorRate. Magellan+CRH and Magellan+CRH have relatively low
ErrorRates compared for other baseline methods. This is because
Magellan selects the best learning-based matcher by a cross vali-
dation strategy. Lego + CRH and Lego + Vote perform better than
R — Swoosh + CRH and R — Swoosh + Vote. This is because Lego
processes in an iterative fashion, and it can generate new record
matches based on the blocking results produced by R-Swoosh.
However, the result of Lego is still not good enough, resulting in
the bad performance of CRH when compared for Vote. Link+CRH
and Link+Vote also perform not well enough, as Link fails to
accurately match most of the entities by simply linking records
according to their similarity.

In terms of efficiency, the result is shown in Fig. 5(b)(e).
We can see that PatternFinder achieves a great improvement
compared for the baseline methods. This is because PatternFinder
treats the pattern discovery problem as a high-level clustering
problem and aims to find the common patterns existing in the
data rather than conducting both the entity resolution and truth



106 C. Ye, H. Wang, T. Ma et al. / Knowledge-Based Systems 176 (2019) 97-109

1.0+ 1

Il PatternFinder
B PatternFinder+OP, £=0
PatternFinder+OP, & =0.05

Measure Value

B PatternFinder+OP, &=0.15
[ PatternFinder+OP, &=0.2

ErrorRate precision recall

(a) Hospital

[ PatternFinder+OP, &= 0.1 1

Il PatternFinder
Il PatternFinder+OP, & = 0
[ PatternFinder+OP, & = 0.05
I PatternFinder+OP, & = 0.1

I PatternFinder+OP, & = 0.15
[ PatternFinder+OP, £ = 0.2

Measure Value
o
(6,
T

3.2
+—+—F—+

28 —+— PatternFinder
< —— PatternFinder+OP
&
£
i 24

2.0

0.00 0.05 0.10 0.15 0.20

g
(b) Hospital

1ol [+ PatternFinder
—e— PatternFinder+OP

0.0 5 0.00 0.05 0.10 0.15 0.20
" ErrorRate  precision recall g
(c) Bus (d) Bus
Fig. 4. Performance w.r.t. threshold &.
0.3 - n
—®— Link+Vote [-=— Link+Vote P ]
+— |§II’ISK+CRH 10000} + Link+CRH * & 1.0
-Swoosh+Vote . R-Swoosh+\ote —9 = o . o o
* E{—Swo\?s{ﬂCRH o) 4 R- yod + } g SR & e K *—o
—>X<— Lego+Vote [+ =2 Lego+ o
0| 4 LogorCRH & 1000 f:_e +eRH 2
% 0-21-® Magellap+Vote 4 o) ®  Mafellan+Vote g —
14 ® Magellan+CRH |= 2 100} ® " Magellan+CRH ® ® precision .
S * ¢ PatternFinder @ * PatternFinder <« < S 4+ recall +
E 7 ° 4 4« @ P
T == — = = S I-ERUE o xxx | 8
01} ¥ % ks X . | o9 o
*—k * 1 KKK _A—+
* gy X ok A
* +
A
0 5 10 15 20 0 0 5 10 15 20 0 5 10 15 20
# records(k) in hospital dataset # records(k) in hospital dataset # records(k) in hospital dataset
(a) Hospital (b) Hospital (c) Hospital
0.3 - - 1.0
T t!ntt\(/:%'tﬁ 10000 —17 tgnt:\écg{tﬁ jLT: —@— precision
in in i
R-Swoosh+Vote _ R-Swoosh+VEIe j/f/ + recall
% Eéggvf\?gth;CRH * 5 1000} % Lé;lg%?ét 2 «°
4 Lego+CRH S <£ 5+CRH 209 e
202} o Maggellan+Vote 4 Jr*' - % 100 ® %/lagellanJrVote g ¢* o o o
x ® Magellan+CRH | * 2 ¢ Magellan+CRH ® e
5 * o Pafloming, 14 « *—PafternFjnden |4 <4< 5 &
= P4 ° <4 7] ¥
] . PR S c 10 o x—X @© =
=t = = = S8 S 3 < s KK gosf 4
04F w [ - X.X ok k%
e xw T "
*
0.1
0 5 10 15 20 0 5 10 15 20 0‘70 5 10 15 20
# records(k) in bus dataset # records(k) in bus dataset # records(k) in bus dataset
(d) Bus (e) Bus (f) Bus
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discovery steps. Among the baseline methods, Lego + Vote per-
forms the best. The reason is that Lego converges fast by making
use of the result of R-Swoosh. For CRH, it needs more time to iter-
atively estimate the source reliability, which makes Lego + CRH
run slower than Lego + Vote.

