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Incorporating coastal ecosystems in climate adaptation planning is needed to maintain the well-being of both
natural and human systems. Our vulnerability study uses a multidisciplinary approach to evaluate climate
change vulnerability of an urbanized coastal community that could serve as a model approach for communities
worldwide, particularly in similar Mediterranean climates. We synthesize projected changes in climate, coastal
erosion and flooding, watershed runoff and impacts to two important coastal ecosystems, sandy beaches and
coastal salt marshes. Using downscaled climate models along with other regional models, we find that tem-
perature, extreme heat events, and sea level are expected to increase in the future, along with more intense
rainfall events, despite a negligible change in annual rainfall. Consequently, more droughts are expected but the
magnitude of larger flood events will increase. Associated with the continuing rise of mean sea level, extreme
coastal water levels will occur with increasingly greater magnitudes and frequency. Severe flooding will occur
for both natural (wetlands, beaches) and built environments (airport, harbor, freeway, and residential areas).
Adaptation actions can reduce the impact of rising sea level, which will cause losses of sandy beach zones and
salt marsh habitats that support the highest biodiversity in these ecosystems, including regionally rare and
endangered species, with substantial impacts occurring by 2050. Providing for inland transgression of coastal
habitats, effective sediment management, reduced beach grooming and removal of shoreline armoring are
adaptations that would help maintain coastal ecosystems and the beneficial services they provide.

1. Introduction

The world is experiencing a growing set of impacts from a warming
climate that include sea level rise (SLR), coastal flooding, fires, erosion
and changes in weather patterns that threaten coastal communities and
ecosystems (IPCC, 2013). These impacts are projected to increase
throughout future decades, depending on the amount of greenhouse gas
emissions (IPCC, 2013, 2018). Communities across the world are as-
sessing their vulnerability to climate change and preparing for future
impacts through a variety of planning avenues including land use,
emergency response, hazard mitigation, climate adaptation plans, and
infrastructure investments (Measham et al., 2011 (Australia); Heidrich
et al., 2013 (UK); IPCC, 2013; Reckien et al., 2018 (EU); Kantamaneni
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et al., 2018 (UK); Keenan, 2018 (US); Kantamaneni et al., 2019 (India);
Serafim et al., 2019 (Brazil). While there are constraints to local gov-
ernments’ abilities to adapt to climate change (Moser and Luers, 2007;
Tribbia and Moser, 2008; Measham et al., 2011; Baker et al., 2012) and
climate change adaptation cannot solely be addressed at the local level
(Lindseth, 2004), local government and regional adaptation is re-
cognized as an important avenue to large-scale climate adaptation
planning (Shi, 2019; Rauken et al., 2015; Roberts, 2008; Heidrich et al.,
2013).

Generally, local adaptation planning addresses the built and/or
natural physical environment, with little attention to ecosystems
(Wilson, 2006; Guyadeen et al., 2019). While certain ecosystems, such
as wetlands, are afforded special status at the federal, state or local
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levels, most ecosystems are only protected by local statutes. The fate of
ecosystems thus is largely dependent on local government decisions.
When planning for a future with an altered climate, changes to eco-
systems should be part of the purview of local governments, along with
impacts to the built and natural physical environments.

Local government officials often have inadequate access to in-
formation on climate change and ecosystem functioning (Pasquini
et al., 2013; Pasquini and Cowling, 2015) or an understanding of how
ecosystems will respond to climate change (Reid, 2016). Local gov-
ernments need multidisciplinary scientific information to plan climate
change adaptation, including projections of physical impacts and an
understanding of ecosystem response to climate change. Providing local
governments with information for adaptation at the scale of the area
they manage (Bourne et al., 2016), and enabling close collaboration
between scientists and municipal staff (Wamsler et al., 2014) are vital
to achieving practical implementation of ecosystem-based manage-
ment.

Coastal ecosystems are among the most threatened by humans
(Worm et al., 2006; Halpern et al., 2008). Major losses of coastal
Mediterranean ecosystem services have occurred as a result of urbani-
zation (Santana-Cordero et al., 2016), with climate change increasingly
adding to adverse impacts (Gitay et al., 2002; Lovejoy and Hannah,
2005; IPCC, 2013). In urban areas, coastal ecosystems are often sur-
rounded by coastal development on the landward side and rising sea
level, so subject to increasingly shrinking and modified habitat (Defeo
et al., 2009; Mooney et al., 2009; Moeslund et al., 2011; Valiela et al.,
2018).

There is a need to incorporate coastal ecosystems in local govern-
ment climate vulnerability assessments and adaptation plans as part of
the broader societal adaptation process (Mawdsley et al., 2009; Runting
et al., 2017). This will prevent loss of biodiversity and ecosystem ser-
vices while helping communities adapt to climate change (Ojea, 2015;
Reid, 2016) and promote a shift from infrastructure to ecosystem-based
adaptation (EbA) - defined as ‘the use of biodiversity and ecosystem
services to help people adapt to the adverse effects of climate change as
part of an overall adaptation strategy’ (CBD, 2009) - as a way of pre-
paring coastlines for climate change (Jones et al., 2012).

EbA solutions, which utilize the natural environment to provide an
adaptation benefit (Jones et al., 2012; Munroe et al., 2012), provide a
sustainable, ecologically sound and economically feasible approach to
coastal defense with the potential to protect cities at risk of flooding
(Temmerman et al., 2013). Maintaining ecosystems as ‘green infra-
structure’ for EbA purposes, in addition to providing similar flood
protection benefits as grey infrastructure, has multiple benefits in-
cluding: greenhouse gas mitigation, water purification, sediment trap-
ping, conservation of biodiversity, provision of natural recreational
areas, and improved well-being of human communities. (Roberts et al.,
2012; Munang et al., 2013; IPCC, 2013). Although no community has
reported a comprehensive EbA approach, a variety of EbA measures are
in use (Zolch et al., 2018). Shifting from grey infrastructure to eco-
system-based adaptation is recognized as key to achieving a future with
sustainable development (Jones et al., 2012; Scarano, 2017).

We present the results of a multidisciplinary vulnerability study of
climate change impacts to watersheds, shorelines and ecosystems in
Santa Barbara County, California aimed at informing EbA for local
governments in this region. In this case study, we assess projected
changes in climate, coastal erosion and flooding, watershed runoff and
impacts to beaches and a coastal salt marsh ecosystem.

1.1. Study area

The focal study region is in Santa Barbara County, California (USA),
and lies in a narrow coastal plain, bordered to the north by the Santa
Ynez Mountains, a steep east-west trending mountain range
(> 1200 m), and to the south by the Santa Barbara Channel (Fig 1). The
study region includes the cities of Goleta (population 31,100), Santa
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Barbara (population 92,100), and Carpinteria (population 13,600) and
unincorporated areas in southeast Santa Barbara County (US Census
Bureau, 2017).

The Santa Barbara region is characterized by a Mediterranean cli-
mate with mild intermittently wet winters and moderately warm,
generally rainless summers (Ryan, 1994). Winter storms provide the
majority of freshwater input to rivers, streams, and the nearshore
marine environments. The coastal ecosystems of the Santa Barbara re-
gion are exposed to highly variable rainfall and to periodic El Nifio
Southern Oscillation (ENSO) and other short period climate variations
that affect stream runoff and ocean conditions in the Santa Barbara
Channel, including water temperature, wave height and period, and sea
level (Wolter, 1987). Atmospheric and oceanic conditions that develop
during El Nifio create elevated sea levels that can persist for several
months; these shorter period fluctuations will exacerbate the effects of
longer term SLR. In addition, enhanced rainfall driven by El Nifio and
other atmospheric patterns may increase terrestrial runoff and the as-
sociated transport of sediments, nutrients, and pollutants to the coastal
zone (Storlazzi et al., 2000).

Large scale patterns of ocean circulation also change, and storm
disturbance from waves is often considerable, which coupled with
elevated sea level increases the risk of coastal hazards across the entire
U.S. West Coast (Barnard et al., 2015). El Nino events can drive ele-
vated sea levels and more powerful waves without increased pre-
cipitation. This was the case during the El Nifio winter 2015-2016,
when ocean levels reached or exceeded 10 cm above normal and wave
conditions were 50% more energetic than the average winter despite a
continuing drought in the Santa Barbara region (Barnard et al., 2017).

