Computational Materials Science xxx (xxxx) XXXX

journal homepage: www.elsevier.com/locate/commatsci

Contents lists available at ScienceDirect

Computational Materials Science

Unified memory in HOOMD-blue improves node-level strong scaling

Jens Glaser?, Peter S. Schwendeman?, Joshua A. Anderson®, Sharon C. Glotzer

a,b,c,

@ Dept. of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, United States

® Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States

¢ Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States

ARTICLE INFO ABSTRACT

Keywords: Current supercomputer designs rely on increasing the compute density inside a node to maximize the perfor-
Molecular dynamics mance of applications that tightly integrate the processors within a shared memory space. HOOMD-blue 2.5
CUDA enables molecular dynamics simulations that take advantage of multiple GPUs inside the same node which are
GPUs connected via NVLINK. We describe the native implementation of CUDA unified memory in HOOMD-blue for
NVLINK . . .

. strong scaling on this hardware, and provide performance benchmarks.
Unified memory
Rigid bodies

1. Introduction

By optimizing the performance of molecular simulations on modern
high performance computing (HPC) architectures, researchers are able
to study more complex models on unprecedented spatial and temporal
scales. For example, coarse-grained or atomistic models of biomolecular
systems require high performance to sample a large number of con-
figurations relevant to their higher order assembly. Key to overcoming
these challenges is the strong scaling capability of the codes used,
whereby the time to solution is reduced by taking advantage of paral-
lelism. Current mainstream molecular simulation codes, such as
AMBER, GROMACS, NAMD, and LAMMPS, exploit parallelism at var-
ious levels. AMBER, GROMACS and NAMD are biomolecular simulation
codes. AMBER supports acceleration on GPUs and spatial decomposi-
tion using the message passing interface (MPI). GROMACS parallelizes
using SIMD, multithreading, GPUs, and MPI domain decomposition [1].
NAMD is designed for large scale simulations, supports GPUs and a load
balancing scheme based on “patches” with CHARM++ [2]. LAMMPS is a
general-purpose simulation code, and supports GPUs, Intel Xeon Phi
coprocessors, threads via OpenMP and spatial domain decomposition
via MPI[3]. Extensions of LAMMPS, such as the ysggMESO package
have been benchmarked on the Summit supercomputer at Oak Ridge
National Laboratory, measuring the impact of the NVLINK interconnect
on MPI communication performance [4].

The Summit supercomputer, an IBM AC922 machine at Oak Ridge
National Laboratory, features a ‘dense node’ design that includes six
GPUs in a single compute node. These GPUs are connected by the
NVLINK 2 interconnect and support addressing of a shared memory

* Corresponding author.
E-mail address: sglotzer@umich.edu (S.C. Glotzer).

https://doi.org/10.1016/j.commatsci.2019.109359

space via the unified memory feature of the CUDA programming model
[5]. Here, we outline the implementation, challenges overcome and
performance of enabling unified memory in HOOMD-blue. We released
the new features in version 2.5 [6]. Previous versions of HOOMD-blue
[7]1, beginning with release 1.0, only supported strong scaling on
multiple GPUs based on MPI [8], a capability that was tailored to the
previous generation of supercomputers such as the Titan super-
computer, a Cray XK7 machine at Oak Ridge National Laboratory,
which only contains a single GPU per compute node.

Here, we describe an implementation of unified memory in
HOOMD-blue. Unified memory was introduced in CUDA with release
6.0 in early 2014, and it was further refined for Pascal GPUs which have
compute capability 6.0, to support concurrent access to memory from
both the GPU and CPU. The core idea of unified memory is the ability to
address memory that physically resides either in GPU or in CPU via a
single memory space. CUDA implements a page-faulting capability,
which ties in with the Linux kernel and allows it to automatically bring
chunks of data into the device-local memory space for reading or
writing on demand. The size of these chunks can vary, from the Linux
kernel page size (4kB on Intel CPUs, 64kB on IBM Power CPUs) to
several pages. Hardware of compute architecture 6.0 enables this cap-
ability through a virtual 49bit memory pointer. In this way, the total
available memory space and even the size of a single allocation can
exceed the size of local GPU memory, expanding the possibilities for
memory-intensive applications (Fig. 1).

In the context of molecular simulations, which tend to be compute
and/or memory bandwidth bound, it is important to enable fast access
to the unified memory space between different GPUs. The NVLINK

Received 29 May 2019; Received in revised form 16 October 2019; Accepted 17 October 2019

0927-0256/ © 2019 Elsevier B.V. All rights reserved.

Please cite this article as: Jens Glaser, et al., Computational Materials Science, https://doi.org/10.1016/j.commatsci.2019.109359

http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2019.109359
https://doi.org/10.1016/j.commatsci.2019.109359
mailto:sglotzer@umich.edu
https://doi.org/10.1016/j.commatsci.2019.109359

J. Glaser, et al.

Computational Materials Science xxx (xxxx) XxXxx

GPU | | GPU

GPU

CPU | | CPU

v

g

unified memory

allocate beyond GPU memory size

Fig. 1. Schematic visualization of the unified memory space. Adapted from http://devblogs.nvidia.com/unified-memory-cuda-beginners/.

interconnect is specialized for fast data exchange between GPUs at up to
50 GB/s bidirectional bandwidth per lane [9]. Additionally, on the IBM
AC 922 architecture, it allows data transfer between the GPUs and the
CPU at the same rates. While the initial version of NVLINK (NVLINK 1)
supports Pascal GPUs, the current version (NVLINK 2) supports the
current generation of Volta GPUs. Improvements of NVLINK 2 include
concurrent access between the GPUs and the CPU, multi-GPU atomics,
higher bandwidth and number of lanes, and CPU-GPU cache coherence.

