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ABSTRACT | Recognizing the very size of the brain’s circuits,

hyperdimensional (HD) computing can model neural activity

patterns with points in a HD space, that is, with HD vectors.

Key examined properties of HD computing include: a versa-

tile set of arithmetic operations on HD vectors, generality,

scalability, analyzability, one-shot learning, and energy effi-

ciency. These make it a prime candidate for efficient biosignal

processing where signals are noisy and nonstationary, training
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data sets are not huge, individual variability is significant, and

energy-efficiency constraints are tight. Purely based on native

HD computing operators, we describe a combined method for

multiclass learning and classification of various ExG biosig-

nals such as electromyography (EMG), electroencephalogra-

phy (EEG), and electrocorticography (ECoG). We develop a full

set of HD network templates that comprehensively encode

body potentials and brain neural activity recorded from differ-

ent electrodes into a single HD vector without requiring domain

expert knowledge or ad hoc electrode selection process. Such

encoded HD vector is processed as a single unit for fast

one-shot learning, and robust classification. It can be inter-

preted to identify the most useful features as well. Compared

to state-of-the-art counterparts, HD computing enables online,

incremental, and fast learning as it demands less than a third

as much training data as well as less preprocessing.
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ing; brain–machine interface; ECoG; EEG; EMG; error-related

potential; hyperdimensional (HD) computing; human–machine
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I. I N T RODUC T I ON

Some of the most compelling application domains of the
Internet of Things (IoT) relate to how humans interact
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with the world around them and with the cyberworld
through “wearable” devices. The growing sophistication of
these devices requires a continuous reduction in energy-
per-operation. Unfortunately, with the slowdown of tradi-
tional semiconductor scaling, leakage and uncertainty [1]
limit the amount of energy scaling that can be reached [2].
The only viable solution is to rethink functionality to cope
with uncertainty by adopting computational approaches
that are inherently robust to uncertainty [3]. Advances
in learning-based computing for IoT increase energy effi-
ciency toward TOPS/Watt [4], but further improvement
requires a novel look at data representations, associated
operations, circuits, and materials and substrates that
enable them [5]. Monolithic 3-D integrated nanotechnolo-
gies [6], [7] combined with novel brain-inspired compu-
tational paradigms that support fast learning and fault
tolerance could lead the way [5].

Emerging hyperdimensional (HD) computing [8] is
based on the understanding that brains compute with
patterns of neural activity that are not readily associated
with scalar numbers. In fact, the brain’s ability to calculate
with numbers is feeble. However, due to the very size of
the brain’s circuits, we can model neural activity patterns
with points of a HD space, that is, with HD vectors.
When the dimensionality is in the thousands, operations on
HD vectors create a computational behavior with unique
features in terms of robustness and efficiency [9], [10].

HD computing brings into play the rich and subtle math-
ematics of HD spaces. It relates partly to the linear algebra
and probabilities of artificial neural nets, and partly to
the abstract algebra and geometry of HD spaces. Groups,
rings, and fields over HD vectors become the underly-
ing computing structures, with permutations, mappings,
and inverses as primitive computing operations, and with
randomness programmatically inscribed in the way new
objects and entities are labeled. However, its performance
depends on good design—instead of automated training—
of a network architecture that consists entirely of the HD
primitive operations [11]–[13].

In this paper, we first focus on the key properties of HD
computing resulting from the application of a well-defined
set of arithmetic operations on HD vectors. Key prop-
erties that are examined include: generality, scalability,
analyzability, one-shot learning, energy efficiency, natural
performance without domain expert knowledge and less
preprocessing [5], [14]–[19]. These leading properties
take HD computing beyond the typical text and language
applications [20]–[26], and make it a prime candidate for
a new category of applications: integrated learning-based
wearable/implantable devices, for which biosignal train-
ing data sets are small, individual variability is signifi-
cant, privacy, latency, and energy efficiency demands are
tight [27]–[30].

