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1. Introduction

The availability of ultrashort laser pulses with the duration of 

a few femtoseconds provides effective tools to manipulate and 

study the electron dynamics in solids at ultrafast time scale 

with high temporal resolution [1–20]. Among solids, two 

dimensional (2D) crystalline materials exhibit unique prop-

erties due to the confinement of electron dynamics to a plane 

[21]. Graphene, a layer of carbon atoms with the thickness 

of one atom, is a well known 2D material with fascinating 

properties. Graphene has a honeycomb crystal structure 

made of two sublattices, A and B—see figure 1(a) [22, 23].  

Having two Dirac points, K′ and K at the edges of the 

Brillouin zone -see figure  1(b), makes graphene a suitable 

platform to study the dynamics of massless Dirac fermions 

[21–24]. In graphene, both time reversal and inversion sym-

metries are conserved. However, there is a broad class of 

semiconductors with honeycomb crystal structure where two 

sublattices are made of two different atoms, and the inversion 

symmetry is broken, which results in a finite band gap at the 

K and K′ points [25, 26]. One of such materials is a mono-

layer of transition metal dichalcogenides (TMDCs) that has 

a direct band gap with nonzero Berry curvature around the 

K′ and K valleys. Gapped graphene, which has broken inver-

sion symmetry, has topological properties similar to TMDC 

monolayer. Namely, the Berry curvature in gapped graphene 

is extended over the finite region near the K and K′ points. 

Such broadening of the Berry curvature, which can be tuned 

by the band gap, results in nontrivial topological properties 

of gapped graphene [19, 25, 27, 28]. One of such properties 

is a recently predicted topological resonance, which produces 

finite valley polarization in TMDCs and gapped graphene 

[18, 29].

In this article, we study the ultrafast nonlinear electron 

dynamics in gapped graphene. The dynamics is induced by 

a single cycle ultrafast linearly polarized pulse. Although, the 

linear pulse does not produce any residual valley polarization; 

it results in electric current, the magnitude and the direction of 

which can be controlled by the band gap. Gapped graphene, 

considered in the present article, is a model of direct band gap 

semiconductors with honeycomb lattice structures. Opening 

of the band gap in graphene can be achieved by several 
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methods, for example, by placing graphene on boron nitride 

(BN) or silicon carbide (SiC) substrate [30, 31].

2. Model and main equations

In the presence of an applied ultrafast optical pulse, F(t), 
with the duration of less than 5 fs, the electron dynamics is 

coherent. This assumption is valid since the electron scat-

tering time in 2D materials is longer than 10 fs [32–37]. To 

find the coherent electron dynamics in gapped graphene, we 

solve the time-dependent Schrödinger equation (TDSE)

i�
dΨ

dt
= H(t)Ψ, (1)

with the Hamiltonian

H(t) = H0 − eF(t)r, (2)

where e is an electron charge, and H0 is the nearest neighbor 

tight binding Hamiltonian of gapped graphene [38],

H0 =

(

∆g

2
γf (k)

γf ∗(k) −∆g

2

)

. (3)

Here ∆g is the band gap, γ = −3.03 eV is the hopping int-

egral, and

f (k) = exp
(

i
aky√

3

)

+ 2 exp
(

− i
aky

2
√

3

)

cos
(akx

2

)

, (4)

where a = 2.46 Å is a lattice constant. The eigenenergies of 

the tight-binding Hamiltonian, H0, can be found as follows

Ec(k) = +

√

γ2 |f (k)|2 +
∆2

g

4
, (5)

Ev(k) = −

√

γ2 |f (k)|2 +
∆2

g

4
, (6)

where c and v stand for the conduction band (CB) and the 

valence band (VB), respectively. Figure  1(c) shows the 

calculated energy dispersion from equations  (5) and (6) for 

the band gap of ∆g = 0.5 eV.

The coherent electron dynamics in solids has two major 

components: intraband and interband dynamics. The intra-

band dynamics is governed by the Bloch acceleration theorem

�
dk

dt
= eF(t). (7)

The solution of this equation has the following form

k(q, t) = q +
e

�

∫ t

−∞

F(t′)dt′, (8)

where q is the initial crystal wavevector of an electron in the 

first Brillouin zone.

