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In 2014–2016 the west coast of North America experienced a marine heatwave that

was unprecedented in the historical record in terms of its duration and intensity. This

event was expected to have a devastating impact on populations of giant kelp, an

important coastal foundation species found in cool, nutrient rich waters. To evaluate this

expectation, we used a time series of satellite imagery to examine giant kelp canopy

biomass before, during, and after this heatwave across more than 7 degrees of latitude

in southern and Baja California. We examined spatial patterns in resistance, i.e., the

initial response of kelp, and resilience, i.e., the abundance of kelp 2 years after the

heatwave ended. The heatwave had a large and immediate negative impact on giant

kelp near its southern range limit in Baja. In contrast, the impacts of the heatwave

were delayed throughout much of the central portion of our study area, while the

northern portions of our study area exhibited high levels of resistance and resilience

to the warming, despite large positive temperature anomalies. Giant kelp resistance

throughout the entire region was most strongly correlated with the mean temperature

of the warmest month of the heatwave, indicating that the loss of canopy was more

sensitive to exceeding an absolute temperature threshold than to the magnitude of

relative changes in temperature. Resilience was spatially variable and not significantly

related to SST metrics or to resistance, indicating that local scale environmental and

biotic processes played a larger role in determining the recovery of kelp from this

extreme warming event. Our results highlight the resilient nature of giant kelp, but

also point to absolute temperature thresholds that are associated with rapid loss of

kelp forests.
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INTRODUCTION

Extreme warming events in the ocean have been linked to habitat loss and major changes in
the community structure and function of marine ecosystems (Johnson et al., 2011; Wernberg
et al., 2013; Smale et al., 2019). These events are often large scale phenomenon that span 100 s
to 1000 s of km (Oliver et al., 2018), which can result in spatially variable ecosystem responses
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(Berkelmans et al., 2004; Edwards, 2004). Such spatial variability
can arise from differences in physical and chemical ocean
characteristics (e.g., temperature, nutrients, swell height) or
biological processes (e.g., local adaptation, biotic interactions,
dispersal, migration) within the affected region (e.g., Hughes
et al., 2003; Wernberg et al., 2010). Characterizing spatial
patterns in the response of ecosystems to large-scale disturbances
such as heatwaves can provide insight into the processes and
environmental thresholds that control these responses. A spatial
approach can also help address the challenge of inferring
ecological thresholds from large events that occur infrequently at
a single locality (Turner et al., 2003).

Considerable insight into the ecological consequences of
extreme warming events such as marine heatwaves can be
gained by differentiating between ecosystem resistance (the initial
response of the system to disturbance) and resilience (the ability
of the system to recover after being disturbed; Hodgson et al.,
2015). This is because different processes may control resistance
and resilience, which can lead to variability in spatial patterns
between the two metrics. For example, even if an ecosystem
is initially sensitive to a disturbance, it may still exhibit high
resilience, returning relatively quickly to its pre-disturbance state
(Pimm, 1984).

Interactions between marine heatwaves and other physical
stressors can also control spatial patterns of resistance and
resilience. In the northeastern Pacific, severe El Niño conditions
are often associated with positive sea surface temperature
anomalies and large wave disturbance events (Storlazzi and
Griggs, 1996; Chavez et al., 2002). Both of these factors can
have negative effects on the growth and survival of the giant
kelpMacrocystis pyrifera, an important coastal foundation species
(Graham et al., 2007; Castorani et al., 2018; Miller et al., 2018).
Warm sea temperatures are typically associated with reduced
upwelling and nutrient limited conditions in Southern California,
United States, and Baja California, Mexico (Zimmerman and
Kremer, 1984), and heat stress can itself cause mortality in giant
kelp (Clendenning, 1971; Rothäusler et al., 2011). In addition,
large waves can physically remove giant kelp from the seafloor.
During particularly strong El Niño events in 1982/1983 and
1997/1998, large waves and warm, nutrient poor waters resulted
in widespread loss of giant kelp throughout its range in the
United States and Mexico (Dayton and Tegner, 1989; Edwards
and Estes, 2006). These events led to northward contractions
of the distribution of giant kelp in Baja California (Edwards
and Hernández-Carmona, 2005), and altered the community
structure of kelp forests in Southern California (Dayton et al.,
1992). However, there was substantial spatial variability in the
resilience of giant kelp following these events. For example, after
the 1997-1998 El Niño, recovery time for sites across southern
and Baja California ranged from 6 months to several years
(Edwards and Estes, 2006).

