
72168-2356/18©2018 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMay/June 2019

mainframes. Both calcu-
lation and record-keeping
require accuracy and reli-
ability, and so computers
are designed to work as
deterministic machines:
identical inputs always
produce identical out-
puts. Although determin-

ism is an unattainable ideal, the near-perfect operation
can be achieved by the use of digital logic and wide
design margins. Traditional theories of computing
assume determinism and deal merely with inaccura-
cies arising from the precision with which numbers are
represented, which gave birth to numerical analysis.

However, reliability at high speeds comes at a
cost: it requires large amounts of energy. Decreasing
the size of circuit elements has decreased the energy
needed to operate them, but we are approaching a
limit beyond which reduction in size makes the cir-
cuits unreliable. We can push physics only so far
before things begin to break down. At the same time,
computers are used increasingly in applications that
do not require ultimate speed, precision, and reli-
ability, or where the needed reliability is achieved
by means other than ultrareliable circuit elements.
Prime examples of these kinds of functions come
from neuroscience.

Animal brains are the closest things in nature
to resemble computers. As products of millions of
years of evolution, they probably are nearly opti-
mal for the function they serve. There are many
things that brains do with apparent ease that we try
to do with computers but only succeed partially at
best. They concern behavior that allows animals

Computing at large
We usually think of computing as operating on

bits, numbers, and memory pointers, and we build
computers with circuits specialized for Boolean
logic, arithmetic, and memory. Everything else is
designed based on these basic operations by organ-
izing them into programs. The genius of the von
Neumann architecture is that the programs reside in
memory and are manipulated with the same opera-
tions as the data—to the machine, the programs are
data. The resulting flexibility has led to compiling
and symbolic programming, which in turn has made
it feasible to treat an endless assortment of tasks as
computational.

The first digital computers were designed for calcu-
lation. They replaced rooms full of professionals called
computers who worked with calculating machines
and made use of logarithmic tables and such in their
work. Digital computers soon eliminated the need for
logarithmic tables and, over time, were used more and
more for record-keeping, as we witnessed the era of

Computing with
High-Dimensional
Vectors
Pentti Kanerva
University of California at Berkeley

Digital Object Identifier 10.1109/MDAT.2018.2890221
Date of publication: 28 December 2018; date of current version:
29 May 2019.

Editor’s note:
The author reviews the principles of high-dimensional (HD) computing as a
brain-inspired paradigm, with variables and operations encoded in vectors
with high dimensionality (e.g., 10,000). HD computing has been shown to
be a robust novel approach with promising applications in language and
biosignal processing.

—An Chen, Semiconductor Research Corporation

8 IEEE Design&Test

SI: Architecture Advances Enabled by Emerging Technologies

to survive and prosper in an ever-changing world.
In very general terms, our brains make it possible
for us to understand and react to what is happen-
ing around us. What would this mean in computer
terms? What conclusions can be drawn in regard to
building computers for these and similar functions?

Cursory examination of the brain shows that its cir-
cuits are very large (fan-ins and fan-outs can be in the
tens of thousands), the layout is not prescribed to the
last detail, activity is widely distributed within a cir-
cuit and among different circuits, individual neurons
need not be particularly reliable (neurons can die),
and they operate with very little energy—the human
brain runs on about 20 W. All these are so unlike
how computers are built and operate that we need to
rethink and extend our models of computing.

Models of computing inspired by the brain’s
circuits are as old as digital computers [1]. These
models are called artificial neural nets, they have
had a major role in cognitive science research, and
they are now commercialized as deep learning nets.
Neural net models are based on linear algebra and
they compute with vectors and matrices. They are
trained on standard computers with exacting algo-
rithms such as gradient descent and principal com-
ponents. Training is compute-intensive, although the
final network can be fast and operate with very little
energy. The networks are problem-specific and lack
the flexibility and adaptivity that we associate with
behaviors controlled by brains.

In this article, we consider the possibility of
computing with high-dimensional random vectors
as basic objects, contrasting it with conventional
computing with bits and numbers. Computing of
this kind was proposed by Plate in the early 1990s,
as discussed thoroughly in the book Holographic
Reduced Representation: Distributed Representation
of Cognitive Structure [2] and condensed in a paper
on “Hyperdimensional computing: An introduction
to computing in distributed representation with
high-dimensional random vectors” [3].