The corresponding wave functions, which are the solu-

tions of Schrödinger equation (1) within a single band α, i.e. 

without interband coupling, are the Houston functions [39],

Φ
(H)
αq (r, t) = Ψ

(α)
k(q,t)(r) exp

(

iφ(d)
α (q, t) + iφ(B)

α (q, t)
)

, (9)

where α = v, c stand for the VB and CB, respectively, Ψ
(α)
k  

are Bloch-band eigenstates in the absence of the external field, 

Eα(k) are the eigenenergies, and the dynamic phase, φ
(D)
α , and 

geometric phase, φ
(B)
α , are defined as

φ(D)
α (q, t) =

−1

�

∫ t

−∞

dt′ (Eα[k(q, t′)]) , (10)

φ(B)
α (q, t) =

e

�

∫ t

−∞

dt′F (Aαα[k(q, t′)]) . (11)

Here Aαα =
〈

Ψ
(α)
q |i ∂

∂q
|Ψ(α)

q

〉

 is the intraband Berry con-

nection. The expressions for the intraband Berry connections, 

A
αα = (Aαα

x ,Aαα
y ), can be found from the tight-binding 

Hamiltonian as follows

Aαα

x (k) =
−aγ2

γ2|f (k)|2 + (∆g/2 − Eα)2
sin

3aky

2
√

3
sin

akx

2
,

 (12)

Aαα

y (k) =
aγ2

√
3 (γ2|f (k)|2 + (∆g/2 − Eα)2)

×
(

cos akx − cos

√
3aky

2
cos

akx

2

)

.

 

(13)

The interband electron dynamics is described by TDSE 

(1). The solution of TDSE can be expanded in the basis of 

Houston functions Φ
(H)
αq (r, t) [39],

Ψq(r, t) =
∑

α=c,v

βαq(t)Φ
(H)
αq (r, t),

 (14)

where βαq(t) are expansion coefficients, which satisfies the 

following system of coupled differential equations

i�
∂Bq(t)

∂t
= H′(q, t)Bq(t), (15)

where the wave function (vector of state) Bq(t) and Hamiltonian 

H′(q, t) are defined as

Figure 1. (a) The honeycomb lattice structure of graphene is made 
of two triangular sublattices A (black circle) and B (white circle). 
(b) The first Brillouin zone of the honeycomb lattice has two valleys 
K and K′ located in its boundaries. (c) The energy dispersion 
is shown for gapped graphene with a band gap of 0.5 eV in the 
extended zone. The solid black lines show the boundaries of the first 
Brillouin zone.
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Bq(t) =

[

βcq(t)

βvq(t)

]

, (16)

H′(q, t) = −eF(t)Â(q, t), (17)

Â(q, t) =

[

0 D
cv(q, t)

D
vc(q, t) 0

]

 (18)

where

D
cv(q, t) = A

cv[k(q, t)]

× exp
(

iφ(D)
cv (q, t) + iφ(B)

cv (q, t)
)

,

 

(19)

φ(D)
cv (q, t) = φ(D)

v (q, t)− φ(D)
c (q, t) (20)

φ(B)
cv (q, t) = φ(B)

v (q, t)− φ(B)
c (q, t) (21)

A
cv(q) =

〈

Ψ
(c)
q |i ∂

∂q
|Ψ(v)

q

〉

. (22)

Here Acv(q) is a matrix element of the non-Abelian Berry 

connection [40–42], which has the following expression

Acv
x (k) = N

(

−a

2|f (k)|2

)(

sin
akx

2
sin

a
√

3ky

2

+ i
∆g

2Ec

(

cos
a
√

3ky

2
sin

akx

2
+ sin akx

)) 

(23)

Acv
y (k) = N

(

a

2
√

3|f (k)|2

)(

− 1 − cos
a
√

3ky

2
cos

akx

2

+ 2 cos2 akx

2
− i

3∆g

2
Ec sin

a
√

3ky

2
cos

akx

2

)

,

 (24)

where

N =
|γf (k)|

√

∆2
g

4
+ |γf (k)|2

.