More specifically, we design a full set of HD net-
work templates to ease constructing an efficient and
complete representational architecture for handling both
learning and classification tasks in the domain of

personalized devices. The proposed templates collectively
handle various types of biosignals including electromyo-
graphy (EMG), electroencephalography (EEG), and elec-
trocorticography (ECoG)—collectively referred to as ExG.
As concrete examples, we target multiclass learning and
inference in 1) EMG-based hand gesture recognition for
human–machine interfaces; 2) EEG-based brain–computer
interfaces; and 3) ECoG-based seizure detection. Our net-
work templates encode body potentials or brain neural
activity recorded from various electrodes into a single HD
vector capturing the temporal and spatial features of the
signals, without requiring any ad hoc electrode selection
process or domain expert knowledge. The encoded HD
vector is used for fast learning and robust classification;
besides, it can be exploited to identify the most useful
features. Remarkably, the network templates are designed
purely based on the native HD operations without involv-
ing any biologically implausible or inefficient optimization
algorithm such as gradient descent and backpropagation.
Such simplicity of networks enables efficient implemen-
tation of both learning and classification tasks with fully
binary operations leading to significant energy saving,
e.g., [16].

Further, HD learning follows the “one-shot” approach,
that is object categories are learned from one or few
examples and only in a single pass (i.e., one epoch) over
the training data. We demonstrate the benefits of HD com-
puting by comparing it with the state-of-the-art machine
learning methods for biosignal processing including sup-
port vector machines (SVMs) [31]–[33], Gaussian classi-
fiers [34], feedforward multilayer perceptron (MLP) [33],
and convolutional neural networks (CNNs) [35]. Com-
pared to the state-of-the-art counterparts, our experi-
mental results show that HD computing enables online,
incremental, and fast learning as it demands less than
a third as much training data and preprocessing. While
this paper focuses on EMG, EEG, and ECoG signals, other
streaming multidimensional sensor data such as electro-
cardiography (ECG), speech, or smell could equally be
applicable [36]–[38].

This paper is organized as follows. In Section II,
we introduce HD computing (with concise description in
the Appendix). In Section III, we discuss key properties of
HD computing for designing efficient biosignal processing
architectures. In Section IV, we present our main contri-
butions by proposing a full set of HD network templates
to efficiently learn and classify various types of biosignals.
Our experimental results are described in Section V fol-
lowed by discussion in Section VI. Section VII concludes
the paper.

II. B A C KG ROUND I N HD COMPUT I NG

This section provides a background in HD computing.
The brain’s circuits are massive in terms of numbers
of neurons and synapses, suggesting that large circuits
are fundamental to the brain’s function. HD computing
explores this idea by looking at computing with HD vectors

124 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019



Rahimi et al.: Efficient Biosignal Processing Using Hyperdimensional Computing

as ultrawide words. It is rooted in the observation that
key aspects of human memory, perception, and cognition
can be explained by the mathematical properties of HD
spaces, and that a powerful system of computing can
be built on the rich algebra of HD vectors. The differ-
ence between traditional computing and HD computing is
apparent in the elements that we compute with. In tra-
ditional computing, the elements are Booleans, numbers,
and memory pointers, whereas in HD computing they are
HD vectors. HD vectors are d-dimensional (the number
of dimensions is in the thousands) and (pseudo)random
with independent and identically distributed (i.i.d.) com-
ponents. They thus conform to a holographic or holis-
tic representation: the encoded information is distributed
equally over all the d components such that no component
is more responsible to store any piece of information than
another. Such representation maximizes robustness for the
most efficient use of redundancy [8]. Other examples of
such computing structures include holographic reduced
representations [39], semantic pointer architecture [40],
binary spatter codes [21], multiply–add–permute (MAP)
coding [41], random indexing [20], and vector symbolic
architectures (VSAs) [11], with a quick summary in [5].

The number of different, nearly orthogonal HD vectors
is very large when the dimensionality is in the thou-
sands [8], [9]. Two such HD vectors can now be com-
bined into a new HD vector using simple vector-space
operations, while preserving the information of the com-
posing HD vectors with high probability. Computing with
HD vectors begins with selecting a set of random HD
vectors to represent basic objects. These HD vectors are
also thought of as random labels. For example, in a lan-
guage recognition application [23], [24], the letters of
the alphabet as the inputs can be the basic objects, and
they are assigned to random labels. In the same vein,
in a biosignal processing application, each input electrode
is assigned to a random label, independently of all the
other labels. They serve as seed HD vectors, and they are
used to make representations for more complex objects.
To generate seed HD vectors, we use bipolar dense codes
of equally probable +1s and −1s, i.e., {−1,+1}d where
d = 10 000; this dimensionality works particularly well for
our applications, but it is essentially a hyperparameter that
can be tuned [42]. In the following, we describe similarity
measure and arithmetic operations using this code.

