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Abstract

®

CrossMark

We theoretically study the interaction of ultrashort optical pulses with gapped graphene. Such a
strong pulse results in a finite conduction band population and a corresponding electric current,
both during and after the pulse. Since gapped graphene has broken inversion symmetry, it has
an axial symmetry about the y-axis but not about the x-axis. We show that, in this case, if the
linear pulse is polarized along the x-axis, the rectified electric current is generated in the y
direction. At the same time, the conduction band population distribution in the reciprocal space
is symmetric about the x-axis. Thus, the rectified current in gapped graphene has an inter-band
origin, while the intra-band contribution to the rectified current is zero.

Keywords: graphene, gapped graphene, current, ultrafast electron dynamics, ultrafast laser

pulse, topological resonances, transferred charge

(Some figures may appear in colour only in the online journal)

1. Introduction

The availability of ultrashort laser pulses with the duration of
a few femtoseconds provides effective tools to manipulate and
study the electron dynamics in solids at ultrafast time scale
with high temporal resolution [1-20]. Among solids, two
dimensional (2D) crystalline materials exhibit unique prop-
erties due to the confinement of electron dynamics to a plane
[21]. Graphene, a layer of carbon atoms with the thickness
of one atom, is a well known 2D material with fascinating
properties. Graphene has a honeycomb crystal structure
made of two sublattices, A and B—see figure 1(a) [22, 23].
Having two Dirac points, K’ and K at the edges of the
Brillouin zone -see figure 1(b), makes graphene a suitable
platform to study the dynamics of massless Dirac fermions
[21-24]. In graphene, both time reversal and inversion sym-
metries are conserved. However, there is a broad class of
semiconductors with honeycomb crystal structure where two
sublattices are made of two different atoms, and the inversion
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symmetry is broken, which results in a finite band gap at the
K and K’ points [25, 26]. One of such materials is a mono-
layer of transition metal dichalcogenides (TMDCs) that has
a direct band gap with nonzero Berry curvature around the
K’ and K valleys. Gapped graphene, which has broken inver-
sion symmetry, has topological properties similar to TMDC
monolayer. Namely, the Berry curvature in gapped graphene
is extended over the finite region near the K and K’ points.
Such broadening of the Berry curvature, which can be tuned
by the band gap, results in nontrivial topological properties
of gapped graphene [19, 25, 27, 28]. One of such properties
is a recently predicted topological resonance, which produces
finite valley polarization in TMDCs and gapped graphene
[18, 29].

In this article, we study the ultrafast nonlinear electron
dynamics in gapped graphene. The dynamics is induced by
a single cycle ultrafast linearly polarized pulse. Although, the
linear pulse does not produce any residual valley polarization;
it results in electric current, the magnitude and the direction of
which can be controlled by the band gap. Gapped graphene,
considered in the present article, is a model of direct band gap
semiconductors with honeycomb lattice structures. Opening
of the band gap in graphene can be achieved by several

© 2019 IOP Publishing Ltd  Printed in the UK
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Figure 1. (a) The honeycomb lattice structure of graphene is made
of two triangular sublattices A (black circle) and B (white circle).
(b) The first Brillouin zone of the honeycomb lattice has two valleys
K and K’ located in its boundaries. (c) The energy dispersion

is shown for gapped graphene with a band gap of 0.5eV in the
extended zone. The solid black lines show the boundaries of the first
Brillouin zone.

methods, for example, by placing graphene on boron nitride
(BN) or silicon carbide (SiC) substrate [30, 31].