Note that the non-Abelian Berry connection is simply pro-

portional to the interband transition dipole matrix element, 

D(k) = eAcv(k).
The ultrafast field drives electric current, J(t) = {Jx(t), Jy(t)}.  

The current has both interband and intraband contributions, 

J(t) = J(intra)(t) + J(inter)(t). The intraband current is propor-

tional to the group velocity and has the following form

J(intra)(t) =
egs

a2

∑

α=c,v,q

|βα(q, t)|2 v(α)(k(q, t)), (25)

where v
(α)
k = ∂

∂k
E(α)(k) is the group velocity (intraband 

velocity) and gs  =  2 is the spin degeneracy. The group veloci-

ties can be found from equations (5)–(6)

Vc
x (k) = −Vv

x (k) =
−aγ2

�

√

|γf (k)|2 + ∆2
g

4

× sin
akx

2

(

cos

√
3aky

2
+ 2 cos

akx

2

)

 

(26)

Vc
y (k) = −Vv

y (k) =
−
√

3aγ2

�

√

|γf (k)|2 + ∆2
g

4

× sin

√
3aky

2
cos

akx

2
.

 

(27)

The interband current is given by the following expression

J(inter)(t) = i
egs

�a2

∑

q

α,α′=v,c
α �=α

′

β∗
α′(q, t)βα(q, t)

× exp{iφ
(D)
α′α

(q, t) + iφ
(B)
α′α

(q, t)}

× [Eα′ (k(q, t))− Eα (k(q, t))]A(αα′) (k(q, t)) ,

 

(28)

where

φ
(D)
α′α

(q, t) = φ(D)
α (q, t)− φ

(D)
α′ (q, t), (29)

φ
(B)
α′α

(q, t) = φ(B)
α (q, t)− φ

(B)
α′ (q, t). (30)

3. Results and discussion

In gapped graphene, sublattices A and B are not equivalent, 

which results in broken inversion symmetry. Gapped gra-

phene is symmetric with respect to the y -axis, but there is no 

symmetry with respect to the x-axis, see figure 1. Thus, if the 

linear optical pulse is polarized along the y -axis, then the CB 

population distribution in the reciprocal space is symmetric 

with respect to the y -axis and the electric current is generated 

only along the y -axis, and not along the x-axis. But if the pulse 

is polarized along the x-axis, the current is expected to flow 

both along the x and y  directions. Below we consider only this 

case, i.e. we assume that the optical pulse is polarized along 

the x-axis.

We consider a linearly x-polarized ultrafast optical pulse 

that is applied normally on the gapped graphene monolayer 

and has the following waveform

F = F0(1 − 2u2)e−u2

, (31)

where F0 is the amplitude of the pulse, u = t/τ  , and τ = 1 

fs. We assume that the pulse is polarized along the x-axis. It 

should be mentioned that the x-axis is not the axis of sym-

metry of the gapped graphene, while the y -axis is the axis of 

symmetry.

In the presence of the pulse, we solve the TDSE assuming 

that the VB is initially occupied and the CB is empty. The 

electron dynamics in the field of the pulse is highly non-

linear and is characterized by the redistribution of electrons 

between the VB and CB. After the pulse, there is a nonzero 

J. Phys.: Condens. Matter 32 (2020) 065305
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residual electron population, N
(res)
CB , in the CB—see figure 2. 

Such a population determines the irreversibility of the elec-

tron dynamics. The distributions of N
(res)
CB  in the reciprocal 

space are shown in figures  2(a)–(d) for different values of 

the band gap. The distributions are characterized by hot spots 

with large, ∼ 1, CB population. Such hot spots are due to 

the double passage of electrons of the K (K′) point during 

the pulse and the manifestation of the interference pattern. 