Some of this spatial variability in the response of giant kelp
to heatwaves may be due to local adaptation to environmental
conditions, a process which has been observed in a number of
marine species (Howells et al., 2011; Sanford and Kelly, 2011;
Bennett et al., 2015). The broad geographic distribution of giant
kelp spans large environmental gradients (Graham et al., 2007),

and the scale of these gradients is much larger than the scales
of giant kelp dispersal (Reed et al., 2006). Limited connectivity
among distant populations constrains the homogenizing effects
of gene flow, and creates conditions suitable for population level
selection (Alberto et al., 2010, 2011; Johansson et al., 2015).
Empirical evidence suggests that kelp populations are adapted to
local nutrient conditions, as Kopczak et al. (1991) demonstrated
that plants from nutrient limited locations (Catalina Island,
CA, United States) exhibited more efficient nitrate uptake and
assimilation than those from nutrient-rich areas (Monterey,
CA, United States). There is also evidence of adaptation to
thermal stress in the microscopic reproductive stages of giant
kelp (Ladah and Zertuche-González, 2007). Local adaptation
may create temperature or nutrient thresholds in populations
that are relative to their local conditions, as opposed to all
populations sharing a similar absolute threshold (Sanford and
Kelly, 2011). If this is the case, then we would expect that spatial
variability in the response of giant kelp to a heatwave would
reflect relative SST variability, such as temperature anomalies.
On the other hand, if there is a universal tolerance threshold
for giant kelp, then absolute temperatures may better explain
resistance and resilience.

Between 2014 and 2016, the west coast of North America
experienced exceptional warming due to a sequence of climatic
events (Di Lorenzo and Mantua, 2016). This phenomenon began
in the winter of 2013/2014 as a persistent atmospheric ridge that
led to abnormally high sea surface temperatures in offshore areas
of the Northeastern Pacific (Bond et al., 2015). By the summer
and fall of 2014 this warm water mass had spread to the coastal
regions of North America and SST anomalies reached record
highs in southern and Baja California (Di Lorenzo and Mantua,
2016). This warm anomaly was followed by one of the strongest
El Niño events on record, which led to sustained positive SST
anomalies through early 2016. This multiyear marine heatwave
was associated with decreased primary productivity in the
northeast Pacific and changes in the biological structure and
composition of communities of fish, birds, and marine mammals
(Di Lorenzo and Mantua, 2016). While SST anomalies were
comparable to the 1982/1983 and 1997/1998 El Niño events,
the 2014–2016 heatwave differed from these earlier events in
that it was not associated with large wave disturbances, and the
initial impacts of the warm anomaly on giant kelp forests and
their associated communities in parts of Southern California were
smaller than expected (Reed et al., 2016). However, it is unclear
whether the effects of this heatwave were more pronounced
or longer lasting in other parts of Southern California or
Baja California.

Here we combine satellite data of kelp biomass and SST
to examine the canopy dynamics of giant kelp across more
than 7◦ of latitude in Southern California and Baja California
before, during, and after the 2014–2016 marine heatwave. The
unique conditions associated with this event provided us with an
opportunity to examine the impacts of a severe marine heatwave
on giant kelp biomass in the absence of confounding effects
from large wave disturbances. Our primary goals were: (1) to
characterize patterns of giant kelp resistance and resilience to
the 2014–2016 marine heatwave across all of southern and Baja
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California, and (2) to determine whether relative sea surface
temperature anomalies or absolute sea surface temperature
thresholds better predicted spatial variability in the resistance and
resilience of giant kelp to the warming.

MATERIALS AND METHODS

Study Region
In the northeast Pacific giant kelp is distributed from Alaska to
Baja Mexico (Graham et al., 2007). Our study area encompassed
the distribution of giant kelp along the mainland coasts of
Southern California, United States and Baja California, Mexico,
spanning more than 7 degrees of latitude (approximately
1600 km) from Point Conception (34.5◦N) to the southern range
limit of giant kelp near Bahía Asunción (27.1◦N). This southern
portion of giant kelp’s range is most likely to be impacted by
high temperatures (Bell et al., 2015). We binned this region into
sixteen 100 km coastline segments and examined variability in
sea surface temperature and kelp canopy biomass in each of these
segments. All offshore islands were excluded from our analysis to
simplify binning and latitudinal comparisons. We chose 100 km
as the length for coastline segments in our analyses because
we were interested in regional scale responses of giant kelp to
SST variability.