The operations refer to vectors even as the vec-
tors are realized with bits and numbers. There is an
addition operation and a multiplication operation
that preserve vector dimensionality. Furthermore,
vectors make it possible to use the permutation of
coordinates as a third operation—in fact, permuta-
tions give us a huge number of possible operations
beyond addition and multiplication. The power of
computing with high-dimensional vectors follows

partly from high dimensionality (e.g., n = 10,000)
and partly from the operations and their interaction
with each other, i.e., from their algebra. The underly-
ing math has much in common with linear algebra,
but the approach is sufficiently different to deserve
closer examination.

High-dimensional computing:
An example

We will demonstrate the three operations with an
example: identifying languages from their letter-use
statistics (not relying on dictionaries). For each lan-
guage, we compute a high-dimensional profile vector
from about a million bytes of text. We use the same
algorithm to compute a profile for a test sentence,
which is then compared to the language profiles and
the most similar one is chosen as the system’s answer.

The profiles of our example are based on
three-letter sequences called trigrams and they are
computed as follows. First, the letters of the alpha-
bets are assigned n-dimensional random vectors of
+1s and ​−​1s. The same letter vectors are used with
all languages and test sentences. The letter vectors
are used to make trigram vectors with permutation
and multiplication. For example, the vector for the
trigram the is computed by permuting the t-vector
twice, permuting the h-vector once, taking the e-vec-
tor as is, and multiplying the three componentwise.
This produces an n-dimensional trigram vector of
randomly placed ±1s. Finally, the trigram vectors
are added together to a profile vector by stepping
through the text one trigram at a time. The result is
an n-dimensional vector of integers. The cosine of
such vectors can be used to measure their similarity.

Such an experiment with 21 European Union
languages gave the following results [4]. All vec-
tors were 10,000-dimensional. The language profiles
clustered according to language families: Baltic, Ger-
manic, Romance, and Slavic. When test-sentence
profiles were compared to the language profiles, the
correct language was chosen 97% of the time, and
when the language profile for English was queried
for the letter, most often following th, the answer
was e. The mathematics underlying the algorithm is
explained below.

High-dimensional vectors
and robustness

We are used to the idea that if A is close to B and
B is close to C, then A cannot be very far from C.

9May/June 2019

This intuition fails us totally in spaces with thou-
sands of dimensions if we think in terms of the
“territory” (number of vectors/points) within a
given distance from point A. Doubling the distance
in 2D space quadruples the territory, whereas in
high-dimensional space it can increase billion-fold.
For example, with 10,000-bit vectors, a mere bil-
lionth of those are within 4700 bits of any vector
A, but nearly all are within 5300 bits. Increasing
the Hamming distance from 4700 to 5300 increases
the territory billion-fold. In practice, this means, for
example, that if 10,000 bits are used to represent a
person, over a third of the bits can change over time
or be corrupted by noise or malfunction, and the
resulting bit vector is still closer to the original than
to a 10,000-bit representation of anyone else. This
is true of high-dimensional spaces at large and is
called concentration of measure.

Robustness of this kind is essential for animals in
the natural world where things never repeat exactly
and so it is essential for the brain to be able to identify
similar sensory stimuli as the same (and dissimilar as
different). The brain does so even when individual
neurons function erratically or die. This ability can
be based on representing the world and things in it
with high-dimensional vectors and computing with
such vectors. Once understood in principle, we can
begin to build systems with similar capabilities.

To benefit from the robustness inherent in high
dimensionality, a system must be able to identify
new inputs with things already stored in the system’s
memory. The function is referred to as associative
memory, which, in essence, is the nearest-neighbor
search among vectors stored in the memory. Of engi-
neering challenges presented by high-dimensional
computing, the associative memory may prove out
to be the most demanding.

