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AbstractThis study tests the utility of convolutional neural networks as a postprocessing framework for
improving the National Center for Environmental Prediction's Global Forecast System's integrated vapor

transport forecastfield in the Eastern Pacific and western United States. Integrated vapor transport is the

characteristicfield of atmospheric rivers, which provide over 65% of yearly precipitation at some western

U.S. locations. The method reduces full‐field root‐mean‐square error (RMSE) at forecast leads from 3 hr to

seven days (9–17% reduction), while increasing correlation between observations and predictions

(0.5–12% increase). This represents an approximately one‐to two‐day lead time improvement in RMSE.

Decomposing RMSE shows that random error and conditional biases are predominantly reduced.

Systematic error is reduced up tofive‐day forecast lead, but accounts for a smaller portion of RMSE. This

work demonstrates convolutional neural networks potential to improve forecast skill out to seven days for

precipitation events affecting the western United States.

Plain Language SummaryMachine learning methods are data‐driven algorithms that improve
by examining massive amounts of existing data. We explore the utility of a computer‐vision machine

learning technique to reduce error in numerical weather forecasts of the characteristicfield for atmospheric

rivers (ARs). ARs are long narrow corridors of anomalous vapor transport capable of providing both

beneficial and hazardous precipitation. Therefore, accurately forecasting AR events is extremely important

from a water supply andflood protection standpoint. We show significant forecast improvements by

applying machine learning postprocessing for lead times ranging from 3 hr to seven days, making the

predictions more valuable to stakeholders affected by AR events.

1. Introduction

Numerical weather prediction (NWP) models provide the atmospheric variables necessary to determine pro-

jected atmospheric states, based on a numerical integration of a discretized version of the Navier‐Stokes

equations (Richardson, 1922). However, due to uncertainty in initial conditions, numerical approximation,

and model deficiencies, error increases nonlinearly and NWP forecast skill decreases with model time inte-

gration (Lorenz, 1963). Statistical forecast postprocessing techniques, which utilize historical forecasts and

observations to correct for error in current predictions, have been found to significantly improve forecast

skill across multiple atmospheric variables. Algorithms developed to determine and correct for NWP error

include model output statistics approaches (e.g., Carter et al., 1989; Glahn & Lowry, 1972; Wilks &

Hamill, 2007), running mean techniques (e.g., Hacker & Rife, 2008; Stensrud & Skindlov, 2002; Stensrud

& Yussouf, 2003), algorithms based on Kalmanfiltering (e.g., Delle Monache et al., 2006; Homleid, 1995;

McCollor & Stull, 2008; Roeger et al., 2003), and analog‐based methods which draw from past events to

match designed features of the current forecast to correct it (Delle Monache et al., 2011).

The North American West Coast presents a challenge in water forecasting. Wintertime precipitation pro-

vides almost all the annual input to the water budget, generally within a few large horizontal vapor transport

events (Dettinger et al., 2011) termed atmospheric rivers (ARs). ARs are long (>2,000 km) and narrow

(<1,000 km) corridors of anomalous vapor transport, typically associated with a low‐level jet, ahead of the

cold section of an extratropical cyclone (e.g., Dacre et al., 2015; Sodemann & Stohl, 2013; Warner et al.,

2012), which deliver the majority of poleward vapor transport (>90%) in less than 10% of the zonal circum-

ference of the extratropics (Ralph et al., 2004; Zhu & Newell, 1998). Vertically integrated vapor transport

(IVT) is the characteristic metric which defines the strength of an AR (Ralph et al., 2018). IVT is a
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combined thermodynamic and momentum metric which integrates specific humidity and zonal and meri-
dional components of the wind from 1,000 to 300 hPa.