Similar hot spots were discussed in [43], where the inter-

action of a linear optical pulse with pristine graphene has 

been studied. For gapped graphene, the interference pattern 

becomes smeared, see figure 2. This is because the interband 

coupling is determined by the interband transition dipole 

matrix element, the distribution of which is broadened with 

increasing the band gap—see figure 3. At the same time, the 

separation between the fringes is inversely proportional to the 

nonlocality distance and, thus, does not depend on the band 

gap [43]. Another interesting property of the CB population 

distribution is that it is symmetric with respect to both x and 

y  axes. This is a nontrivial property since the x-axis is not the 

axis of symmetry of the system.

The CB population distribution is shown in figures 4(a)–

(d) at different moments of time. It illustrates the formation 

of the interference-induced hot spots in the CB popula-

tion distribution. At all moments, the CB population distri-

bution is symmetric with respect to the x axis. Initially, at 

−2.5 fs � t � −0.7 fs, the applied field is negative, so the 

electrons are accelerated to the right. Since the interband cou-

pling is strong near K and K′ points only—see figure 3, the CB 

population within this time interval is large on the left side of 

the K and K′ points, see figure 4 (a).
For the time interval −0.7 fs � t � 0 fs, the field is posi-

tive and the electrons move to the left and pass the K and K′ 

Figure 2. The residual CB population N
(res)
CB (k) for gapped 

graphene with various band gaps, ∆g = 0, 0.5, 1 eV, and ∆g = 2 
eV, in the extended zone picture. The white solid line shows 
the boundaries of the first Brillouin zone with the K, K′-points 
indicated. The applied field is a pulse linearly polarized in the x 
direction, and its amplitude is 0.5 V Å−1.

Figure 3. The absolute value of the x component of the dipole 
matrix element is shown for gapped graphene with various band 
gaps (a) 0, (b) 0.5 eV, (c) 1.5 eV, and (d) 2 eV. The dash white line 
shows the boundary of the first Brillouin zone.

Figure 4. The CB population, NCB(k), as a function of the 
initial crystal momentum (in the extended zone picture) for 
gapped graphene with band gap 1 eV for different moments of 
time, t = −0.7, 0, 0.7 fs, and t  =  3 fs. The white solid line shows 
the boundaries of the first Brillouin zone with the K, K′-points 
indicated. The applied pulse is linearly polarized in the x direction, 
and its amplitude is 0.5 V Å−1.

J. Phys.: Condens. Matter 32 (2020) 065305
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points the second time, which results in interference fringes or 

hot spots on the left sides of the valleys as shown in figure 4(b). 

The field remains positive for 0 fs � t � 0.7 fs and now the 

electrons from the right side of K and K′ points pass the region 

near K or K′ points, which results in large CB population on 

the right side of the K and K′ points, see figure 4(c). The field 

changes its sign at 0.7 fs � t � 2.5 fs. Then the electrons 

from the right side of K and K′ points pass through the region 

of large interband coupling the second time, which produces 

hot spots of CB population on the right side of the K and K′ 

points. The electron CB distributions shown in figures 2 and 4 

could be observed by time resolve angle-resolved photoelec-

tron spectroscopy (tr-ARPES) [44, 45].

The strong field of the excitation pulse coherently populates 

electron–hole states in the CB in a very wide band of excita-

tion energies that is determined mostly by the ampl itude of the 

pulse but not by its spectral composition. To illustrate this, in 

figure 5(a) we plot the CB electron population superimposed 

on the energy dispersion for the gapped graphene with a band 

gap of 1 eV. As we can see in this figure, the ultrashort optical 

pulse with the amplitude of 0.5 V Å−1 excites the electron–

hole pairs in the energy band as high as ∆E ∼ 7 eV. This 

bandwidth significantly exceeds the spectral width of the 2 fs 

excitation pulse, which is ∼ 2 eV.

The physics of this process can be understood as the fol-

lowing. The optical field compels electrons to move in the 

reciprocal space, according to Bloch equation (8). During this 

motion, some electrons pass close to the K-points. At these 

points, the interband matrix element (non-Abelian Berry cur-

vature) of equation (22) is greatly enhanced—see figure 5(b) 

and also figure 3. Thus, these electrons have a high probability 

of undergoing the VB→CB transitions. After the pulse ends, 

electrons return to their original positions in the Brillouin 

zone, and their energy distribution reflects the work that the 

optical field did on them during the pulse. This large spectral 

bandwidth of the electron–hole excitations also allows one 

to measure the temporal dynamics of the electron population 

with a fundamental resolution ∆t ∼ �/∆E ∼ 100 fs limited 

by the Heisenberg uncertainty relation.