Sea Surface Temperature Variables
We obtained daily SST data between 1984 and 2018 for our
study area from the National Climatic Data Center Optimal
Interpolation Sea Surface Temperature product (Banzon et al.,
2016). This 35-y dataset combined observations from satellite,
ships, and buoys to create a daily global SST dataset at a 0.25◦

resolution. We created a daily SST time series for each 100 km
coastline segment by averaging the pixels adjacent to the coastline
along each segment.

These daily data were used to calculate time series of relative
and absolute metrics of SST variability in each coastline segment.
Daily SST values were averaged over each calendar month to
produce a time series of mean monthly SST for each coastline
segment. We calculated monthly SST anomalies as the difference
between the mean value for a given month and the 35-year
average (1984–2018) for that month. The number and duration
of marine heatwaves were calculated as periods of five or more
consecutive days when daily SST was greater than the 90th
percentile based on our 35-year baseline (Hobday et al., 2016).

We used the above time series of relative and absolute metrics
of SST variability to develop time series of annual metrics of
SST variability for each coastline segment. The annual metrics
that we calculated were the mean monthly SST anomaly, the
total number of heatwave days, and the mean temperature
of the warmest month of the year. Mean monthly anomaly
and total number of heatwave days are relative measures of
temperature variability, as these variables are based on temporal
averages and percentiles. In contrast, mean temperature of the
warmest month of the year characterizes absolute temperature
variability. Instead of following the calendar year, we calculated
these annual metrics for a “temperature year” (July 1–June 30)

so that the warmest months were positioned at the beginning
of each year (e.g., temperature year 2014/2015 = July 1, 2014–
June 30, 2015).

Spatiotemporal Variability in Giant Kelp
Canopy Biomass
We used Landsat satellite imagery to estimate giant kelp
canopy biomass across our study area at 30 m resolution on
seasonal timescales from 2009 through 2018 following methods
described in Cavanaugh et al. (2011) and Bell et al. (2018). The
30 m × 30 m pixels of kelp canopy biomass were binned into
100 km coastline segments to match the SST data. There were
three coastline segments in the study region that historically
contained very little kelp canopy (<0.1 km2 of kelp canopy
area), and these were removed from our analysis (hence, n = 13
coastline segments).

In order to control for differences in canopy biomass between
coastline segments, we normalized the canopy biomass of each
coastline segment by the maximum biomass observed in that
segment from 2009 to 2018 to produce a time series of seasonal
values that were bounded between 0 and 1. The normalized
seasonal values of canopy biomass in each temperature year were
averaged to produce a time series of annual normalized canopy
biomass. This facilitated comparisons of canopy dynamics among
the coastal segments.

Giant Kelp Resistance and Resilience
We defined the resistance and resilience of giant kelp to the
2014–2016 marine heatwave as a proportional change in canopy
biomass, prior to the normalization described above, relative to
a 5-year baseline period (2009–2013) that immediately preceded
the heatwave. Heatwave resistance for each coastal segment
was calculated as the proportion of the lowest annual average
biomass during the heatwave (2014/2015–2016/2017) relative to
the mean canopy biomass during the 5-year baseline period.
Heatwave resilience of each coastal segment was calculated as
the proportion of the average canopy biomass in 2017/2018
relative to the mean canopy biomass during the 5-year baseline
period. Resistance and resilience were not correlated (p = 0.33;
Supplementary Figure S1).

Statistical Analysis
We specified univariate regression models to examine the
amount of variation in giant kelp resistance and resilience
explained by the relative and absolute temperature metrics.
Specifically, we modeled kelp resistance as separate functions
of the average SST anomaly, maximum monthly SST, and total
number of heatwave days calculated over the 2-year (2014/2015–
2015/2016) duration of the heatwave (three models). Likewise,
we modeled kelp resilience as separate functions of the SST
anomaly, maximum monthly SST, and total number of heatwave
days calculated both during (2014/2015–2015/2016) and after
(2016/2017–2017/2018) the heatwave (six models). For each
response variable (resistance or resilience), we used an AIC-
based model comparison approach to assess which temperature
variable(s) fit the data best (Burnham and Anderson, 2002).
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Comparing temperature variables against one another using
a single multiple regression model was not possible due to
moderate to strong collinearity among some predictors.