A. Similarity Measurement of HD Vectors

An essential operation in HD computing is the computa-
tion of the distance (or similarity) between two HD vectors.
For dense bipolar HD vectors,1 we use cosine similarity as
the distance metric between two HD vectors by measuring
the cosine of the angle between them using a dot product.
It is defined as cos(A, B) = |A′ ∗ B′|, where A′ and B′

are the length-normalized vectors of A and B, respectively,

1In this paper, we use only capitalized italic letters to indicate HD
vectors; they may also appear with a subscript.

and |C| denotes the sum of the elements in C. It is thus a
measure of orientation and not magnitude: two HD vectors
with the same orientation have a cosine similarity of 1,
two orthogonal HD vectors have a similarity of 0, and
two HD vectors diametrically opposed have a similarity
of −1.

B. Arithmetic Operations on HD Vectors

HD computing builds upon a well-defined set of
arithmetic operations with random HD vectors. These
arithmetic operations are used for encoding and decod-
ing patterns. The power and versatility of the arithmetic
derives from the fact that the basic operations, namely
addition and multiplication, form an algebraic structure
resembling a field, to which permutations give further
expressive power.

We use a variant of the MAP coding described in [41].
The MAP operations on HD vectors are defined as follows.
Pointwise multiplication of two HD vectors A and B is
denoted by A ∗ B, and pointwise addition is denoted by
A+B. Multiplication2 takes two vectors and yields a third,
A ∗ B, that is dissimilar (approximately orthogonal) to
the two and is suited for variable binding; and addition,
or bundling, takes several vectors and yields vector [A +

B + ...+X] that is maximally similar to them and is suited
for representing sets. The brackets [· · · ] mean that the
sum vector is normalized to {+1,−1}d based on the sign,
with ties broken at random. Finally, the third operation is
permutation, ρ, that rotates the coordinates of HD vector.
A simple way to implement this is as a cyclic right shift
by one position. All these operations have a complexity of
O(d) and produce a d-dimensional vector.

The usefulness of HD computing comes from the nature
of the operations. Specifically, addition produces a vec-
tor that is similar to the argument vectors—the inputs—
whereas multiplication and random permutation produce
a dissimilar vector; multiplication and permutation are
invertible, addition is approximately invertible; multipli-
cation distributes over addition; permutation distributes
over both multiplication and addition; multiplication and
permutation preserve similarity, meaning that two similar
vectors are mapped to equally similar vectors elsewhere in
the space.

Operations on HD vectors can produce results that are
approximate or “noisy” and need to be associated with the
“exact” vectors. For that, a list of known (noise-free) seed
HD vectors is maintained in a so-called “item” or “clean-
up” memory. When presented with a noisy HD vector, the
item memory (IM) outputs the HD vector that is most
similar or closest. Making this work reliably requires high
dimensionality. With 10 000-b HD vectors, 1/3 of the bits
can be flipped at random and the resulting HD vector can
still be identified with the originally stored one with very
high probability.

2By default, we refer to the pointwise multiplication (∗) unless
otherwise mentioned.
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The operations make it possible to encode and manip-
ulate sets, sequences, and lists—in essence, any data
structure. A data record consists of a set of fields
(keys, variables, or attributes) and their values (fillers).
A data record consisting of fields x, y, z with values a, b, c

can be encoded into an HD vector H as follows. First,
random seed HD vectors are chosen for the fields and the
values (X, Y, Z, A,B, C), and are stored in the IM. We then
encode the record by binding the fields to their values
with multiplication and by adding together the bound
pairs

H = [(X ∗ A) + (Y ∗ B) + (Z ∗ C)].

This resulting representation is holographic because the
fields are superposed over each other—there are no spa-
tially identifiable fields. Importantly, the value of x can be
extracted from this holographic representation by multi-
plying H with the inverse of X, which for ∗ is X itself:
A′ = X ∗ H . The resulting HD vector A′ is given to
the IM which returns A as the most similar stored HD
vector. An analysis of this example would show how the
properties of addition and multiplication come to play (see
also the Appendix). A thing to note about the operations is
that addition and multiplication approximate an algebraic
structure called a field, to which permutation gives further
expressive power.

