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mainframes. Both calcu-
lation and record-keeping 
require accuracy and reli-
ability, and so computers 
are designed to work as 
deterministic machines: 
identical inputs always 
produce identical out-
puts. Although determin-

ism is an unattainable ideal, the near-perfect operation 
can be achieved by the use of digital logic and wide 
design margins. Traditional theories of computing 
assume determinism and deal merely with inaccura-
cies arising from the precision with which numbers are 
represented, which gave birth to numerical analysis.

However, reliability at high speeds comes at a 
cost: it requires large amounts of energy. Decreasing 
the size of circuit elements has decreased the energy 
needed to operate them, but we are approaching a 
limit beyond which reduction in size makes the cir-
cuits unreliable. We can push physics only so far 
before things begin to break down. At the same time, 
computers are used increasingly in applications that 
do not require ultimate speed, precision, and reli-
ability, or where the needed reliability is achieved 
by means other than ultrareliable circuit elements. 
Prime examples of these kinds of functions come 
from neuroscience.

Animal brains are the closest things in nature 
to resemble computers. As products of millions of 
years of evolution, they probably are nearly opti-
mal for the function they serve. There are many 
things that brains do with apparent ease that we try 
to do with computers but only succeed partially at 
best. They concern  behavior that allows animals 

Computing at large
We usually think of computing as operating on 

bits, numbers, and memory pointers, and we build 
computers with circuits specialized for Boolean 
logic, arithmetic, and memory. Everything else is 
designed based on these basic operations by organ-
izing them into programs. The genius of the von 
Neumann architecture is that the programs reside in 
memory and are manipulated with the same opera-
tions as the data—to the machine, the programs are 
data. The resulting flexibility has led to compiling 
and symbolic programming, which in turn has made 
it feasible to treat an endless assortment of tasks as 
computational.

The first digital computers were designed for calcu-
lation. They replaced rooms full of professionals called 
computers who worked with calculating machines 
and made use of logarithmic tables and such in their 
work. Digital computers soon eliminated the need for 
logarithmic tables and, over time, were used more and 
more for record-keeping, as we witnessed the era of 
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to survive and prosper in an ever-changing world. 
In very general terms, our brains make it possible 
for us to understand and react to what is happen-
ing around us. What would this mean in computer 
terms? What conclusions can be drawn in regard to 
building computers for these and similar functions?

Cursory examination of the brain shows that its cir-
cuits are very large (fan-ins and fan-outs can be in the 
tens of thousands), the layout is not prescribed to the 
last detail, activity is widely distributed within a cir-
cuit and among different circuits, individual neurons 
need not be particularly reliable (neurons can die), 
and they operate with very little energy—the human 
brain runs on about 20 W. All these are so unlike 
how computers are built and operate that we need to 
rethink and extend our models of computing.

Models of computing inspired by the brain’s 
circuits are as old as digital computers [1]. These 
models are called artificial neural nets, they have 
had a major role in cognitive science research, and 
they are now commercialized as deep learning nets. 
Neural net models are based on linear algebra and 
they compute with vectors and matrices. They are 
trained on standard computers with exacting algo-
rithms such as gradient descent and principal com-
ponents. Training is compute-intensive, although the 
final network can be fast and operate with very little 
energy. The networks are problem-specific and lack 
the flexibility and adaptivity that we associate with 
behaviors controlled by brains.

In this article, we consider the possibility of 
computing with high-dimensional random vectors 
as basic objects, contrasting it with conventional 
computing with bits and numbers. Computing of 
this kind was proposed by Plate in the early 1990s, 
as discussed thoroughly in the book Holographic 
Reduced Representation: Distributed Representation 
of Cognitive Structure [2] and condensed in a paper 
on “Hyperdimensional computing: An introduction 
to computing in distributed representation with 
high-dimensional random vectors” [3].

The operations refer to vectors even as the vec-
tors are realized with bits and numbers. There is an 
addition operation and a multiplication operation 
that preserve vector dimensionality. Furthermore, 
vectors make it possible to use the permutation of 
coordinates as a third operation—in fact, permuta-
tions give us a huge number of possible operations 
beyond addition and multiplication. The power of 
computing with high-dimensional vectors follows 

partly from high dimensionality (e.g., n = 10,000) 
and partly from the operations and their interaction 
with each other, i.e., from their algebra. The underly-
ing math has much in common with linear algebra, 
but the approach is sufficiently different to deserve 
closer examination.