Vector operations and their algebra
The first thing to stand out is that the vectors are

not subdivided into nonoverlapping fields. Anything
that is encoded into a vector is distributed equally
over all its components. Thus, any part of a vector
represents the same thing as the entire vector, only
less reliably. Such a representation is called holo-
graphic or holistic. Yet, it is possible to encode and
decode all data structures familiar from the ordinary
computing—sets, sequences, and lists—with three
operations on holographic vectors, namely, with

addition, multiplication, and permutation, and with
a measure of similarity. What exactly those oper-
ations are, depends on the nature of the vectors,
whether binary, “bipolar,” integer, real, or complex.
In the example on language, we have used n-dimen-
sional random bipolar vectors with equally proba-
ble +1s and ​−​1s (vector mean equals 0): ​A, B, C,… ∈ ​
{ 1,  − 1}​​ n​ ​(n  =  10, 000)​​. The properties are shared by
high-dimensional vectors of different kinds but are
the simplest to demonstrate with the bipolar.

Similarity of vectors is based on distance. Ham-
ming distance was used above to illustrate robust-
ness. Dot product A • B can be used with bipolar
vectors and it varies from −n (the vectors are oppo-
site) to n (they are the same). Cosine and (Pear-
son’s) correlation can also be used, where cosine
(or correlation) = 1 means that the vectors are max-
imally similar (the same), 0 means that they are
maximally dissimilar or orthogonal, and −1 means
that they are opposite. The cosine of two randomly
chosen bipolar vectors is close to 0—the vectors are
quasiorthogonal.

Addition (+) of bipolar vectors produces a vector
of integers. The sum vector can be used as such in
further computation, or returned to bipolar based on
the sign and randomly turning 0s into ±1s. Some infor-
mation is invariably lost when reverting to bipolar.
The sum vector is similar to the argument vectors and
independent of their order: ​A + B + C ~ A, B, C​. It can
therefore be used to represent a set or a multiset.

Multiplication (*) is done componentwise and
it therefore commutes: A * B = B * A. The result is
bipolar and dissimilar (quasiorthogonal) to the argu-
ment vectors: A * B ≁ A, B. However, multiplication
preserves similarity: (X * A) • (X * B) = A • B because
this is true at every coordinate. A bipolar vector
multiplied by itself produces a vector of 1s and so
it is its own inverse. Multiplication distributes over
addition: X * (A + B + C + . . .) = (X * A) + (X * B) +
(X * C) + . . . because it does so at every coordinate.
However, if the sum vector is first turned to bipolar,
distributivity holds only approximately.

The properties of multiplication make it useful
for variable binding. For example, if X represents a
variable and A its value, we can bind the two with
X * A. Then, multiplication by X recovers the value:
X * (X * A) = (X * X) * A = A, because X is its own
inverse. We can also encode several variables and
their values and superpose them into a single vec-
tor, as in H = (X * A) + (Y * B) + (Z * C), such that

10 IEEE Design&Test

SI: Architecture Advances Enabled by Emerging Technologies

multiplying H by X recovers A, although only approx-
imately, and so we must search the associative
memory for A.

X * H = X * ((X * A) + (Y * B) + (Z * C ))

= (X * X * A) + (X * Y * B) + (X * Z * C )

= A + noise + noise

~ A.

The second step in the equation follows from * dis-
tributing over +. “Noise” denotes that the vectors
are dissimilar to the ones that the system has in its
memory.

Permutation rearranges vector coordinates, and a
random permutation ρ produces a vector that is dis-
similar to the argument vector: ρ(A) ≁ A. Like multi-
plication, permutation is invertible, ρ−1(ρ(A)) = A, and
it distributes over addition ρ(A + B) = ρ(A) + ρ(B); it
distributes also over multiplication ρ(A * B) = ρ(A) *
ρ(B) because addition and multiplication happen
componentwise.

Permutations provide a means to represent
sequences and nested structure. For example, the
sequence (a, b, c) can be encoded as a sum

S3 = ρ (ρ(A)) + ρ(B) + C

= ρ2 (A) + ρ(B) + C

or as a product

P3 = ρ2 (A) * ρ(B) * C

and extended to include d by first permuting S3 or P3:
S4 = ρ(S3) + D and P4 = ρ(P3) * D. The inverse permu-
tation ρ−1 can then be used to find out, for example,
the second vector in S3

 ρ−1(S3) = ρ−1 (ρ2 (A)) + ρ−1 (ρ(B)) + ρ−1(C )

= ρ(A) + B + ρ−1(C )

= noise + B + noise

~ B

or what comes after A and before C in P3 by first can-
celing them out

ρ−1 (P3 * ( ρ2(A) * C ))

= ρ−1 (( ρ2(A) * ρ(B) * (C ) * ( ρ2(A) * C ))

= ρ−1 ( ρ(B) * ( ρ2(A) * ρ2(A)) * (C * C ))

= ρ−1 ( ρ(B))

= B.

If the pair (a, b) is encoded with two unrelated per-
mutations ρ1 and ρ2 as ρ1(A) + ρ2(B), then the nested
structure ((a, b), (c, d)) can be represented by

ρ1( ρ1(A) + ρ2(B)) + ρ2 ( ρ1(C ) + ρ2 (D))

= ρ11(A) + ρ12(B) + ρ21 (C ) + ρ22 (D),

where ρij is the permutation ρi ρj.
The versatility of computing with numbers is

partly due to the fact that addition and multiplica-
tion form an algebraic structure called a field. We
can expect computing with high-dimensional vec-
tors to be equally powerful because addition and
multiplication approximate a field and are comple-
mented by permutations that combine with addition
and multiplication in useful ways.

Second look at language identification:
Working out the math

We introduced high-dimensional computing
with an example where languages were identified
from their trigrams statistics. Let us look at the algo-
rithm in terms of the operations and their proper-
ties. The letters of the alphabet are represented by
10,000-dimensional random, independent, identi-
cally distributed, equally probable ±1 vectors A, B,
C, . . ., which, therefore, are approximately orthogo-
nal to each other. The trigram vectors that are made
with permutation and multiplication are also approx-
imately orthogonal to each other and to the letter vec-
tors because both multiplication and permutation
(rotation of coordinates was used in the example)
produce vectors that are dissimilar to their arguments.
However, addition produces vectors that are similar
to their arguments, and therefore, a language profile
vector resembles each of the trigram vectors added
into it. That is why, similar histograms of trigrams pro-
duce similar language profiles—a language profile is
nothing other than a histogram randomly projected
to 10,000 dimensions. Finally, the letter most often
following th in English is found by multiplying the
profile for English with (the inverse of) ρ2(T) * ρ(H).
The multiplication distributes over every trigram
added into the profile and cancels out the initial th
wherever it occurs. In particular, it releases E from
the trigram vector for the, namely, from ρ2(T) *
ρ(H) * E; it also releases every other letter that comes
after th, but since e is the most frequent, E has the
highest dot product with the transformed profile. Its
expected value is 10,000× the number of es after th.

11May/June 2019

Note that the dot product is the same as between the
profile vector and the trigram vector for the.

The example demonstrates the important aspects
of high-dimensional computing. The same algorithm
is used for training and for making profiles of test
sentences. The algorithm is very simple, it is easily
adapted to classification problems at large, and it
works in a single pass over the data—the algorithm
is incremental. Frequencies and probabilities can
be recovered approximately from a profile vec-
tor by inverting the operations used to encode the
profile—the representation is transparent.

Vectors other than bipolar
Demonstrating the operations with bipolar vec-

tors is particularly simple because componentwise
addition and multiplication use ordinary arithmetic.
However, the idea is more general: the vectors can
be binary or real or complex so long as they are high
dimensional. Appropriate addition and multiplica-
tion operators exist for each kind, and all vectors can
be permuted.

Systems based on binary vectors are the simplest
to engineer. Dense binary (equally probable 0s
and 1s) is mathematically equivalent to the bipo-
lar: bipolar 1 maps to binary 0, addition becomes
componentwise thresholded (majority) sum with
a policy for breaking ties, multiplication becomes
XOR, and similarity of vectors is based on the Ham-
ming distance. Systems based on real vectors use
components drawn randomly from a normal distri-
bution with 0 mean and 1/n variance. Addition is
an ordinary vector addition followed by normaliza-
tion, multiplication is by circular convolution, and
similarity of vectors is based on Euclidean distance
between the normalized vectors. Systems based on
complex vectors use random phase angles for com-
ponents, addition is the vector addition followed
by normalization, multiplication is componentwise
addition of phase angles, and the similarity of two
vectors is based on the length of their difference.
High-dimensional computing with complex vectors
is a likely model for computing with the timing of
spikes relative to an underlying oscillation or clock.

These different frameworks are, in fact, related
to each other. The equivalence of the binary to the
bipolar has already been discussed. The real and the
complex are related via Fast Fourier Transform, and
the bipolar is equivalent to the complex when the
phase angles are restricted to 0 and n [2].

Small-scale experiments, large-scale
applications

High-dimensional computing has been demon-
strated in experiments on language identification
[4], [5] and biosignal classification [6], and is used
commercially for making semantic vectors. The
experiments have focused on the simplicity, trans-
parency, and generality of the algorithms, their toler-
ance for component variability and failure, suitability
for parallel execution, and energy efficiency.

Simplicity and transparency follow from the alge-
bra of the operations, as pointed out in the previous
section. We can argue for generality by observing
that the operations, together with an associative
memory, are sufficient for realizing a fully general
programming language such as Lisp.

Robustness of high-dimensional computing is a
consequence of extreme redundancy arising from
distributed (holographic) representation where
each coordinate computes the same thing inde-
pendently of the others, although at very low pre-
cision. For example, ignoring half the coordinates
allows the algorithms to work while producing less
reliable results. Furthermore, independence of
coordinates allows them to compute in parallel: in
10,000-dimensional, all 10,000 can add or multiply
at once since there is no carry to be concerned with,
as there is in arithmetic with number. Permutation is
the only operation that operates across coordinates,
by merely reordering them.

We have noted above the brain’s unparalleled
ability to learn and to adapt in a constantly changing
world, as if it had the power of a supercomputer run-
ning on a tiny fraction of the energy. Brainlike com-
puting does not require ultrareliable components
switching at gigahertz rates. We can compute with
very little energy if the rates are low and we can get
by with components that vary and occasionally fail.
A theory for such kind of computing will most likely
have high-dimensional vectors at its core [7].

High-dimensional computing has been used com-
mercially by a text analytics company Gavagai AB in
Sweden, founded in 2008 (http://gavagai.se/about/).
Its services are based on a high-dimensional vector
algorithm called Random Indexing [8], which is a
form of random projection. The algorithm embodies
Distributional Hypothesis of linguistics in 2000-dimen-
sional semantic vectors. The idea behind semantic
vectors is that words with similar meaning have
similar semantic vectors, useful in search engines,

12 IEEE Design&Test

SI: Architecture Advances Enabled by Emerging Technologies

for example. The algorithm works by assigning a
random index vector—a 2000-dimensional random
label—for each word in the vocabulary, analogous
to the random letter vectors in the language-identi-
fication experiment. The random labels for words
are then used to make semantic vectors for words
by reading through the text. Each time a word
appears, its semantic vector is updated by adding
to it the random labels of adjacent words, usually
two or three words on either side, referred to as a
context window. As sum vectors, the semantic vec-
tors are similar to the random labels of their context
words, and thus, shared contexts produce similar
semantic vectors.

Better-known semantic-vector algorithms include
Latent Semantic Analysis (LSA) [9] and Word2vec
[10], neither of which embraces high dimension-
ality and randomness. LSA makes several-hun-
dred-dimensional semantic vectors with singu-
lar-value decomposition and becomes impractical
when the vocabulary grows to 100,000s and the num-
ber of documents to millions. Word2vec deals better
with large the data sets. Its semantic vectors are a
solution to an optimization problem, formulated as
the ability of words and phrases to predict the nearby
words and phrases in large corpora of text. The algo-
rithm involves explicit tabulation of frequencies and
probabilities, and the problem is solved with the gra-
dient descent in a high-dimensional vector space—
the dimensionality is typically 1000 or less. In contrast,
in computing with high-dimensional vectors based
on their algebra, we try to avoid explicit tabulation of
probabilities and calculation of gradients because of
their computational cost, and also because it would
introduce a batch process into the data flow.