The permutation is a reversible mapping that gener-
ates a dissimilar quasi-orthogonal HD vector of its input.
In geometry sense, the permutation rotates the HD vector
in the space. The rotated HD vector is uncorrelated with
all the other HD vectors. The permutation can be used
to encode a sequence of items, e.g., a sequence of three
letters abc called a trigram. We make a trigram HD vector
by permuting the first letter vector twice, the second letter
vector once, and use the third letter vector as is, and
then by multiplying the three HD vectors component by
component as

ρ(ρA ∗ B) ∗ C = ρρA ∗ ρB ∗ C.

This efficiently distinguishes the sequence abc from, e.g.,
acb or any other trigram that may share letters or differ
only in letter order.

HD computing has been described above in terms
of dense bipolar HD vectors. The representational sys-
tem is closed under the aforementioned MAP operations.
Throughout this paper, we refer to this representational
bipolar space and the related MAP operations unless
otherwise stated. Note that HD computing supports one
more operation that is rarely used: scalar multiplication
(weighting). The scalar multiplication of an HD vector A

with a scalar value v is denoted by v · A. This results
in the scaled version of A since every component of
the HD vector is multiplied with the same scalar value.
If the scalar value belongs to real numbers, the result of
scalar multiplication is in real space as well, and is often

combined with addition. Sections IV-A3 and IV-B4 use the
scalar multiplication operation.

III. K E Y P RO P E RT I E S O F HD
COMPU T I NG F OR E F F I C I E N T
B I O S I GN A L P ROC E S S I N G

In this section, we first present some compelling applica-
tions of biosignal processing and describe their challenges.
We then highlight how key properties of HD computing can
respond to these challenges.

To focus the discussion, this paper considers three types
of biosignals: 1) EMG signals as recording of the electrical
activity produced by the skeletal muscles; 2) EEG signals
as recording of the electrical activity of the brain from
the scalp; and 3) ECoG, or intracranial EEG (iEEG), as a
type of recording that uses electrodes placed directly on
the exposed surface of the brain. EMG is widely used in
various directions to create a human–machine interface at
the neuromuscular level [43]. We specifically target the
processing task of the neuromuscular EMG signals; one
possible outcome is the recognition of gestures that can
serve as the primary commands to control a prosthetic
arm [44], [45]. In contrast, brain–computer interfaces
based on EEG signals aim to provide a communication and
control channel between the human brain and external
devices. We focus on two types of brain activity mea-
sured by the noninvasive EEG signals to recognize a user’s
intentions: error-related potentials and motor imagery.
When a user recognizes an error during monitoring of
an external agent, an error-related potential (ERP) can
be measured in the EEG signal; recognition of the ERP
can be utilized to correct and improve the behavior of
the external agent [34], [46], [47]. Alternatively, in motor
imagery (MI) brain–computer interface, a user is asked
to imagine movements of different parts of the body that
arises the brain activity of the motor cortical areas; this MI
recording can be decoded to recognize the desired move-
ment commands [30], [32], [48], [49]. Finally, we focus
on a seizure detection task based on ECoG signals for
patients with drug-resistant epilepsy [50].

Processing and classification of these biosignals pose
a number of challenges including the following. Operat-
ing with a variety of biosignal acquisitions ranging from
a pair of differential EMG electrodes in time-domain
to complex acquisitions with more EEG electrodes in
frequency-domain demands a versatile learning and infer-
ence (classification) method. Further, these biosignals
are noisy and nonstationary—especially the brain signals
change over time—with large individual variability among
subjects that demand continuous recalibration and person-
alized (subject-specific) learning. Such personalized learn-
ing should be effective with small training data, and for
on-chip operation with limited amount of resources and
energy. The on-chip learning reduces privacy and security
risks by limiting the attack surface to only the personalized
device, rather than device, gateway, and cloud, which
is aligned with the concept of federated learning [28]

126 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019



Rahimi et al.: Efficient Biosignal Processing Using Hyperdimensional Computing

Table 1 Overview of Various Biosignal Processing Applications and Their Related HD Computing Architecture

based on the principle of focused collection or data min-
imization [29]. At the same time, the learning should be
interpretable with the goal to understand the underlying
features related to the classification task [51]. In the fol-
lowing, we describe how HD computing can address these
challenges.