The region has diverse watersheds, which vary widely in the pro-
portion of natural, agricultural and urban development (Aguilera and
Melack, 2018). Steep montane slopes composed of readily eroded
fractured sedimentary rock and strongly seasonal, often intense, epi-
sodic rainfall, result in large sediment loads to the ocean (Warrick et al.,
2015). The intermittent occurrence of fire in the catchments further
enhances temporal variation in flooding and the export of sediments
and nutrients.

1.2. Sandy beach and coastal wetland ecosystems

Typical of much of the world's coasts, most of the study area's
shoreline is composed of sandy beaches (> 70%) (Habel and
Armstrong, 1977). Coastal wetlands, lagoons, coastal dunes, vegetated
coastal strand zones, rocky intertidal reefs and creeks and riparian areas
are present in smaller proportions in the study area.

Sandy beaches are composed of unconsolidated sand from water-
sheds and coastal bluffs that are shaped by wind, waves and tides
(McLachlan and Defeo, 2018). Sandy beach ecosystems are affected by
wave action and sediment transport and thus vulnerable to climate
change and SLR (Fig. 2). Ecosystem services and functions of beaches
and dunes in the study area include absorption of wave energy, the
filtration of large volumes of seawater, nutrient recycling, rich endemic
invertebrate communities that are important prey resources for shore-
birds and fish, and the provision of critical habitat for pinnipeds, and
declining and endangered wildlife, such as shorebirds, as well as beach-
nesting fish (Martin, 2015; Dugan and Hubbard, 2016). Wider beaches
in the study area also can support sand-trapping pioneering vegetation,
including unique plants and coastal strand communities (Dugan and
Hubbard, 2010). Beaches in the study area exhibit considerable sea-
sonal and interannual variation in profile and width (Revell and Griggs,
2006; Revell et al., 2011; Barnard et al., 2012). Episodic storms and El
Nifio events can strongly influence the morphodynamics of local bea-
ches due to erosion from increased wave energy (Barnard et al., 2009a,
2011, 2017).

Beach ecosystems are generally not well protected by local regula-
tions and their ecological function is rarely considered in climate
adaptation planning. The widespread practices of shoreline armoring,
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Fig. 1. Study area (for watershed map see Fig. 8).

beach grooming, beach filling, winter berm building, and vehicle use
that degrade these ecosystems (Defeo et al., 2009) impact sandy bea-
ches in the Santa Barbara study region.

Sixty-two percent of estuarine wetlands in the study region have
been lost since 1850 (Stein et al., 2014). Those estuaries that remain are
small, isolated systems that provide valuable ecosystem functions in-
cluding: the preservation of native estuarine-dependent biodiversity,
habitat for regionally rare and endangered plants and animals, food
chain support for fish and birds, and the provision of habitat for re-
creationally and commercially important fish. They can provide storm
protection, and buffering of coastal development from coastal erosion,
surface water runoff filtration and attenuation, and carbon sequestra-
tion. Estuarine wetlands also provide socioeconomic values that include
their use by the public and educational institutions for bird watching,
nature walks, research and teaching (Onuf et al., 1979; Ferren et al.,
1997).

Sandy beaches and wetlands are important to the economy, culture
and character of the Santa Barbara area, contributing open space,
aesthetic qualities, recreational opportunities, tourism support and
spiritual and cultural values (King et al., 2018). The services provided
by coastal ecosystems that mitigate physical impacts of climate change
(e.g., carbon sequestration, storm buffering, runoff attenuation), can
provide the basis of ecosystem-based adaptation for coastal commu-
nities.

2. Materials and Methods

This manuscript is derived from the Santa Barbara Area Coastal
Ecosystem Vulnerability Assessment (SBA CEVA), a regional study
conducted to inform climate change adaptation of both human and
natural communities of Santa Barbara County, California, USA, with

local government officials as the target audience (Myers et al., 2017).
Five multidisciplinary research components included: downscaled cli-
mate projections, shoreline change and coastal hazards, watershed
runoff, estuarine ecosystems and sandy beach ecosystems. Regional
downscaled climate projections and models of shoreline change and
coastal hazards informed local level impacts to watersheds and coastal
ecosystems. The relationship between global datasets, regional down-
scaling and local ecosystem vulnerability is represented in Fig. 3.
Methods for study components are summarized in Table 1.

2.1. Climate change projections

Downscaled global model projections were employed to provide an
envelope of possible climate changes for the Santa Barbara region over
the 21st Century. This study utilized ten global climate models (GCMs)
from the Fifth Assessment (IPCC AR5, 2013) that were selected as best
representing the historical climate of California (Climate Change
Technical Advisory Committee, California Department of Water
Resources, 2015; Pierce et al., 2018). Downscaled daily maximum
temperature (Tmax), minimum temperature (Tmin) and precipitation
using the Localized Constructed Analogs (LOCA) statistical technique
(Pierce et al., 2014) were employed for two sets of GCM simulations,
based on the RCP4.5, a moderate greenhouse gas emission scenario,
and RCP8.5 a relatively high emissions scenario. The LOCA downscaled
data covered the Santa Barbara region at ~6-km (1/16th degree) re-
solution covering the period extending from 1950 to 2100.

Projections of sea level were produced using modeled short period
sea level variations superimposed on selected 21st Century SLR sce-
narios. Modeled hourly coastal water levels along the Santa Barbara
County coastline included astronomical tide, meteorological and in-
fluences of short period climate variability, and long-term global SLR,
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Fig. 2. Concept diagram representing the interaction of climate change, physical drives and responses and ecological responses.

following the method described in Cayan et al., 2008. This study em-
ployed low-, mid-, and high-range estimates of SLR from the National
Research Council (NRC) report (2012), covering the 2005-2100 period.
The short period sea level fluctuation (the meteorological component of
residual water level) is estimated using multi-linear regression model
following Cayan et al. (2008), constructed with water level observa-
tions at Santa Barbara Harbor and historical NCEP meteorological re-
analysis data. Input to the model consisted of non-tide variables, in-
cluding daily climate model data, local surface pressure and (together
called Hygr) local offshore surface wind stresses, local sea surface
temperature (SST), and SST in the central tropical Pacific Ocean as a
measure of El Nifo variability. The climate model data were first bias
corrected with the method used by the Localized Constructed Analogue
(LOCA) downscaling technique (Pierce et al., 2014). Local and equa-
torial Pacific Nino 3.4 regional average SST were detrended since large-
scale global SLR arising from long-term temperature change is included
as a separate term in the projection of the total water level. To produce
hourly regressed estimates of Hygr, the daily forcing data from the
CMIP5 climate models is disaggregated to hourly values using the
method described in Cayan et al. (2008). Historical and future values of
the non-tide water level residuals were projected for each of eight
GCMs, which supplied the necessary meteorological and ocean tem-
perature variables. The non-tide estimates were superimposed upon
predicted astronomical tides and projected long-term SLR scenarios to
produce values of total water level at each of the sites.

2.2. Watershed runoff modeling

Watershed runoff was simulated using the Hillslope River Routing
(HRR) model (Beighley et al., 2009), which utilizes an irregular com-
putational grid and parallel computing to simulate water fluxes and
energy balance through vegetation and soil layers, lateral hydraulic
transport from upland areas and channel hydraulics. Daily precipitation
and temperature are the meteorological forcings for runoff generation
in HRR. A binary-runoff-coefficient approach is used to simulate surface
runoff, which assumes that runoff is proportional to precipitation rate
and the runoff coefficient switches between dry and wet modes based
on soil moisture conditions. Subsurface runoff is estimated as a function
of soil moisture and saturation hydraulic conductivity. Potential eva-
potranspiration (PET) was used to quantify evaporation from land
surface and transpiration through vegetation, which was estimated
using Priestley and Taylor method (Priestley and Taylor, 1972) with the
Food and Agriculture Organization of the United Nations (FAO) limited
climate data approximations (Raoufi and Beighley, 2017). After the
runoff excess was generated from each grid, it is transported over
hillslopes using a kinematic approximation approach; after the runoff
reaches channels, diffusion wave routing is used to simulate the hy-
draulics of channel flow.

A Monte Carlo-based calibration procedure was implemented to
estimate the optimal model parameters in HRR. Gridded precipitation
and temperature estimates derived from gauged observations (Livneh
et al., 2015) were used as model forcings. In situ discharge measure-
ments obtained from five USGS gauge stations were used for model
performance evaluation. Based on the availability of streamflow data,
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Fig. 3. Relationship between global, regional and local vulnerability study components. Circles and ovals represent the five research components of the study.