Redistribution of electrons between the VB and CB during 

the pulse generates an electric current. For the pulse polarized 

along the x-axis, which is not the axis of symmetry for the 

gapped graphene, both the longitudinal current, i.e. current in 

the x direction, and the transverse current, i.e. current in the y  

direction, are generated. Such currents are shown in figure 6 

Figure 5. (a) The electron–hole excitation energy Ec(k)− Ev(k) 
in the first Brillouin zone shown in the grayscale for gapped 
graphene with band gap ∆g = 1 eV. The population of the CB 
is superimposed on the energy landscape and is color-coded. 
The applied pulse is linearly polarized in the x direction with the 
amplitude of 0.5 V Å−1. (b) For the same system, the interband 
matrix element in the x direction, |Dx| is plotted in the grayscale. 
The color-coded residual CB population is superimposed.

Figure 6. The current densities in gapped graphene are shown as 
a function of time for various band gaps, 0 eV, 0.2 eV, 0.5 eV, 1 eV, 
and 2 eV. The applied pulse is linearly polarized in the x-direction, 
and its amplitude is 0.5 V Å−1. (a) The current density, Jx, is along 
the direction of the applied field. (b) The current density, Jy, is in 
the direction normal to the applied field.

J. Phys.: Condens. Matter 32 (2020) 065305
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for different values of the band gap, ∆g. For zero band gap, 

i.e. for pristine graphene, the transverse current, Jy , is zero. 

The transverse current increases with the band gap.

The electric current, which is generated during the pulse, 

has two contributions: intraband and interband—see equa-

tions (25) and (28). The intraband current (25) is entirely deter-

mined by the electron density distributions in the CB and VB. 

It can, therefore, be considered as a measure of the asymmetry 

of such distributions. Due to the excitation pulse being invar-

iant with respect to the reflection in the x axis, the CB popula-

tion distribution is mirror-symmetric with respect to that axis, 

both during the pulse and after it. Consequently, the intraband 

transverse current is zero. Thus, the transverse cur rent, Jy , for 

gapped graphene is determined by the interband contribution 

only. As the results, the transverse current, Jy , as a function 

of time, is oscillating with the frequency that depends on the 

band gap, see figure 6(b). At the same time, the longitudinal 

current, Jx, is almost unidirectional with some oscillations, see 

figure 6(a). Note that these oscillations increase with the band 

gap; for the maximum band gap, ∆g = 2 eV, the strong oscil-

lations start at the end of the excitation pulse, i.e. at t � 1 fs. 

These oscillations are due to the interband comp onent of the 

current that is superimposed on the non-oscillating intraband 

component causing a ‘beating’ pattern that is well pronounced 

for t ≈ 1 fs.

Since the band gap determines the strength of the asym-

metry of the system, we expect that the magnitude of the 

transverse current increases with band gap, which is shown 

in figure  6(b). For the longitudinal current, there is a dif-

ferent tendency. The longitudinal current first increases with 

∆g and then, at large band gaps, ∆g ∼ 2 eV, decreases. 

Such suppression of the longitudinal current at large values 

of ∆g is due to the specific dependence of the interband 

dipole matrix elements (non-Abelian Berry connection) on 

the band gap. As shown in figure 3, at small band gaps, the 

interband dipole matrix element is strongly localized near 

the K and K′ points. With increasing band gap, the dipole 

matrix element becomes delocalized and nonzero at the 

large part of the Brillouin zone, where the maximum of 

the dipole matrix element decreases with band gap keeping 

the net dipole matrix element, i.e. the integral of the dipole 

matrix element over the whole Brillouin zone, constant. As 

a result, the total CB population near the K or K′ points 

decreases with ∆g, which finally results in suppression of 

the longitudinal current.