Additionally, the precision and the recall of PatternFinder are
shown in Fig. 5(c)(f). We can see that with the increase in the
data sizes, the precision remains stable and the recall significantly
rises. As PatternFinder can discover the patterns based on the
grouping of similar records, it can find more patterns with an
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Table 3 Table 4

Effectiveness comparison on real-world datasets. Efficiency comparison on real-world datasets.
Methods ErrorRate Methods Runtime (s)

Restaurant Flight Restaurant Flight

Link+Vote 0.2397 0.6661 Link+Vote 11542.83 40759.88
Link+CRH 0.2034 0.6717 Link+CRH 11585.62 40780.50
R-Swoosh+Vote 0.2502 0.6659 R-Swoosh+Vote 21259.04 105136.71
R-Swoosh+CRH 0.2139 0.6717 R-Swoosh+CRH 21301.03 105166.56
Lego+Vote 0.2490 0.3561 Lego+Vote 40580.64 57183.65
Lego+CRH 0.2119 0.3574 Lego+CRH 40624.87 57206.08
Magellan+Vote 0.2123 0.2392 Magellan+Vote 50383.56 171908.09
Magellan+CRH 0.1915 0.2104 Magellan+CRH 50451.37 171935.98
PatternFinder 0.1362 0.1298 PatternFinder 151.63 9.2329

increase in the relevant data size. With a stable precision and
higher recall, the ErrorRate tends to reasonably decrease, which
also matches the ErrorRate of PatternFinder in Fig. 5(a)(d).

5.3. Experiments using real-world datasets

Restaurant dataset: We collected the restaurants’ information
located in NYC from NYC Open Data,” Yelp,® YellowPage,” NYC
health,® and SuperTour? and obtained a collection of a total
of 20,546 records. Note that the records provided by different
sources may refer to the same restaurant, but we do not know
the linkage beforehand. The restaurant dataset has the following
attributes: Name, Street, Building, Zip, and Phone. In order to test
the accuracy of the proposed methods and the baseline methods,
we randomly selected 1281 restaurants and manually labeled
their information, which contain 272 different value combina-
tions of street and zip. We looked up the official websites of
these restaurants and regarded the information on these websites
as the gold standard. In our experiments, we set L = 3k and
a = 2k. Under this setting, the attributes Street and Zip form
the pattern.'?

Flight dataset: The flight data [1], collected over a one-month
period starting from December 2011, consists of 1200 flights and
6 attributes from 38 sources. We conducted pre-processing on
the data to convert the gate information into the same format
and the time information into minutes. Note that we consider the
flight information provided by different sources as different en-
tities, which is a different task setting compared for that in [1,5].
The ground truth of 100 flights is also available from a total of
51,114 records. In order to compare the results with the baseline
methods, which take a long time to produce, we reduced the size
of the original dataset by only using the 51,114 records which
have ground truth as our test dataset. In the experiments, we set
L = 100 and o = 8k. Under this setting, the attributes FN (Flight
number), SDT (Scheduled departure time) and SAT (Scheduled
arrival time) make up the pattern.10

5.3.1. Effectiveness evaluation

Table 3 summarizes the ErrorRate for all the methods of the
two real-world datasets. We can see that the proposed method
achieves the best performance on every dataset, and the im-
provement is promising. For the Restaurant dataset, compared
for the best baseline Link+CRH, the proposed method’s ErrorRate

https://opendata.cityofnewyork.us/.
https://www.yelp.com/nyc.
https://www.yellowpages.com/.
http://www.nychealthratings.com/.
http://test.supertour.com/newyork-ny.us.aspx.