Because kelp resistance data were continuous proportions
(i.e., 0 < y < 1), we used beta regression models with a
Cauchy latent variable link function (Ferrari and Cribari-Neto,
2004). We used ordinary least squares (OLS) regression to
estimate temperature effects on kelp resilience. We analyzed
models in R 3.5.3 (R Core Team, 2019), using the package
“betareg” (Cribari-Neto and Zeileis, 2010) for beta regression
models. We assessed the significance of model predictors for
OLS and beta regressions using F-tests and likelihood ratio tests,
respectively (Ferrari and Cribari-Neto, 2004). We estimated the
explanatory power of OLSmodels using R2 and of beta regression
models using a pseudo-R2 metric (the squared correlation
between the linear predictor and the link-transformed response;
Ferrari and Cribari-Neto, 2004).

We checked for homogeneity of variance by plotting Pearson
residuals against model predictions and individual predictors
(Zuur et al., 2009, 2010; Zuur and Ieno, 2016). We ensured
normality of residuals using histograms and quantile-quantile
plots. We utilized the R packages “ape,” “geosphere,” and
“ncf ” (Paradis et al., 2004; Hijmans, 2016; Bjornstad, 2018)
to check for spatial autocorrelation among model residuals
using tests of Moran’s I (Moran, 1950) and visual inspection
of spline correlograms. For all models, spatial autocorrelation
was not detected (p > 0.23). Hence, all models satisfied
assumptions of independent, homogeneous, and normally
distributed Pearson residuals.

Our analyses consisted of several statistical tests, increasing
the likelihood of false positives. Thus, we controlled the
false discovery rate (i.e., the proportion of false positives
among all significant hypotheses) using the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995; García, 2004). All
reported p values are Benjamini–Hochberg adjusted.

RESULTS

Patterns in SST During and After the
Warm Anomalies
The coasts of southern and Baja California experienced a period
of exceptionally warm SST from summer 2014 to spring 2016
(Figure 1). July 2014 to June 2016 was the warmest 2-year period
from 1984 to 2018 according to all three of our temperature
metrics. During this period, monthly SST anomalies across
our study region averaged 2.0◦C and reached a high of 3.9◦C
in October 2015 (Figure 1A). Our study region as a whole
experienced 542 heatwave days between July 2014 and June
2016, and so was in a heatwave state for 74% of this 2-year
period (Figure 1B). Because of the extended nature of these
heatwaves, we refer to this period as the 2014–2016 heatwave,
even though it actually consisted of multiple heatwaves. However,
there were brief periods during 2014–2016 when the heatwaves
abated in the spring of 2015 and 2016 (Figure 1B). SST anomalies
and heatwave days were slightly higher in the southern part of
the study area, but this latitudinal pattern was relatively weak

FIGURE 1 | SST metrics from 2009 to 2018 averaged across the thirteen

100 km coastline segments that comprised the study area (27.1◦N to

34.5◦N): (A) monthly anomalies in SST, (B) occurrence and duration of heat

waves, and (C) SST of the warmest month of each year. The 2014–2016

warm anomaly is shown in red.

(Figures 2A,B, 3A,B). There was more latitudinal variability
in absolute temperatures. SST of the warmest month between
July 2014 and June 2016 ranged from 21.1◦C for the coastline
segment that included Santa Barbara to 26.7◦C for the Bahía
Asunción segment. However, SST of the warmest month did not
strictly follow latitude, and was slightly lower in northern Baja,
30.5 – 32◦N (23.3◦C), than in Southern California, 32◦N– 33.5◦N
(23.7◦C; Figure 4).

By the summer of 2016, SST returned to more normal
conditions across our study area (Figures 2C, 4C). In
2016/2017 SST anomalies and heatwave days averaged 0.3◦C
and 21 days, respectively. The temperature of the warmest
month similarly, declined across the study region from
2015/2016 to 2016/2017 (Figure 4C). However, temperature
in the San Diego region (33◦N) remained high (warmest
month = 22.5◦C) in 2016/2017 relative to all of the other
coastline segments except the southernmost segment at Bahía
Asunción (22.6◦C). By comparison the temperature of the
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FIGURE 2 | Mean SST anomalies across the study region for (A) July 2014–June 2015, (B) July 2015–June 2016, (C) July 2016–June 2017, and (D) July

2017–June 2018.

warmest month in Northern Baja (30.5◦N–32◦N) was 20.6◦C in
2016/2017 (Figure 4D).