The unified memory design of HOOMD-blue emerged out of con-
siderations how to effectively implement a load-balancing commu-
nciation algorithm [10] for multi-GPU simulations. It became clear that
due to HOOMD-blue’s existing capability of performing a spatial sort of
the particle data along a Hilbert curve [7], the sorting algorithm should
already provide good load balancing compared to spatial domain de-
composition, if it is possible to map the particle data onto multiple
GPUs in a contiguous fashion. However, this is precisely what is en-
abled through unified memory and NVLINK technology. Therefore, the
main challenge in achieving strong-scaling on multiple GPUs of the
same compute node consists in enabling support for unified memory in
HOOMD-blue.

The remainder of the paper is organized as follows. In Section 2.1
we describe how we ported HOOMD-blue’s memory management rou-
tines to unified memory through CUDA’s cudaMallocManaged in-
terface. Section 2.2 discusses how particle data is distributed among
GPUs. In Section 2.3 we address the challenges of improving data lo-
cality. Some GPU algorithms pose unique optimization challenges,
which we will summarize in Section 2.4. Section 3 compares the per-
formance of the new code path, between NVLINK 1 and 2 (Section 3.1),
with and without spatial sort (Section 3.2), between MPI and unified
memory code paths for a Lennard-Jones (LJ) liquid (Section 3.3), and
finally more complex examples (Section 3.4).

2. Implementation

We refactored the core memory management routines in HOOMD-
blue, with additional features (unified memory support), modernization
(C++11), and backwards code compatibility in mind. Only a subset of
HOOMD-blue’s C++ classes has been enabled to take advantage of
unified memory currently (see Table 1). However, the framework put in
place allows one to easily generalize additional classes as needed.

2.1. Unified memory

We implemented a new class, GlobalArray, to manage unified
memory allocations. Up to version 2.4, memory was managed through a
C++ template class called GPUArray that keeps track of the current
memory location (host or device). GPUArray provides a light-weight
API, ArrayHandle, that takes a requested access location and mode
(read, readwrite, and overwrite) as arguments. In this way, we

Table 1
Features enabled for multi-GPU execution with unified memory in HOOMD-
blue 2.5.2.

® Core data structures (ParticleData, ForceCompute, ParticleGroup)

® Cell neighbor lists (md.nlist.cell())

® Velocity Verlet integrators (md.integrate.nve (), md.integrate.nvt (),
md.integrate.npt (), md.integrate.nph()).

® Pair potentials (md.pair.*, with exception of multi-body potentials)

® Rigid bodies (md.constrain.rigid())

® Particle—particle particle-mesh electrostatics (md.charge.pppm ()).

avoid unnecessary copies of the pinned memory regions [7]. Since all of
HOOMD-blue’s algorithms rely on this interface, GlobalArray also
supports it for backwards compatibility. It provides a wrapper to
memory allocated with cudaMallocManaged. On GPUs with compute
capability > 6.0, these memory regions are simultaneously accessible
from all GPUs in the same execution context. To facilitate im-
plementation of the new class, and the phasing-out of the old one,
GPUArray and GlobalArray share the same interface through static
polymorphism, as outlined in Fig. 2. An additional requirement is that
GlobalArrays should be able to fall back onto pinned memory be-
havior when unified memory is needed, i.e. in single GPU simulations
(see also Section 2.4.4). Internally, we manage the data pointers using
C++11 smart pointers (std: :unique_ptr < >) with custom deleters,
to support all standard C++11 operators, including move operators.

2.2. Particle data partitions and kernel launches

We rely on and extend the existing atom decomposition approach [7],
which assigns one particle to a fixed number of one or more threads of
the GPU. In the multi-GPU code path, we split the atoms evenly be-
tween GPUs according to their index in the particle data. The spatial
sort along a Hilbert curve guarantees data locality, which is important
to minimize page faults between GPUs. The particle split is handled by
the GPUPartition class, which stores the range of particle indices
assigned to a GPU and also switches the CUDA context to that particular
GPU (Fig. 3). Porting a kernel to multi-GPU execution is as simple as
providing an additional argument for the starting particle index to-
gether with the size of the contiguous interval of particles indices that
this kernel processes. Then, we invoke the kernels by iteration over the
logical GPUs and issue kernel launches («...>> syntax) from the same
host process. In particular, we count down from the GPU with the
highest index to GPU 0, which is the default GPU that we use for all
kernels that do not (yet) support multi-GPU execution. GPUParti-
tions in HOOMD-blue are always associated with particle indices, but
sometimes only for a subset of the particles, e.g. those which are
members of a ParticleGroup.