10 we omit the performance of PatternFinder for the different settings of L
and «, which is similar to the results shown in Section 5.2.2 (Fig. 2 and Fig. 3).

O 0 N O wu

decreases by 6.72% and for the Flight dataset, compared for the
best baseline Lego+Vote, the proposed method’s ErrorRate de-
creases by 22.6%. All the baseline methods first conduct the entity
resolution step, then make use of different similarity functions to
block the records. Due to large number of errors existing in every
attribute, these methods fail to divide the records referred to the
same entity into the same block. Thus, they all poorly perform.
With such bad entity resolution results, the advantage of truth
discovery (CRH) cannot be seen (Restaurant) and even performs
worse (Flight).

We also validated PatternFinder+OP with different settings of
the threshold & for both real-world datasets, which is shown in
Fig. 6. From Fig. 6(a)(c) we can see that, with the increase in &, the
ErrorRate slightly rises to 0.01%, and the precision and recall drop
slightly to 0.03% for both real-world datasets. In contrast, the run-
time has a significant improvement compared for PatternFinder,
which is shown in Fig. 6(b)(d). For the Restaurant dataset, the
runtime decreases to 34% and for the Flight dataset, the runtime
decreases to 30%.

5.3.2. Efficiency evaluation

In this section, we evaluated the efficiency of PatternFinder.
We first explored its convergence, then showed its runtime as
well as the baselines.

Convergence speed. As PatternFinder uses an iterate process to
discover patterns, we first test its convergence for both real-
world datasets. Fig. 7 shows the change in the objective value
with respect to each iteration. We can see that the objective
value decreases fast for the first five iterations, then reaches a
stable stage. This is because the proposed optimization problem
Eq. (1) is biconvex, thus we need to alternatively optimize each
variable. Due to the large gradients in the first five iterations, the
variables dramatically change, resulting in fast decrease of the ob-
jective value. The experimental result indicates that PatternFinder
quickly converges in practice.

Runtime. Table 4 summarizes the runtime for all the methods
using both real-world datasets. For the Restaurant dataset, Pat-
ternFinder is significantly two orders of magnitude faster than the
other baselines. For the Flight dataset, PatternFinder achieves four
orders of magnitude faster time than the other baselines. Magel-
lan runs the slowest, as it needs time for reading the documen-
tation and labeling samples when matching. Lego and R-Swoosh
are also time-consuming, both of which require the process of
blocking and matching. Lego performs relatively faster than R-
Swoosh, if the runtime saved by using the blocking result of
R-Swoosh is greater than the additional time needed to iteratively
process the blocks (Flight), while Lego performs worse than R-
Swoosh if it is not the above case (Restaurant). Link requires less
runtime, as it only uses a similarity score to decide whether two
records represent one entity. For the truth discovery baselines, as
CRH needs some iterations to converge, the methods conducted
with CRH need more time than the methods conducted with Vote
for both real-world datasets.
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Fig. 7. Convergence speed.

6. Conclusion

In this paper, we introduce pattern discovery for truth dis-
covery of multi-source unaligned data. We model this pattern
discovery problem as a task of inferring latent groups using a
general optimization framework. In this model, the objective is
to minimize the overall weighted deviation between the group-
level representatives and the multi-group records where each
source is weighted by its reliability and each attribute is weighted
by its significance. We developed a four-step iterative algorithm
called PatternFinder to solve the optimization problem. To im-
prove its efficiency, we also proposed a scalable version by an
optimized grouping strategy. We conducted experiments using
both real-word and simulated datasets. The results demonstrated
the efficiency and the effectiveness of PatternFinder. In this study,
the source weights and group indicators output by PatternFinder
are meaningful to some other applications. In the future, we plan
to adapt the framework to more application scenarios, such as the
analysis of information trustworthiness.
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