Spatiotemporal Variability in Giant Kelp
Canopy Biomass
Giant kelp canopy biomass exhibited high intra- and inter-annual
variability throughout the study region during the 5-year period
prior to the onset of the heatwave in 2014. Seasonal patterns
varied from year to year, but in most of the coastline segments,
canopy biomass was typically highest in the spring or summer
and lowest in winter (blue lines in Figure 5). These seasonal
patterns were likely due to wave disturbance, which is typically
strongest during the winter across most of our study area (Reed

et al., 2011; Bell et al., 2015). However, during the heatwave this
seasonal pattern changed, as canopy biomass in all the coastline
segments reached minimums in the summer and fall of 2014
(Figure 5). Interestingly, in most regions this decline in kelp
was followed by rapid recovery during the winter and spring of
2015, even though SST anomalies remained high with persistent
heatwaves during this period (Figures 2, 3). This winter/spring
recovery did not occur in the southern portions of the range
(south of 30◦N; Figures 5K–M) or in the coastline segment
centered at 33.5◦N, just north of San Diego (Figure 5D).

Kelp canopy declined rapidly across all coastline segments
during the summer and fall of 2015 (Figure 5). Recovery from
this decline during the following winter and spring was less
prevalent, and mean canopy biomass in 2015/2016 was lower
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FIGURE 3 | Total number of heatwave days across the study region for (A) July 2014–June 2015, (B) July 2015–June 2016, (C) July 2016–June 2017, and (D) July

2017–June 2018.

than it had been in 2014/2015 for all but one coastline segment
(Figure 6). During this period, the coastline segment near San
Diego and Baja segments south of 29.5◦N experienced a near
complete loss of kelp canopy. The only two segments where
kelp canopy biomass remained near the 2009–2013 average were
Santa Barbara (34.5◦N) and Ensenada (31.5◦N).

In the summer of 2016 the positive SST anomalies abated
(Figure 2C), and kelp canopy biomass started to recover in the
northern coastline segments (>33.5◦N). However, kelp canopy
biomass continued to decline in 2016/2017 across much of
the rest of study area, particularly in northern Baja between
33◦ and 29◦N (Figures 5, 6). Canopy biomass remained close

to 0 near San Diego and in the southernmost portion of the
range (<29.5◦N).

Recovery of giant kelp canopy biomass in 2017/2018 showed a
high degree of spatial variability. In the northernmost portions
of our study area (>34.0◦N), kelp canopy biomass continued
its recovery from the previous year, and reached levels even
higher than the 2009–2013 average (Figure 6). Canopy biomass
near San Diego increased slightly from 2016/2017, but remained
at historically low levels. In northern Baja, canopy biomass
increased, but was still below baseline levels in all but one
segment. Surprisingly, we documented a dramatic increase in
kelp canopy in the southern portion of our study area near Bahía
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FIGURE 4 | Mean SST of the warmest month across the study region for (A) July 2014–June 2015, (B) July 2015–June 2016, (C) July 2016–June 2017, and

(D) July 2017–June 2018.

Tortugas (27.5◦N). Canopy biomass in this coastline segment
increased nearly 10-fold between 2016/2017 and 2017/2018,
and by 2017/2018 canopy biomass was 1.7 × greater than
the 2009–2013 baseline. By contrast, canopy biomass in the
adjacent southernmost coastline segment near Bahía Asunción
remained close to 0.

Giant Kelp Resistance and Resilience
The timing of canopy loss varied across our study area, and
in most segments there appeared to be a delayed response to
the onset of the heatwave in summer 2014. Only one of the 13
coastline segments experienced its lowest kelp canopy biomass

during the first year of the heatwave (2014/2015). Six segments
reached their minimums in 2015/2016, five in 2016/2017, and
one in 2017/2018 (Supplementary Table S1). On average, annual
canopy biomass was 40% of the baseline in 2015/2016 and 32%
of baseline in 2016/2017. Resistance to the heatwave (i.e., the
lowest annual canopy biomass relative to the average of the 5-
years prior to the heatwave) ranged from 0 to 0.75 (mean = 0.23).
There was a significant negative relationship (p < 0.05) between
giant kelp resistance and both the number of heatwave days and
the mean SST of the warmest month between July 2014 and
June 2016 (Figure 7). The absolute metric, mean SST of the
warmest month, was the best predictor of resistance based on
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FIGURE 5 | (A–M) Time series of seasonal giant kelp canopy biomass from 2009 to 2018 for the thirteen 100 km coastline segments. Biomass is normalized to the

maximum biomass observed in a segment over the time series. The baseline period (July 2009–June 2014) is shown in blue, the heat wave period (July 2014–June

2016) is shown in red, and the recovery period (July 2016–December 2018) is shown in black.

model AIC, explaining approximately 41.3% of the variability in
spatial patterns of kelp resistance (Table 1).