In figure  7, the longitudinal and transverse currents are 

shown for different field amplitudes. As expected, with 

increasing field amplitude, the magnitudes of both cur rents 

increase. The frequency of oscillations of the transverse cur-

rent also depends on the magnitude of the pulse, while the 

longitudinal current is almost unidirectional.

The direction of the current is determined by the direc-

tion of the field maximum. For the field profile (31), the field 

maximum points in the positive direction of the x-axis. If we 

change the direction of the field maximum to the negative one, 

i.e. it is pointing in the negative direction of the x-axis, then 

the longitudinal current, Jx, changes its sign, while the trans-

verse current, Jy , remains the same. The transverse cur rent 

changes its sign if we change the signs of the on-site energies 

of sublattices A and B, i.e. change the sign of parameter ∆g in 

Hamiltonian (3).

The generated electric current during the pulse results in 

the transfer of an electric charge through the system. This 

transferred charge can be calculated as

Q =

∫
∞

−∞

J(t)dt. (32)

For the pulse polarized along the x-axis, the charge is trans-

ferred in both x and y  directions. In figure 8, the transferred 

charge is shown as a function of the pulse amplitude for 

different values of the band gap. As expected, for zero band 

gap, there is no charge transfer in the transverse direction, 

Qy   =  0—see figure  8(a). As a function of the field ampl-

itude, the transverse transferred charge shows oscillations, 

which is due to oscillations in the transverse current as a 

function of time. The longitudinal transferred charge, Qx, 

monotonically increases with the field amplitude and has 

a weak dependence on the band gap—see figure  8(b). At 

large band gap, ∆g ∼ 2 eV, transferred charge Qx becomes 

smaller, which is related to the suppression of the CB popu-

lation and correspondingly the longitudinal electric current 

at large ∆g.

Figure 7. The current densities in gapped graphene are 
shown as a function of time for various field amplitudes, 

F0 = 0.1, 0.3, 0.5, 0.7, 1.0 VÅ
−1

. The applied pulse is linearly 

polarized in the x-direction, and the band gap of gapped graphene is 
∆g = 1 eV. (a) The current density, Jx, is along the direction of the 
applied field. (b) The current density, Jy, in the direction normal to 
the applied field.
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4. Conclusion

In pristine graphene, which has inversion symmetry, there 

are two axes of symmetry, say x and y . If an external linear 

pulse is polarized along with these two directions, then it will 

produce CB population distribution that is symmetric with 

respect to the axis of polarization of the pulse. The pulse will 

also generate an electric current, and the corresponding trans-

ferred charge along the direction of polarization only, but not 

in the transverse direction.

For gapped graphene, the inversion symmetry is broken. In 

this case, there is only one axis of symmetry, say the y -axis. If 

the linear pulse is polarized along the x axis, since this axis is 

not the axis of symmetry, electric current is generated in both 

x and y  directions. The transverse current does not depends 

on the direction of the field maximum, while the longitudinal 

current changes its sign when the direction of the peak is 

reversed. At the same time, for the same polarization of the 

pulse, i.e. along the x-axis, similar to pristine graphene, the 

CB population distribution is symmetric with respect to the 

x-axis both during and after the pulse. This means that the 

electron dynamics above (ky   >  0) and below (ky   <  0) the K 

(K′) point is exactly the same, which results in a symmetric 

CB population distribution. Although, the electron dynamics 

depends on the geometric phase, which is different above and 

below the K (K′) point, this phase is exactly canceled by the 

phase of the interband dipole matrix element (non-Abelian 

Berry connection). This is a property of the two-band model 

of gapped graphene, which will be discussed somewhere else. 

If more bands are included in the model, then there will be no 

cancellation of the geometric phase and the net (topological) 

phase, which is the sum of the geometric phase and the phase 

of the interband dipole coupling will be nonzero. The topo-

logical phase has different time dependence above and below 

the K (K′), which results in topological resonance. This topo-

logical resonance occurs due to a partial cancellation of the 

dynamic phase by the topological phase. Such partial cancel-

lation is different above and below the K (K′) point, which 

finally results in different CB populations and asymmetric 

CB population distribution. Such small asymmetry of CB 

 population introduces small intraband contributions to the 

transverse current.
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