To guarantee the validity of the simulation results in the presence of
data dependencies, we need to insert explicit synchronization barriers. For

http://devblogs.nvidia.com/unified-memory-cuda-beginners/

J. Glaser, et al.

Tclass ~
Derived: class

GPUArrayBase

+ getNumElements() : int
+ isNull() : bool

+ resize()

+ acquire() : ArrayHandleDispatch

AN
| «bind» = — 1
' <T->T, Derived -> GPUArray> T:class
T GPUArray | --<
1
: «bind» fallback : = — 1
! <T->T, Derived -> GlobalArray> T:class |
fTTTTTTTTTTTTTTmmmm e GlobalArray | ___

Computational Materials Science xxx (xxxx) XxXxx

————————T:class |
ArrayHandle - - — -
+data: *T
1
I
1
r_— - 1 I
.T:class «pind» X
GPUArrayDispatch |_. <T->T> X
! : :T: class:
o - — 5 :—[>| ArrayHandleDispatch
 T:class .

GIobaIArrayDispat_ch_)--:

Fig. 2. Class hierarchy (UML diagram) of GPUArray/GlobalArray. The use of static polymorphism based on the curiously recurring template pattern (CRTP) avoids
link time ambiguities associated with virtual template classes. To not have to explicitly instantiate templates of the ArrayHandle class that depend on the data
storage mechanism of GPUArray/GlobalArray whenever the arrays are accessed, the ArrayHandleDispatch abstract class holds a pointer to the data and the
owning GPUArray/GlobalArray, and therefore converts static into runtime polymorphism. ArrayHandleDispatch objects are passed from the data man-
agement classes to the ArrayHandle class. GlobalArray optionally falls back on GPUArray (see Section 2.4.4).

a single GPU and execution stream, synchronization is implicit. However,
CUDA does not perform implicit synchronization between different GPUs,
so that a kernel launched on one GPU may overlap with a kernel launched
on a different GPU. We therefore explicitly place barriers before and after
every multi-GPU kernel launch. In practice, we accomplish this through a
sequence of cudaEventRecord and cudaStreamWaitEvent calls as
outlined in Fig. 4, which we accomplish using the methods Execu-
tionConfiguration: :beginMultiGPU () and endMultiGPU ().

2.3. Data locality and memory hints

Instructing the CUDA driver about the access pattern for the
memory regions it manages is indispensable for good multi-GPU per-
formance. Every memory region is physically stored in some memory
space, but this location is determined by the CUDA driver based on
performance heuristics. For instance, the driver is capable of avoiding
page faults by setting up mappings between GPUs. It can also tie a
specific memory range to a given GPU and therefore prevent it from
migrating to a different one. The behavior is controlled through hints for
memory locality as arguments to cudaMemAdvise. These hints are
optional from a correctness viewpoint, but they allow the driver to
make informed migration decisions that produce the fastest perfor-
mance for a given data access pattern. As most kernels in HOOMD-blue

TwoStepNVTMTKGPU.cu

operate on a fixed subset of particle indices, it is advantageous to as-
sociate subintervals of the particle data with specific GPUs (see Fig. 5).
The cudaMemAdviseSetPreferredLocation hint assigns a
memory range to a specific GPU or the CPU. To ensure that the data
initially resides on that device, the cudaMemAdvise call needs to be
accompanied by a call to cudaMemPrefetchAsync. The hint cuda-
MemAdviseSetAccessedBy indicates that a portion of memory will
also be accessed by another device, and instructs the driver to set up a
permanent memory mapping between the preferred or actual data lo-
cation and the accessing device. Finally, some memory allocations
change less frequently (such as pair potential parameters), but are read
from in every time step. Those memory ranges are marked with the
cudaMemAdviseSetReadMostly flag, which caches their contents in
the memory of all devices that access them once. However, write ac-
cesses invalidate those memory pages and cause expensive re-duplica-
tion.

For debugging and performance optimizations, the CUDA visual
profiler (nvvp) provides useful information on every page fault that
occurs, and these are visible when the option “Use fixed width segments
for unified memory timeline” is unchecked. As of the time of writing
this article, technical limitations in nvvp do not allow tracing the lo-
cation of the page fault back to the source line where it occurred.
However, this correlation is important and allows one to identify the

// iterate over active GPUs in reverse, to finish on GPU 0

for (int idev = gpu partition.getNumActiveGPUs() - 1;

{

idev >= 0; --idev)

auto range = gpu partition.getRangeAndSetGPU(idev);

unsigned int nwork = range.second - range.first;

unsigned int offset = range.first;

// setup the grid to run the kernel
(nwork/run_block size) + 1, 1, 1);
dim3 threads(run block size, 1, 1);

dim3 grid(

// run the kernel,

}

starting with offset
gpu_nvt mtk step one kernel<<< grid, threads >>>(d_pos, ..,

nwork, offset);

Fig. 3. Example of a kernel launch with work distributed over multiple GPUs (CUDA/C++ code).

J. Glaser, et al.

Computational Materials Science xxx (xxxx) XxXxx

GPUO stream 0

kernel 1 kernel 2 kernel 3

GPU1 stream 0 kernel 2

1 x cudaEventRecord (on GPUO)
n x cudaStreamWaitEvent (on each GPU)

n x cudaEventRecord (on each GPU)
1x cudaStreamWaitEvent (on GPUO)

Fig. 4. Explicit synchronization is necessary before and after concurrent kernel launches on multiple GPUs.

ParticleGroup.cc

GlobalArray<unsigned int> member idx(member tags.size(),
m_pdata->getExecConf());

m_member idx.swap(member_ idx);

#ifdef ENABLE_CUDA

if (m_pdata->getExecConf()->isCUDAEnabled())

{

cudaMemAdvise (m_member idx.get(),

m_member idx.getNumElements()*sizeof(unsigned int),

cudaMemAdviseSetReadMostly,
CHECK_CUDA_ERROR() ;

}
#endif

ParticleData.cc

// split preferred location of particle data across GPUs
for (unsigned int idev = 0; idev < m_exec_conf->getNumActiveGPUs(); ++idev)

{

cudaDeviceProp dev_prop = m_exec_conf->getDeviceProperties(idev);

if (!dev_prop.concurrentManagedAccess)

continue;

auto range = m _gpu_partition.getRange(idev);
unsigned int nelem = range.second - range.first;

if (!nelem)
continue;

cudaMemAdvise(m_pos.get()+range.first, sizeof(Scalar4)*nelem,
cudaMemAdviseSetPreferredLocation, gpu map[idev]);

// migrate data to preferred location
cudaMemPrefetchAsync(m_pos.get()+range.first, sizeof(Scalar4)*nelem,

gpu_map[idev]);

}

Fig. 5. Examples for applying memory usage hints (cudaMemAdvise) and pre-fetching (cudaMemPrefetchAsync) to improve data locality and reduce the number

of page faults.

place in the code that would benefit from e.g. a cudaMemaAdvise in-
struction or which should be refactored for performance. Nevertheless,
nvvp does provide the memory address. Therefore, we implemented a
tracking feature (a memory traceback=True option in con-
text.initialize()) that outputs the names, data types and
memory start addresses of all unified memory allocations used by the
program, at the end of each run. For each memory region, it also pro-
vides a stack trace of the last three function calls at time of allocation.
The latter information allows one to easily identify the provenance of
that allocation. In the code, memory regions are optionally named
through a TAG_ALLOCATION () macro when they are allocated. Fig. 6
shows example output from this feature.

2.4. Particular challenges

For the initial implementation of unified memory in HOOMD-blue
2.5.x, only the features and algorithms outline in Table 1 have been
ported to multi-GPU execution. One may still combine them with single
GPU features, however, this will violate strict data locality and there-
fore increase the frequency of page faults and data migrations. The
resulting performance may be poor. Some of the core algorithms in
HOOMD-blue pose particular optimization challenges, which we out-
line here.

J. Glaser, et al.

Computational Materials Science xxx (xxxx) XxXxx

>>> hoomd.context.initialize(memory_ traceback=True)

>>> hoomd.run(100)

notice(2): Total amount of managed memory allocated through Global[Array,Vector]: 90.3MB
notice(2): Actual allocation sizes may be larger by up to the OS page size due to alignment.
notice(2): List of memory allocations and last 3 functions called at time of (re-)allocation
notice(2): ** Address 0x7£3826000000, 37.1MB, data type unsigned int [m nlist]

notice(2): (1) ...
notice(2): (2) ...

notice(2): (3) NeighborListGPU::buildHeadList ()

notice(2): ** Address 0x7£3828600000, 541kB, data type unsigned int [m_idx_scratch]

notice(2): ** Address 0x7£3846000000, 1.95MB, data type double4 [m angmom alt]

notice(2): (1) ...
notice(2): (2) ...
notice(2): (3) CellListGPU::initializeMemory()
notice(2): (1) ...
notice(2): (2) ...

notice(2): (3) ParticleData::allocateAlternateArrays(unsigned int)

Fig. 6. Example output of the memory traceback — source code correlation capability to identify memory regions involved in page faults.

2.4.1. Cell list

The cell list is used in the neighbor search for pairwise interactions
and sorts particles in grid cells, which are search volumes for neighbors
within the cut-off distance of a given particle. It has a different data
layout than the particle data and maps a three-dimensional cartesian
cell index onto a one-dimensional cell index using row-major layout.
While particles that are close together typically also fall into the same
cell, splitting the one-dimensional cell index across GPUs in analogy to
the particle data partition does not guarantee that there will be a direct
correspondence between multi-GPU partitions of the particle data and
the cell index. To mitigate this performance issue, we decided to con-
struct a separate cell list on each GPU, which we fill only with particles
that are handled by that particular GPU. Only if necessary, these cell
lists are combined into a single list for classes that do not (yet) support
per-device cell lists. For the special case of cubic boxes, it is possible to
align the sequence of the space-filling curve with the cell order to
further improve data locality [11], but this has not been attempted
here.

2.4.2. Neighbor list

Based on the cell list, the neighbor list n1ist.cell () constructs
the table of particle neighbors that lie exactly within a spherical cutoff
Feit- The changes to the neighbor list for multi GPU execution with
unified memory turned out to be rather straightforward, because it
maps GPU threads on particle indices. We split particle indices on GPUs
using the GPUPartition as described above. In addition, the class
NeighborListGPUBinned iterates over the per-device cell list when
searching for neighbors of a particle. It is beneficial for performance to
look up particles by index, rather than to store position information in
the cell list. This strategy reduces the excess amount of data transferred
when page faults occur.

Bounding volume hierarchies (BVHs) [12] and non-rectilinear cell
lists [13] offer better performance for systems with very disparate pair
cut-offs. However, the BVH-based neighbor list in HOOMD-blue [14,],
nlist.tree (), is not yet optimized for unified memory.

2.4.3. Rigid bodies

Rigid bodies in HOOMD-blue are groups of particles held together
by rigid constraints (md.constrain.rigid()). To optimize rigid
bodies for multi-GPU execution, we introduce a separate
GPUPartition of the central particles of rigid bodies. Every time step,
the forces on the central particle are computed by a reduction over the
constituent particle forces. During this phase, threads are split onto

GPUs according to the association of the central particles with a given
GPU, and multiple threads are assigned to each central particle.
Additionally, we look up the properties of central particles via a table
that is split across GPUs using GPUPartition for improved memory
locality.

2.4.4. GPUArray fallback

During performance testing we found that some single-GPU simu-
lations in HOOMD-blue 2.4 without unified memory ran faster than
those which used unified memory. We determined the root cause to be
an increased launch latency for kernels that launch after a synchroni-
zation point (cudaDeviceSynchronize). At the time of im-
plementation, a fix for this CUDA issue was not yet available. We
therefore decided to implement a capability in GlobalArray to fall
back onto standard pinned memory, in order not to compromise single
GPU performance (see Fig. 2). At compile time, the user can decide to
always enable unified memory (ALWAYS_USE_MANAGED_MEMORY = ON).

2.4.5. PPPM electrostatics

Electrostatics in HOOMD-blue are computed using the particle-
particle, particle-mesh algorithm (md.charge.pppm()) [15]. The
short range part benefits from multi GPU acceleration as all other pair
potentials do. To be able to run the long range calculations on multiple
GPUs, we updated the charge assignment and force interpolation ker-
nels. Therefore, the data access pattern is consistent with GPU locality.
For the current implementation, we decided to leave the Fast Fourier
Transform (FFT) and all reciprocal space calculations as they are. As a
micro-optimization, we perform the same FFT on all GPUs in parallel,
avoiding extra data transfer. In the future, the FFT may additionally be
accelerated by exploiting the multi-GPU capabilities of CUFFT
(cufftxt, [16]).

3. Performance results

We assess the performance benefit of the unified memory code path
using examples on Pascal and Volta architectures, which support
compute capability 6.0 and NVLINK 1, and compute capability 7.0 and
NVLINK 2, respectively. We benchmark on one, two and three GPUs. A
Summit node has six GPUs, however only three of them connect within
the same NVLINK topology and to the same CPU. Moreover, we com-
pare between unified memory and MPI code paths. To launch HOOMD
2.x (x > 5) on multiple GPUs, one passes a command line option with
the requested GPU ids, e.g., -gpu= 0, 1, 2. This explicit choice of GPUs

J. Glaser, et al.

Computational Materials Science xxx (xxxx) XxXxx

=
~

—— V100
16/ —*— P100

=
(5}

=
w

[a
N

=
=

1.0

Ratio of Performance (2 GPUS/1 GPU)
S

1x 105 2 x 105

5 x 105 1x 106 2 x 106

Number of particles

Fig. 7. Relative performance of the LJ liquid (tou; = 30) with varying number of particles N on two GPUs compared to one GPU, for Pascal (NVLINK1, upward facing

triangles) and Volta (NVLINK2, downward facing triangles).

allows the user to assign a variable number of devices to every MPI
rank; by default, HOOMD-blue runs on the single fastest GPU. In the
following, we only benchmark on NVLINK hardware; even though
possible, execution on Pascal generation devices and later without
NVLINK relies on peer copies over the PCle bus and usually leads to
performance degradation.

3.1. NVLINK 1 vs. NVLINK 2

We benchmark the two versions of NVLINK (1 & 2). Using a
workstation (Intel XeonE5-1680 CPU) with two NVIDIA P100 GPUs
with NVLINK 1, and another workstation with two V100 GPUs with
NVLINK2 (Intel Xeon 4110 CPU), we establish a performance difference
between the two interconnects of about 20%, when normalized by the
performance of a single GPU, cf. Fig. 7. Not accounting for the hard-
ware differences between the two GPU generations, this suggests that
the type of interconnect itself is important in speeding up multi-GPU
simulations.

3.2. Importance of spatial sort

To demonstrate the importance of memory locality, we compare the
performance between a simulation with and without spatial sort. Due to
the central role of data locality in reducing the number of page faults,
we expect the spatial sorting to have a large impact on the performance
of multi-GPU simulations. Fig. 8 demonstrates that disabling the spatial
sort results in a tenfold decrease in performance, showing that sorting
the particles is indeed vital. The comparison also shows that domain
decomposition simulations on the same GPUs using MPI are less af-
fected by the spatial sort and incur only a roughly 50% decrease in
performance when the sorter is disabled. This benchmark does not take
into account the improvement of CUDA-aware MPI, and without CUDA-
aware MPI, the performance of the unified memory code path is su-
perior to that of the MPI code path. We will, however, further analyze
this difference below (Section 3.3).

3.3. Strong scaling of a LJ liquid compared to CUDA-aware MPI

In Fig. 9, we compare performance of a simple LJ liquid between the
unified memory and MPI code paths, showing particle time steps per
second (N x TPS) as a function of system size N. Strong scaling is

indicated by the increase in absolute performance as a function of the
number P of processors at N = const., whereas ideal weak scaling would
result in a horizontal line N X TPS = const.. The performance-relevant
code paths for this benchmark are the cell and neighbor lists, and the
pair potential [8]. For fair comparison, we run on up to three V100’s
with NVLINK 2 interconnect between them and with the CPU, on an
IBM AC 922 compute node of the Summit supercomputer at Oak Ridge
National Laboratory. To accelerate the MPI code path using the cuda-
aware IBM Spectrum MPI, which on Summit also takes advantage of
NVLINK, we use the compile time option ~-DENABLE_MPI_CUDA = ON for
HOOMD-blue, the runtime option -smpiargs=’-gpu’ to the jsrun
job launcher, and the environment variable PAMI_DISABLE_IPC = 1.
We find that the performance of the unified memory code path with two
GPUs is practically identical to that of the MPI code path, and slightly
worse than cuda-aware MPI with NVLINK on three GPUs. We explain
the performance gap by the fact that the MPI code path on Summit also
takes advantage of NVLINK and that the ghost particle regions in this
benchmark reduce the demand for data communication in this bench-
mark for a short-ranged pair potential [8].

3.4. Benchmarks of various soft matter systems

To assess the usefulness of our optimizations across a wider ranger
of simulation models, we implemented benchmarks of various soft
matter systems that represent different capabilities of the HOOMD-blue
code. See Fig. 10 for the normalized performance of the code across all
benchmarks, for different unified memory and MPI execution config-
urations. The benchmarks include a LJ liquid [7,8], a block copolymer
micelle [18] in explicit solvent, a crystallizing fluid of rigid proteins in
implicit solvent [19], a system of point particles forming a quasicrystal
[20], and liquid SPC/E water [21,22]. We chose system sizes large
enough to demonstrate the scaling capabilities of the two code paths. As
a general observation, benchmarks which only involve pair forces (LJ
liquid and quasicrystal), perform better with MPI than with NVLINK,
owing to their low compute density. The microsphere benchmark also
performs better with MPI, because it involves bonded interactions
which the NVLINK code path does not optimize for. On balance, the
patchy protein and the SPC/E water benchmarks involve rigid bodies
which exhibit poor MPI scaling due to the communication of ghost
particle forces, and they demonstrate good scaling with unified
memory. In particular, configurations of the SPC/E water benchmark

J. Glaser, et al.

Computational Materials Science xxx (xxxx) XxXxx

1000

800

600

TPS

400

200

I With Sorter
Without Sorter

Unified Memory

MPI

Codepath

Fig. 8. Performance in number of time steps per second for simulations of the LJ Liquid with N = 500, 000 particles (r,,; = 3.00), using unified memory and MPI on 2x

V100s, with and without the sorter.

with non-power of two numbers of ranks do not execute at all with MPI
because of the limitations of the distributed FFT algorithm [23] used for
PPPM electrostatics, whereas three GPUs using NVLINK realize a 50%
performance improvement over single GPU execution. However, abso-
lute performance of this SPC/E water benchmark on one NVIDIA V100
GPU is on the order of 10 ns/day and not competitive with biophysical
simulation codes such as GROMACS [1,24]. GROMACS uses optimized
implementations of the Coulomb interactions, including particle-mesh
(PME) only methods and PPPM with analytical differentiation.

4. Conclusions

To take advantage of the NVLINK architecture on the Summit su-
percomputer and on similar machines, we extend HOOMD-blue 2.5.x to
support multi-GPU execution using unified memory. The unified

memory code path enables strong scaling of systems with pair poten-
tials, rigid body constraints and electrostatic calculations on multiple
GPUs inside the same compute node. Native support for unified
memory can be very useful to speed up algorithms that perform poorly
in spatial domain decomposition, and in particular those which handle
rigid bodies. It coexists with the MPI code path, which scales beyond a
single compute node. One may also combine both code paths using
multiple GPUs per MPI process, but we did not specifically optimize for
this situation and leave this task for the future. Because particles are
spatially sorted and evenly split across GPUs, the new code paths lends
itself particularly well to the simulation of phenomena that are hard to
load-balance using domain decomposition, such as crystal growth from
a seed or coexistence of phases with different densities. Only con-
siderably more complex force decomposition schemes, such as those
implemented in NAMD [2], and which are not considered here, have

MPI -¥- P=1 -¥%-P
—— P=1 —A P=

109_
Unified memory
8
n 6x 10
o
[
X
< 4 x 108
3x 108
1x10° 2% 105

5 x 105 1x 106 2 x 106

Number of particles N

Fig. 9. Scaling of the unified memory (upward-facing triangles) and MPI code paths (downward facing triangles) on a Summit IBM AC922 compute node with
number of particles N and number P = 1, 2, 3 of GPU, showing the performance in terms of particle time steps per second (TPS X N) for a LJ liquid with 1., = 30 vs.
number of particles N. Linear scaling of wall clock time with number of particles results in N x TPS = const..

J. Glaser, et al.

Computational Materials Science xxx (xxxx) XxXxx

o
S ©
—
> >
X 4 - o
— O
[—
©
S p X
o 31 3 o
a o
Q RO o O
c % am>D 5%
© 2 O a o
S 2ol O 20g
— o o ~N
‘49 — —) 5
C 1 azo
()] GIGAY
o N ™
o
| -

lj_liquid

N=1,000,000N=1,428,364 N=4,096

microsphere patchy protein quasicrystal

te)
X
o}
a
mO
:>)<.—|
= NE @
50 39 20)
am ol 5mX 20
G) D(D e
© 2 N P Om
XN G) Po% NN
g s C o 93 =S
ol 5 - =2 ol 2
— o X X G)
O — 2D
" oo m
QO
— —
spce

N=1,000,000 N=32,768

Fig. 10. Benchmarks of representative soft matter systems with N particles on one node of OLCF Summit, showing normalized performance in terms of particle time
steps per second relative to one V100 GPU. For every model, the tested execution configurations are (from left to right): single GPU, two MPI ranks with one GPU
each, three MPI ranks with one GPU each, two GPUs with unified memory, three GPUs with unified memory, two MPI ranks with three GPUs and unified memory
each. Parameter choices, visualizations and job scripts utilizing signac-flow [17] are available under http://github.com/glotzerlab/hoomd-benchmarks.

the potential to improve upon our atom decomposition approach.
Currently, only a subset of routines in HOOMD-blue supports multi-
GPU execution with unified memory. In the future, we will enable more
features such as bonded interactions, various updaters, and additional
integration methods. HOOMD-blue takes advantage of unified memory
capabilities at the lowest level, which sets it apart from other codes that
e.g. support NVLINK only when the MPI library supports it [4]. Ad-
ditionally, the two code paths in our software may provide a good
baseline for benchmarks of novel MPI implementations that explicitly
support unified memory [25]. Our optimizations should prove useful
for accelerating large-scale self-assembly simulations in soft and bio-
logical matter and materials science.

5. Author contributions

Jens Glaser: Conceptualization, Investigation, Validation, Writing -
original draft, Writing - review & editing. Peter S. Schwendeman:
Conceptualization, Investigation, Validation, Writing - original draft,
Writing - review & editing. Joshua A. Anderson: Conceptualization,
Investigation, Validation, Writing - original draft, Writing - review &
editing. Sharon C. Glotzer: Conceptualization, Writing - review &
editing, Supervision.

Data availability
All computer code is available open-source from http://github.com/

glotzerlab/hoomd-blue. Benchmarks are available under http://github.
com/glotzerlab/hoomd-benchmarks.

Declaration of Competing Interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This material is based upon work supported in part by the U.S. Army

Research Laboratory and the U. S. Army Research Office under Grant
No. W911NF-18-1-0167 (J.G.) and by the National Science Foundation,
Division of Materials Research Award #DMR 1409620 (J.A. and S.C.G).
This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-000R22725: INCITE Project MAT110 “Nucleation
and growth of colloidal crystals,” and also an Early Science Project on
OLCF’s Summit supercomputer. Additional hardware support by
NVIDIA Corp. to the Glotzer Group is gratefully acknowledged.

References

[1] M.J. Abraham, T. Murtola, R. Schulz, S. Pll, J.C. Smith, B. Hess, E. Lindahl,
GROMACS: high performance molecular simulations through multi-level paralle-
lism from laptops to supercomputers, SoftwareX 1-2 (2015) 19-25, https://doi.org/
10.1016/j.s0ftx.2015.06.001.

[2] B. Acun, D.J. Hardy, L.V. Kale, K. Li, J.C. Phillips, J.E. Stone, Scalable molecular

dynamics with NAMD on the summit system, IBM J. Res. Dev. 62 (6) (2018)

4:1-4:9, https://doi.org/10.1147/JRD.2018.2888986.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J.

Comput. Phys 117 (1) (1995) 1-19, https://doi.org/10.1006/jcph.1995.1039.

Y. Xia, A. Blumers, Z. Li, L. Luo, Y.-H. Tang, J. Kane, J. Goral, H. Huang, M. Deo,

M. Andrew, A GPU-accelerated package for simulation of flow in nanoporous source

rocks with many-body dissipative particle dynamics, Comput. Phys. Commun.

(2019) 106874, , https://doi.org/10.1016/j.cpc.2019.106874.

[5] https://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[6] https://github.com/glotzerlab/hoomd-blue.

[7] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics si-

mulations fully implemented on graphics processing units, J. Comput. Phys. 227

(10) (2008) 5342-5359, https://doi.org/10.1016/j.jcp.2008.01.047.

J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse,

S.C. Glotzer, Strong scaling of general-purpose molecular dynamics simulations on

GPUs, Comput. Phys. Commun. 192 (2015) 97-107, https://doi.org/10.1016/j.cpc.

2015.02.028.

IEEE HotChips 28 (2016) http://www.hotchips.org/archives/2010s/hc28/, and

IEEE HotChips 29 (2017) https://www.hotchips.org/archives/2010s/hc29/, and

https://en.wikichip.org/wiki/nvidia/nvlink.

[10] J.M.A. Grime, G.A. Voth, Highly scalable and memory efficient ultra-coarse-grained
molecular dynamics simulations, J. Chem. Theory Comput. 10 (1) (2014) 423-431,
https://doi.org/10.1021/ct400727q.

[11] Y.-H. Tang, G.E. Karniadakis, Accelerating dissipative particle dynamics simulations
on GPUs: algorithms, numerics and applications, Comput. Phys. Commun. 185 (11)
(2014) 2809-2822, https://doi.org/10.1016/j.cpe.2014.06.015.

[12] M.P. Howard, J.A. Anderson, A. Nikoubashman, S.C. Glotzer, A.Z. Panagiotopoulos,
Efficient neighbor list calculation for molecular simulation of colloidal systems
using graphics processing units, Comput. Phys. Commun. 203 (2016) 45-52,

[3

[4

[8

[9

http://github.com/glotzerlab/hoomd-blue
http://github.com/glotzerlab/hoomd-blue
http://github.com/glotzerlab/hoomd-benchmarks
http://github.com/glotzerlab/hoomd-benchmarks
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1147/JRD.2018.2888986
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.cpc.2019.106874
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://github.com/glotzerlab/hoomd-blue
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1016/j.cpc.2015.02.028
https://doi.org/10.1016/j.cpc.2015.02.028
http://www.hotchips.org/archives/2010s/hc28/
https://www.hotchips.org/archives/2010s/hc29/
https://en.wikichip.org/wiki/nvidia/nvlink
https://doi.org/10.1021/ct400727q
https://doi.org/10.1016/j.cpc.2014.06.015
http://github.com/glotzerlab/hoomd-benchmarks

J. Glaser, et al.

[13]

[14]

[15]

[16]

[17]

[18]

https://doi.org/10.1016/j.cpc.2016.02.003.