Kelp resilience (i.e., the proportion of canopy biomass in
2017/2018 relative to the 2009–2013 baseline) ranged from 0
to 1.7 (mean = 0.69) across all coastline segments. Resilience
was not significantly correlated with any of the SST metrics
calculated during (2014/2015–2015/2016) or after (2016/2017–
2017/2018) the heatwaves (p > 0.35), suggesting that the severity
of warming did not affect recovery (Figure 8 and Supplementary

Figure S2, and Table 2). The resilience of the two southernmost
coastline segments at Bahía Tortugas and Bahía Asunción are
notable in that their resilience differed dramatically despite being
adjacent to each other. Both of these segments experienced
high SST during the 2014–2016 heatwave, but Bahía Asunción
exhibited the lowest resilience of any coastline segment while
Bahía Tortugas showed the highest.

DISCUSSION

The exceptional warming of 2014–2016 had unexpected impacts
on giant kelp abundance in southern and Baja California.
Kelp canopy biomass declined at the onset of the heatwave
in 2014 throughout the entire study region, however, the
magnitude of this decline and the subsequent recovery varied
dramatically and inconsistently with latitude. Several coastline
segments showed an immediate decline in kelp abundance
with little signs of recovery 2 years after the heatwave ended,
including the segment at the southern range limit. In contrast,
many of the coastline segments experienced a relatively strong
recovery in spring 2015. This recovery was short-lived, however,
and was followed by a sharp decline in the summer and
fall of 2015. The specific reasons for the recovery of the
canopy at these locations during the middle of the heatwave
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FIGURE 6 | Change in kelp canopy biomass in southern and Baja California during and after the 2014–2016 warm period. For each year, mean giant kelp canopy

biomass from July to June was divided by the mean canopy biomass between 2009 and 2013.

and its subsequent decline following the cessation of the
heatwave remain unknown.

The variability in patterns of kelp resistance that we
documented for the 2014–2016 heatwave differs substantially
from the immediate and near complete loss of giant kelp observed
throughout southern and Baja California during the heatwaves
associated with the 1982/1983 and 1997/1998 El Niño events
(Dayton and Tegner, 1989; Edwards and Estes, 2006). Both
of these previous heatwaves were associated with catastrophic
wave disturbance (Griggs and Brown, 1998), which caused the
initial large-scale mortality in giant kelp populations throughout
southern and Baja California, with warm, nutrient limited
conditions negatively impacting subsequent recovery in some
locations (Dayton and Tegner, 1984; Edwards, 2004; Edwards and
Estes, 2006). The 2014–2016 heatwave was not associated with
major wave disturbance (Reed et al., 2016), which likely explains
the greater variability in the initial response and recovery of giant
kelp that we observed. Near the southern range limit of giant kelp,
high temperatures and/or low nutrients may have been severe
enough in 2014/2015 to cause rapid mortality of adult giant kelp
and suppress Subsequent recruitment. However, in northern Baja
andmost of southern California, some kelp survived the first year
of the heatwave, and conditions were suitable for recruitment
and/or regrowth of the canopy by the summer of 2015.