ARs contribute 30–65% of annual precipitation on the U.S. West Coast, and ARs contribute 60–100% of the
most extreme North American West Coast hydrometeorological events (Gershunov et al., 2017; Lamjiri
et al., 2017). Lavers et al. (2016) found that IVT evolution is dominated by synoptic‐scale processes, and thus
has a higher predictability than precipitation, which depends more on mesoscale and microphysical pro-
cesses. Therefore, at long lead times, forecasting IVT, rather than precipitation, may be more valuable to
water management and hazard mitigation. However, forecasting for AR events has proved difficult. A study
by Wick et al. (2013) examined the National Centers of Environmental Prediction's Global Forecast System
(GFS) West Coast forecast skill over the Northeast Pacific across three cold seasons and found that average
AR landfall location errors were approximately 600 km at seven‐day lead time.

We propose a novel NWP postprocessing technique, applied to the IVT field, that leverages a subclass of
machine learning computer vision techniques: convolutional neural networks (CNN). CNNs are able to
encode features from an input field, at varying spatial scales and levels of abstraction (Bengio, 2009;
Hinton et al., 2006), which maximize predictive skill to a specified output field. These networks are adept
at processing large and complex data sets and determining meaningful relationships. CNNs have proven
to be extremely successful at image recognition, semantic segmentation, image denoising, and image super
resolution (Bojarski et al., 2017; Dong et al., 2014; He et al., 2015; Long et al., 2015; Zhang et al., 2017). CNNs
are well suited to atmospheric fields, where systems across multiple scales govern atmospheric flow.

More recently, flexible forecast prediction and postprocessing approaches based on artificial neural net-
works, which take advantage of increased computational power to learn from a large database of past fore-
casts, have been proposed (e.g., Tao et al., 2016). Neural networks reduced bias and improved ensemble 2‐m
temperature prediction over Germany (Rasp & Lerch, 2018). Random forests have been used for storm‐based
probabilistic hail forecasting (e.g., Gagne et al., 2017). When combined with the physical understanding of
atmospheric processes, machine learning has been shown to aid in high‐impact weather decision making
(McGovern et al., 2017). Specifically, CNNs are beginning to be used for scientific discovery and forecasting
and have emerged as diagnostic tools for determining important atmospheric variables across scales (e.g.,
Kurth et al., 2018; Toms et al., 2019). CNNs have been utilized to provide forecast uncertainty estimates upon
initialization (Sebastian Scher & Messori, 2018). Additionally, purely CNN‐based forecast methods have
arisen for prediction and nowcasting applications, relying on data alone to mimic atmospheric dynamics
(Shi et al., 2015; Dueben & Bauer, 2018; S. Scher, 2018; Sebastian Scher & Messori, 2019). This study aims
to extend the utility of CNNs as a postprocessing method to improve predictions up to seven days ahead.

At every forecast lead time, we create a new CNN which inputs a GFS IVT magnitude forecast field and out-
puts a corrected IVT forecast field. The present study evaluates whether historical forecast error can be used
in conjunction with CNNs as a postprocessing tool to improve short‐ and medium‐range IVT forecasts.

2. Data and Methodology
2.1. Forecasts

GFS predictions (Moorthi et al., 2001) at a 0.5‐degree horizontal spatial resolution on 64 vertical levels for
daily 0000 and 1200 UTC model initializations are utilized to calculate forecasted IVT. Here the forecasts
from 3 to 168 hr are examined (3‐hr increments for the first 12‐hr period, 12‐hr increment for the following
day, and 24‐hr increments for the remaining 168‐hr forecast lead times) for the cold season (defined here as
October–April) from 2006 to 2018. This includes ~5,000 data fields for every forecast lead time or ~55,000
forecasted fields across all lead times. This study's region of interest spans coastal North America and the
Eastern Pacific from 180°W to 110°W longitude, and 10°N to 60°N latitude.

2.2. Ground Truth

IVT from the National Aeronautics and Space Administration's Modern‐Era Retrospective Analysis for
Research and Applications version 2 (MERRA‐2) reanalysis is used as ground truth to diagnose forecast error
and CNNmodel training. MERRA‐2 provides a regularly gridded record of the global atmosphere, including
assimilated satellite, surface station, wind profiler, radio occultation, and radiosonde observations. MERRA‐

2 data are resolved on a 0.625 × 0.5‐degree grid and interpolated to 21‐pressure levels between 1,000 and 300
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hPa for IVT calculations (Gelaro et al., 2017; McCarty et al., 2016). For consistency, GFS IVT is regridded and
upscaled to MERRA‐2 resolution using a first‐ and second‐order conservative remapping scheme
(Schulzweida, 2019).

2.3. Methodology and Experimental Design

We compare four separate forecasts to examine the relative skill of the CNN postprocessing: (1) GFS is used
as the dynamical NWPmodel and provides a deterministic forecast of future IVT states from current meteor-
ological observations; (2) a climatological forecast created from a 21‐day runningmean, centered on the fore-
cast day of interest, from MERRA‐2 IVT fields spanning 1980–2018; (3) a persistence forecast created by
repeating the GFS analysis at 0‐hr lead for every lead time; and (4) a forecast derived from postprocessing
the GFS IVT forecast with a CNN (hereafter referred to as ARcnn when referencing the architecture and
ARcnn‐IVT for the forecast).

2.4. Convolutional Neural Networks and the Network Used in This Study

Neural networks are known to be able to approximate nonlinear functions (Nielsen, 2015). CNNs are a class
of neural network, in which multiple layers of optimized functions map input data fields (GFS forecasts in
this study) to an output (ARcnn‐IVT). CNNs use convolutional kernels to propagate images from one layer
to the next. Each convolutional kernel is trained to highlight important image features. Following each con-
volutional layer, nonlinearities are introduced, which operate on every produced feature map. The ARcnn
architecture was inspired by a class of CNNs termed denoising autoencoders (Vincent et al., 2008).

Denoising autoencoders are trained, with coupled pairs of noisy and clean images, taking a noise corrupted
image and removing that noise. Here GFS IVT forecasts are treated as noisy images, the noise representing
the prediction error, and ARcnn corrects the forecast toward a clean image, MERRA‐2 ground truth. ARcnn
contains no compression or pooling information layers which reduce dimensionality. Therefore, a consistent
dimension (determined by the latitude and longitude points of the region of interest) is retained throughout
the network and in the prediction.

The optimization of the kernel filter weights occurs iteratively, in which each iteration finds the weights of
the functions to minimize the loss between the output (ARcnn‐IVT) and a desired field (MERRA‐2). ARcnn
utilizes an Adam optimizer (Kingma et al., 2014) with a learning rate that decreased from 0.001 to 5e−6 upon
validation plateaus and batch size 20. The error is determined between the network forecast and the ground
truth data, and the gradient of the error field is calculated for each kernel weight of the network. The model
weights update each iteration by stepping in the direction opposite of this gradient. ARcnn optimized utiliz-
ing mean‐squared error loss. Once trained, ARcnn produces an estimated IVT field that has learned error
from previous forecasts and has the ability to correct a portion of these errors. A detailed description of
CNNs and the ARcnn model architecture is in the supporting information. For further information on
CNNs the reader is referred to Nielsen (2015).

GFS forecasts were separated by date into training (October 2008 to April 2016), validation (October 2016 to
April 2017), and testing (October 2017 to April 2018) data sets. Training data are shown iteratively to the
neural network to optimize CNN model weights. Validation data are used to compute performance metrics
during training. Testing data are unseen by the network and utilized only for evaluating the postprocessing
skill. The final year of data (October 2017 to April 2018) is reserved for testing and is independent from any
training data. Each lead time in the testing period consists of ~450 forecasts. Table S1 shows the number of
samples and the frequency of ARs in the training, validation, and testing data sets. Each forecast lead is
trained, validated, and tested on ~5,000 forecasts. A new CNN is created and trained for each forecast lead
time. However, across these CNNs, there is valuable similarity in the IVT feature detection during convolu-
tion. To exploit this similarity during training, we utilized a sequential training scheme in which the model
network weights from previous forecast lead times initialized network weights at subsequent forecast leads.
This decreased the number of model training cycles and improved total error testing results (not shown).

Table S2 summarizes the model architecture and training parameters. An exhaustive number of training
cycles, using common CNN model parameters, was performed to determine optimal model settings. The
final parameters were selected by choosing the configuration with the lowest validation error.
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2.5. ARcnn Example

ARcnn output valid for 29 November 2017 illustrates potential forecast improvements (Figure 1). The GFS
forecast IVT field at 96‐hr lead time (Figure 1b) is input into the 96‐hr ARcnn. Once the network has been
trained, a postprocessed forecast is generated within milliseconds. The IVT field passes through ARcnn
(Figure S1), and a corrected field is produced (Figure 1c). The resultant field is compared against ground
truth (Figure 1a). GFS overpredicts the magnitude of IVT, has a notable location error, and misses the pri-
mary orientation of the storm. After the GFS IVT field is processed with ARcnn, the network correctly
reduces the magnitude of peak IVT, particularly at high latitudes near the Alaskan Coast, moving the domi-
nant IVT signal southward and eastward (Figure 1d). Additionally, ARcnn reorients the dominant AR spa-
tial axis to a more accurate zonal direction (Figure 1e versus 1f), leading to a more accurate forecast. Figure 1
is a representative sample of the method drawn from the top 5% of corrected 96‐hr events in the testing data
set (as measured by root‐mean‐square error (RMSE)).

3. Verification Metrics and GFS Error Patterns

Forecast error (e) is defined as the difference between the forecasted IVT field (f) and the ground truth (r) IVT
field (e= f− r) at a given time and location. We have applied four metrics to the forecast systems: RMSE, bias
(Bias), centered root‐mean‐square error (CRMSE), and spatial Pearson correlation (PC) coefficient. Bias and
CRMSE arise from a decomposition of RMSE (Taylor, 2001). Bias represents the systematic error, defined as
the mean error over the test data set (Bias = e). CRMSE is the remaining random error and conditional

Figure 1. Forecasts and analysis valid for IVT fields on 29 November 2017. (a) MERRA‐2 analysis field with the IVT = 600‐kg m−1 s−1 contour (solid) and
dominant storm axis (dotted) as determined by IVT > 350‐kg m−1 s−1 raw image moment. (b) GFS 96‐hr forecast with the MERRA‐2 600 IVT contour and
dominant storm axis. (c) ARcnn‐IVT 96‐hr forecast with the MERRA‐2 600 IVT contour and dominant storm axis. (d) Difference between ARcnn‐IVT and GFS.
(e) Difference between GFS and MERRA‐2 IVT field. (f) Difference between GFS and MERRA‐2 IVT field.
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biases, which contains the error not present from mean shift CRMSE ¼ 1
N

∑N
n¼1 f−f

� �
− r−rð Þ� �2� �0:5

 !
.

Finally, the Pearson correlation indicates the linear relationship between the forecasted and observed time

series (PC ¼ E f ;rð Þ
σf σr

).

3.1. GFS Error Patterns

The largest sources of GFS forecast error occur predominantly in the locations with high climatological IVT,
indicating that AR position, magnitude, and timing constitute a large fraction of total error. Figure 2 shows
the 96‐hr error metrics for every GFS forecast in the data set. The RMSE field is dominated by random error
and conditional bias over systematic error (as indicated by high values of CRMSE (Figure 2b), as compared
with Bias (Figure 2c)). The AR corridor, defined here as the 200‐kg m−1 s−1 IVT contour, for the 2006–2018
MERRA‐2 climatology (Figure 2, contours), coincides with the greatest magnitude of CRMSE in the field.
The model systematically underpredicts IVT magnitude at high latitudes and overpredicts IVT at low lati-
tudes. The highest levels of PC occur on the southern flank of the AR corridor, in the climatological subtro-
pical jet region (Figure 2d). This may be associated with the lower predictability of mesoscale frontal waves
associated with ARs. Conversely, the latitudinal band of high predictability exists within the jet region and is
an area of largely synoptically forced IVT processes. This latitudinal band of predictability is consistent with
findings in Lavers et al. (2016).

4. Results

All statistics will be presented from a seasonal perspective derived from the testing data set (October 2017 to
April 2018). The Guan and Waliser (2015) AR detection algorithm identified an AR present in 76% of the
forecast periods. The AR distribution is not spatially uniform (Figure 2, contour), with a skewness toward
high latitude, with landfalls predominantly in Oregon, Washington, and southern British Columbia.

ARcnn‐IVT performance is evaluated at 3‐hourly forecast intervals out to 12 hr, a 12‐hr forecast interval out
to 24 hr, and in 24‐hr increments from 24‐hr forecast lead until the 168‐hr lead (seven days). Results for each
forecast system are resampled 2,000 times for error metrics using a 30% split; the variance (color shade) of
the bootstrapped sample are small compared to the mean (Figure 3). At 3‐hr lead time, GFS and ARcnn‐

IVT outperform persistence and climatology, with the postprocessed ARcnn‐IVT further improving on

Figure 2. Spatial distribution of 96‐hr forecast GFS. (a) RMSE. (b) CRMSE. (c) GFS forecast Bias. (d) Pearson correlation (in color) and (a–d) climatological AR field
(in contour). Forecast dates range from October 2006 to April 2018.
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Bias and CRMSE over GFS. At the fifth forecast day the correction of ARcnn‐IVT bias begins to deteriorate
and the bias is statistically even between GFS and ARcnn‐IVT after this point (Figure 3a). CRMSE
(Figure 3b) continues to improve as compared to GFS for the entire testing period. Importantly, the
magnitude of CRMSE dominates Bias, and therefore, the RMSE is improved (Figure 3c). At the seventh
day forecast lead GFS has a larger RMSE than climatology. However, ARcnn‐IVT remains the most
skillful forecast (by total RMSE). The magnitude of RMSE error at the seventh day for ARcnn‐IVT is
equal to that of the GFS at the fifth day. This is due to the reduction of CRMSE by the postprocessing
technique. Similarly, ARcnn‐IVT has a higher correlation with the ground truth at every lead time, with
statistically significant differences starting at hour 12. The PC of the ARcnn‐IVT of the seventh day is
equal to that of the sixth day for the GFS forecast.

Figure S5 shows the spatial distribution of RMSE, CRMSE, and Bias for GFS and ARcnn‐IVT for the full test-
ing data set. Figure 4 shows the spatial ARcnn‐IVT metrics of performance at the 96‐hr forecast lead, with
cool colors indicating that ARcnn‐IVT is improving the GFS forecast, conditioned on forecasted IVT values
with over 250 kg m−1 s−1, to ensure that the network is correcting for high vapor transport events. After
ARcnn is applied, each pixel is assessed for RMSE, Bias, CRMSE, and PC, resampling 1,000 times utilizing
50% of the available data field in order to estimate error metrics. Importantly, RMSE (Figure 4a) at almost
every grid point is decreased, indicating forecast improvement. Additionally, PC (Figure 4d) is improved
at most locations with very few exceptions in the spatial domain, indicating a more skillful forecast.

The Bias field (Figure 4c) shows the least improvement, where ARcnn‐IVT systematically underpredicts the
magnitude of high‐valued IVT. Overlaid on the figure are the ±40 contours of GFS Bias. It is clear that the
dominant sources of systematic error are targeted by ARcnn (as indicated by cool colors contained inside the
±40 contours; Figures S5c and S5f). However, the strongest failure in the Bias field comes over the areas of
coastal landfall. The field is almost uniformly improved for CRMSE (Figure 4b).

Due to a low contribution of systematic error compared to random error and conditional bias, the RMSE is
still dominantly benefiting with ARcnn postprocessing. Overall, ARcnn generates an IVT field with signifi-
cantly more skill than GFS. When compared to GFS, ARcnn increases correlation between ground truth and
predictions at all lead times (0.5–12% increase), and the method improves RMSE at forecast leads ranging
from 3 hr to seven days (9–17% reduction), equivalent to an increased forecast skill time horizon of 24‐
and 48‐hr/day improvements, respectively. For context, NWP forecast systems, through model improve-
ments and assimilation of additional observational data, have historically achieved an RMSE error skill
improvement of approximately one day every 10 years (Magnusson & Källén, 2013).

Figure 3. ROI average temporal evolution of (a) Bias, (b) CRMSE, (c) RMSE, and (d) PC of raw GFS, ARcnn, persistence (Pers), and climatology (Climo) forecasts.
Resampled bootstrap variance intervals are shown for each forecast.
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Interpretable CNNs are an active area of research in themachine learning community (e.g., Kuo et al., 2019),
and ongoing research involves using CNNs to elucidate physical processes associated with forecast error. We
speculate that ARcnn‐IVT improvements to CRMSE involve corrections to conditional bias. Upon exhaus-
tive inspection of individual testing forecasts, it appears that ARcnn is recognizing common IVT structures
and correcting the IVT fields in similar ways given that shape. Conditional bias, that is, conditioned on storm
shape and magnitude, is the most accurate terminology to describe this correction. IVT systems that appear
similar to Figure 1b are similarly corrected, with a reduction in high‐latitude IVT and a zonal elongation of
the IVT signal. Whereas with IVT fields that are zonally stunted, ARcnn reduces the total IVT andmoves the
IVT signal eastward, indicating that GFS typically propagates this signal too slowly. CNNs are adept at mod-
ulating output based on input spatial field encodings. The strength of this method is the adaptive adjustment
given a wide range of forecasted fields. This kind of correction results mostly in a CRMSE reduction rather
than a Bias correction.

Importantly, coastal landfalling IVT 96‐hr forecast RMSE is significantly improved for IVT forecasts greater
than 250 kg m−1 s−1. A detailed examination of coastal error (RMSE, CRMSE, Bias, and PC) can be found in
Figures S2 and S3. The RMSE error reduction is found to be significant (90th percentile) which is important
for the societal impact of landfalling ARs. Similar error reduction spatial patterns were observed for all fore-
cast lead times (not shown). For low IVT forecasts (IVT < 250 kg m−1 s−1; Figures S3 and S4), the improve-
ment in forecast skill (as measured by RMSE, CRMSE, Bias, and PC) is even greater, with a significant
improvement to RMSE, CRMSE, and PC, and no significant change to Bias.

5. Summary and Conclusion

This paper explored the utility of CNNs to improve IVT zero‐ to seven‐day forecast skill. We have shown that
CNNs can be used to improve forecast prediction of the GFS numerical weather prediction model for the
North American West Coast and Eastern Pacific IVT 3–168‐hr forecasts. This postprocessing is beneficial
at every forecast lead time in reducing full‐field CRMSE and improves Bias out to five forecast days, leading
to a full‐field RMSE improvement. ARcnn yields significantly higher PC between forecasted and ground
truth values at all lead times over 12 hr. ARcnn provides a forecast that has greater skill than climatology,
compared to GFS that degraded below climatological skill at seven‐day lead. Ongoing work involves testing
this method on an ensemble system to determine the benefit on accuracy and uncertainty quantification.

Figure 4. Spatial distribution of percent improvement of 96‐hr IVT forecast after ARcnn postprocessing for (a) RMSE and (b) CRMSE. Contours indicated average
IVT field. Spatial distribution of the 96‐hr forecast difference between GFS minus ARcnn for (c) Bias (contours indicate GFS Bias fields of 40 units kg m−1 s−1;
dashed lines are negative) and (d) Pearson correlation. Calculated for locations when IVT forecast is over 250 kgm−1 s−1. All dates fromOctober 2017 to April 2018
testing data set. In all plots (a–d), cool colors imply that the CNN postprocessing is improving the forecast.
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CNN postprocessing was shown here to increase IVT forecast skill. Additionally, the success of deep learning
relies on the quantity of data. As forecasts are produced, CNN postprocessing techniques stand to improve as
a more fully sampled distribution of AR activity is realized. CNNs continue to evolve, and model architec-
tures are continuously under development. Opportunity exists for the weather prediction community to
leverage computer vision advances. While a stand‐alone machine learning weather prediction that competes
with modern NWP has not been developed, combining numerical weather prediction with a data‐derived
CNN deep learning correction is a logical step in forecast improvement.
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