A. Scalable Computational Paradigm With
Versatile Arithmetic Operations

HD computing offers a simple and complete compu-
tational paradigm based on learning, and builds upon a
well-defined and versatile set of operations with random
HD vectors. The MAP arithmetic operations can encode
and decode patterns in a huge quasi-orthogonal hyper-
space [41]. The encoding/decoding is scalable and ver-
satile. HD computing has been initially used to operate
with a single streaming input of characters to encode
texts [23], [24]; we have extended the encoder to oper-
ate with simultaneous analog biosignal inputs [14]–[17],
[19]. The encoder flexibly operates with various types
of ExG biosignal acquisitions, and simply scales with
different numbers of electrodes (see Table 1): ranging
from 36 to 100 ECoG electrodes with the highest signal-
to-noise ratio (SNR) [19], to EMG signals with relatively
lower SNR using few patch electrodes [14] or denser
flexible electrode array [15], and finally to 16–64 EEG
electrodes with the lowest SNR [17]. Execution of HD
computing on an 8-core parallel ultralow-power (PULP)
accelerator shows that the EMG encoder can scale to
process up to 256 electrodes while meeting the 10-ms clas-
sification constraint for real-time EMG tasks [16]. Besides
versatile classification, which finds associations of a new
item with a set of known items associated with a label, the
arithmetic operations can be used for query processing as
well, which answers desired questions about a particular
stored item [22].

B. Learning Transparent Codes With Interpretable
Features

Thanks to the well-defined set of arithmetic opera-
tions with inverses, HD computing produces transparent
(i.e., analyzable) codes with interpretable features. For
example, in the typical application of EEG ERP, a domain
expert carefully determines a subset of relevant electrodes
(e.g., two electrodes out of 64), depending upon the
subject; this subset of selected electrodes is used for subse-
quent classification [34]. At first, HD computing does not

require such domain expert knowledge for the electrode
selection process, and hence operates naturally with all
the 64 electrodes at negligible loss of accuracy. Besides,
the learned HD vectors can be analyzed to identify what
electrodes provide meaningful data for the classification.
It has been shown that instead of asking for the domain
expert knowledge, HD computing can identify the same
subset of electrodes as relevant by measuring the relative
distances between the learned prototype HD vectors [18].
Producing such transparent codes also enables verification
of the learned model [52], and is in sharp contrast to blind
application of conventional learning methods that produce
a “black box.”

C. Learning Is One Shot, Fast, and
Computationally Balanced With Respect
to Classification

In contrast to other neuro-inspired approaches in which
learning is computationally much more demanding than
subsequent classification, learning in HD computing is
based on the same algorithms as classification. The learn-
ing algorithm works in “one shot,” namely, object cate-
gories are learned from one or few examples, by using
only a portion of training data, in a single pass without
impacting the classification accuracy. For instance, state-of-
the-art SVM [31] for the EMG classification task reaches to
97.8% accuracy by using the full set of training data, while
the HD algorithm achieves the same level of accuracy by
using only 1/3 of the training data in one pass [14]. Using
a larger number of 64 EMG electrodes, HD computing
demonstrates one-shot learning—in the true sense of the
word—by training from a single gesture per class [15].
We also observe that HD computing quickly learns from
one or two seizures and perfectly detects unseen seizures
for the majority of patients (ten out of 16) [19]. Sim-
ilar benefit is observed for the EEG ERP classification
task [17], [18]: the HD algorithm learns ≈ 3× faster by
using only 34% of training trials while maintaining an
average accuracy of 70.5%, which is higher than the state-
of-the-art classifier using the full set of training trials.