Hexagons represent global datasets that informed regional models.

the calibration period was 1984-2013. Six parameters governing lateral
and vertical transport and surface runoff generation processes were
calibrated (the definition and description of these parameters can be
found in Feng et al., 2019). During calibration, thousands of parameter
sets are randomly selected from predefined parameter ranges. The best
parameter set for each gauged-watershed was selected based on ob-
jective functions at each gauge location. To estimate the model para-
meters at non-calibrated watersheds, the optimal values from each
gauge were then related to upstream watershed characteristics (e.g.,
land cover features). For those that are not significantly correlated with
any hydrogeologic characteristics, their values are estimated when the
overall cost function (i.e., average of error metrics from all calibrated
watersheds) is minimized.

After HRR was calibrated, it was forced with downscaled daily
precipitation and temperature from hindcast simulations and future
projections of 10 GCMs to simulate watershed runoff during historical
(1961-2000) and future (2021-2100) periods. The differences in
streamflow volumes and extremes and seasonality between historical
(1961-2000) and future (2021-2060 and 2061-2100) periods under
both emission scenarios were quantified. The Mann-Whitney U test was
applied to detect the significance of the changes in these variables.

2.3. Coastal hazards

To assess the exposure of ecosystems to coastal hazards associated
with climate change, the Coastal Storm Modeling System (CoSMoS) was
applied to the study region (Barnard et al., 2014, 2019; Erikson et al.,
2018a, 2018b; O'Neill et al., 2018). CoSMoS is a dynamic modeling
approach that allows detailed predictions of coastal flooding due to
projected SLR and future storms integrated with long-term coastal
evolution (i.e., beach changes and cliff/bluff retreat) over large geo-
graphic areas (100s of kilometers). The prototype system of CoSMoS
was developed for the California coast using the global WAVEWATCH
III wave model, the TOPEX/Poseidon satellite altimetry-based global
tide model, and atmospheric forcing data from Global Climate Models
to determine regional wave and water-level boundary conditions. These
regional conditions are then dynamically downscaled using a set of
nested Delft3D wave (SWAN) and tide (FLOW) models, and are then
linked at the coast to river discharge projections, fine-scale estuary
models, and along the open coast to closely spaced XBeach (eXtreme
Beach) cross-shore profile models.

Projections of multiple storm scenarios (daily conditions, annual
storm, 20-year- and 100-year-return intervals) were developed under a
suite of sea-level rise scenarios ranging from O to 2m, along with an
extreme 5-m scenario. All the relevant physics of coastal storms (e.g.,
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Table 1

Summary of methods for each of the five components of the study.

Geographic range

Output

Scale/resolution

Data Timeframes

Method

Component

Santa Barbara County @ 6 km resolution, entire CA

coast?

# Extreme hot days/yr, # wet days/yr, daily max T,

6 km grid

Historical: 1985-2014,
Future: 2020-2039,

2040-2059,
2060-2099

Localized Climate Analogue (LOCA)

Climate

difference in daily min and max, difference in median
annual precip, length of wet season, hourly sea level

10 GCMS (8 GCMs for hourly sea level)

RCP 4.5 and 8.5

Watersheds draining into Santa Barbara Channel from
west of the Ventura River to east of Point Conception,

in southern Santa Barbara County.

Daily discharge, annual maximum daily discharge, 100-
year flood discharge, hydrological seasonality (timing
California Coast

and length)

~1 km? sub-
basins

Historical: 1961-2000
Future: 2021-2060;

2061-2100

Hillslope River Routing (HRR)

Watershed

Simulated surface and groundwater runoff from hill slope

to channels

Water level (m NAVD88), flood extent, wave

2m digital

Coastal Storm Modeling System 3.0 (CoSMoS)

Coastal Hazards

conditions, shoreline evolution, average beach loss (m),

cliff retreat

elevation model

(DEM)

Habitat categories (upland, transition, high marsh, mid  Carpinteria Salt Marsh,

marsh, low marsh, high mudflat, low mudflat and

subtidal)

Habitat evolution model based on elevation (LIDAR DEMs
and in situ measurements), inundation (NOAA tide data),

and habitat (multispectral aerial images)

Wetlands

For SLR of +0-254 cm sea

Seven beaches in southern Santa Barbara County

including: Sands/Elwood, West Isla Vista, East

Projections of Profiles of and widths of beach zone

Predictive framework for ecological features based on

Beaches

widths above TWL (dry sand) for ambient conditions,

relationships between ecological measurements of the
daily beach high tide strand line level (HTS) and

Campus, Arroyo Burro, East Beach, Santa Claus Lane,

and Carpinteria City/State Beach

annual storm conditions, and above mean high water
for SLR of 0 cm, 50 cm, 100 cm, 150 cm, 200 cm,

500 cm (MHW)

projections of physical measurements of total water level
(TWL) and beach profiles from measured by CoSMoS

3.0USGS)
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tides, waves, and storm surge) were modeled then scaled down to local,
2 m-scale flood projections for use in community-level coastal planning
and decision-making. Rather than relying on historic storm records,
wind and pressure from global climate models were used to simulate
coastal storms under changing climatic conditions during the 21st
century (Erikson et al., 2015, 2018a; O'Neill et al., 2017). For locally-
generated seas and surge within the Santa Barbara Channel, down-
scaled wind and pressure fields were utilized (Pierce et al., 2014, 2018).
Further, the hydrodynamic modeling resolution, which is typically on
the order of ~50-100 m, was enhanced to ~10m to feed directly into
the detailed ecosystem vulnerability assessments for the beaches and
tidal wetlands at Carpinteria, and Goleta (e.g. Goleta Slough and De-
vereux Slough).

Long-term shoreline change and cliff retreat projections also are
provided, including uncertainty, using state-of-the-art approaches for
each of the 10 SLR scenarios. Predictions of sandy shoreline change
were produced by CoSMoS-COAST (Coastal One-line Assimilated
Simulation Tool; Vitousek et al., 2017). The model accounts for the
dynamical processes of wave-driven alongshore and cross-shore trans-
port, shoreline retreat due to scenarios of sea-level rise, and natural and
anthropogenic sources of sediment estimated via data assimilation of
historical shoreline data. The model is “trained” with historical wave
and shoreline data through 2010, and the calibrated model is used to
produce a prediction of shoreline evolution by 2100. Historical shore-
line data used to tune the model parameters in Santa Barbara comes
from 3 aerial LIDAR surveys (Fall 1997; Spring 1998; and Fall 2009)
(NOAA, 2012) as well as semi-annual USGS GPS surveys conducted in
Goleta and Carpinteria from 2005 to 2010.

Up to 7 numerical models were used to predict future cliff position
at each transect (Limber et al., 2018). All models related breaking wave
height and period to rock or substrate erosion, based on the idea that as
sea level rises, waves will break closer to the cliff and accelerate sea cliff
retreat relative to existing or historic rates of change. The models varied
in complexity and each made slightly different assumptions about how
waves and SLR drive future cliff retreat. However, using the models as
an ensemble provides improved predictive capacity over any single
model. The main sources of uncertainty in the cliff projections arise
from the base error of the historic retreat rates (measured between
1933 and 2010) that the predictions are based on, how well the in-
dividual models agree with one another, and difficulties estimating
unknown model coefficients.

For each of the 40 SLR and storm scenarios, products include: flood
extent, depth, duration, elevation, and uncertainty based on sustained
flooding projections; maximum wave run-up locations; maximum wave
height and current speed; and detailed population demographic and
economic exposure (Jones et al., 2017). All the model results can be
downloaded in native GIS formats (Barnard et al., 2016) or viewed
interactively in publicly available web tools to analyze the coastal ha-
zards (Ballard et al., 2019) and associated socioeconomic impacts
(Jones et al., 2017).