2. Model and main equations

In the presence of an applied ultrafast optical pulse, F(),
with the duration of less than 5 fs, the electron dynamics is
coherent. This assumption is valid since the electron scat-
tering time in 2D materials is longer than 10 fs [32-37]. To
find the coherent electron dynamics in gapped graphene, we
solve the time-dependent Schrddinger equation (TDSE)

_dv
i =H(N, (1

with the Hamiltonian
H(t) = Hy — eF(t)r, )
where e is an electron charge, and Hj is the nearest neighbor
tight binding Hamiltonian of gapped graphene [38],
S K
HO = « Ag .
(k) -5
Here A, is the band gap, v = —3.03 eV is the hopping int-
egral, and

f(K) =exp (i%) + 2exp ( — i%) cos (%kx), 4)

where a = 2.46 A is a lattice constant. The eigenenergies of
the tight-binding Hamiltonian, Hy, can be found as follows

AZ
Ec(k) = +\[ )P + 55 ®
E\(k) = —\ [ [F(K)* + %g, ©)

where ¢ and v stand for the conduction band (CB) and the
valence band (VB), respectively. Figure 1(c) shows the

3)

calculated energy dispersion from equations (5) and (6) for
the band gap of A, = 0.5 eV.

The coherent electron dynamics in solids has two major
components: intraband and interband dynamics. The intra-
band dynamics is governed by the Bloch acceleration theorem

dk
h— =
dt

The solution of this equation has the following form

eF(1). (7

k(q,t) =q+ %/ F(¢)d?, (8)

where q is the initial crystal wavevector of an electron in the
first Brillouin zone.

The corresponding wave functions, which are the solu-
tions of Schrodinger equation (1) within a single band ¢, i.e.
without interband coupling, are the Houston functions [39],

o (1) = ey M exp (10 (@) + 0P (@.0) . (©)

where a = v, ¢ stand for the VB and CB, respectively, \I/l((a)

are Bloch-band eigenstates in the absence of the external field,
(D)

E, (K) are the eigenenergies, and the dynamic phase, ¢, and
geometric phase, ¢aB , are defined as
_ t
P =5 [ o k@), o)
t
W= [ aFACKG).  an

Here A = <\I'ga)|i6@q|\llga)> is the intraband Berry con-

nection. The expressions for the intraband Berry connections,
A = (A, AF®), can be found from the tight-binding
Hamiltonian as follows

—ay? 3ak, ak,

. Y iy X
VIR + (Ag/2—Ea)? 23 2(12)

AL (k) =

ay 2

V3 (PR + (Ag/2 — Ea)?)
( \/gaky akx>
X | cosak, — cos 5 cos—|. (13)

Az (k) =

2

The interband electron dynamics is described by TDSE
(1). The solution of TDSE can be expanded in the basis of

Houston functions @&z) (r,1) [39],

Ug(r 1) = > Bag(r)®Ug (r.1),

a=c,y

(14)

where [.4(t) are expansion coefficients, which satisfies the
following system of coupled differential equations
OBgy(t
2290 g, 8400,
ot
where the wave function (vector of state) B,(f) and Hamiltonian
H'(q, t) are defined as

(15)
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| Bea(t)

By(t) = [ﬁvq(t)] . (16)
H'(q.1) = —eF(1)A(q. 1), (17)

R 0 D" (q,1)
A(q.1) = lDW(q’ ) 0 ] (18)

where
D" (q,1) = A" [k(q, 1)]
< exp (10 (0.0 + 6 (@.0) . (19)
o (q.1) = o (q.1) — ") (q.1) (20)
oP(q.1) = o (q.1) — ¢{®(q.1) 1)
c)y- 8 v

A%(q) = <q,g ’Ila—qlﬁfé )>- (22)

Here A”(q) is a matrix element of the non-Abelian Berry
connection [40—-42], which has the following expression

vy —a av/3k,
AL (K) N(W) <31n2s1n 5

A 3k, k
+ IZEi < 0s a\g sin 612—)6 + sin akx>> (23)
a av/3k ak
cv k — _ 1 _ y icd
A (k) N<2\/§lf(k)|2>< cos —5— €08 —
sake 38, . aV3k,  ak
+ 2 cos > 1—2 E_ sin > co > |
24
where
ol

24 k)P

Note that the non-Abelian Berry connection is simply pro-
portional to the interband transition dipole matrix element,
D(k) = e A (K).