In addition, since the same algorithm is used for learning
and classification, the architecture is ideal for online and
continuous learning. The new examples can be learned
by incrementally updating the associative memory (AM)
described in Section IV-C. This enables the fast learning to
be executed in a real-time online fashion, and the classifier
can be updated (i.e., partially retrained) with new samples
to address the nonstationary nature of biosignals.
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D. Less Preprocessing

Most preprocessing of the electrode signal can be elimi-
nated in HD computing as it can operate with noisy inputs;
it is also robust to electrodes that do not carry meaningful
information. In the EMG-based gesture recognition task,
HD computing can maintain its accuracy when the four
patch electrodes are replaced by 64 flexible noisier elec-
trodes with a lower SNR [15]. Similarly, HD computing
can continue its natural operation with all 64 electrodes
and less preprocessing by removing a common average
reference (CAR) filter [53] from EEG signals that results in
only a slight loss of accuracy (from 74.5% to 71.7%) [17].
Overall, we have observed that HD computing is a nice fit
for fast and one-shot learning and classification of noisy
ExG signals with minimal information about the task:
e.g., in the absence of domain expert knowledge, and by
training with much less data and preprocessing.

E. Energy Efficiency

At its very core, HD computing is about manipulating
and comparing large patterns within the memory itself.
The MAP operations allow a high degree of parallelism
by needing to communicate with only a local component
or its immediate neighbors. Distance computation can be
performed in a distributed fashion; it is the only operator
proportional to vector dimension. An architecture based on
HD computing can be seen as an extremely wide dataflow
processor with small instruction set of bit-level operations.
Further, logic can be tightly integrated with the memory
and all computations are fully distributed that can save
energy [6], [7]. This forms a fundamental departure from
the traditional von Neumann architectures where data
have to be transported to the processing unit and back,
creating the infamous memory wall.

Further, simplicity of HD computing is another impor-
tant factor for energy efficiency. HD computing requires
far fewer operations than other approaches such as SVMs,
CNNs, k-nearest neighbors (KNNs), and MLP for the same
functionality [14], [16], [19], [24]. For instance, in the
EMG classification task, we use the SVM with fixed-point
operations, instead of floating point, that leads to best
performance preserving the accuracy [54]. HD computing
achieves the same level of accuracy as the SVM on a
commercial embedded ARM Cortex M4 using only 1/2 as
much power [16]. This is due to the fact that HD comput-
ing mostly uses basic bitwise operations. This simplicity
allows scalable execution on the embedded 8-core PULP
accelerator with bitmanipulation instruction extensions
that achieves 10× higher energy efficiency than the ARM
Cortex M4 [16].

The same is true about memory accesses. This compen-
sates for the very wide words used in HD computing. The
memory requirement for HD computing scales linearly:
e.g., in the language recognition task, by moving from a
trigram (n = 3) to pentagram (n = 5), HD computing
requires two more extra HD vectors whereas the memory

required by the baseline KNN grows exponentially with n.
Using pentagrams of letters, the baseline requires 500×
larger memory than HD [24], or some hashing-based
algorithm to manage the memory, yet requiring more of
it than the HD-based approach. As another example, in the
seizure detection task, the MLP demands 5×–13× larger
memory than HD computing to store its weights, even
if we optimistically assume that all its weights could be
quantized to one bit [19]. In the following, we describe
two more properties of HD computing that can further
improve energy efficiency.

1) Robustness under low SNR. By its very nature,
HD computing is extremely robust in the presence
of failures, defects, variations, and noise of comput-
ing fabrics, all of which are synonymous to ultralow
energy computation. It has been shown that HD com-
puting degrades very gracefully in the presence of
temporary and permanent faults compared to a base-
line KNN classifier for the language recognition task:
by injecting the intermittent hardware-induced errors
in both classifiers, HD computing tolerates 8.8× higher
probability of failure per individual memory cells [24];
considering the permanent hard errors, HD comput-
ing tolerates 60× higher probability of failures [7].
The robust operation under low SNR conditions and
high variability perfectly matches with emerging nan-
otechnologies promising to deliver substantial energy
savings [5]–[7].