High-dimensional computing: 
An example

We will demonstrate the three operations with an 
example: identifying languages from their letter-use 
statistics (not relying on dictionaries). For each lan-
guage, we compute a high-dimensional profile vector 
from about a million bytes of text. We use the same 
algorithm to compute a profile for a test sentence, 
which is then compared to the language profiles and 
the most similar one is chosen as the system’s answer.

The profiles of our example are based on 
three-letter sequences called trigrams and they are 
computed as follows. First, the letters of the alpha-
bets are assigned n-dimensional random vectors of 
+1s and ​−​1s. The same letter vectors are used with 
all languages and test sentences. The letter vectors 
are used to make trigram vectors with permutation 
and multiplication. For example, the vector for the 
trigram the is computed by permuting the t-vector 
twice, permuting the h-vector once, taking the e-vec-
tor as is, and multiplying the three componentwise. 
This produces an n-dimensional trigram vector of 
randomly placed ±1s. Finally, the trigram vectors 
are added together to a profile vector by stepping 
through the text one trigram at a time. The result is 
an n-dimensional vector of integers. The cosine of 
such vectors can be used to measure their similarity.

Such an experiment with 21 European Union 
languages gave the following results [4]. All vec-
tors were 10,000-dimensional. The language profiles 
clustered according to language families: Baltic, Ger-
manic, Romance, and Slavic. When test-sentence 
profiles were compared to the language profiles, the 
correct language was chosen 97% of the time, and 
when the language profile for English was queried 
for the letter, most often following th, the answer 
was e. The mathematics underlying the algorithm is 
explained below.

High-dimensional vectors  
and robustness

We are used to the idea that if A is close to B and 
B is close to C, then A cannot be very far from C. 
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This intuition fails us totally in spaces with thou-
sands of dimensions if we think in terms of the 
“territory” (number of vectors/points) within a 
given distance from point A. Doubling the distance 
in 2D space quadruples the territory, whereas in 
high-dimensional space it can increase billion-fold. 
For example, with 10,000-bit vectors, a mere bil-
lionth of those are within 4700 bits of any vector 
A, but nearly all are within 5300 bits. Increasing 
the Hamming distance from 4700 to 5300 increases 
the territory billion-fold. In practice, this means, for 
example, that if 10,000 bits are used to represent a 
person, over a third of the bits can change over time 
or be corrupted by noise or malfunction, and the 
resulting bit vector is still closer to the original than 
to a 10,000-bit representation of anyone else. This 
is true of high-dimensional spaces at large and is 
called concentration of measure.

Robustness of this kind is essential for animals in 
the natural world where things never repeat exactly 
and so it is essential for the brain to be able to identify 
similar sensory stimuli as the same (and dissimilar as 
different). The brain does so even when individual 
neurons function erratically or die. This ability can 
be based on representing the world and things in it 
with high-dimensional vectors and computing with 
such vectors. Once understood in principle, we can 
begin to build systems with similar capabilities.

To benefit from the robustness inherent in high 
dimensionality, a system must be able to identify 
new inputs with things already stored in the system’s 
memory. The function is referred to as associative 
memory, which, in essence, is the nearest-neighbor 
search among vectors stored in the memory. Of engi-
neering challenges presented by high-dimensional 
computing, the associative memory may prove out 
to be the most demanding.

Vector operations and their algebra
The first thing to stand out is that the vectors are 

not subdivided into nonoverlapping fields. Anything 
that is encoded into a vector is distributed equally 
over all its components. Thus, any part of a vector 
represents the same thing as the entire vector, only 
less reliably. Such a representation is called holo-
graphic or holistic. Yet, it is possible to encode and 
decode all data structures familiar from the ordinary 
computing—sets, sequences, and lists—with three 
operations on holographic vectors, namely, with 

addition, multiplication, and permutation, and with 
a measure of similarity. What exactly those oper-
ations are, depends on the nature of the vectors, 
whether binary, “bipolar,” integer, real, or complex. 
In the example on language, we have used n-dimen-
sional random bipolar vectors with equally proba-
ble +1s and ​−​1s (vector mean equals 0): ​A, B, C,… ∈ ​
{ 1,  − 1}​​ n​ ​(n  =  10, 000)​​. The properties are shared by 
high-dimensional vectors of different kinds but are 
the simplest to demonstrate with the bipolar.