All semantic vectors in use today are quite crude
in fact. They capture elements of word meaning but
are devoid of language structure. Structural analysis
of language and the import of grammar to meaning
have traditionally been the domain of symbolic AI.
However, we can expect this to change, thanks to
the ability of high-dimensional vector operations to
encode (grammatical) structure. This is an obvious
topic for research in language-understanding.

Prospects and opportunities
We began this article by highlighting the brain’s

ability to produce interesting behavior, vital to
our survival, with slow, low-precision, unreliable
components, and contrasted it with what we usually

associate with computing power, namely, speed,
precision, and reliability. Large memory capacity
is one thing that brains and computers share and
derive power from. If a synapse were to stand for 1
bit of information, the human brain would be the
equivalent of 30 TB.

Whether or not computing with high-dimensional
vectors explains the brain’s computing, a host of
new machine-learning algorithms can be founded
on a computational algebra of the vectors. The algo-
rithms can combine statistical learning from the
data, with building and manipulating of the data
structures. The algebra makes the algorithms trans-
parent, thanks to the properties of the operations
such as distributivity and invertibility. Transparency
is often cited as a strength of rule-based systems and
contrasted with the opacity of neural nets that are
likened to black boxes.

High-dimensional vector operations are simple and
lend themselves to incremental (online, “one-shot”)
learning, as seen in computing language profiles and
semantic vectors. As already pointed out, they also
lend themselves to a high degree of parallelism.

We have justified high-dimensional computing
with examples from language and biosignal classi-
fication. These are obvious application areas, but
the theory suggests more. When a signal from one
source is represented in pseudorandom vectors in a
high-dimensional space, it is easily combined with
signals from other sources that are similarly repre-
sented, and their joint statistics can then be captured
in high-dimensional vectors. Moreover, by being
combined with invertible vector operations, contri-
butions from different sources can be traced back
to their origins. This suggests that high-dimensional
computing can be used for multisensor integra-
tion, leading to applications in sensing, monitoring,
control, and robotics.

The overall architecture would mimic neurobi-
ology. It would consist of sensor-specific front-end
processors, a high-dimensional vector processor,
a high-dimensional memory, and effector-specific
backend processors. The front-end processing would
convert the raw sensory input into pseudorandom
vectors, and backend processing would produce sig-
nals for driving motors, while integration and online
learning would happen in the high-dimensional
space using the vector operations.

Traditional neural nets and deep learning also
have a place in this architecture, namely, as train-

13May/June 2019

able front-end and back-end processors. Since the
signals for different sensory modalities—e.g., sight,
sound, and touch—are so very different, they need
very specific preprocessing to convert them into vec-
tors suitable for integration. Training of such periph-
eral processors can be slow as long as the resulting
system is fast. This again agrees with biology, when
as children we learn the sounds of a language and
as adults are unable to hear distinctions that another
language makes and depends on. The strategy of
combining deep learning with high-dimensional
computing has been shown to work in preliminary
experiments on image analysis.

The remarkable agreement between the require-
ments of high-dimensional computing and the nature
of nanotechnology should not be overlooked. As elec-
tronic components become smaller, are built into ever
larger circuits, and need to operate with little energy,
their operation becomes prone to error. When used as
components in traditional digital computers, every bit
must be made ultrareliable. This is achieved by making
the circuits redundant, but that costs in material and
energy. There apparently is a physical limit beyond
which further miniaturization no longer pays off.

Holographic representation is also redundant,
but high reliability at bit level is unnecessary. That
in itself leads to energy savings, which can be made
even greater if we take advantage of analog prop-
erties of materials, such as programmable resistors.
Operating with high-dimensional vectors can be
benefitted from the storage elements with a wider
range than binary.

Digital arithmetic and logic of conventional com-
puters require complex circuits, which are built into
an ALU that is physically separated from the mem-
ory. This creates the perpetual need to move the
data between the two. Compared to digital arithme-
tic, the high-dimensional vector operations are very
simple, and things like componentwise XOR can be
built into the memory, eliminating the need to move
10,000-bit vectors into and out of an ALU. By distrib-
uting the arithmetic, this kind of “in-memory com-
puting” saves both time and energy [6].

Conventional computing serves many areas
exceedingly well. Then, there are areas where our
long-standing efforts have not produced the results
we had hoped for. In particular, mastering of tasks
that rely on learning in everyday situations has
proven particularly difficult. By computing with

high-dimensional vectors, we hope to make inroads
in such areas. To highlight the difference, the rocket
that is sent to Jupiter’s moon will be controlled by
conventional computers, but the robot that explores
the moon will have a brain that computes with
high-dimensional vectors.� 

Acknowledgments
This work was supported in part by Japan’s MITI

Grant to Swedish Institute of Computer Science
under Real World Computing (RWC) program; in
part by Systems on Nanoscale Information fabriCs
(SONIC), one of the six SRC STARnet Centers, spon-
sored by MARCO and DARPA; in part by Intel Stra-
tegic Research Alliance program on Neuromorphic
Architectures for Mainstream Computing; and in
part by NSF 16-526: Energy-Efficient Computing: from
Devices to Architectures (E2CDA), a joint initiative
between NSF and SRC.

 References
	 [1]	 W. S. McCulloch and W. Pitts, “A logical calculus of

the ideas immanent in nervous activity,” Bull. Math.

Biophys., vol. 5, pp. 115–133, 1943.
	 [2]	 T. A. Plate, Holographic Reduced Representation:

Distributed Representation of Cognitive Structure,
Stanford, CA: CSLI Publications, 2003.

	 [3]	 P. Kanerva, “Hyperdimensional computing: An
introduction to computing in distributed representation
with high-dimensional random vectors,” Cogn.

Comput., vol. 1, no. 2, pp. 139–159, 2009.
	 [4]	 A. Joshi, J. T. Halseth, and P. Kanerva, “Language

geometry using random indexing,” in Quantum

Interaction, 10th International Conference, QI 2016,
J. A. de Barros, B. Coecke, and E. Pothos, Eds.
Springer, 2017, pp. 265–274.

	 [5]	 M. Imani, J. Hwang, T. Rosing, A. Rahimi, and
J. M. Rabaey, “Low-power sparse hyperdimensional
encoder for language recognition,” IEEE Des. Test,
vol. 34, no. 6, pp. 94–101, Nov./Dec. 2017.

	 [6]	 A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey,
“Biosignal processing with brain-inspired high-
dimensional computing: Universal learning and
classifica­tion for EMG and EEG,” in Proc. IEEE Spec.

Iss. Non-Sil. Non-von Neum. Comp., in press.
	 [7]	 E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory of

sequence indexing and working memory in recurrent
neural networks,” Neural Comput., vol. 30, no. 6,
pp. 1449–1513, Jun. 2018.

14 IEEE Design&Test

SI: Architecture Advances Enabled by Emerging Technologies

	 [8]	 M. Sahlgren, A. Holst, and P. Kanerva, “Permutations
as a means to encode order in word space,” in Proc.

30th Ann. Conf. Cogn. Sci. Soc., Austin, TX: Cognitive
Science Society, 2008, pp. 1300–1305.

	 [9]	 T. K. Landauer and S. T. Dumais, “A solution to
Plato’s problem: The Latent Semantic Analysis theory
of the acquisition induction, and representation of
knowledge,” Psychol. Rev., vol. 104, no. 2,
pp. 211–240, 1997.

	[10]	 T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Proc. Adv.

Neur. Info. Process. Syst., pp. 3111–3119, 2013.

Pentti Kanerva is a Research Scientist at
Redwood Center for Theoretical Neuroscience,
University of California at Berkeley, Berkeley, CA,
USA. Kanerva has a PhD in philosophy from Stanford
University, Stanford, CA, USA. He is a member of
the Association for the Advancement of Artificial
Intelligence.

 Direct questions and comments about this
article to Pentti Kanerva, Redwood Center for
Theoretical Neuroscience, University of California
at Berkeley, Berkeley, CA 94720-3198, USA;
pkanerva@berkeley.edu.

mailto:pkanerva@berkeley.edu