Such robustness of HD computing is achieved by its
inspiration from brain’s circuits: (pseudo)randomness,
hyperdimensionality, and fully distributed holographic
representation. Symbols represented with HD vectors
begin with i.i.d. components and when combined with
the MAP operations, the composite HD vectors also
appear as identically distributed random vectors, and
the independence of the individual components is
mostly preserved. Specifically, the pointwise multipli-
cation and addition are i.i.d. preserving; when the
permutation is combined with the multiplications to
encode n-grams, we end up with vectors whose com-
ponents are identically distributed and nearly inde-
pendent. This means that a failure in a component of
HD vectors is not “contagious.” At the same time, fail-
ures in a subset of components are compensated for by
the holographic nature of the data representation, i.e.,
the error-free components can still provide a useful
representation that is similar enough to the original
HD vector. This inherent robustness also eliminates
the need for asymmetric error protection in memory
units. This type of robustness is absolutely unique, and
enables both aggressive scaling of device dimensions
and integration complexity as well as SNR levels.

2) Sparsity in time and space. Biologically plausible
sparsity [55] is essential to the efficiency of the fully
distributed computational paradigms offered by HD
computing [56]–[60]. At any point only a fraction of
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Fig. 1. How properties of HD computing lead to ultralow-energy

computing.

the memory/logic fabric should be active leading to a
“mostly dark operational” model. However, it requires
both representations that are intrinsically sparse and
new operations that preserve them along with asyn-
chronous execution. For instance, a sparse binary
representation—where the number of ones is signifi-
cantly less than zeros—along with a componentwise
context-dependent thinning operation can lower the
switching activity and hence power consumption [59].
This is applied to various pattern recognition tasks
including the EMG classification with detail discus-
sions about choice of density, operations, and capacity
in [59].

Overall, Fig. 1 provides a perspective on the afore-
mentioned attributes of HD computing responsible for
ultralow-energy computation. The equation for total
energy consumption (E) consists of two major compo-
nents, the dynamic and the static dissipations, where P

is total power, f is frequency, α is switching activity,
Ctot is total load and short-circuit capacitances, Vswing

is voltage swing, VDD is supply voltage, Istatic is static
and leakage current, and T is time period. Fig. 1 illus-
trates how these various terms of power consumption
are impacted by the properties of HD computing. For
instance, sparsity directly lowers the switching activity
factor α of dynamic power. Targeting VDD, robustness
of HD computing perfectly copes with the uncertainty
which is the largest hindrances to lower VDD; besides, VDD

can be further lowered by slowing down the execution
enabled by the massively parallel HD operations. These
properties in combination can significantly reduce energy
consumption.

IV. H D N E TWORK T EMP L AT E S F OR
COMB I N ED L E A RN I NG AND
C L A S S I F I CAT I ON O F B I O S I GN A L S

In this section, we present the main contributions of
the paper. Note that HD computing offers a simple and
complete computational paradigm that is easy to work
with at the level of HD vector representation and related

mathematical operations. Nevertheless, it is relatively
harder to work at the level of complete representational
architectures as mentioned by Gayler in his inspiring paper
[11, p. 6]: “Typical connectionist architectures rely on
training procedures to achieve their effectiveness. How-
ever, VSAs [Vector Symbolic Architectures, or HD com-
puting architectures] provide no opportunity for training
to substitute for architectural effectiveness. That is, good
performance depends on good design rather than auto-
mated training, and this is a harder research task.” To
address this issue for biosignal processing, we design a
full set of efficient network templates based on HD com-
puting. These few HD network templates ease construct-
ing a complete representational architecture by providing
predefined options that can be configured to meet spe-
cific goals. Each HD network template generates HD vec-
tors for different types of inputs—including time-domain
or frequency-domain ExG—and chooses how to combine
these symbolic level HD vectors to create more com-
plex representations. More importantly, the templates are
purely constructed based on the native operations of HD
computing, and do not require any inefficient or bio-
logically implausible algorithm, such as backpropagation
for optimizations and weight tuning. This enables effi-
cient implementation of the constructed architecture—to
perform combined learning and classification tasks—with
fully binary operations.

Fig. 2 illustrates a universal HD architecture, for solving
supervised classification tasks, that is uniformly composed
of three main modules: mapping, encoding, and AM. For
each of these modules, we design the network templates
providing predefined options and attributes for a variety of
purposes. The three modules can be then configured and
cascaded to essentially build an HD data flow processor.
The mapping module first maps the input biosignals from
the original representation to the HD vectors where they
can be manipulated by means of the versatile arithmetic
operations reside in the encoder module. The output of
the encoder is another HD vector that encloses our event of
interest for learning/classification in the HD space. