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Abstract We present a novel framework that creates an automatic tour of unsteady flow fields for exploring
internal flow features. Our solution first identifies critical flow regions for time steps and computes their
temporal correspondence. We then extract skeletons from critical regions for feature orientation and pathline
placement. The key part of our algorithm determines which critical region to focus on at each time step and
derives the region traversal order over time using a combination of energy minimization and dynamic
programming strategies. After that, we create candidate viewpoints based on the construction of a simplified
mesh enclosing each focal region and select the best viewpoints using a viewpoint quality measure. Finally,
we design a spatiotemporal tour that efficiently traverses focal regions over time. We demonstrate our
algorithm with several unsteady flow data sets and perform a user study and an expert evaluation to confirm
the benefits of including internal viewpoints in the design.
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1 Introduction

For large and complex flow fields, it is important for users to view the features or pattern of interest,
especially for those hidden or occluded ones which are not clearly visible from outside the volume. We refer
to such features as internal features. This occlusion problem is similar to that in volume rendering, which
could be addressed by tuning the transfer function. For integration-based flow visualization, if we choose to
keep flow lines opaque and do not filter out the surrounding lines, considering internal viewpoints becomes
necessary. Internal viewpoints give users closeup views for detail observation of what lies inside of the flow
field. External viewpoints are commonly placed at the volume’s bounding sphere and look at the center of
the volume. They are suitable for observing external features, i.e., flow features around the volume’s
boundary. In contrast, internal viewpoints have much more freedom as they can be placed anywhere inside
the volume and look at any points of interest. The recent work of FlowTour (Ma et al. 2014) generates an
automatic tour for exploring internal flow features. FlowTour places viewpoints around the features of
interest, i.e., critical flow regions, to form the view path. However, it only considers 3D steady flow fields.
The design of an automatic tour for exploring 3D unsteady flow fields remains an unsolved problem.

Streamlines are steady over time, but pathlets traced over an unsteady flow field move over time. This
poses several unique challenges which demand a new solution for automatic tour design. First, for a steady
flow field, we place seeds once to generate streamlines. For an unsteady flow field, we should carefully place
seeds over time to capture critical flow regions at different time steps. Using pathlet animation, we need to
make sure that the density of pathlet is appropriate and varies smoothly over space and time. Therefore, new
seeds need to be placed in the subsequent time steps to highlight new critical regions. Additional seeds need
to be placed to account for disappearing pathlets which go out of the domain boundary or get trapped around
the vicinity of a critical point. Second, in the tour animation, since all streamlines remain unchanged, the
shifting from one focal region to another region only needs to consider how smooth the transition will be.
For an unsteady flow field, we assume that the animation follows the order of time steps of the data. Since all
pathlets change along the animation, we need to solve the issue of dynamic shifting of focus as the critical
regions may merge or split over time. To this end, we need to first identify the correspondence among
critical regions, then determine an optimal traversal order of these critical regions. Third, placing cameras
along the tour should take into account the size, orientation, and lifespan of each critical region of focus so
that the tour would highlight different critical regions at the right moment and for a right duration. Only by
doing so can we produce an informative tour path to capture important time-dependent flow features for a
comprehensive understanding.

In this paper, we present a new framework that designs an automatic guide for exploring internal flow
features for unsteady flow fields. Our solution encompasses feature identification, pathlet placement, region
traversal-order determination, viewpoint selection, and tour generation. In particular, we propose an optimal
solution for determining the critical region traversal order that integrates energy minimization and dynamic
programming techniques. This important step essentially determines the outline of the tour path, leaving
path details to be solved in the subsequent steps. Our work can be considered as an extension of FlowTour
(Ma et al. 2014). For a single time step, it shares similar ideas with FlowTour, e.g., critical region detection
and region skeleton extraction. However, since our algorithm focuses on unsteady flow fields, the key
questions are how to find the correspondence among critical regions and how to determine the best region
traversal order. To the best of our knowledge, our work is the first that aims at designing a guided tour for
exploring an unsteady flow field.

2 Related work

Many flow visualization techniques were proposed to make flow features and pattern easily and clearly
perceivable. Examples include feature-based (Post et al. 2003) and geometry-based (McLoughlin et al.
2010) flow visualization. Among these techniques, streamline visualization has long been a popular method
for visualizing steady flow fields. A streamline is a curve everywhere tangent to a steady flow field.
Intuitively, it is the path that a particle will follow if released in the field. Seed placement and streamline
selection form two major branches of streamline visualization. For seed placement in 3D (Spencer et al.
2009; Xu et al. 2010; Yu et al. 2012; Ma et al. 2014), the goal is to select the best seeds so that the
corresponding streamlines can clearly reveal flow features and patterns. As an alternative to seed placement,
streamline selection (Marchesin et al. 2010; Lee et al. 2011; Tao et al. 2013; Ma et al. 2013) aims at



Moving with the flow: an automatic tour 1127

selecting the best streamlines from a pool of streamlines to capture important flow features while reducing
occlusion and clutter.

Pathlines are the trajectories of particles seeded in an unsteady flow field. Unlike streamline tracing
which uses the same vector data throughout the integration, the vector data are updated at each time step
when pathlines are advected. McLoughlin et al. (2013) presented an approach that computes the similarity
between integral curves (streamlines and pathlines) for interactive seeding. Their similarity-based clustering
enables filtering of the integral curves to provide a nonuniform seeding distribution along the seeding object.
Different approaches were proposed to visualize unsteady flow fields using pathline advection. Steinman
(2000) described a simple method for visualizing 3D periodic velocity data based on the subdivision and
sequential display of pathlines. The algorithm provides the flexibility to control the length and spacing of the
pathlines. Chandler et al. (2015) presented a method to trace pathlines in scattered, particle-based flow
fields. By developing a modified k-d tree representation for highly compressible data sets, they performed
pathline computation via identifying, tracking, and updating an enclosing, dynamic particle neighborhood as
particles move over time. Besides pathline visualization, other techniques were also developed for unsteady
flow field visualization. Lane (1993) built a simple and effective system to visualize unsteady flow fields
using streaklines. The system can process multiple time steps without requiring all the data simultaneously,
making it suitable for out-of-core processing. Sadlo et al. (2011) visualized Lagrangian coherent structures
of unsteady flow fields using an efficient method to compute the finite-time Lyapunov exponent and its
height ridges related to the flow structure.

Viewpoint selection is an important issue in volume (Bordoloi and Shen 2005; Takahashi et al. 2005)
and flow (Lee et al. 2011; Tao et al. 2013) visualization. Typically after finding the best viewpoints, the
subsequent task is to generate a good path that traverses all selected viewpoints. Ji and Shen (2006)
developed a solution to select viewpoints for a time-varying volumetric data set using a dynamic pro-
gramming algorithm and produced a smooth viewpoint animation for viewing the data set. Viola et al.
(2006) found characteristic viewpoints based on an information channel between the model in the scene and
the viewpoint set. They designed a transformation path between two selected viewpoints by utilizing an
intermediate viewpoint so that the camera path changes smoothly by switching the focus from one feature to
another. Hsu et al. (2013) leveraged the medial-axis-based roadmap technique and introduced several
constraints for computing camera paths in order to create effective animations for volume visualization. Bai
et al. (2016) presented a view path design method to display the evolution of volumetric features with their
topology for a time-varying data set. Their viewpoint entropy computation includes both visual information
(i.e., the information channel between viewpoints and feature groups) and topology information (i.e., the
skeleton of features quantified with Kullback—Leibler distance). Meuschke et al. (2017) designed an
automatic selection of viewpoints to form a camera path for supporting the exploration of time-dependent
cerebral aneurysms. Their camera path reveals the most interesting regions during the cardiac cycle based on
user-selected morphological and hemodynamic parameters.

3 Algorithm overview

Our algorithm consists of three stages: critical region identification (Sect. 1), region traversal-order deter-
mination (Sect. 4), and viewpoint creation and tour generation (Sect. 5). At the first stage, we detect critical
regions at each time step and construct their temporal correspondence. We also extract each region’s
skeleton for skeleton-based seeding. At the second stage, we design a solution that integrates energy
minimization and dynamic programming to obtain the optimal traversal order for critical regions. This stage
is the most important one as the region traversal order essentially outlines the underlying tour. Once the
order of traversal is determined, we create sample viewpoints along each focal region at the third stage. We
then select the best viewpoints based on their quality to generate the actual tour path. In this section, we
briefly describe the critical region identification as its relatively straightforward. For the other two stages, we
will elaborate their procedures in Sects. 4 and 5, respectively.

Critical region identification Our approach first identifies the critical regions at each individual time step
and then connects the regions based on their temporal correspondence. The critical regions are detected as
high-entropy regions. We evaluate the entropy at a voxel by considering the variation of vector directions in
a 4D local window centered at that voxel. In our experiment, we use a window resolution of
5 X 5 x 5 x 5. Then, we leverage a parallel region growing algorithm to group the high-entropy voxels
into regions. Since a critical region could span several time steps in an unsteady field, we further apply the
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Fig. 1 a—c Are the critical regions detected for three consecutive time steps of the supernova data set. Their corresponding
volume thinning results are shown in d—f, and skeletons extracted are shown in g—i

feature tracking algorithm proposed by Silver and Wang (1998) to identify the temporal correspondence
among critical regions. Based on the correspondence, we merge regions corresponding to the same feature
into a new critical region. In order to identify the shape of a critical region, we compute its skeleton using a
volume thinning algorithm (Gagvani and Silver 1999). We place additional seeds along the skeletons
together with some random seeds to ensure the critical regions are covered by pathlets. An example of the
detected critical regions, their corresponding volume thinning results, and their skeletons is shown in Fig. 1.
Please refer to “Critical region identification” section in Appendix for details.

4 Region traversal-order determination

In general, we may have multiple critical regions at a single time step while a critical region may span across
multiple time steps. Our goal is to produce a “smooth” traversal of “good” critical regions over time,
conveying the most information about the underlying unsteady flow field. Assume that we have a total of
n regions and m time steps. Since we select a single critical region to focus on for each time step, the search
space for determining the region traversal order is bounded by O(n™). The worst case happens when each
region occupies all the time steps. Obviously, the brute-force method is not practical due to its exponential
time complexity. A straightforward greedy algorithm which always picks the “best” region for each time
step could be applied. However, the greedy method does not guarantee a globally optimal result. Moreover,
temporal correspondence among regions is not considered. In this paper, we present a novel method which
integrates energy minimization and dynamic programming to obtain the optimal traversal order for critical
regions.

4.1 Overview of method

We define I, in the range of [0, 1] as the score of region r at time step ¢. A larger (smaller) value of I,,
indicates that r has a higher (lower) chance of being selected as the focus at f. Intuitively, /., is the
probability of region r to be selected at time 7. We consider multiple properties of critical regions and
compute /,, by an optimization algorithm given in Sect. 4.2. We divide the entire time sequence into
multiple time windows with an equal size W; and compute a local traversal order for each time window
separately. For a time window w, we minimize an energy function to compute the optimal scores for critical
regions in w and then apply a dynamic programming algorithm to determine the region traversal order. In
order to incorporate region temporal correspondence into score computation, the resulting traversal order for
w will be leveraged as the input for score computation in the next time window w + 1. After all the time
windows have been processed, we apply the same dynamic programming algorithm over all the region
scores to identify the globally optimal traversal order for the entire time sequence.

We point out that there is a significant difference between typical minimization methods and our method.
In these minimization methods, energy functions are formulated with a set of initial state values. Then, a
linear system is utilized to solve for the optimal solution. In our method, the traversal result from the current
time window highly depends on the result from the previous time windows. That is, selecting the current
focal region should consider the regions picked before in order to provide a smooth and efficient traversal
experience. As such, rather than solving the linear system in a single pass as usual, we adopt a hybrid
approach which applies energy minimization and dynamic programming iteratively across different time
windows to obtain the final optimization result.
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4.2 Optimal score computation

To formulate the energy function for optimal score computation, we define the following two types of
constraints: static constraints and dynamic constraints. Static constraints consider the intrinsic properties of
critical regions while dynamic constraints incorporate the influence of the preceding region traversal order
on the current region traversal order being determined.

4.2.1 Intrinsic properties

Before we introduce the static constraints, we first define the following intrinsic properties of critical
regions:

Size (S,,). This term indicates the volumetric size of critical region r at time step 7. The larger the size,
the more important the region. Therefore, region score /,;, should be proportional to S, ;.

— Average entropy (E,,). This term computes the average entropy value over all the grid points inside of

region r at time step ¢. Intuitively, the value of E,, indicates the amount of information contained in r at
t. Therefore, I., should be proportional to E, .

Coefficient of variation (V,,). This term measures the normalized dispersion of entropy value
distribution inside of region r at time step . V,, is computed as follows

OE,,
Vie = E.,’ (1)
where OF,; is the standard deviation of entropy values inside of r at r. We prefer to focus on the region
with higher V,; since such a region contains richer information about the underlying flow features. Thus,
I,; should be proportional to V.
Skeleton complexity (C,,). Since a region skeleton extracted in “Region skeleton extraction” section in
Appendix represents the overall shape of the corresponding region, we also consider its complexity
when computing the region’s score. A high value of C,, indicates that the corresponding region has a
complicated shape pattern and would be interesting to focus on. Region score I,.; should be proportional
to C,,. Because our skeleton is a tree structure, we first identify the number of branches in the skeleton
and then evaluate the straightness of each branch. We consider two factors for C, ;: shape complexity and
quantity complexity. Shape complexity C;, is defined as follows
Cyy = Z Zi,jeb diJ — dp max

beB(r,1) iy max

’ (2)

where B(r, 1) is the set of branches in the skeleton of r at 7, b is a branch in B(r, 1), d;; is the Euclidean
distance between two consecutive skeleton points i and j, and dymax is the largest distance among all
points in b. Quantity complexity C,, records the number of branches in a skeleton. As an example, in
Fig. 2, abcde, df, cg and bhi are branches of this skeleton, and C,, = 4. For both Cs; and C,,, we
compute their normalized values C;, and C, ;. Then C,, is defined as follows

Cry=0Csy+ (1 = 0)Cyy, (3)

where o € [0, 1]. Normally, we consider shape complexity to be more important than quantity complexity.
Therefore, we set o = 0.7 for all data sets.

Time span (T,). This term indicates the time span in which region r is alive. If T, is small,  will be alive
for only a few time steps. In order to capture this short-lived region, we assign a higher region score I, ,
to r so that it gets a chance to be focused on during its time span. So, /., should be inversely proportional
to T,. However, if » with a short time span has parents or children and these parents or children are long-

Fig. 2 Four branches of a region’s skeleton
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lived, then even if we miss r, we can still capture similar flow features by focusing on its parents or
children. So, T, should be applied to only regions with no parents or children.

4.2.2 Static constraints

With the intrinsic properties defined above, we can obtain the following static constraints:

Intrinsic property constraint (O.) This constraint enforces that region scores should be as close to the
maximum value of 1 as possible according to their intrinsic properties. We first combine all intrinsic
properties for a region into a single term P, ,

{ AsSri 4 By + AyVyy + AcCry + ir7-,  ris alive at t

P P
' 0, otherwise

: (4)
where As, Ag, Av, A¢c, and Ay are the weights for S,,, E,;, V,;, C,;, and T}, respectively. In order to better
capture short-lived regions, we set Ar to 2 and the other four weights to 1 for all data sets. With P, ,, we
define the following energy term

0: = ZreR,teWPr,tHIr,t - 1~0||2; (5)

where R is the set of all critical regions and W is the set of time steps in time window w. Note that if region
r is not alive at time step ¢, its initial score /,.; will be set to 0.

Summation constraint (O,) This constraint keeps the summation of all the scores I, in the range of [0, 1]
as much as possible. To achieve this, we set the summation of scores for the regions at the same time step to
1. If the score is less than 0, we will set it to 0 to avoid negative scores. We define this energy term as
follows

0y = Ziew|| Zrerlrs — 10| (6)
Again, if r is not alive at ¢, its initial score will be set to 0.

4.2.3 Normalized traversal frequency

The dynamic constraints rely on the preceding region traversal order. Therefore, we first introduce how to
compute Ls(r,w) which records the frequency that region r has been traversed before the current time
window w. We can obtain Ls(r, w) by counting the frequency that r has been visited in the previous time
windows. We define L, as the maximum number of time windows we will backtrack from w. This term is
used to control the length of temporal history we would consider for r. Ideally, a good L; should keep the
tracking in a reasonable time span (e.g., not too long or too short). Sometimes, » may last less than L, during
the backtracking. In this case, we will also consider the traversal history of r’s ancestors. Using the above
two terms, we define the normalized traversal frequency F(r, w) of region r for time window w as
Lf(r ) W)

F(r,w) == (7)

4.2.4 Dynamic constraints

With F(r, w), we now define several dynamic constraints:

Traversal frequency constraint (O,) If region r has been traversed for multiple time steps in the previous
time windows, its score in the current time window w should be decreased so that other regions could have a
chance to be selected as the focus. To achieve this, we attempt to minimize the following energy term

1 2
0,=2 — ||, — 1.0]|". 8
v reRjreW F(n w) ” rt ” ( )
Temporal correspondence constraint (O,) This constraint considers the influence of previously focused
regions on their temporal corresponding regions. When region r has been visited for multiple time steps, its
children which share similar spatial locations with r in the neighboring time steps should have lower scores.
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Contrarily, in order to maintain a smooth traversal order, the siblings of r should get higher scores since they
are less likely to be similar to » but have temporal relations with r. For example, they will merge in a later
time step or they come from the same parent. Considering these two cases, we define the following energy
term

1 2

— ||, —1.0

F(V, W) || St || (9)
+ ZreR.teWerS(r)F(ra W)Hlx.,t - 1~OH2»

0;7 = ZrERJGWZvEC(r)

where C(r) and S(r) are the sets of r’s children and siblings, respectively.

Equal opportunity constraint (O:) When region r has been traversed for multiple time steps, its own score
will decrease in the subsequent time steps. Meanwhile, we want other regions which have no temporal
correspondence with r to have more chance of being selected as the focus. Therefore, we introduce this
constraint to increase the scores of such regions based on their spatial distances to r. We formulate the
following energy term

F(r,w)

I, — 1.0|° 10
D,y (k. 17, (10)

O: = 2/eReW2keK(r)

where K(r) is the set of regions which have no temporal correspondence with r, D, is the distance between
the skeletons of r and k at 7. In this work, we use the mean of the closest point distances (Moberts et al.
2005) as the distance measure. Intuitively, region k will have a higher score if D, is smaller.

4.2.5 Energy function

Based on the above constraints, we formulate the final energy function as follows
0=79.0:+7,0,+ 7,0, +V;1011 +V§0§a (11)

where V., V5 Vv Vs and e are the weights for these constraints, respectively. In our setting, we prefer to
emphasize the impact of the temporal corresponding constraint so that the final tour will consider the
relationship between neighboring spatiotemporal regions. Therefore, we set y, to 2 and the remaining
weights to 1 for all data sets. To find the optimal solution, we convert the energy function into a linear
system and leverage a GPU implementation of the concurrent number cruncher (CNC) sparse solver
(Buatois et al. 2009) to solve the system. After the optimization completes, we have the optimal values for
L.

4.3 Traversal-order determination

After region scores are computed for a time window w, we utilize a dynamic programming algorithm to find
the optimal traversal order (w) within the time window. Q(w) should focus on one region at a time step
and the overall region scores along Q(w) should be maximized. To achieve this, we define 7, as the
maximum traversal score from region r at ¢ to some region at the last time step of w and introduce the
following recursive equation

Ly = max(ly; + ), (12)

where R is the set of all regions. This equation indicates that the maximum traversal score from region r at
t to some region at the last time step of w is equal to the sum of the score /., and the maximum traversal
score from region k at ¢ 4+ 1 to some region at the last time step of w. In this case, region k will be the focal
region at 7 + 1 and it will be put in the array Ay, which records the traversal order starting from r at 7. For
each region, we compute its I, ,, where f; is the first time step of w and pick A, ,, with the largest I, 1, as the
optimal traversal order Q(w). We apply the same algorithm to find the final traversal order for the entire
time sequence when all region scores I,; are obtained. In Fig. 3, we show snapshots of the region traversal
order determined using our optimization method.



1132 J. Ma et al.

"y S O
v \ «

Fig. 3 The shifting of the focal region (shown in red) for three consecutive time steps of the hurricane data set
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5 Viewpoint creation and tour generation

For the focal region at each time step, we first create a list of viewpoints based on the isosurface generated
from the region. Then we select several best viewpoints to provide users with closeup views of the
respective flow pattern for clear observation. If one critical region spans more than one time step, we also
consider the location of viewpoints so that the same portion of the region will not be repetitively focused on
across multiple time steps. After the best viewpoints are picked for all focal regions, we generate a view path
traversing all these viewpoints according to the time order. Our goal is to give a smooth and efficient way of
exploring the unsteady flow field.

5.1 Viewpoint creation

We leverage the same strategy described by Ma et al. (2014) to produce candidate viewpoints. For each
critical region, we use the marching cube algorithm (Lorensen and Cline 1987) to extract the corresponding
isosurface, and simplify the isosurface to avoid oversampled candidates. Given the simplified isosurface, our
algorithm creates a list of viewpoints based on its vertices. For each vertex, we first generate a viewpoint v at
the vertex’s location. The 1ook-at center of v is the point on the skeleton of region 7, closest to v. There
are two ways to compute the up direction: fixing the up direction to a predefined direction (such as the
positive y direction of the volume) or utilizing the skeleton’s major direction as the guidance. Specifically,
we define the local skeleton direction d at the 1ook-at center as the vector along the skeleton which starts
from the 1ook-at center and points toward the skeleton’s major direction. We then project d onto a plane
perpendicular to the 1ook-at direction 1 and the final up direction is the projected vector on the plane. In
this way, we allow the up direction to follow the underlying flow pattern’s major direction.

In order to consider the zoom level from the viewpoint v to critical region r;, we generate a set of five
offset viewpoints V associated with v. The position of each offset viewpoint is pushed away from v along the
opposite direction of its Look-at direction 1 for some distance J;, and it shares the same 1ook-at center
and the up direction of v. In the next step, we will evaluate the quality of each viewpoint in V and pick one
best viewpoint as the representative for V.

5.2 Viewpoint quality evaluation

Given a viewpoint v associated with critical region r,, we define its quality based on the entropy value of the
2D projection of the pathlets seeded from r,. We also consider the foreground occlusion and background
noise as the penalty to reduce visual clutter and distraction. Specifically, we compute the viewpoint quality
as follows

Q(V) = Z1Sfocus — (iZPfore + ;L3Pback)7 (13)

where Stocus, Prore> ad Ppyck are the focal region score, foreground occlusion penalty, and background noise
penalty, respectively. 1y, 4, and 13 are the corresponding coefficients. By setting different values to these
coefficients, we ensure that the viewpoint quality Q(v) is always nonnegative. To emphasize the focal region
score, we set 4; to 1 and give the same weight for the other two penalties (4, = A3 = 0.2) for all data sets.

e Focal region score (Sgoeus)- This term indicates the information revealed by the pathlets seeded from the
focal region’s skeleton. To compute this value, we first perform the viewing frustum culling operation on
each pathlet from the focal region and check if it is inside of the viewing frustum. For all the pathlets
inside, we compute the entropy value for their 2D projections based on the flow direction and set this
value to Spcus-

e Foreground occlusion penalty and background noise penalty (Pore, Poack)- These two terms measure the
influence of pathlets seeded from non-focal regions on the current viewpoint. To compute these two
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values, we first check whether the pathlets are inside of the viewing frustum. If yes, we then transform
the standard OpenGL view projection plane into a predefined plane of 100 x 100 pixels and check the
depth values of these pathlet projections on the plane to determine if they are foreground occlusion or
background noise pathlets. Pgye and Py, are obtained as the entropy values of their 2D projections for
these two kinds of pathlets, respectively.

For a critical region which spans m time steps (m > 1), we assign the viewpoints to focus on different
portions of the region at each occupied time step so that users could observe the flow pattern in a more
balanced way. To achieve this, we divide the major axis of the focal region’s skeleton into m segments
where each segment corresponds to one occupied time step. Then we compute the final viewpoint score
according to their distance to the segments. Specifically, for a viewpoint v, we find one segment g which is
closest to v and set g as the segment associated with v. Then at each of the m occupied time steps, there will
be one active segment and all the viewpoints associated with it will get Q(v) as their final score. Other
viewpoints get the score of 0. Later on, we will pick the best viewpoints for each time step based on their
scores. This guarantees that only viewpoints within the current active segment would be considered.

5.3 Best viewpoint selection

By evaluating viewpoint quality, we first identify the representative viewpoint for each viewpoint set V as
the one with the highest score. Then we sort all representatives based on their quality scores and pick the
final best viewpoints. In order to avoid selecting similar viewpoints, any two selected best viewpoints should
satisfy either one of the following two criteria. First, the angle between their 1ook-at directions is greater
than a given threshold J,. Second, the distance between their 1look-at centers is greater than a given
threshold §,.

5.4 Tour path generation and animation

After we identify the best viewpoints for the focal region at each time step, we generate a spatiotemporal
view path traversing all these viewpoints

To this end, we first order the best viewpoints for a focal region r according to the direction of the
skeleton’s major axis to obtain a local traversal order D,. Since the temporal order for all focal regions is
already determined by the linear system (Sect. 4), we only need to connect the viewpoints between two
temporally adjacent regions to obtain the final traversal order for all the best viewpoints. Specifically, for the
focal region r; at the first time step, we use its local traversal order D,, as the final traversal order for this
region. Then for the next focal region r, along the temporal sequence, we compute the distance between the
last viewpoint v, of r; and the two end viewpoints of the local order of r, and pick the one closer to vy, as
the starting viewpoint for 7. So the final order for r, will be either D,, or its reverse D,,. We repeat this
process until we connect all the focal regions and get the global viewpoint traversal order. Finally, we utilize
a cubic B-spline curve to connect all these viewpoints to obtain the spatiotemporal view path. In Figs. 4 and
5, we show examples of the entire path generated, the path segments along different focal regions, and the
path segments along the same focal region.

In the tour animation, when flying through each best viewpoint we keep the current viewpoint staying
still for a certain duration. This would allow users to better observe pathlet movements at fixed viewpoints.
The transition between two best viewpoints is dynamic, i.e., the viewpoint is changing while pathlets are
moving. We render pathlines as gray, thin tubes in the background and overlay pathlets as arrows to show

(a) ®  (© %)

Fig. 4 a The entire tour path along the solar plume data set. Different colors denote the path segments along different focal
regions. The gray color denotes the transition between two focal regions. b—d Three path segments along three different focal
regions
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their movements along the corresponding pathlines. Pathlets are also rendered as tubes. The tube radius for
focal pathlets is larger than that for non-focal pathlets.

6 Results and discussion

In this section, we report the performance, parameters, and case study results generated from three unsteady
flow field data sets. For the best evaluation of our approach, please refer to the accompanying videos in the
supplemental material for a comparison between our view tour and the baseline tour (“Baseline view tour”
section in Appendix). Please also refer to “User study” section in Appendix for a user study.

6.1 Configuration, timing, and parameter setting

We leveraged a hybrid CPU-GPU solution in our computation with the following hardware configuration:
Intel Core 17 quad-core CPU running at 3.20 GHz, 24 GB main memory, and an nVidia Geforce GTX 580
graphics card with 1.5 GB graphics memory. Entropy field computation, critical region detection, and
viewpoint quality evaluation were implemented using CUDA in the GPU. All other computations were
performed in the CPU. For better observation of the changes of the focal region over time, we increase
(decrease) the radii of the pathlets from the current (previous) focal region. In order to guarantee smooth
update of the changes of pathlets, we utilized the vertex buffer object (VBO) to render pathlets and used the
GPU to process their geometry changes on the fly. The timing results for the three flow data sets are reported
in Table 1. As we can see, the total processing time for each data set is up to around 15 min. The processing
time depends on both the size and complexity of the data set. Entropy computation is mainly related to the
size, while region correlation, skeleton extraction, and viewpoint evaluation are highly related to the number
and size of critical regions. Therefore, it is possible to further reduce the processing time by considering
smaller critical regions (e.g., increasing the entropy threshold for critical region identification).

Our algorithm requires the setting of multiple parameters. Some of them are equation weights, e.g., As in
Eq. 4, y. in Eq. 11, and 4; in Eq. 13. For such parameters, we empirically set the same parameter values for
all data sets, reported in Sects. 4 and 5. Other parameters are thresholds and size values, e.g., entropy value
threshold J, to determine the critical regions and the overlap threshold J, to identify temporal correspon-
dence. In our experiment, we use d, = 0.1 for all data sets and Appendixd, = 4.0, 3.5,4.0 for the supernova,
hurricane and solar plume data sets, respectively. We refer the readers to “Parameter influence” section in
Appendix for the influence of parameters.

6.2 Case studies

Case study 1: supernova The supernova data set comes from a simulation of the explosion and collapse of
a supernova. The simulation produced 105 time steps revealing how the dust collapsed back into the center
of the star after the supernova explosion. Since the flow near the supernova’s core is heavily turbulent, it is
difficult for users to observe detail pattern around the core due to the occlusion and clutter among pathlets.
Therefore, we designed an automatic view path to explore the data set in a hope that our method can provide
users with more information on the internal flow pattern. In Fig. 6a, we can see the overall pattern of the

Table 1 Timing results for the three unsteady flow data sets. ST, VP, TS, and “reg.” stand for spatiotemporal, viewpoint, time
steps, and regions, respectively

Data set Dimension Entropy comp.  Region detect.  # ST reg.  Average duration  Reg. corr.

Supernova 108 x 108 x 108 x 105  225.7s* 31.8s 277 3TS 124.8s

Hurricane 100 x 100 x 20 x 48 21.7s 4.2s 49 4TS 3.7s

Solar plume 63 x 63 x 256 x 28 63.7s 9.6s 17 7TS 37.9s

Data set Skeleton extract. ~ Traversal order =~ VP creat.  Total # lines  # Best VPs/ VP eval.  Tour gen.
# total VPs

Supernova 109.7s 2.6s 0.4s 9989 105/4575 500.1s 0.1s

Hurricane 3.4s 0.7s 0.1s 8244 48/2676 273.8s 0.02s

Solar plume  387.6s 3.7s 0.5s 6368 56/2615 248.7s 0.1s

A * denotes out-of-core processing
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Fig. 6 a—d Snapshots of the animation of the supernova data set along our automatic tour path

supernova at an early time step. It is clear that all pathlets go straightly inward and then become turbulent
near the core. The thicker pathlets indicate that they are from the current focal region. We also display the
corresponding pathlines to help users better follow flow trajectories. In (b), a sink-like region which absorbs
all pathlets can be clearly observed. From (c), we can observe that some pathlets are repelled from the core.
They then form a semi-spherical surface around the core. For automatic tours, this feature is difficult to
catch since it is not always present throughout the time series. Furthermore, it is also hidden inside of the
turbulent flow, and therefore is not visible if the viewpoints are placed outside of the volume. Using our
method, we can not only clearly observe such an interesting flow pattern in a closeup view but also detect
the changes of velocity. In (d), it is clear that the velocity changes from high to low as the flow is repelled
from the core.

Case study 2: hurricane The hurricane data set comes from a simulation of Hurricane Isabel, a strong
hurricane in the western Atlantic region in September 2003. The simulation produced 48 time steps,
demonstrating how the hurricane moved from the Atlantic Ocean to the east coast of Florida. Since the data
set is flat (100 x 100 x 20), users would easily get disoriented if the tour goes across the volume frequently
along the z direction. Therefore, we add one more constraint that the final view path should not cross
through the volume more than once along the z direction during any given animation time interval. In
Fig. 7a, we show the entire tour path. We can see that the most portion of the path is on the two sides of the
volume and the path only traverses across the volume a few times. In (b), the global pattern of the hurricane
is clearly shown. We can see that the hurricane’s center lies in one corner of the volume with the corre-
sponding pathlets moving out. (c) shows the hurricane’s center from below. We can observe the spiral
pattern and the velocity difference between the center flow (slower) and the surrounding flow (faster). From

(d) (e)

Fig. 7 a The automatic tour path for the hurricane data set. b—e Snapshots of the animation along the path
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Fig. 8 a—e Snapshots of the animation of the solar plume data set along our automatic tour path

(d), we can find out that the surrounding flow around the center bifurcates into two opposite directions
(highlighted in the ellipses). The velocity change could also be discerned via pathline color. Besides, the
pathlines depict the moving trajectory of the center: from one corner of the volume to another along the
diagonal direction (highlighted by the dashed line). In (e), the snapshot shows three small spirals with slower
speed (highlighted in the ellipses) at the boundary of the volume which only last for a few time steps. These
features could be easily missed if the view path does not focus on them at the right moment.

Case study 3: solar plume The solar plume data set comes from a simulation of the down-flowing solar
plume for studying the heat, momentum, and magnetic field of the sun. This data set consists of 28 time
steps, demonstrating the heat flow emitting from the sun’s surface. Figure 8 shows snapshots of the ani-
mation along the automatic tour path. Refer to Fig. 4a for the overall view path generated by our algorithm.
Since the tail of the solar plume only contains straight flow lines and most interesting features are around the
head, our view path is almost around the head portion so that users can gain a clear observation of these
important flow features. In (a), an overview of the flow pattern around the head region is captured. Two big
swirls with slower speed and the central flow with higher speed are clearly shown, (b) focuses on the central
flow pattern around the head, (c) gives us a glance on how the straight-line flow becomes turbulent in the
middle portion of the plume. From (d), we can observe a spiral band pattern with slower speed in the middle
portion of the plume. Our view tour also provides users with an expressive traversal experience to observe
the internal “kernel” flow pattern by “standing” inside of the volume, which is shown in (e). The straight
flow lines moving to the head and the hollow shaft pattern are clearly visible.

7 Expert evaluation

We also conducted an evaluation with a domain expert in fluid mechanics and turbulent combustion to
evaluate the effectiveness of our method. The expert’s research focuses on the modeling of multiscale and
multiphysics problems in relation to energy science and technology. The evaluation consists of two major
stages. At the first stage, the expert spent about 90 min learning our framework, playing back tour animation
video clips multiple times, and asking questions related to the tour generation algorithm and the actual
pathlet animation as shown in the video. At the second stage, the expert completed the evaluation form
which includes 18 questions (hurricane: seven, solar plume: five, and supernova: six) and 14 general
questions. The 18 questions ask for the identification of flow features, flow speed difference, and additional
flow patterns. The 14 questions ask for the overall effectiveness of the solution, animation settings, and
suggestions for improvement. This stage took about 120 min. The expert was instructed to show no bias in
his evaluation.

The expert provided the following feedback. In general, the tours we generated for the unsteady flow
fields are interesting and effective. The expert’s answers to the 18 questions are all correct except one which
asked him to identify the overall moving trajectory of the hurricane’s center. He provided a comment which
explains “Due to the camera angle change, the movement of the hurricane’s center was not clearly noticed.”
He also gave a suggestion “It may help to show the same pathlets in another (third) view where the camera
is fixed.” For effectiveness, he strongly agreed that the tour provides a comfortable way to explore the flow
field: “It automatically captures the important flow features and the most appropriate angle of view to
visualize the features.” Nevertheless, he also pointed out one limitation: although the tour also captures the
small-scale features, when important small-scale features are inside large-scale features which are also
important, it appears that automatic selection of pathlets may miss these structures. He agreed that parameter
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settings for pathlines and pathlets, and camera and animation are appropriate. He strongly agreed that it is
appropriate to pause the camera at each selected viewpoint in order to gain clear observation of the moving
pathlets. Finally, he strongly agreed that the path view helps users better orient themselves in the tour
animation.

The expert also pointed out two suggestions for improvement. First, a better hint for time steps in the
path view could help user understanding. Since we actually interpolate between time steps to generate a
number of intermediate frames for a smooth animation effect, it would be more appropriate to display time
steps including fractions. (We implemented this. Refer to the accompanying video.) Second, the current
algorithm is fully automatic which helps users grasp the main features of the flow field with minimal efforts.
Once this is done, it would be good to give options for user interaction. For instance, users may want to
choose some features and focus on them for all time steps (perhaps, with different viewing angles and
zooming levels).

The expert further commented on the application of this automatic tour framework. One of his main
areas of interest is the computation and modeling of turbulent combustion. Turbulent combustion simula-
tions usually generate big data. The physicochemical processes are inherently transient and involve complex
interactions of fluid flow and chemistry. Exploring such transient data poses a substantial challenge. Tra-
ditionally, statistical approaches where time or spatial averages, variances, and correlations of certain key
quantities are investigated. To better interpret the statistical data and shed light on relevant physical
mechanisms, the exploration of key flow and scalar structures in terms of visualization is critical but is
practically challenging due to the size of the data and the complexity of the structures. The present tool
could offer an interesting and attractive way of exploring the interaction of flow and scalar structures in
turbulent flames. The automatic tour of important flow features would provide insights on the overall flow
characteristics, using which the expert can connect their observation with statistics of key scalar quantities,
with minimal effort. When a domain expert has an option of setting criteria for important features to be
explored, e.g., regions with high scalar gradients or high reaction rates, the method would greatly benefit
combustion scientists and engineers by helping them understand the characteristics and underlying physical
mechanisms in turbulent reacting flows.

8 Conclusions and future work

Designing an automatic tour for exploring hidden or occluded internal features for unsteady flow fields is a
challenging task due to the flexibility of viewpoint locations and orientations, the nature of dynamic
spatiotemporal features, and the difficulty to observe both viewpoint movement and flow line movement
simultaneously. Yet such a tour is quite useful for gaining a good understanding of the underlying flow field,
including both the overview and feature details. As the size and complexity of flow field data keep growing,
we expect an increasing need to observe flow features and pattern in an automatic fashion. We have
presented such a solution and demonstrated the effectiveness of our work with results gathered from several
flow field data sets and through user evaluation. To the best of our knowledge, our work is the first that aims
at designing a tour for examining internal flow features for unsteady flow fields.

Our entropy-based feature extraction may not capture certain global flow pattern, e.g., separation. In
addition, the computation does not consider the Galilean invariance property of the unsteady flow. There
exist seemly featureless flows (e.g., the flow behind a cylinder) which actually consist of rich flow
dynamics hidden by some constant flow. For future work, we would like to leverage other techniques to
extract such kinds of flow features. For tour exploration, we plan to provide flexibility to users in their
viewing and navigation. Instead of a fully automatic tour, users may find it helpful to control the tour in
different ways. For example, pausing the tour at selected viewpoints and changing the orientation of
viewpoint to look around for a customized exploration. Beside pathline and pathlet rendering, we will also
leverage other means of visualization such as particle rendering to enrich the experience of touring an
unsteady flow field.

Acknowledgements This research was supported in part by the U.S. National Science Foundation through Grants IIS-
1456763, 11S-1455886, and DUE-1833129.
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Appendix

Critical region identification
Critical Region Detection

Given the input unsteady flow field, we adopt a 4D moving window (5 x 5 x 5 x 5) centered at each voxel
and calculate its entropy value by evaluating the variation of vector directions in each local window. Since
calculating the entropy value of one voxel is independent of another, we compute the entropy field using
CUDA in the GPU.

A critical region at each time step can be defined as a subvolume which contains rich flow features such
as the neighborhoods of critical points. Entropy values in a critical region are normally larger than a non-
critical region because vector directions located in the critical region have a higher degree of variation.
Therefore, we detect critical regions by applying a region growing algorithm. In each time step, we detect all
connected voxels with their entropy values larger than a given entropy threshold J, as a critical region.
Multiple critical regions can be identified for each time step. We discard critical regions whose sizes are
smaller than a given threshold. To speed up the computation, we implement critical region detection using
CUDA in the GPU. Specifically, each GPU thread takes the responsibility for one voxel in the volume. Each
thread checks if the entropy value for the corresponding voxel is larger than J,. If yes, the voxel is marked as
a critical voxel. At the same time, the boundary critical voxel is also marked if at least one of its neighboring
voxels is not critical. Each critical voxel is then assigned a unique ID. Next, for a critical voxel v with ID
vip, we check each of its neighboring critical voxel’s ID njp and set nyp = vip if np > vip. This is applied to
all critical voxels in parallel. After one round, some voxels’ IDs are changed to smaller values. We
iteratively apply this operation for multiple rounds until there is no ID change for any voxel. At this
moment, all voxels with the same ID form a critical region.

Temporal correspondence computation

For an unsteady flow field, a critical region at one time step could span several time steps and overlap other
regions in the neighboring time steps. To identify such temporal correspondences, we detect all matching
regions between consecutive time steps by computing their overlap rates (Silver and Wang 1998). We point
out that for fast moving structures, alternative solutions such as optical flow or mass transport minimization
should be used. In our scenario, two regions are matched when their overlap rate is larger than a given
region overlap rate threshold J,,. In this way, we can construct an overlap table for every pair of neighboring
time steps ¢ and 7+ 1 indicating the matching relations (i.e., continuation, bifurcation, amalgamation,
dissipation, and creation) among critical regions.

Based on those overlap tables, we further apply the feature tracking algorithm developed by Silver and
Wang (1997) to build the temporal correspondence among critical regions. This algorithm considers every
two consecutive time steps by examining their overlap table in the order of bifurcation, continuation,
amalgamation, dissipation, and creation. When any region has been categorized into one correspondence,
we will not consider the same region in the subsequent examination. Finally, based on their temporal
correspondence, we merge regions which have the continuation correspondence into a new critical region.
We also identify a region’s parents or children if there is a bifurcation or amalgamation correspondence.
Figure 9 shows an example of the temporal correspondence of critical regions.

—

01 2 3 45 6 7 8 9 1011121314151617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Fig. 9 The temporal correspondence of critical regions extracted from the hurricane data set. The horizontal axis represents
time step. Each red line represents the lifespan of one critical region
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Region skeleton extraction

In order to identify the shape of each critical region detected, we construct its skeleton by applying the
volume thinning algorithm presented by Gagvani and Silver (1999). For each voxel, the algorithm first
computes the distance transform (DT) value, which is the minimum of the distances from the current voxel
to all boundary voxels. We identify a voxel as a skeleton point if its DT value is larger than the summation
of the average of its neighboring voxels’ DT values and a predefined thinning parameter ¢,. Obtaining all
skeleton points for each critical region, we employ a minimum spanning tree (MST) algorithm to connect
them to form the skeleton. We also define the major axis of a skeleton as a line connecting the two endpoints
which have the longest Euclidean distance on the skeleton. The major direction of the skeleton is the vector
starting from one endpoint of the skeleton with the lower y value to the other one. In practice, for a critical
region which spans several time steps, we extract its 3D skeleton at each time step separately.

Skeleton-based seeding

In order to trace pathlines, we apply a skeleton-based seeding strategy by evenly placing seeds along the
skeletons extracted from critical regions. Our goal is to make sure that each focal region at every time step
has enough pathlets to represent itself for clear highlighting, and the entire flow field has approximately the
same number of pathlets for each time step. To achieve this, we place two types of seed: region seeds and
random seeds. First, we place region seeds along the skeleton of each focal region detected at every time
step (refer to Sect. 4 in the paper) and ensure that the number of seeds for each region is proportional to its
size. Furthermore, to ensure that the traced pathlets will capture each focal region, we actually start to trace
region seeds a few time steps before the region is being focused on. For random seeds, we keep track of the
number of pathlets in each time step. The number of pathlets could decrease as the time evolves since
pathlets may go out of the domain boundary or get absorbed around the vicinity of a critical point (such as a
sink). If the number is less than a given threshold N,, we will add some more seeds randomly. This keeps the
overall pathline number relatively stable at each time step. In Fig. 10, we compare skeleton-based seeding
against random seeding. It is evident from (a) and (b) that skeleton-based seeding generates more pathlines
from interesting flow regions. The same conclusion can be drawn when comparing (c) and (d). From regions
highlighted in red boundaries, we can see that the skeleton-based seeding favors regions with more intricate
flow patterns while placing fewer streamlines at the bottom region where the flow pattern is almost straight.

(b)

Fig. 10 a, b Pathlines traced from random and skeleton-based seeding, respectively, over all time steps (each 4000 lines). c,
d Pathlines traced from random and skeleton-based seeding, respectively, from the first three time steps (each 300 lines). Note
that skeleton-based seeding only applies to the focal region, while the remaining regions are still randomly seeded. Blue to gray
to red are mapped to pathline colors for slow to medium-to-high-velocity magnitudes
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Parameter influence

We briefly discuss the effects of the parameters and how we set their values. We categorize the parameters
into three sets based on which stage of the algorithm they are applied to:

— Region extraction parameters. This set of parameters controls region extraction based on the entropy
field and temporal correspondence of these regions. The entropy threshold J, allows users to control the
extracted region size at different levels. The thinning parameter J, is used to control the point density of
the region’s skeleton. The overlap rate J, determines if two regions are overlapped and therefore
controls the final region temporal correspondence.

— Region traversal-order determination parameters. This set of parameters determines the final scores of
spatiotemporal regions in the linear system. They include the factor weights (e.g., As for the intrinsic
property region size S,,, and y, for the traversal frequency constraint O, in the linear system), the time
window size W, and the maximum number of backtracking time windows L, used in the normalized
traversal frequency computation. Changing the parameter values will vary the influence of correspond-
ing factors (e.g., the region size or the region time span) in the linear system and affect the final region
scores. Since the traversal order is determined based on the region scores, manipulating these parameters
will finally impact the region traversal order.

— Viewpoint creation parameters. This set of parameters controls the properties of the final viewpoints
(e.g., position, 1look-at direction, and viewpoint score). The mesh decimation factor d; determines the
number of vertices (viewpoints) for the simplified mesh. The offset threshold J; determines the distance
from the created viewpoints to the focal region. 4;, 4,, and /43 control the weights of different factors in
the viewpoint score computation. The thresholds d, and d, are used to control the final quality of the
selected viewpoints.

Table 2 shows all parameters for each data set. We point out that although multiple parameters exist in our
algorithm, users are not required to adjust them for each data set. Actually, the motivation for providing such
parameters is to offer advanced users the capability to explore the flow field based on their own
requirements. In practice, most of the parameters in our case studies remain the same for all data sets. We
refer to these parameters as data-independent parameters. Contrarily, the data-dependent parameters are the
ones which should be adjusted based on the given data set. There are only a few of data-dependent
parameters, e.g., W, (depending on the total time steps) and J, (depending on the dimension of the data set).

Data-independent parameters are specifically designed for advanced users to control the final explo-
ration. In Fig. 11, we give an example on how the size weight Ag in the linear system controls the final
region-order selection for the hurricane data set. The three images in the first row show the focal regions
(highlighted in red) of three continuous time steps based on the original value (4 = 1) used in our
experiment and the three images in the second row show the focal regions for the same time steps using a
larger value (Ag = 5). Therefore, when emphasizing the size factor in the linear system, our algorithm
prefers to select regions with larger sizes. Figure 12 demonstrates the influence of the temporal corre-
spondence weight 7, to the final region traversal order for the solar plume data set. Setting a larger value for
the parameter will allow the linear system to prefer a region which is not the child of the previously selected
region. The first row highlights the focal regions in red for three consecutive time steps. With a small value

Table 2 Parameter setting for all data sets

Data set Entropy Overlap Thinning #Lines Winsize # Win Decimation Offset Angle Dist
5/3 50 5[ ]v]z Wv Lh (Sx 51 (So( (Sd

Supernova 4.0 0.1 1.99 500 5 5 0.033 Va/10  7/6 20.0
Hurricane 3.5 0.1 1.90 450 4 4 0.033 Va/15 7/6 15.0
Solar plume 4.0 0.1 1.95 450 4 4 0.033 Va/12 /6 20.0
Data set SC 1P IP IP 1P 1P EF EF EF EF EF VPQ VPQ VPQ

o s 3 Ly e AT Yz Yo Vv Ty Ve 1 2 o
Supernova 0.7 1 1 1 1 2 1 1 1 2 1 1 0.2 0.2
Hurricane 0.7 1 1 1 1 2 1 1 1 2 1 1 0.2 0.2
Solar plume 0.7 1 1 1 1 2 1 1 1 2 1 1 0.2 0.2

Vi, SC, IP, EF, and VPQ stand for the volume diameter, skeleton complexity, intrinsic property, energy function, and
viewpoint quality, respectively
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Fig. 11 Two sequences of focal region ordering based on two different size weight /g values. The first row a—c shows the focal
region (highlighted in red) sequence in three continuous time steps with the default Ag value. The second row d-f shows a
different sequence with a larger Ag value favoring regions of larger size
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Fig. 12 Two sequences of focal region ordering based on two different temporal correspondence weight y, values. The first
row a—c highlights the focal region (highlighted in red) sequence in three consecutive time steps with the detyault 7, value. The
focal region in the last time step ¢ is the child of the selected region in the previous time step (b). The second row d—f shows a
different sequence with a larger y, value which prefers a region that is not the child of the previously selected region

(yy = 2), the system picks the child of the previously selected region in the last time step. On the contrary, a
different region is selected at the same time step if a larger value (7, = 5) is set, as shown in the second row.