2.4. Coastal wetland ecosystem methods

This study focused on Carpinteria Salt Marsh, a fully tidal wetland
of 93 ha located ~12km east of Santa Barbara, California, USA. The
regularly flooded middle tidal marsh is vegetated primarily by a salt
tolerant succulent, pickleweed Sarcocornia pacifica (= Salicornia virgi-
nica). Other species, including the succulents Arthrocnemum sub-
terminale and Jaumea carnosa, saltgrass Distichlis spicata, and alkali
heath Frankenia salina, are found along with Sarcocornia at higher tidal
elevations. Regionally rare and endangered plant species that include
Cordylandthus maritimus (= Chloropyron maritimum), Lasthenia glabrata,
Sueada calceoliformis, and Astragalus pycnostachyus var. lanosissimus are
also found in the high marsh and upland transition habitats. The wet-
land is surrounded by urban and residential development that includes
railroad tracks, roads, housing, and business development. The amount
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of freshwater runoff entering the wetland is highly variable both within
and among years and coincides with seasonal storm events that are
generally restricted to December through March (Beighley et al., 2003).
Tidal waters from the Santa Barbara Channel enter the wetland through
an inlet at the southern border maintained open through a rock revet-
ment.

The distribution and area of existing habitats in Carpinteria Salt
Marsh were identified using a multispectral aerial image. Vegetation
classification algorithms were run on the georeferenced image to pro-
duce a simplified vegetation/habitat classification. The habitats and
grouping criteria consisted of: 1) open water subtidal, 2) mudflat - di-
vided into high mudflat (frequently exposed, inundated < 50% of the
time) and low mudflat (frequently flooded, inundated = 50% of the
time, 3) coastal salt marsh - vegetated by halophytic plants, further
divided into middle and high/mixed marsh on the basis of general plant
species composition, with S. pacifica dominant in the middle marsh at
lower elevations, and a mixture of species at the higher elevations, 4)
salt marsh — upland transition habitat that encompasses a gradient from
salt marsh to terrestrial vegetation infrequently hit by the tides, and 5)
undeveloped upland.

A digital elevation model (DEM) constructed from data acquired by
the California Coastal Conservancy Coastal Light Detection and
Ranging (LiDAR) was used to link elevation and habitat distributions
(based on vegetation). LiDAR elevations are influenced by plant canopy
cover and were adjusted downward for each habitat using average Real
Time Kinematic Global Positioning System (RTK GPS) elevation survey
data from each habitat. Five complete years of tide data (2006, 2009,
2011, 2013 and 2014) acquired from the NOAA tide station at Santa
Barbara, California (http://tidesandcurrents.noaa.gov/), were used to-
gether with the DEM and habitat classification to link elevation, in-
undation frequency and habitat (average deviation of tide data from
long-term MSL = — 2 cm). Habitat evolution scenarios were derived for
SLR ranging from O (no SLR) to 2.5 m relative to the marsh surface by
raising the elevation reached by tidal waters and computing habitat
change based on the habitat — inundation frequency relationship.

Outcomes pertaining to the possible timing of habitat evolution
were derived for the high and low SLR National Research Council
(2012) scenarios. The scenario affects the timing of habitat evolution,
but not the changes per se predicted to occur to habitats eventually with
SLR. Reynolds et al. (2018) estimated accretion rates of 3.7 mm year in
the top 30 cm of sediment using 2'°Pb. Therefore, we explored how an
average annual accretion rate of 4 mm yr~* would influence the timing
of evolution of marsh habitats.

The highest positive sea level anomalies associated with the El Nifio
of 2015 occurred within Carpinteria Salt Marsh July—October 2015
(Myers et al., 2017). On October 23, 2015, marsh elevation was mea-
sured using a RTK GPS at 1 m intervals along transects crossing mudflat
and salt marsh habitat recording the condition of vegetation at each
measurement point. We then compared the observed changes in vege-
tation condition associated with the short-term sea level anomaly as-
sociated with the El Nifio of 2015 to the habitat conversion predicted to
occur with longer-term SLR.

2.5. Sandy beach ecosystem methods

A critical impediment to assessing the vulnerability of sandy beach
ecosystems to climate change has been a lack of information that can be
used to integrate standard elevational metrics (MSL, MHW) with key
ecological components and habitat zones of beach ecosystems (Dugan
et al., 2013). To address this issue, standard elevational metrics were
related with key ecological components and habitat zones of beaches to
generate predictions of the ecological responses and resulting vulner-
ability of sandy beach ecosystems to pressures from climate change,
with a focus on SLR. Seven study beaches including beaches with dif-
ferent landward backings: three bluff-backed beaches, one dune-backed
beach, one armored beach, one groomed and filled beach and one
beach with a mixture of dunes, armoring and grooming (Fig 1). We
measured and modeled an ecologically important feature of beach
ecosystems, the upper intertidal zone for our analyses (Fig. 4). Located
closest to the landward boundaries of the beach, upper intertidal zones
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are edge habitats that are highly vulnerable to SLR.

Total Water Level (TWL) datum (Moore et al., 2006; Ruggiero and
List, 2009) was used as a proxy for defining the dynamic seaward
boundary, the daily High Tide Strand line (HTS), of the upper intertidal
zone of the study beaches (see Fig. 4) (see Dugan et al., 2013). Total
Water Level (TWL) on a beach is the sum of the tide level, plus the
elevation above the tide level reached by wave runup, including wave
setup (Ruggiero and List, 2009). The TWL datum, where available, can
provide a closer approximation of the 24-h High Tide Strand line (HTS)
feature that bounds the upper beach zone and is followed by key beach
biota (see Dugan et al., 2013 for rationale), than the Mean High Water
(MHW) datum. Assuming a moderate beach slope (est. 4-8 9), the mean
elevations of typical upper beach species (Clark, 1969) for the study
region yielded an estimated TWL of 11-22m above MHW datum,
bracketing the proxy data bias estimates between MHW and TWL
(average 18 m with a bias uncertainty of 9m) for California beaches
from Ruggiero and List (2009). Results of Dugan et al. (2013) for a
Santa Barbara beach indicated that the tidal datums of mean sea level
(MSL) and mean high water (MHW), were located well below the
ecological envelope of upper intertidal talitrid amphipods that burrow
at the HTS. These comparisons suggest that TWL can be applied to
mapping of ecologically relevant upper intertidal zone features in the
study region. The use of TWL was validated as a proxy for the elevation
and location of the 24-h High Tide Strand line (HTS) for use in mod-
eling projected responses of beach ecosystems to climate change using
data on beach profiles, elevations, widths and coastal processes
(Barnard et al., 2009b; Griggs and Russell, 2012). This modeled datum
combined with data on study area beaches (Dugan et al., 2003, 2008;
2011, 2013; Hubbard and Dugan, 2003) was then used to develop a
predictive framework of potential changes in the widths of upper beach
zones at selected beaches that represented the range of conditions
present in the study area.

Projections of changes in upper beach zone widths under different
SLR levels (50 cm, 100 cm, 150 cm, 200 cm, 500 cm) were generated
using projections from CoSMoS (O'Neill et al., 2018). The CoSMoS
runup (TWL) outputs for ambient and one-year/annual storm condi-
tions were used as a proxy for the location of the High Tide Strand
(HTS) under future sea level conditions allowing for an estimate of the
upper beach zone widths. The distance from the back beach location,
defined by the CoSMoS non-erodible shoreline, to the runup point along
each cross-shore transect (CST) was measured using ArcMap 10.2 and
Matlab R2015b. The same method was used to measure the distance
from the back beach to the location of the CoSMoS projected shoreline,
represented by the mean high water (MHW) elevation (Vitousek et al.,
2017). In some bluff-backed areas, the upper beach zone width was
estimated using the location of the CoSMoS projected mean high water
shoreline when its location was landward of the runup projection. In
certain locations where the CoSMoS model did not produce a runup
position, the upper beach zone width was interpolated based on ad-
jacent CSTs as well as the preceding and successive sea level conditions.

3. Results

Results, lessons learned and implications for local government
ecosystem-based adaptation are summarized in Tables 2 and 3.

3.1. Projected climate and sea level changes in the Santa Barbara region

All climate models examined are consistent in projecting increasing
temperatures across Santa Barbara County throughout the 21st
Century. The average magnitude of the projected temperature increases
using the RCP8.5 emission scenario is about 1.5°F by 2030, 3 °F by
2050, and 6-7 °F by 2090. The temperature increases are more pro-
nounced in the inland and mountain areas of the county and less along
the coast and offshore islands.

The number of extremely hot days (as measured by current
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historical values) in the Santa Barbara region is projected to increase
significantly with more than a doubling by 2050 and a nearly 10-fold
increase by 2090 (Fig. 5), consistent with previous findings over a
broader domain (Gershunov and Guirguis, 2012).