The ultrafast field drives electric current, J(r) = {J.(¢), J,(1) }.
The current has both interband and intraband contributions,
J(r) = JOnu) () 4 J(nen) () The intraband current is propor-
tional to the group velocity and has the following form

J(intra)(t) — % Z ‘5a(q,t)|2v(a)(k((bl)),

a=c,v,q

(25)

where Vl((a) = %E (@)(k) is the group velocity (intraband
velocity) and g, = 2 is the spin degeneracy. The group veloci-
ties can be found from equations (5)—(6)

2

Ve(k) =~V (k) = ——
I (k)2 +

. AKy \[aky akx

X sm7(cos > + 2 cos 7) (26)

v _\/§a72
Vyc(k) ==V (k) =
If (K)[2 +

X sin \@aky cos %kx. 27

The interband current is given by the following expression

Z B (€, 1)Ba(a,1)

OLQ—VC

a#a’
x explio) (q.1) + 16, (q.1)}

J(mter) ( egs

X [Ear (k(q,1)) — Eo (k(g,1))] A (k(q,1)), (28)
where

o) (q.1) = 6P (q,1) — ¢ (q.1), (29)

o) (4.1) = 6P (q,1) — 6 (q.1). (30)

3. Results and discussion

In gapped graphene, sublattices A and B are not equivalent,
which results in broken inversion symmetry. Gapped gra-
phene is symmetric with respect to the y-axis, but there is no
symmetry with respect to the x-axis, see figure 1. Thus, if the
linear optical pulse is polarized along the y-axis, then the CB
population distribution in the reciprocal space is symmetric
with respect to the y-axis and the electric current is generated
only along the y-axis, and not along the x-axis. But if the pulse
is polarized along the x-axis, the current is expected to flow
both along the x and y directions. Below we consider only this
case, i.e. we assume that the optical pulse is polarized along
the x-axis.

We consider a linearly x-polarized ultrafast optical pulse
that is applied normally on the gapped graphene monolayer
and has the following waveform

F=Fo(1—2)e™", 31)

where Fj is the amplitude of the pulse, u =¢/7 , and 7 =1
fs. We assume that the pulse is polarized along the x-axis. It
should be mentioned that the x-axis is not the axis of sym-
metry of the gapped graphene, while the y-axis is the axis of
symmetry.

In the presence of the pulse, we solve the TDSE assuming
that the VB is initially occupied and the CB is empty. The
electron dynamics in the field of the pulse is highly non-
linear and is characterized by the redistribution of electrons

between the VB and CB. After the pulse, there is a nonzero
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Figure 2. The residual CB population Ng;s) (k) for gapped

graphene with various band gaps, A, = 0,0.5,1eV,and A, =2
eV, in the extended zone picture. The white solid line shows

the boundaries of the first Brillouin zone with the K, K’-points
indicated. The applied field is a pulse linearly polarized in the x
direction, and its amplitude is 0.5 V A",

v

Such a population determines the irreversibility of the elec-
)

residual electron population, in the CB—see figure 2.

tron dynamics. The distributions of Ng;s in the reciprocal

space are shown in figures 2(a)—(d) for different values of
the band gap. The distributions are characterized by hot spots
with large, ~ 1, CB population. Such hot spots are due to
the double passage of electrons of the K (K’) point during
the pulse and the manifestation of the interference pattern.
Similar hot spots were discussed in [43], where the inter-
action of a linear optical pulse with pristine graphene has
been studied. For gapped graphene, the interference pattern
becomes smeared, see figure 2. This is because the interband
coupling is determined by the interband transition dipole
matrix element, the distribution of which is broadened with
increasing the band gap—see figure 3. At the same time, the
separation between the fringes is inversely proportional to the
nonlocality distance and, thus, does not depend on the band
gap [43]. Another interesting property of the CB population
distribution is that it is symmetric with respect to both x and
y axes. This is a nontrivial property since the x-axis is not the
axis of symmetry of the system.