User study

We conducted a between-subjects user study to evaluate the effectiveness of our method. We used a design
of 2 conditions (our view tour and baseline view tour) x2 tasks (answering questions and identifying critical
regions). We recruited 14 users and separated them into two groups: one group of seven users evaluated our
view tours and another group of seven users evaluated baseline view tours. Each user was paid $10 for
participating in the study. All users are graduate students from different departments (computer science,
mechanical engineering, physics) of a university.

Baseline view tour

For the baseline view tour, we first generate a set of viewpoints whose positions are randomly picked both
inside and outside of the volume. For external viewpoints, we also keep them not too far away from the
volume’s center to ensure clear observation of the flow field. The 1ook-at center of each viewpoint is also
randomly created. However, we constrain their positions to be inside of the volume so that the viewpoints
could still focus on the flow field rather than an empty space outside. Next, we connect all these viewpoints
in a way such that both the Euclidean distance between viewpoints and the angle change along the path
could be minimized. Finally, we interpolate a B-spline curve passing all the viewpoints to generate the tour
path. If the total length or the angle change of the baseline view tour is much different from our method, we
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will regenerate the path by replacing some viewpoints. Since the viewpoints for the baseline view tour are
not selected intentionally for observing any particular flow pattern, we expect that the baseline view tour is
unable to guarantee a comprehensive exploration of internal flow features.

Experimental procedure

Before the experiment started, users had been briefly introduced the basic characteristics of unsteady flow
fields, the types of critical regions they need to recognize, and the tasks they would be expected to perform
in the experiment. After the briefing, users could ask questions about the flow fields or the experiment itself
to avoid possible misunderstanding. Then the main study commenced, consisting of tasks for three data sets.
For the first data set, a short demonstration of how to use the program was given. During the experiment,
users were only allowed to ask questions for clarification about the meaning of the specific questions or how
to use the program.

The procedure for each data set was as follows. First, users were shown an animation of the complete
tour of the data set without stop or pause. The speed of the animation could be adjusted if desired. Second,
users were given a limited time to answer several multiple-choice questions about the flow field and to
identify critical regions. They could revisit any part of the tour using a slider or replay the animation. This
function was helpful for answering questions and was required for identifying critical regions. Finally, users
were asked to answer several post-experiment questions about subjective feedback and suggestions for
improvement. They should complete all three data sets in one sitting. The entire experiment took
approximately an hour for each user, including the initial paperwork, briefing, and post-experiment
questionnaire.

Results and discussion

We present the results of this study in the following aspects: user correctness on multiple-choice questions,
ratings of subjective questions, the proportion of critical regions correctly identified, and the post-experi-
ment feedback. Because user performance varied widely by data set, each data set was analyzed individ-
ually, comparing user performance between our tour and the baseline tour. We used Student’s #-test to
analyze statistical significance between the conditions with a significance level o = 0.05. Although there are
objections to using the r-test on small samples (seven in our case), several articles (Campbell et al. 1995;
Janusonis 2009; Fritz et al. 2012) argued that there are no principle objections to use a t-test for a small
sample size even though the statistical power may not be high.

Multiple-choice questions Each data set was analyzed individually by comparing users’ average proportion
of correct answers by the two methods. The hypothesis is that there is a significant difference of the answer
correctness rate between our method and the baseline method. The average correctness rates of all users for
the two methods are given in Fig. 13a. A #-test shows that our method performed better than the baseline one
on the hurricane and solar plume data sets and the differences are statistically significant with p < 0.001
and p = 0.045, respectively. For the supernova data set, although our method also received higher average
correctness rate than the baseline method (0.63 vs. 0.54), the difference is not statistically significant.

Subjective questions There are two subjective questions for each data set asking the effectiveness of finding
critical regions and identifying the global flow pattern. The subjective questions were also analyzed

“our tour ®baseline tour “ourtour baseline tour

0.3 2
0.2
;
5 5 R

hurricane plume supernova hurricane plume supernova

(a) (b)

Fig. 13 a The average proportion of correct answers of multiple-choice questions. b The average number of critical regions
detected
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individually for each data set. We quantized the answers by setting 1.0 for “Strongly Agree”, 0.75 for
“Agree”, 0.5 for “Neutral”, 0.25 for “Disagree”, and 0.0 for “Strongly Disagree”. The hypothesis is that
there is a significant difference of the rating score between our method and the baseline method. For the
hurricane data set, our method gets much higher average ratings than the baseline one for both questions
(0.93 vs. 0.64 and 0.79 vs. 0.61). But only the first question has significant difference with p = 0.039. Our
method also receives a higher rating than the baseline one for the solar plume data set with average ratings
0.75 vs. 0.57 and 0.68 vs. 0.61 though no significant difference is shown. For the supernova data set, both
methods received similar scores.

Critical region identification Similarly to the multiple-choice questions, each data set was analyzed
individually for critical region identification. The analysis was done by comparing how many critical
regions the users correctly identified. The average number of critical regions detected for both methods is
given in Fig. 13b. The hypothesis is that there is a significant difference in the average number of identified
critical regions between our method and the baseline method. The supernova data set gets the same result for
both groups since it contains one enormous critical region that is easily identifiable by all users. For the other
two data sets, users performed better with our method. The average number of detected critical regions is
3.00 vs. 1.57 for the hurricane data set and 5.43 vs. 3.29 for the solar plume data set. Furthermore, the
performance difference for the solar plume is significant with p = 0.04 where the same conclusion cannot be
made for the hurricane because its p value is only slightly above the significance level.

Post-experiment feedback We received the following major user comments from the post-experiment
questionnaire. First, for both our and baseline methods, most users suggested that the camera may stay
longer at each of the selected viewpoints to allow better observation and less visual jumping. Second, the
background pathlines should be thinner for reducing distraction. Third, some users also suggested providing
a global view of the data set before the experiment since the tour path may focus on the internal pattern
rather than the global shape of the flow field. Users also had some different opinions on the two methods.
For the baseline method, users gave the neutral rating for detecting flow features. One of them claimed that
the Look-at direction sometimes provided an unreasonable view of sight for observing the flow field. By
contrast, most users agreed that the tour generated by our method could easily help them identify critical
regions. For other questions, such as animation speed and pathlet size, both groups were satisfied with the
current configurations.

Discussion In summary, for the multiple-choice questions, users in general performed better with our
method than the baseline method. This indicates that our view tour indeed provides users with more
information about the underlying flow field. For subjective questions, most users agreed that our method
better help them detect critical regions and identify the global flow pattern than the baseline method for the
hurricane and solar plume data sets, though the latter one did not have a significant difference. The
supernova data set received almost the same rating for both tours due to the simple flow feature which could
be easily observed with either method. In terms of identifying critical regions, users performed much better
with our method over the baseline method except for the supernova data set which only contains a single
obvious sink-like region at the center. From the post-experiment feedback, except for suggestions on
animation and interface, most users gave positive feedback to our method over the baseline one.

We conclude that our view tour indeed helps users better identify and observe the internal flow pattern in
unsteady flow fields, especially for hidden or occluded features that only exist for a short period of time.
Therefore, our view tour could complement the traditional overview tour by providing users with a more
comprehensive exploration experience for large and complex flow fields.
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