The median of the ten model ensemble of projections suggests that
annual precipitation amounts in Santa Barbara County will not change
significantly during the 21st Century. However, the individual model
projections were inconsistent with some showing reduced multi-decade
average annual precipitation and others increased annual precipitation
relative to current historical average values. As a result, there is con-
siderable uncertainty in this result. The model projections are in greater
agreement indicating fewer but more intense storms, a reduction in the
number of rainy days (also see Polade et al., 2017) (Fig. 6) Additionally,
the models indicate a decrease in the length of the wet season (also see
Pierce et al., 2018) that would heighten the risk of wildfire during the
longer dry season. A majority of the models project an increase in the
year-to-year variability of annual precipitation by the second half of the
21st Century that would increase the likelihood of extended periods of
drought.

Sea level heights are projected to increase substantially, under dif-
ferent scenarios of SLR during the 21st Century (Fig. 7). Even the most
optimistic SLR scenario examined produced non-linear increases in
both the frequency and duration of high water levels, which are ac-
centuated during storm events that mostly occur during winter months.
During the historical period, extreme water level events are primarily
limited to months June-August and November-February. This is due to
the highest astronomical tides that occur in these months as well as
strong winter storms that impact water level that occur during the
winter months. By mid-century, the number of extreme water level
events increases and occur more broadly throughout the year. With the
high-range SLR scenario, extreme water level events occur in all
months. By the end of the century, the number of hours with extreme
water levels increases dramatically in all months.

3.2. Watershed projections

Under future climate conditions, watershed runoff and the resulting
river discharges in the Santa Barbara area are likely to increase in both
volume and extreme magnitude (Feng et al., 2019) (Fig. 8). From
averages of the hydrologic model simulations driven by the 10 down-
scaled GCM projections, in the second half of the 21st Century
(2061-2100), mean annual discharge will increase by 19% under RCP
4.5 and by 37% under RCP 8.5, as compared to the historical period
(1960-2000). The increases in discharge extremes are even higher: 28%
and 65% for annual peak discharge during 2061-2100 under RCP 4.5
and 8.5, respectively. These changes mainly result from nonlinear hy-
drologic response to precipitation alterations. Although the changes in
annual precipitation are minimal (within = 2%), the rainfall events
under future climate tend to transform from low to moderate
(< 36 mm/day) to high (> 36 mm/day) intensities. Under RCP 8.5,
rainfall events with high intensities during 2061-2100 will increase by
28% compared to historical period, in contrast, the small rainfall events
(< 16 mm/day) will decrease by 18%. In addition to changes in pre-
cipitation events, the seasonality of precipitation will also be impacted.
During 2061-2100, the wet season length will shrink by 11 and 18
days, respectively, under RCP 4.5 and 8.5, mainly due to a late onset.
This alteration in precipitation (i.e., more intensified rainfall events
concentrated in a shorter period) leads to the more pronounced changes
in watershed runoff and river discharges. More frequent intense rainfall
events lead to wetter soil conditions during the rainy season which
leads to more efficient runoff generated contributing to increase in
streamflow, especially the extremes (e.g., annual peak flow).

3.3. Coastal hazards projections

CoSMoS flooding projections indicate considerable changes in
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Table 2
Results and implications for local government.

Ocean and Coastal Management 182 (2019) 104921

Results

Implications for local government

Temperature will increase through the 21st century. RCP 8.5 projections:
1.5°C by 2030
3°C by 2050
6-7 °C by 2090
Number of extremely hot days will double by 2050 and 10x by 2090.
Precipitation amount may not change. Storms would be fewer but more intense with
decreased length of the wet season and fewer wet days. Increased likelihood of
extended droughts.

Sea level will increase significantly over the 21st century. Extreme water level events will
occur in more months, eventually year-round.

Under future climate, more intense rainfall events during a shorter and delayed wet
season, would lead to changes in seasonality of streamflow (i.e., increase in wet
season streamflow and decrease in dry season streamflow) and pronounced increase in
the magnitudes of low-frequency flows (e.g., 100-yr flood).

Storms and the higher-end SLR scenarios (i.e., 0.5 m+) expected in the latter half of the
century pose the greatest risk to ecosystems.

Dramatic changes in beaches and wetlands are projected for mid century with severe
impacts to structure and function occurring earlier

Vegetated salt marsh would turn to predominantly mudflat with 30 cm slr (accretion rates
affect rate of change).

Loss of habitat impacts animals who live in the marsh and those that forage and nest
in the marsh (e.g. loss of upland habitat impacts endangered Beldings Savanah
Sparrow in Carpinteria Salt Marsh).

The timing of marsh changes are affected by multiple factors- rate of SLR, accretion of
sediment on the marsh surface, estuarine tidal dynamics, - making it uncertain when
in the future changes to habitat will occur.

Many already narrow beaches (backed by infrastructure or cliffs) would narrow
considerably; eroding on average by more than 25m by 2100. Without interventions,
50-75% may experience complete erosion by 2100.

Warmer temperatures would increase demand for water and energy related to air
conditioning, and increase the exposure to certain health issues (e.g. mosquito-borne
diseases). More frequent, more intense and longer lasting heat waves would cause
detrimental impacts on health and ecosystems.

Longer dry spells and more frequent drought would impact ecosystems along with
municipal, industrial and agricultural water supplies. In particular, longer dry
seasons would increase vulnerability to wildfires. Heavy precipitation events would
cause floods and erosion.

SLR and more frequent and higher extreme sea levels would cause increased coastal
and estuarine flooding and inundation, and increase coastal erosion.

Informs flood hazard planning.

Changes in streamflow seasonality may increase the risk of severe droughts and
wildfire events, and also impact the nutrients/sediment export to the Santa Barbara
coastal ecosystems.

Plan for SLR and storm-related impacts to intensify

Immediate need to incorporate model projections in both short and long-term
planning

Wetland ecosystems will change and habitat for endangered/sensitive species will be
reduced unless opportunities are provided for habitat to transgress inland.

It is difficult to plan/implement adaptation strategies for the future without
adversely affecting existing estuary function. Need to work with ecologists to
monitor changes to the marsh and identify trigger points and create an adaptive
management plan that is implemented when triggers are reached.

Plan for a future with less dry sand space on beaches and carefully balance human
and ecosystem needs. A first step is to identify beaches that can transgress inland
and/or are wide enough to support ecosystems and recreation in the future.

coastal hazards across the Santa Barbara region over the coming dec-
ades, including areas comprising sensitive coastal ecosystems, such as
the region's coastal estuaries and creeks, narrow, often bluff-backed
beaches, and dune fields. Several of these locations, such as Goleta
Slough and Carpinteria, are vulnerable to coastal flooding from a major
storm at present, while the vulnerability of other locations is more
acute later in the century (Fig. 9). The East Beach area adjacent to Santa
Barbara Harbor, for example, does not reach a critical threshold for
extreme storm impacts until between 0.5 and 1m of SLR, expected
between the middle and the end of the century (Sweet et al., 2017);
exposure to flooding then increases progressively through the higher
SLR scenarios. Conversely, the projected flooding for Carpinteria during
an extreme storm, including the salt marsh, already is high today, but
does not begin to increase appreciably until higher SLR scenarios are
reached (e.g., 1.5m). Goleta Slough and Carpinteria Salt Marsh, in
addition to the region's many narrow beaches and small creek mouths,
would be vulnerable to everyday flooding independent of storm con-
ditions for SLR scenarios expected later this century (i.e., 0.5-1m),
indicating a complete displacement of existing ecosystems.

The proportion of coastal flooding affecting developed vs. un-
developed land is roughly equivalent across scenarios, with wetlands
and open space generally being most vulnerable to present-day and
future coastal flooding among the undeveloped land cover types.
However, the undeveloped flooded areas that are designated as shrubs/
grassland and barren/open space increase the most as SLR increases.
While the area of wetland flooding does not change significantly,
wetland habitat is projected to change by mid-century. Overall, there is
little change in flooding exposure when transitioning from the 0-0.5m
SLR scenarios, but there is a significant change from 0.5 to 1 m, parti-
cularly for the no-storm scenarios, and another significant change from
1 to 2m SLR for the 100-year storm scenarios. In almost all cases ex-
treme storms significantly increase the areas exposed to flooding,
especially for the 0.5 and 2 m SLR scenarios, where land area exposed

to flooding can more than double during storms compared to SLR alone.
Up to ~10 km? of undeveloped land in the study area could be exposed
to flooding over the next century, with wetlands, shrubs/grassland and
open space being the most extensively flooded land cover types.

The CoSMoS-COAST model predicts that the sandy beaches in the
study area will narrow considerably; eroding on average by more than
25m by 2100, and 50-75% may experience complete erosion (up to
infrastructure or cliffs) by 2100 without interventions. The further
narrowing and/or loss of future beaches (and the ecosystems supported
by those beaches) will primarily result from accelerating SLR combined
with a lack of ample sediment in the system, which together will con-
tinue to drive the landward erosion of beaches, effectively drowning
them between the rising ocean and the backing cliffs and/or urban
hardscape. Many sandy beaches are already narrow and some are al-
most completely devoid of dry sand at high tide, which was particularly
notable following the El Nifio of 2015-16 that stripped significant vo-
lumes of sand off beaches due to elevated sea level and wave energy.
The marginal sand supply both stresses existing sandy beach ecosystems
and leaves the cliffs more vulnerable to wave attack, further placing
cliff top ecosystems and structures at risk. Mean historical cliff retreat
rates across Santa Barbara average ~0.2 m/yr. Model results suggest
that a 1 m rise in sea level will accelerate retreat rates to 0.31 m/yr
during the 21st Century, an increase of 55%.

3.4. Coastal wetland ecosystem impacts

Carpinteria Salt Marsh is currently comprised primarily of mid
(35%) and high (38%) vegetated marsh habitat with smaller amounts of
high mudflat (9%) and subtidal (8%), mostly confined to the deeper
portions of tidal creeks and channels (Fig. 10). There is also a narrow
upland transition zone bordering the intertidal portions of the wetland,
which is restricted in landward extent by surrounding residential and
urban development.
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Table 3
Lessons learned and implications for local government.
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Lessons learned

Implications for local government

Temperature and precipitation projections, from an ensemble of global climate models
run under moderate and high emissions scenarios, downscaled to a 6 km grid are
useful for local decision makers

For local government planning purposes, climate projections can be translated from
native climate grid output into GIS.

Downscaled climate, coastal hazards and shoreline change, and watershed runoff model
projections are useful for both natural and built environments

Extreme events, superimposed on changing climate and rising sea levels, are a critically
important component of regional climate changes. Extreme high sea level events
combined with terrestrial flooding are projected to double the land area exposed to
flooding.

Regional changes projected for Santa Barbara County were similar to other southern
California and Mediterranean regions, with substantial warming, shorter wet seasons,
longer dry spells and, occasionally larger rainfall events.

El Nifo events provide a window to future conditions. For example, during the
2015-2016 El Nifio a 10 cm above normal sea level and 50% wave energy increase
resulted in all except the widest Santa Barbara area beaches to be devoid of dry sand.
These sea level conditions are projected to occur on a regular basis before mid-
century.

Large-scale wildfire and debris flow events suggest there are synergies between climate-
related impacts that may result in larger events than anticipated.

The most landward (upper) part of both beach and wetland ecosystems are the most
vulnerable to climate change. Upper beach and wetland habitat, areas with the
greatest biodiversity and most rare/endangered species, are lost first with SLR.
Coastal ecosystems, including beaches and wetlands, have already “lost ground” and
the remaining habitats are severely threatened by SLR from climate change. Adaptive
management and conservation of these irreplaceable ecosystems is urgently needed
to restore and enhance their resilience and preserve their biodiversity and ecosystem
function.

Extent of wetland flooding does not indicate amount of habitat change

Surrounding infrastructure is an impediment to marsh transgression

Beach ecosystem response to projected SLR is strongly affected by beach landward
boundary (e.g. armored, developed, bluff-backed, dune-backed), with dune backed
beaches having the greatest resilience to slr. As sea level rises, armored beaches will
disappear first, bluff-backed beaches with no room to retreat will disappear next;
dune backed beaches are the most resilient but dune area will shrink as beaches
retreat landward.

Wide beaches that are intensively managed are an unrealized opportunity for providing
refuge for beach biodiversity (conserving beach ecosystems) and rare species (Dugan
et al., in progress).

SLR impacts to upper beach ecosystems can be approximated using total water level
(TWL) projections.

Informs city and county long range planning and flood hazard mapping at a scale
useful to local-level planning

GIS is a format commonly used by local governments in city and county planning
documents.

During climate adaptation planning the same models used for anticipating impacts to
the built environment can be used to anticipate ecosystem impacts

Extreme events are important to consider for long-range planning because they
deliver high impacts to both natural and built environments.

Many of the results exhibited by climate simulations downscaled to the Santa Barbara
region may apply to municipalities and ecosystems elsewhere in Southern California
and other Mediterranean regions. Furthermore, southern California temperature
projections are close to global averages

El Ninos are an opportunity for local governments to get firsthand experience of
projected climate change impacts (and consequences of management actions).

Plan for large-scale disasters in the future

Conservation of beaches, dune systems and estuaries can occur by discouraging
development adjacent to these dynamic ecosystems and encouraging open space
buffers and restoring native vegetation and landforms on public and private land.
Incorporation of SLR into restoration activities provides opportunities for ecosystems
to transgress inland.

Expert knowledge of ecosystems is needed to project future impacts. Physical data
(e.g. SLR maps) alone are not sufficient

Focus development away from the coast. Remove old structures

Prevent the installation of new armoring and identify opportunities to remove
armoring on beaches and wetlands. City parks and open space can provide buffers for
beaches. Require setbacks for beachfront and beach-adjacent properties. Restore and
protect dunes.

Stopping or strategically changing beach grooming practices can conserve/enhance
beach ecosystem biodiversity and allow formation of dunes that contribute to storm
protection.

Local governments and others can use total water level projections on USGS maps to
anticipate future impacts to the ecologically sensitive, biodiverse upper beach
ecosystem

High marsh and the upland transition are initially the most vul-
nerable to SLR, continuously declining in area and evolving into mid
marsh with rising sea level. Mid-marsh would initially increase in area,
but begin converting to high and eventually low elevation mudflat as
SLR exceeds ~+25 cm, relative to the marsh surface (Myers et al.,
2017). Approximately one-half of the existing high mudflat experiences
an inundation regime that supports cordgrass, Spartina foliosa, char-
acteristic of low marsh in other southern California wetlands (Myers
et al., 2017). Thus, a caveat to the sequence of habitat evolution pro-
posed above is the possible creation of vegetated low marsh if the high
mudflat becomes colonized by cordgrass.

Less certain is the actual timing of habitat evolution, which is de-
pendent on the interaction between future rates of SLR and accretion of
the marsh surface. For example, an average net accretion rate of 4 mm
yr~! keeps pace with SLR under the minimum year 2050 SLR scenario
(Fig. 10). However, an accretion rate of 4 mm yr~' only slows habitat
conversion under the maximum 2050 SLR scenario. In this case, mud-
flat habitat would comprise 56% of habitat with accretion compared
with 70% without accretion. However, under the longer term maximum
2100 SLR scenario, accretion rates of up to 4mm yr~ ! do not appre-
ciably slow the rate of evolution of vegetated marsh to mudflat; the
wetland could consist of > 80% mudflat by the end of the 21st Century
with or without 4 mm yr’1 accretion (Fig. 10). Little change in area of
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mudflat is expected by the end of the century under the minimum SLR
scenario if the marsh surface accretes at 4 mm yr~'.

Higher water levels associated with the El Nifio of 2015 increased
inundation frequencies (as proportion of tides hitting a particular ele-
vation) in the marsh relative to pre-El Nino values, providing a possible
preview of the effects of increased inundation on marsh habitats. For
example, inundation frequency estimated for mid marsh habitat, at a
tidal elevation of 1.4 m NAVDS88 for the months July—December 2015,
was double that (0.29) of the five year average pre- El Nifio value (0.14)
(Myers et al., 2017). This increase in inundation frequency corre-
sponded to a pre-El Nifio frequency typical of a tidal elevation of 1.1 m
NAVDS88 and mudflat habitat. Sarcocornia at this elevation appeared
stressed or dying. Consequently, one might expect habitat conversion
over time from Sarcocornia dominated mid marsh to high mudflat over
time if the higher inundation regime was prolonged.

3.5. Sandy beach ecosystem impacts

Results from CoSMoS modeling indicated that the majority of sandy
beaches in the study area are projected to decline in overall width with
increasing SLR. However, the loss of beach width will not be evenly
distributed across intertidal zones. Upper beach zones were projected to
experience the greatest declines in width and losses with SLR. Model
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Fig. 5. Ensemble mean number (days/year), from ten downscaled GCMs, of extremely hot days per year during 2020-2039 (left column), 2040-2059 (middle
column), 2080-2099 (right column) for emission scenarios RCP4.5 (top row) and RCP8.5 (bottom row). An extremely hot day is defined as day with daily tem-
perature maximum meeting or exceeding the 99%-percentile value of daily temperature maximums during the 1985-2014 historical period.

results projected significant declines (average > 70%, range:
51%-98%) in the widths of upper intertidal zones with 50 cm of SLR for
the study beaches (Fig. 11). The projected responses of sandy beach
ecosystems to SLR were strongly affected by the potential for the
shoreline to retreat. This means the type of landward boundary and the
degree of human alterations in the form of coastal armoring and de-
velopment are important factors in the vulnerability of beach ecosys-
tems to climate change.

For bluff-backed beaches a rapid loss of upper beach and mid beach
zones with increasing SLR was projected with < 15% of this critical
upper beach zone estimated to remain with 50 cm SLR at the study
beaches (West Isla Vista, East Campus, Arroyo Burro) (Fig. 11). The
limited accommodation space for retreat of bluff-backed beaches re-
stricts their ability to adjust and makes them extremely vulnerable to
SLR. The majority of sandy beaches are bluff-backed in the study area
(Habel and Armstrong, 1977) with limited scope for retreat. With
projected climate change and SLR, our projections suggest that upper
beach zones will become increasingly rare and vanish from much of the
bluff-backed beaches, resulting in major declines in biodiversity and
ecosystem function for the majority of the Santa Barbara coast.

Dune-backed beaches, such as the study beach at Sands/Ellwood,
were projected to have the greatest resilience to increasing SLR for
upper and mid intertidal zones, maintaining narrow zones of upper
(9%) and mid-intertidal habitats even with 200cm SLR (Fig. 11).
However even this dune-backed beach lost > 60% of the width of the
upper beach zone with 50 cm of SLR. Dune-backed beaches although
more resilient, are now rare in the study area making up less than 3% of
the sandy beaches.

Beaches with shoreline armoring that occupies upper beach zones
and limits potential migration of the shoreline were projected to have
the most rapid loss of upper and mid beach zones with SLR (~99% for
upper zone at Santa Claus Lane with 50 cm SLR) (Fig. 11). Beaches with
a mix of armored and unarmored shorelines and management, such as
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the adjacent Carpinteria beaches, showed some variation in projected
responses to SLR in the different sections. The dune-backed section of
Carpinteria State Beach was projected to maintain more upper beach
zone width at 50 cm SLR (Fig. 11) compared to the armored and
groomed section. However, with 100 cm of SLR, upper beach zones
were not detectable on this study beach.

The groomed and filled study beach which has an artificially wide
upper intertidal zone was also projected to have some resilience to SLR
but still lost > 50% of the upper beach zone width with 50 cm SLR
(Fig. 11). Regular mechanized grooming and sand contouring with
heavy equipment inhibits the development of coastal strand and dune
vegetation above the reach of tides and the beach fills from harbor
dredging periodically increase the width of the beach. The behavior of
this beach under SLR reflects the retreat of the intertidal beach into the
wide unvegetated and degraded dune zone created by the combination
of grooming, flattening and filling activities. This beach was projected
to maintain some width in the upper beach zone for much of the
shoreline segment for both 50 and 100 cm SLR, but with 150 cm SLR
the upper beach zone was projected to shrink to < 5m in width.

4. Discussion
4.1. Watershed impacts

Increased runoff and peak event streamflows in a shortened wet
season, which starts later, and decreased runoff in a lengthened dry
season is expected. Under a warmer future climate, less precipitation
and watershed runoff and higher potential evapotranspiration during
an elongated dry season would lead to a drier soil condition, which
increases the probability of droughts and wildfires. The majority of
nutrients and sediment fluxes occur at the beginning of wet season
(Homyak et al., 2014), and the fluxes of nutrients and sediment are
significantly and positively associated with hydrologic variability
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Fig. 6. Change in the number of wet days per year, averaged over the 10 downscaled GCMs. Change values are differences of 2020-2039 (left column), 2040-2059
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Fig. 7. Annual sea level anomalies modeled for Santa Barbara. Model produced
values during the 1950-2005 historical period (grey lines) and modeled pro-
jections during the 2005-2100 period (colored lines) are derived from output of
eight GCMs for each of three NRC SLR scenarios, shown as green, blue and red.
The black curve fragments between 1990 and 2014 are based on a limited set of
observations at Santa Barbara Harbor.

(Aguilera and Melack, 2018). Therefore, increased runoff in a delayed
wet season will result in changes in the timing and quantity of nutrients
and sediment export to the coastal ecosystems.

Drier and longer dry seasons increase wildfire occurrence and more
intense rainfall events stacked closer together increase runoff and ero-
sion. The combination of these can lead to massive debris flows. For
example in January 2018 a debris flow was caused by intense rainfall
(Oakley et al., 2018) following the massive Thomas wildfire.
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4.2. Coastal wetland ecosystems

Biological resources supported by small, urbanized Pacific coast
estuaries will change as rising water levels due to SLR alter key physical
and biological properties known to structure marsh plant communities
and habitats. The distribution of marsh plant species typically varies
with tidal inundation along an elevational gradient, although con-
siderable overlap of species can occur (Zedler et al., 1999). Because
these estuaries, are surrounded by buildings and infrastructure, and are
unable to transgress inland, the habitat “zones”, occupied by char-
acteristic vegetation that extend from low to high elevations in most
southern California estuaries (Ferren,1985; Page et al., 2003; Sadro
et al., 2007), without intervention, will evolve towards more subtidal
habitat as sea level rises.

Although little net change in the overall area of vegetated marsh is
predicted up to about 20 cm of relative SLR (Myers et al., 2017), the
most landward - high/mixed salt marsh and transition habitats-are the
most immediately vulnerable. As water levels rise, these habitats will
continuously decrease area and evolve into mid marsh habitat. Loss of
transition/high marsh has dramatic consequences for native salt marsh
plant diversity, typically highest in these habitats that include the most
rare, threatened and endangered species (Zedler et al., 1992). Fourteen
of sixteen plant species of conservation concern reported from Car-
pinteria Salt Marsh are found in the high marsh and transition habitat
and initially the most vulnerable to SLR (Myers et al., 2017). Of par-
ticular interest is the Federally listed endangered Salt Marsh Birds-beak,
restricted to higher elevations with sandier soils, and Coulter's Gold-
fields, a species of Federal Management Concern also found in areas
with sandier soils and alluvial deposits (Ferren, 1985). In addition, the
Federal and California listed endangered Ventura Marsh Milkvetch has
been planted in the wetland as part of a recovery plan for the species
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which account for roughly 83% of the study area, are
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Fig. 9. Example of future flood hazards in Goleta (top), Santa Barbara Harbor/East Beach (middle) and Carpinteria (bottom), showing the 1 m SLR scenario coupled
with the 100-year coastal storm. (Basemap: 2012 NAIP Imagery).
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Fig. 10. A) Location of Carpinteria Salt Marsh and present distribution and
areas of modeled habitats and B) scenarios of change in habitat areas by years
2050 and 2100 assuming no accretion of the marsh surface and an average

annual accretion rate of 4 mm yr~'.

and is vulnerable to increased inundation with SLR.

Middle marsh, vegetated primarily by Sarcocornia pacifica, including
foraging and perching habitat for the endangered Belding's Savannah
Sparrow (Passerculus sandwichensis beldingi) is less immediately vul-
nerable to relative SLR and is expected to initially increase in area as it
shifts landward. Eventually middle marsh converts to mudflat, which
along with subtidal habitats are the least vulnerable to the adverse
impacts of SLR. Shorebirds and wading and water birds could benefit
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from the expansion in mudflat, as it would increase loafing and foraging
area.

Currently, sedimentation and the conversion of mudflat to vege-
tated marsh is a priority management concern because of the im-
portance of mudflat as feeding and loafing habitat for shorebirds
(Ferren et al., 1997). Over the short term, an increase in the rate of SLR
may stabilize existing habitats, offsetting sediment accretion, currently
a management concern in Carpinteria Salt Marsh that is leading to a
loss of mudflat habitat (Myers et al., 2017). Over the longer term, if
accretion is unable to keep pace with accelerating SLR, marshes will
evolve to be more mudflat-dominated then, eventually, subtidal sys-
tems, decreasing both habitat and the potential for attenuation of storm
events.

The development of policy-making and long-term climate change
adaptation planning based on projections, modeling and monitoring
(Filho et al., 2018) is challenging given the uncertainty in rates and thus
timing of SLR, the effects of other climatic factors on the evolution of
marsh habitats, and surrounding urban and agricultural development
that limits adaptation options. Ecological monitoring of rates of SLR
and sediment accretion of the marsh surface will be required to inform
the timing of adaptation measures, which may involve alterations of
surrounding infrastructure to allow wetland habitats to transgress into
upland, and/or manipulation of sediment delivery to elevate the marsh
surface.

4.3. Sandy beach ecosystems

Sandy beach ecosystems and the biodiversity and ecosystem func-
tions and services they provide are extremely vulnerable to projected
SLR in southern Santa Barbara County and elsewhere in the world
(Schlacher et al., 2007). The upper intertidal zones of beaches are al-
ready limited along the study coastline and are projected to be most
immediately vulnerable to SLR. Loss of these zones will strongly reduce
intertidal biodiversity (losses of 40-50% of endemic upper beach spe-
cies), decrease the prey available for birds and fish and eliminate
nesting habitat for species of concern (California Grunion and Western
Snowy Plover) (Dugan et al., 2003; Hubbard et al., 2014; Martin, 2015;
Dugan and Hubbard, 2016; Schooler et al., 2017).

Although often narrow in width, upper intertidal zones are ecolo-
gically vital and critically important to biodiversity and ecosystem
function. Upper intertidal zones have already been lost to erosion or
altered by management practices and armoring on many beaches in the
study area. Loss of upper beach zones will affect the resilience of both
beach ecosystems and coastal communities by impacting the existence
of sand-trapping coastal strand vegetation and dynamic topography
that accumulates sand. In the absence of upper beach zones, sand ac-
cumulation (Dugan and Hubbard, 2010), wrack retention (Revell et al.,
2011) and nutrient cycling (Dugan et al., 2011) are impacted, and the
buffer areas that both protect coastal communities and are required by
the mobile intertidal animals of lower intertidal zones to survive high
waves and storm conditions (Dugan et al., 2013) are greatly dimin-
ished.

Projected responses of sandy beach ecosystems to SLR were strongly
affected by the potential for the existing shoreline to retreat or migrate
landward. Thus the type of landward boundary, (e.g. armored, devel-
oped, bluff-backed, dune-backed), significantly affects the vulnerability
of beaches to SLR, with dune-backed beaches having the greatest resi-
lience. As sea level rises, armored beaches are projected to disappear
first, bluff-backed beaches with no room to retreat will disappear next
and dune-backed beaches will be the most resilient but dune area will
shrink as beaches retreat landward.

The majority of beaches in the study area are backed by resistant sea
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Fig. 11. Projected values of the proportion of upper beach zone widths (above HTS) remaining for armored, bluff-backed, groomed/filled, and dune-backed beaches
in southern Santa Barbara County based on the CoSMoS 3.0 model results under different levels of SLR (50 cm, 100 cm, 150 cm, 200 cm and 500 cm).

bluffs that provide limited scope for migration of the shoreline to adjust
to SLR. These bluff-backed beaches were projected to have a rapid loss
of upper beach and mid beach zones with increasing SLR with < 15% of
the critical upper beach zone estimated to remain with 50 cm SLR. The
limited scope for retreat and habitat migration of bluff-backed beaches
and their associated ecosystems restricts their ability to adjust and
makes them extremely vulnerable to SLR. Thus with projected climate
change and SLR, upper beach zones are projected to become increas-
ingly rare and vanish from the majority of the Santa Barbara coast,
resulting in major declines in biodiversity and ecosystem function.

Shoreline armoring is already widespread and its use is expected to
increase with erosion and threats to infrastructure caused by rising sea
levels in the study area and elsewhere (Dugan et al., 2018). Beaches
with shoreline armoring that occupies upper beach zones have already
lost ecologically important upper beach habitat (Dugan and Hubbard,
2006; Dugan et al., 2008). Armoring structures, such as seawalls and
revetments, greatly limit the potential migration of the shoreline. For
this reason, armored beaches were projected to have the most rapid loss
of upper and mid beach zones with SLR.

Dune-backed beaches were projected to be more resilient to SLR but
have an extremely limited distribution in southern Santa Barbara
County. The dune-backed beach we studied maintained a narrow zone
of upper beach even with 200 cm SLR. However even the dune-backed
beach lost > 60% of the width of the upper beach zone with 50 cm of
SLR.

Our projections indicated that some of the relatively wide beaches
in the study region, currently managed for recreation and tourism, have
the potential to maintain some upper and mid beach habitats with in-
creasing SLR. These zones were projected to persist for much longer on
these altered beaches than on the bluff-backed or armored beaches in
the study area. These beaches are currently subject to frequent me-
chanized maintenance activities, such as beach grooming, that have
reduced or eliminated dune habitat, significantly reduced biodiversity
and degraded ecosystem functioning. Changing management of these
beaches to restore dunes, biodiversity and function of these degraded
beaches could provide an opportunity to enhance their resilience to SLR
and to conserve more area of intact beach ecosystems as sea levels rise.

4.4. Future management

The threat of frequent flooding, permanent inundation, beach loss
and wetland conversion to predominantly un-vegetated mudflats in-
creases significantly around 0.5m of SLR (~2050). Applying effective
sediment management practices will be a key factor in conserving the
region's coastal ecosystems and mitigating future coastal hazards. Sand
is a valuable resource, especially for a sediment-starved stretch of
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coastline like southern Santa Barbara County (Patsch and Griggs,
2008). Maintaining the existing supply of sand to beaches in the littoral
cell, allowing more sand to flow from watersheds to beaches and wet-
lands and providing accommodation space for coastal ecosystems to
accumulate sand wherever possible will be key components of future
coastal management efforts to maintain the dynamics of sandy beach
widths and ecosystems, and to protect adjacent communities from
flooding. However, in some highly vulnerable areas of the coast, the
most effective action may be to focus development away from the
coastline and allow space for coastal ecosystems and cliffs to retreat.

In southern Santa Barbara County, opportunities to maintain sandy
beaches and remnant estuaries into the future are few. Efforts to design
and implement suitable coastal management actions to mitigate pro-
jected impacts should be prioritized, as post-tipping point responses are
more costly and less effective (Selkoe et al., 2015). An adaptation ap-
proach not prioritizing ecosystems, which may involve the installation
of barriers or walls along the shoreline to protect urban development,
will result in estuary habitat evolution running its course and beaches
drowning with rising sea levels, with consequent loss of biodiversity
and important ecosystem services vital to wildlife and coastal com-
munities. An EbA approach would enable the shoreline and habitats to
transgress, which may involve the establishment of landward migration
corridors through removing or elevating some infrastructure and pro-
viding land to permit wetland and beach transgression (King et al.,
2018); increasing sediment supply, either directly or indirectly to
ameliorate SLR; and reducing shoreline armoring and mechanized
beach grooming.

5. Conclusions

Shorelines and coastal ecosystems in southern Santa Barbara County
are highly vulnerable to climate change impacts from multiple drivers,
both landward - changes in both dry and wet extremes of precipitation
and watershed runoff- and seaward - heightened water levels that re-
sult from SLR. Effects upon coastal ecosystems are projected to grow
increasingly severe, with impacts to biodiversity and storm buffering
capacity becoming significant around 2050, and reaching more dra-
matic levels of severity (e.g. area flooded) by 2100. Extreme short
period events, including heat waves, high coastal ocean levels and
storm rainfall-driven floods, will occur with increasing frequency and
severity. These impacts are projected to be significant even under
moderate scenarios of greenhouse gas emission and attendant climate
changes. Although little can be done to maintain some coastal ecosys-
tems, such as bluff-backed beaches, there are opportunities to attenuate
climate change related impacts on wide beaches and wetlands. Local
governments can manage these ecosystems and the surrounding area so
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they more effectively sustain ecosystem services and the beneficial
services they provide into the future (e.g. stopping beach grooming and
restoring wide beaches so dunes can form; allowing both wetlands and
beaches to transgress inland; removal of shoreline armoring and ef-
fective sediment management), contributing to an ecosystem-based
adaptation approach.
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