The CB population distribution is shown in figures 4(a)—
(d) at different moments of time. It illustrates the formation
of the interference-induced hot spots in the CB popula-
tion distribution. At all moments, the CB population distri-
bution is symmetric with respect to the x axis. Initially, at
—2.5 fs <t < —0.7 fs, the applied field is negative, so the
electrons are accelerated to the right. Since the interband cou-
pling is strong near K and K’ points only—see figure 3, the CB
population within this time interval is large on the left side of
the K and K’ points, see figure 4 (a).

D] (eA) D] (eA)
0 25 50 0 6 12
HE a4

k_(1/A)

Figure 3. The absolute value of the x component of the dipole
matrix element is shown for gapped graphene with various band
gaps (a) 0, (b) 0.5 eV, (c) 1.5 eV, and (d) 2 eV. The dash white line
shows the boundary of the first Brillouin zone.

(res)
Ny )

Figure 4. The CB population, Ncg(k), as a function of the

initial crystal momentum (in the extended zone picture) for
gapped graphene with band gap 1eV for different moments of
time, t = —0.7,0,0.7 fs, and ¢ = 3 fs. The white solid line shows
the boundaries of the first Brillouin zone with the K, K’-points
indicated. The applied pulse is linearly polarized in the x direction,
and its amplitude is 0.5 V A=,

For the time interval —0.7 fs < ¢ < 0 fs, the field is posi-
tive and the electrons move to the left and pass the K and K’
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Figure 5. (a) The electron-hole excitation energy E (k) — E, (k)
in the first Brillouin zone shown in the grayscale for gapped
graphene with band gap A, = 1 eV. The population of the CB
is superimposed on the energy landscape and is color-coded.

The applied pulse is linearly polarized in the x direction with the
amplitude of 0.5 V A~!. (b) For the same system, the interband
matrix element in the x direction, |D,| is plotted in the grayscale.
The color-coded residual CB population is superimposed.

points the second time, which results in interference fringes or
hot spots on the left sides of the valleys as shown in figure 4(b).
The field remains positive for 0 fs < 7 < 0.7 fs and now the
electrons from the right side of K and K’ points pass the region
near K or K’ points, which results in large CB population on
the right side of the K and K’ points, see figure 4(c). The field
changes its sign at 0.7 fs < < 2.5 fs. Then the electrons
from the right side of K and K’ points pass through the region
of large interband coupling the second time, which produces
hot spots of CB population on the right side of the K and K’
points. The electron CB distributions shown in figures 2 and 4
could be observed by time resolve angle-resolved photoelec-
tron spectroscopy (tr-ARPES) [44, 45].

The strong field of the excitation pulse coherently populates
electron—hole states in the CB in a very wide band of excita-
tion energies that is determined mostly by the amplitude of the
pulse but not by its spectral composition. To illustrate this, in
figure 5(a) we plot the CB electron population superimposed

0.4
0.3}
0.2t
E oy
g
= 0
-0.1}
-0.2
0.041
T 0.02f
=
< 9
\)\
-0.02}
-0.04¢

Figure 6. The current densities in gapped graphene are shown as

a function of time for various band gaps, OeV, 0.2¢V, 0.5¢V, 1eV,
and 2eV. The applied pulse is linearly polarized in the x-direction,
and its amplitude is 0.5 V' A~!. (a) The current density, J, is along
the direction of the applied field. (b) The current density, Jy, is in
the direction normal to the applied field.

on the energy dispersion for the gapped graphene with a band
gap of 1 eV. As we can see in this figure, the ultrashort optical
pulse with the amplitude of 0.5 V A~1 excites the electron—
hole pairs in the energy band as high as AE ~ 7 eV. This
bandwidth significantly exceeds the spectral width of the 2 fs
excitation pulse, which is ~ 2 eV.

The physics of this process can be understood as the fol-
lowing. The optical field compels electrons to move in the
reciprocal space, according to Bloch equation (8). During this
motion, some electrons pass close to the K-points. At these
points, the interband matrix element (non-Abelian Berry cur-
vature) of equation (22) is greatly enhanced—see figure 5(b)
and also figure 3. Thus, these electrons have a high probability
of undergoing the VB—CB transitions. After the pulse ends,
electrons return to their original positions in the Brillouin
zone, and their energy distribution reflects the work that the
optical field did on them during the pulse. This large spectral
bandwidth of the electron-hole excitations also allows one
to measure the temporal dynamics of the electron population
with a fundamental resolution Ar ~ i/ AE ~ 100 fs limited
by the Heisenberg uncertainty relation.

Redistribution of electrons between the VB and CB during
the pulse generates an electric current. For the pulse polarized
along the x-axis, which is not the axis of symmetry for the
gapped graphene, both the longitudinal current, i.e. current in
the x direction, and the transverse current, i.e. current in the y
direction, are generated. Such currents are shown in figure 6
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Figure 7. The current densities in gapped graphene are

shown as a function of time for various field amplitudes,
Fy=10.1,0.3,0.5,0.7,1.0 VA" The applied pulse is linearly
polarized in the x-direction, and the band gap of gapped graphene is
A, =1 ¢eV. (a) The current density, Jy, is along the direction of the

applied field. (b) The current density, Jy, in the direction normal to
the applied field.

for different values of the band gap, A,. For zero band gap,
i.e. for pristine graphene, the transverse current, J,, is zero.
The transverse current increases with the band gap.

The electric current, which is generated during the pulse,
has two contributions: intraband and interband—see equa-
tions (25) and (28). The intraband current (25) is entirely deter-
mined by the electron density distributions in the CB and VB.
It can, therefore, be considered as a measure of the asymmetry
of such distributions. Due to the excitation pulse being invar-
iant with respect to the reflection in the x axis, the CB popula-
tion distribution is mirror-symmetric with respect to that axis,
both during the pulse and after it. Consequently, the intraband
transverse current is zero. Thus, the transverse current, Jy, for
gapped graphene is determined by the interband contribution
only. As the results, the transverse current, J,, as a function
of time, is oscillating with the frequency that depends on the
band gap, see figure 6(b). At the same time, the longitudinal
current, J,, is almost unidirectional with some oscillations, see
figure 6(a). Note that these oscillations increase with the band
gap; for the maximum band gap, A, = 2 eV, the strong oscil-
lations start at the end of the excitation pulse, i.e. at t 2 1 fs.
These oscillations are due to the interband component of the
current that is superimposed on the non-oscillating intraband
component causing a ‘beating’ pattern that is well pronounced
fort ~ 1 fs.

Since the band gap determines the strength of the asym-
metry of the system, we expect that the magnitude of the
transverse current increases with band gap, which is shown
in figure 6(b). For the longitudinal current, there is a dif-
ferent tendency. The longitudinal current first increases with
A, and then, at large band gaps, A, ~ 2 eV, decreases.
Such suppression of the longitudinal current at large values
of A, is due to the specific dependence of the interband
dipole matrix elements (non-Abelian Berry connection) on
the band gap. As shown in figure 3, at small band gaps, the
interband dipole matrix element is strongly localized near
the K and K’ points. With increasing band gap, the dipole
matrix element becomes delocalized and nonzero at the
large part of the Brillouin zone, where the maximum of
the dipole matrix element decreases with band gap keeping
the net dipole matrix element, i.e. the integral of the dipole
matrix element over the whole Brillouin zone, constant. As
a result, the total CB population near the K or K’ points
decreases with A,, which finally results in suppression of
the longitudinal current.

In figure 7, the longitudinal and transverse currents are
shown for different field amplitudes. As expected, with
increasing field amplitude, the magnitudes of both currents
increase. The frequency of oscillations of the transverse cur-
rent also depends on the magnitude of the pulse, while the
longitudinal current is almost unidirectional.

The direction of the current is determined by the direc-
tion of the field maximum. For the field profile (31), the field
maximum points in the positive direction of the x-axis. If we
change the direction of the field maximum to the negative one,
i.e. it is pointing in the negative direction of the x-axis, then
the longitudinal current, J,, changes its sign, while the trans-
verse current, J,, remains the same. The transverse current
changes its sign if we change the signs of the on-site energies
of sublattices A and B, i.e. change the sign of parameter A, in
Hamiltonian (3).

The generated electric current during the pulse results in
the transfer of an electric charge through the system. This
transferred charge can be calculated as

o)

Q= / J(t)dt. (32)

— 00
For the pulse polarized along the x-axis, the charge is trans-
ferred in both x and y directions. In figure 8, the transferred
charge is shown as a function of the pulse amplitude for
different values of the band gap. As expected, for zero band
gap, there is no charge transfer in the transverse direction,
0O, = 0—see figure 8(a). As a function of the field ampl-
itude, the transverse transferred charge shows oscillations,
which is due to oscillations in the transverse current as a
function of time. The longitudinal transferred charge, O,
monotonically increases with the field amplitude and has
a weak dependence on the band gap—see figure 8(b). At
large band gap, A, ~ 2 eV, transferred charge O, becomes
smaller, which is related to the suppression of the CB popu-
lation and correspondingly the longitudinal electric current
at large A,.
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Figure 8. The transferred charge densities are shown as a function of the field amplitude, Fy, for different band gaps, 0eV (case of
graphene), 0.2eV, 0.5¢V, 1eV, and 2eV. (a) The transferred charge density is shown in the direction normal to the applied field, Qy, and
(b) The transferred charge density is shown along the direction of the field, Q. The applied pulse is linearly polarized in the x-direction.

4. Conclusion

In pristine graphene, which has inversion symmetry, there
are two axes of symmetry, say x and y. If an external linear
pulse is polarized along with these two directions, then it will
produce CB population distribution that is symmetric with
respect to the axis of polarization of the pulse. The pulse will
also generate an electric current, and the corresponding trans-
ferred charge along the direction of polarization only, but not
in the transverse direction.

For gapped graphene, the inversion symmetry is broken. In
this case, there is only one axis of symmetry, say the y-axis. If
the linear pulse is polarized along the x axis, since this axis is
not the axis of symmetry, electric current is generated in both
x and y directions. The transverse current does not depends
on the direction of the field maximum, while the longitudinal
current changes its sign when the direction of the peak is
reversed. At the same time, for the same polarization of the
pulse, i.e. along the x-axis, similar to pristine graphene, the
CB population distribution is symmetric with respect to the
x-axis both during and after the pulse. This means that the
electron dynamics above (k, > 0) and below (k, < 0) the K
(K") point is exactly the same, which results in a symmetric
CB population distribution. Although, the electron dynamics
depends on the geometric phase, which is different above and
below the K (K’) point, this phase is exactly canceled by the
phase of the interband dipole matrix element (non-Abelian
Berry connection). This is a property of the two-band model
of gapped graphene, which will be discussed somewhere else.
If more bands are included in the model, then there will be no
cancellation of the geometric phase and the net (topological)
phase, which is the sum of the geometric phase and the phase
of the interband dipole coupling will be nonzero. The topo-
logical phase has different time dependence above and below
the K (K'), which results in topological resonance. This topo-
logical resonance occurs due to a partial cancellation of the
dynamic phase by the topological phase. Such partial cancel-
lation is different above and below the K (K’) point, which
finally results in different CB populations and asymmetric

CB population distribution. Such small asymmetry of CB
population introduces small intraband contributions to the
transverse current.
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