The delayed reaction of giant kelp to the warm anomaly
across much of our study area may indicate that a major
part of the heatwave’s impact was on giant kelp recruitment.
Previous studies have identified “recruitment windows,” where
spore release coincides with suitable temperature, nitrate, and
irradiance conditions (Deysher and Dean, 1986). Environmental
conditions may have been suitable for recruitment across parts
of our study area in the winter and spring of 2015, which

would explain the recovery observed during this period in
many segments (Figure 5). Alternatively, it is possible that
observed declines in canopy biomass during the summer and
fall of 2014 resulted from a prolonged dieback of the canopy
without mortality of plants below the surface. This canopy
dieback was then followed by canopy recovery from surviving
plants when conditions briefly improved in early 2015. The
low rates of canopy recovery observed during the spring of
2016 when cooler temperatures prevailed suggests low adult
densities and widespread recruitment failure during this time.
That lack of recruitment in spring 2016 would have led to low
adult abundance and sparse kelp canopies during the following
year (2016/2017). While we cannot directly observe subsurface
dynamics with our satellite data, the prolonged (>12 months in
some segments) and widespread lack of canopy recovery after the
heatwave ended in early 2016 is consistent with the hypothesis
that canopy loss was the result of kelp mortality and not simply
canopy dieback because giant kelp typically regrows its surface
canopy within 6 months (Schiel and Foster, 2015).

The spatial patterns of resistance in giant kelp were
better explained by an absolute thermal threshold (i.e., mean
SST of the warmest month) than by relative increases in
temperature as measured by SST anomalies and heatwave
days. This finding contradicts that of Smale et al. (2019),
who found that variation in the canopy biomass of giant
kelp in our study region was best explained by the number
of heatwave days. This contradiction in findings is likely
related to confounding effects of wave disturbance. The
negative relationship between canopy biomass and heatwave days
observed by Smale et al. (2019) resulted primarily from low
biomass during the exceedingly warm 1982–83 and 1997–98
El Niño events, which as noted above resulted from extremely
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FIGURE 7 | Relationship between kelp resistance and 2014–2016 sea

surface temperature metrics: (A) SST anomaly, (B) number of heatwave days,

and (C) mean SST of the warmest month. Blue lines show beta regression

model fits for significant relationships (p < 0.05).

TABLE 1 | Summary of model comparisons examining the relationship between

giant kelp resistance and the three SST metrics from July 2014 to June 2016.

Predictor 1AIC Pseudo-R2 P Model rank

Mean SST of the warmest month 0 41.3 0.006 1

Number of heatwave days 2 18.6 0.013 2

Mean SST anomaly 5.8 51.9 0.082 3

Intercept only (null model) 8.4 0 1.000 4

large waves rather than warm water. Our finding that kelp was
more responsive to an absolute temperature maximum than
to the magnitude of relative temperature change suggests that
local adaptation to heat stress did not have a major impact
on the response of kelp to this warming event throughout
much of its range.

Relative temperature metrics have been shown to explain
variability in resistance to heat stress in other marine systems.
For example, coral reef bleaching has been correlated with
degree heating weeks, a relative metric calculated using the
baseline climatology of a given location (Hughes et al., 2017).
Coral reefs consist of an assemblage of different coral species,
which may give them a higher capacity for local adaptation
than ecosystems where the foundation species is a single
species. However, relative temperature anomalies also explained
variability in growth, survivorship, and reproduction across
the distribution of Scytothalia dorycarpa, a temperate fucoid
alga common to western Australia (Bennett et al., 2015).
It is important to note that our results do not rule out
the possibility that local adaptation may play an important
role in controlling giant kelp dynamics. Instead, we suggest
that there may be some absolute threshold beyond which
local adaptation to temperature stress or nutrient limitation
is no longer effective, and the 2014–2016 warming event
exceeded that threshold throughout much of southern and
Baja California.

Disentangling the effects of heat stress and nutrient
limitation on giant kelp during heatwaves is challenging because
temperature and nitrate concentration are strongly negatively
correlated in the California Current system (Zimmerman and
Kremer, 1984). Other sources of nitrogen are unrelated to
temperature (e.g., ammonium and urea) and help to sustain
kelp during warm periods when nitrate concentrations are low
(Brzezinski et al., 2013; Smith et al., 2018). These other forms
of nitrogen help account for the relatively high growth rates
maintained by giant kelp (>2% dry mass per day) that we
observed at our long-term study sites near Santa Barbara during
the 2014–2016 heatwave (Rassweiler et al., 2018) despite positive
temperature anomalies >4◦C. Thus, it seems reasonable that
heat stress rather than nutrient stress caused giant kelp to display
its lowest resistance at locations with the highest temperatures.
This contention is supported by our finding that most coastline
segments where the mean SST of the warmest month during
the 2014–2016 heatwave approached or exceeded 24◦C suffered
near-complete loss of giant kelp canopy, whereas those that did
not exceed this threshold exhibited less kelp loss. Experimental
studies have found that water temperatures >24◦C exceed
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FIGURE 8 | Relationship between giant kelp resilience and 2014–2016 sea

surface temperature metrics: (A) SST anomaly, (B) number of heatwave days,

and (C) mean SST of the warmest month.

giant kelp’s physiological tolerance, leading to rapid mortality
(Clendenning, 1971; Rothäusler et al., 2011). Similar patterns
of kelp loss were observed near the southern range limit of

TABLE 2 | Summary of model comparisons evaluating the relationship between

giant kelp resilience and the three SST metrics during (July 2014 to June 2016)

and after (July 2016 to June 2018) the heatwave.