Similarity of vectors is based on distance. Ham-
ming distance was used above to illustrate robust-
ness. Dot product A • B can be used with bipolar 
vectors and it varies from −n (the vectors are oppo-
site) to n (they are the same). Cosine and (Pear-
son’s) correlation can also be used, where cosine 
(or correlation) = 1 means that the vectors are max-
imally similar (the same), 0 means that they are 
maximally dissimilar or orthogonal, and −1 means 
that they are opposite. The cosine of two randomly 
chosen bipolar vectors is close to 0—the vectors are 
quasiorthogonal.

Addition (+) of bipolar vectors produces a vector 
of integers. The sum vector can be used as such in 
further computation, or returned to bipolar based on 
the sign and randomly turning 0s into ±1s. Some infor-
mation is invariably lost when reverting to bipolar. 
The sum vector is similar to the argument vectors and 
independent of their order: ​A + B + C ~ A, B, C​. It can 
therefore be used to represent a set or a multiset.

Multiplication (*) is done componentwise and 
it therefore commutes: A * B = B * A. The result is 
bipolar and dissimilar (quasiorthogonal) to the argu-
ment vectors: A * B ≁ A, B. However, multiplication 
preserves similarity: (X * A) • (X * B) = A • B because 
this is true at every coordinate. A bipolar vector 
multiplied by itself produces a vector of 1s and so 
it is its own inverse. Multiplication distributes over 
addition: X * (A + B + C + . . .) = (X * A) + (X * B) + 
(X * C) + . . . because it does so at every coordinate. 
However, if the sum vector is first turned to bipolar, 
distributivity holds only approximately.

The properties of multiplication make it useful 
for variable binding. For example, if X represents a 
variable and A its value, we can bind the two with  
X * A. Then, multiplication by X recovers the value:  
X * (X * A) = (X * X) * A = A, because X is its own 
inverse. We can also encode several variables and 
their values and superpose them into a single vec-
tor, as in H = (X * A) + (Y * B) + (Z * C), such that 
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multiplying H by X recovers A, although only approx-
imately, and so we must search the associative 
memory for A.

X * H = X * ((X * A) + (Y * B) + (Z * C ))

= (X * X * A) + (X * Y * B) + (X * Z * C )

= A + noise + noise

~ A.

The second step in the equation follows from * dis-
tributing over +. “Noise” denotes that the vectors  
are dissimilar to the ones that the system has in its 
memory.

Permutation rearranges vector coordinates, and a 
random permutation ρ produces a vector that is dis-
similar to the argument vector: ρ(A) ≁ A. Like multi-
plication, permutation is invertible, ρ−1(ρ(A)) = A, and 
it distributes over addition ρ(A + B) = ρ(A) + ρ(B); it 
distributes also over multiplication ρ(A * B) = ρ(A) *  
ρ(B) because addition and multiplication happen 
componentwise.

Permutations provide a means to represent 
sequences and nested structure. For example, the 
sequence (a, b, c) can be encoded as a sum

S3 = ρ (ρ(A)) + ρ(B) + C

= ρ2 (A) + ρ(B) + C

or as a product

P3 = ρ2 (A) * ρ(B) * C

and extended to include d by first permuting S3 or P3: 
S4 = ρ(S3) + D and P4 = ρ(P3) * D. The inverse permu-
tation ρ−1 can then be used to find out, for example, 
the second vector in S3

 ρ−1(S3) = ρ−1 (ρ2 (A)) + ρ−1 (ρ(B)) + ρ−1(C )

= ρ(A) + B + ρ−1(C )

= noise + B + noise 

~ B

or what comes after A and before C in P3 by first can-
celing them out

ρ−1 (P3 * ( ρ2(A) * C ))

= ρ−1 (( ρ2(A) * ρ(B) * (C ) * ( ρ2(A) * C ))

= ρ−1 ( ρ(B) * ( ρ2(A) * ρ2(A)) * (C * C ))

= ρ−1 ( ρ(B))

= B.