Y.-H. Tang, L. Lu, H. Li, C. Evangelinos, L. Grinberg, V. Sachdeva, G.E. Karniadakis,
OpenRBC: a fast simulator of red blood cells at protein resolution, Biophys. J. 112
(10) (2017) 2030-2037, https://doi.org/10.1016/j.bpj.2017.04.020.

M.P. Howard, A. Statt, F. Madutsa, T.M. Truskett, A.Z. Panagiotopoulos, Quantized
bounding volume hierarchies for neighbor search in molecular simulations on
graphics processing units, Comput. Mater. Sci. 164 (2019) 139-146, https://doi.
org/10.1016/j.commatsci.2019.04.004.

D.N. LeBard, B.G. Levine, P. Mertmann, S.A. Barr, A. Jusufi, S. Sanders, M.L. Klein,
A.Z. Panagiotopoulos, Self-assembly of coarse-grained ionic surfactants accelerated
by graphics processing units, Soft matter 8 (8) (2012) 2385-2397, https://doi.org/
10.1039/C1SM06787G.

https://docs.nvidia.com/cuda/cufft/index.html.

C.S. Adorf, P.M. Dodd, V. Ramasubramani, S.C. Glotzer, Simple data and workflow
management with the signac framework, Comput. Mater. Sci. 146 (2018) 220-229,
https://doi.org/10.1016/j.commatsci.2018.01.035.

Z. Zhang, R.L. Marson, Z. Ge, S.C. Glotzer, P.X. Ma, Simultaneous nano- and mi-
croscale control of nanofibrous microspheres self-assembled from star-shaped
polymers, Adv. Mater. 27 (26) (2015) 3947-3952, https://doi.org/10.1002/adma.
201501329.

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Computational Materials Science xxx (xxxx) XxXxx

J. Glaser, S.C. Glotzer, Looped liquid-liquid coexistence in protein crystallization
(2019), https://arxiv.org/abs/1910.06865.

M. Engel, P.F. Damasceno, C.L. Phillips, S.C. Glotzer, Computational self-assembly
of a one-component icosahedral quasicrystal, Nat. Mater. 14 (1) (2015) 109-116,
https://doi.org/10.1038/nmat4152.

J. Glaser, X. Zha, J.A. Anderson, S.C. Glotzer, A. Travesset, Pressure in rigid body
molecular dynamics (2019).

H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair
potentials, J. Phys. Chem. 91 (24) (1987) 6269-6271, https://doi.org/10.1021/
j100308a038.

http://github.com/jglaser/dfftlib.

C. Kutzner, S. Pll, M. Fechner, A. Esztermann, B.L. de Groot, H. Grubmiiller, More
bang for your buck: improved use of GPU nodes for GROMACS 2018, J. Comput.
Chem. 40 (27) (2019) 2418-2431, https://doi.org/10.1002/jcc.26011.

K.V. Manian, A.A. Ammar, A. Ruhela, C.-H. Chu, H. Subramoni, D.K. Panda,
Characterizing CUDA unified memory (UM)-aware MPI designs on modern GPU
architectures, in: A. Jog, O. Kayiran (Eds.), Proceedings of the 12th Workshop on
General Purpose Processing Using GPUs - GPGPU ’19, ACM Press, New York, New
York, USA, 2019, pp. 43-52, , https://doi.org/10.1145/3300053.3319419.

https://doi.org/10.1016/j.cpc.2016.02.003
https://doi.org/10.1016/j.bpj.2017.04.020
https://doi.org/10.1016/j.commatsci.2019.04.004
https://doi.org/10.1016/j.commatsci.2019.04.004
https://doi.org/10.1039/C1SM06787G
https://doi.org/10.1039/C1SM06787G
https://docs.nvidia.com/cuda/cufft/index.html
https://doi.org/10.1016/j.commatsci.2018.01.035
https://doi.org/10.1002/adma.201501329
https://doi.org/10.1002/adma.201501329
https://arxiv.org/abs/1910.06865
https://doi.org/10.1038/nmat4152
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
http://github.com/jglaser/dfftlib
https://doi.org/10.1002/jcc.26011
https://doi.org/10.1145/3300053.3319419

	Unified memory in HOOMD-blue improves node-level strong scaling
	Introduction
	Implementation
	Unified memory
	Particle data partitions and kernel launches
	Data locality and memory hints
	Particular challenges
	Cell list
	Neighbor list
	Rigid bodies
	GPUArray fallback
	PPPM electrostatics

	Performance results
	NVLINK 1 vs. NVLINK 2
	Importance of spatial sort
	Strong scaling of a LJ liquid compared to CUDA-aware MPI
	Benchmarks of various soft matter systems

	Conclusions
	Author contributions
	Data availability
	mk:H1_20
	Acknowledgments
	References