Predictor 1AIC R2 P Model rank

Mean SST of the warmest month (2016–2018) 0 16.3 0.368 1

Intercept only (null model) 0.3 0 1 2

Mean SST of the warmest month (2014–2016) 1.4 6.8 0.912 3

Number of heatwave days (2016–2018) 2.1 1.7 0.354 4

Mean SST anomaly (2016–2018) 2.2 0.3 1 5

Number of heatwave days. (2014–2016) 2.2 0.2 1 6

Mean SST anomaly (2014–2016) 2.3 0 1 7

giant kelp during the summer of 1997 when SST reached 25◦C
for 2 months, leading to a complete loss of both canopy and
subsurface kelp at Bahía Tortugas (Ladah et al., 1999).

Recovery of kelp after the heatwaves was spatially variable
and not related to any of the SST metrics that we analyzed. We
observed high levels of resilience in the coastline segments in the
north of our study area (>34◦N) and in certain parts of Baja.
Surprisingly, the most resilient coastline segment was in Bahía
Tortugas (27.5◦N), which is close to the southern range limit
of giant kelp. This is in sharp contrast to the adjacent coastline
segment at the southern range edge, which did not have any
detectable kelp canopy by mid-2018, 2 years after the heatwave
subsided. Kelp canopy biomass also remained well below baseline
levels near San Diego (32.9◦N). The Bahía Tortugas segment
showed high levels of resilience, even though absolute and relative
SST were high during the heatwave period. The area near Bahía
Tortugas is characterized by strong localized coastal upwelling
(Dawson, 1951; Woodson et al., 2018), which may have reduced
heat and nutrient stress and promoted canopy regrowth and
recruitment during and after the heatwave. Some of this small-
scale temperature variability may not have been captured by our
relatively coarse SST data. Other studies have reported rapid
recovery of kelp in Bahía Tortugas following previous heatwaves
(Ladah et al., 1999; Edwards and Estes, 2006), and this area could
serve as an important refuge for giant kelp near its southern range
edge following extreme warming events.

Biological processes such as dispersal, recruitment,
competition, and grazing influence giant kelp population
dynamics, and likely interact with environmental controls to
explain local variability in resilience. For example, highly isolated
giant kelp populations have lower persistence and resilience
due to diminished demographic connectivity (Reed et al., 2006;
Castorani et al., 2015, 2017) and, in some locations, inbreeding
depression (Raimondi et al., 2004). Likewise, competition
with understory algae can inhibit giant kelp recruitment
(Reed and Foster, 1984; Reed, 1990), thereby negatively
impacting population recovery following disturbance from warm
temperatures or large waves (Edwards and Hernández-Carmona,
2005). Grazing by herbivores can have a strong impact on
giant kelp abundance, and so spatial variability in grazing
pressure due to processes such as top-down trophic controls may
also influence resilience (Shears and Babcock, 2002; Lafferty,
2004; Ling et al., 2009). Interactions among environmental
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and biological processes may also be important, as increased
temperatures can make kelp forests more vulnerable to other
physical or biotic disturbance (Wernberg et al., 2010).

Our results highlight both the resilient nature of giant kelp
in southern and Baja California, as well as the limits of that
resilience. Populations near the equatorial range limit of giant
kelp, which exist near temperature tolerance thresholds, are
likely the most vulnerable to future increases in the frequency
of marine heatwaves. However, marine microclimates, such as
regions of localized upwelling, may provide spatial refuges from
heatwaves that help repopulate neighboring areas following these
disturbances. Other stressors, such as wave disturbance and
grazing, may interact with positive temperature anomalies, and
push giant kelp systems beyond their capacity for recovery.
Interacting stressors may be especially important in the center
of species distributions, where the system would otherwise be
resilient to warming on its own.
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