If the pair (a, b) is encoded with two unrelated per-
mutations ρ1 and ρ2 as ρ1(A) + ρ2(B), then the nested 
structure ((a, b), (c, d)) can be represented by

ρ1( ρ1(A) + ρ2(B)) + ρ2 ( ρ1(C ) + ρ2 (D))

= ρ11(A) + ρ12(B) + ρ21 (C ) + ρ22 (D),

where ρij is the permutation ρi ρj.
The versatility of computing with numbers is 

partly due to the fact that addition and multiplica-
tion form an algebraic structure called a field. We 
can expect computing with high-dimensional vec-
tors to be equally powerful because addition and 
multiplication approximate a field and are comple-
mented by permutations that combine with addition 
and multiplication in useful ways.

Second look at language identification: 
Working out the math

We introduced high-dimensional computing 
with an example where languages were identified 
from their trigrams statistics. Let us look at the algo-
rithm in terms of the operations and their proper-
ties. The letters of the alphabet are represented by 
10,000-dimensional random, independent, identi-
cally distributed, equally probable ±1 vectors A, B,  
C, . . ., which, therefore, are approximately orthogo-
nal to each other. The trigram vectors that are made 
with permutation and multiplication are also approx-
imately orthogonal to each other and to the letter vec-
tors because both multiplication and permutation 
(rotation of coordinates was used in the example) 
produce vectors that are dissimilar to their arguments. 
However, addition produces vectors that are similar 
to their arguments, and therefore, a language profile 
vector resembles each of the trigram vectors added 
into it. That is why, similar histograms of trigrams pro-
duce similar language profiles—a language profile is 
nothing other than a histogram randomly projected 
to 10,000 dimensions. Finally, the letter most often 
following th in English is found by multiplying the 
profile for English with (the inverse of) ρ2(T) * ρ(H). 
The multiplication distributes over every trigram 
added into the profile and cancels out the initial th 
wherever it occurs. In particular, it releases E from 
the trigram vector for the, namely, from ρ2(T) *  
ρ(H) * E; it also releases every other letter that comes 
after th, but since e is the most frequent, E has the 
highest dot product with the transformed profile. Its 
expected value is 10,000× the number of es after th. 
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Note that the dot product is the same as between the 
profile vector and the trigram vector for the.

The example demonstrates the important aspects 
of high-dimensional computing. The same algorithm 
is used for training and for making profiles of test 
sentences. The algorithm is very simple, it is easily 
adapted to classification problems at large, and it 
works in a single pass over the data—the algorithm 
is incremental. Frequencies and probabilities can 
be recovered approximately from a profile vec-
tor by inverting the operations used to encode the 
profile—the representation is transparent.

Vectors other than bipolar
Demonstrating the operations with bipolar vec-

tors is particularly simple because componentwise 
addition and multiplication use ordinary arithmetic. 
However, the idea is more general: the vectors can 
be binary or real or complex so long as they are high 
dimensional. Appropriate addition and multiplica-
tion operators exist for each kind, and all vectors can 
be permuted.

Systems based on binary vectors are the simplest 
to engineer. Dense binary (equally probable 0s 
and 1s) is mathematically equivalent to the bipo-
lar: bipolar 1 maps to binary 0, addition becomes 
componentwise thresholded (majority) sum with 
a policy for breaking ties, multiplication becomes 
XOR, and similarity of vectors is based on the Ham-
ming distance. Systems based on real vectors use 
components drawn randomly from a normal distri-
bution with 0 mean and 1/n variance. Addition is 
an ordinary vector addition followed by normaliza-
tion, multiplication is by circular convolution, and 
similarity of vectors is based on Euclidean distance 
between the normalized vectors. Systems based on 
complex vectors use random phase angles for com-
ponents, addition is the vector addition followed 
by normalization, multiplication is componentwise 
addition of phase angles, and the similarity of two 
vectors is based on the length of their difference. 
High-dimensional computing with complex vectors 
is a likely model for computing with the timing of 
spikes relative to an underlying oscillation or clock.

These different frameworks are, in fact, related 
to each other. The equivalence of the binary to the 
bipolar has already been discussed. The real and the 
complex are related via Fast Fourier Transform, and 
the bipolar is equivalent to the complex when the 
phase angles are restricted to 0 and n [2].

Small-scale experiments, large-scale 
applications

High-dimensional computing has been demon-
strated in experiments on language identification 
[4], [5] and biosignal classification [6], and is used 
commercially for making semantic vectors. The 
experiments have focused on the simplicity, trans-
parency, and generality of the algorithms, their toler-
ance for component variability and failure, suitability 
for parallel execution, and energy efficiency.

Simplicity and transparency follow from the alge-
bra of the operations, as pointed out in the previous 
section. We can argue for generality by observing 
that the operations, together with an associative 
memory, are sufficient for realizing a fully general 
programming language such as Lisp.

Robustness of high-dimensional computing is a 
consequence of extreme redundancy arising from 
distributed (holographic) representation where 
each coordinate computes the same thing inde-
pendently of the others, although at very low pre-
cision. For example, ignoring half the coordinates 
allows the algorithms to work while producing less 
reliable results. Furthermore, independence of 
coordinates allows them to compute in parallel: in 
10,000-dimensional, all 10,000 can add or multiply 
at once since there is no carry to be concerned with, 
as there is in arithmetic with number. Permutation is 
the only operation that operates across coordinates, 
by merely reordering them.

We have noted above the brain’s unparalleled 
ability to learn and to adapt in a constantly changing 
world, as if it had the power of a supercomputer run-
ning on a tiny fraction of the energy. Brainlike com-
puting does not require ultrareliable components 
switching at gigahertz rates. We can compute with 
very little energy if the rates are low and we can get 
by with components that vary and occasionally fail. 
A theory for such kind of computing will most likely 
have high-dimensional vectors at its core [7].

High-dimensional computing has been used com-
mercially by a text analytics company Gavagai AB in 
Sweden, founded in 2008 (http://gavagai.se/about/). 
Its services are based on a high-dimensional vector 
algorithm called Random Indexing [8], which is a 
form of random projection. The algorithm embodies 
Distributional Hypothesis of linguistics in 2000-dimen-
sional semantic vectors. The idea behind semantic 
vectors is that words with similar meaning have 
similar semantic vectors, useful in search engines, 
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for example. The algorithm works by assigning a 
random index vector—a 2000-dimensional random 
label—for each word in the vocabulary, analogous 
to the random letter vectors in the language-identi-
fication experiment. The random labels for words 
are then used to make semantic vectors for words 
by reading through the text. Each time a word 
appears, its semantic vector is updated by adding 
to it the random labels of adjacent words, usually 
two or three words on either side, referred to as a 
context window. As sum vectors, the semantic vec-
tors are similar to the random labels of their context 
words, and thus, shared contexts produce similar  
semantic vectors.

Better-known semantic-vector algorithms include 
Latent Semantic Analysis (LSA) [9] and Word2vec 
[10], neither of which embraces high dimension-
ality and randomness. LSA makes several-hun-
dred-dimensional semantic vectors with singu-
lar-value decomposition and becomes impractical 
when the vocabulary grows to 100,000s and the num-
ber of documents to millions. Word2vec deals better 
with large the data sets. Its semantic vectors are a 
solution to an optimization problem, formulated as 
the ability of words and phrases to predict the nearby 
words and phrases in large corpora of text. The algo-
rithm involves explicit tabulation of frequencies and 
probabilities, and the problem is solved with the gra-
dient descent in a high-dimensional vector space—
the dimensionality is typically 1000 or less. In contrast, 
in computing with high-dimensional vectors based 
on their algebra, we try to avoid explicit tabulation of 
probabilities and calculation of gradients because of 
their computational cost, and also because it would 
introduce a batch process into the data flow.

All semantic vectors in use today are quite crude 
in fact. They capture elements of word meaning but 
are devoid of language structure. Structural analysis 
of language and the import of grammar to meaning 
have traditionally been the domain of symbolic AI. 
However, we can expect this to change, thanks to 
the ability of high-dimensional vector operations to 
encode (grammatical) structure. This is an obvious 
topic for research in language-understanding.

Prospects and opportunities
We began this article by highlighting the brain’s 

ability to produce interesting behavior, vital to 
our survival, with slow, low-precision, unreliable 
components, and contrasted it with what we usually 

associate with computing power, namely, speed, 
precision, and reliability. Large memory capacity 
is one thing that brains and computers share and 
derive power from. If a synapse were to stand for 1 
bit of information, the human brain would be the 
equivalent of 30 TB.

Whether or not computing with high-dimensional 
vectors explains the brain’s computing, a host of 
new machine-learning algorithms can be founded 
on a computational algebra of the vectors. The algo-
rithms can combine statistical learning from the 
data, with building and manipulating of the data 
structures. The algebra makes the algorithms trans-
parent, thanks to the properties of the operations 
such as distributivity and invertibility. Transparency 
is often cited as a strength of rule-based systems and 
contrasted with the opacity of neural nets that are 
likened to black boxes.

High-dimensional vector operations are simple and 
lend themselves to incremental (online, “one-shot”) 
learning, as seen in computing language profiles and 
semantic vectors. As already pointed out, they also 
lend themselves to a high degree of parallelism.

We have justified high-dimensional computing 
with examples from language and biosignal classi-
fication. These are obvious application areas, but 
the theory suggests more. When a signal from one 
source is represented in pseudorandom vectors in a 
high-dimensional space, it is easily combined with 
signals from other sources that are similarly repre-
sented, and their joint statistics can then be captured 
in high-dimensional vectors. Moreover, by being 
combined with invertible vector operations, contri-
butions from different sources can be traced back 
to their origins. This suggests that high-dimensional 
computing can be used for multisensor integra-
tion, leading to applications in sensing, monitoring,  
control, and robotics.

The overall architecture would mimic neurobi-
ology. It would consist of sensor-specific front-end 
processors, a high-dimensional vector processor, 
a high-dimensional memory, and effector-specific 
backend processors. The front-end processing would 
convert the raw sensory input into pseudorandom 
vectors, and backend processing would produce sig-
nals for driving motors, while integration and online 
learning would happen in the high-dimensional 
space using the vector operations.

Traditional neural nets and deep learning also 
have a place in this architecture, namely, as train-
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able front-end and back-end processors. Since the 
signals for different sensory modalities—e.g., sight, 
sound, and touch—are so very different, they need 
very specific preprocessing to convert them into vec-
tors suitable for integration. Training of such periph-
eral processors can be slow as long as the resulting 
system is fast. This again agrees with biology, when 
as children we learn the sounds of a language and 
as adults are unable to hear distinctions that another 
language makes and depends on. The strategy of 
combining deep learning with high-dimensional 
computing has been shown to work in preliminary 
experiments on image analysis.

The remarkable agreement between the require-
ments of high-dimensional computing and the nature 
of nanotechnology should not be overlooked. As elec-
tronic components become smaller, are built into ever 
larger circuits, and need to operate with little energy, 
their operation becomes prone to error. When used as 
components in traditional digital computers, every bit 
must be made ultrareliable. This is achieved by making 
the circuits redundant, but that costs in material and 
energy. There apparently is a physical limit beyond 
which further miniaturization no longer pays off.

Holographic representation is also redundant, 
but high reliability at bit level is unnecessary. That 
in itself leads to energy savings, which can be made 
even greater if we take advantage of analog prop-
erties of materials, such as programmable resistors. 
Operating with high-dimensional vectors can be 
benefitted from the storage elements with a wider 
range than binary.

Digital arithmetic and logic of conventional com-
puters require complex circuits, which are built into 
an ALU that is physically separated from the mem-
ory. This creates the perpetual need to move the 
data between the two. Compared to digital arithme-
tic, the high-dimensional vector operations are very 
simple, and things like componentwise XOR can be 
built into the memory, eliminating the need to move 
10,000-bit vectors into and out of an ALU. By distrib-
uting the arithmetic, this kind of “in-memory com-
puting” saves both time and energy [6].

Conventional computing serves many areas 
exceedingly well. Then, there are areas where our 
long-standing efforts have not produced the results 
we had hoped for. In particular, mastering of tasks 
that rely on learning in everyday situations has 
proven particularly difficult. By computing with 

high-dimensional vectors, we hope to make inroads 
in such areas. To highlight the difference, the rocket 
that is sent to Jupiter’s moon will be controlled by 
conventional computers, but the robot that explores 
the moon will have a brain that computes with 
high-dimensional vectors.� 
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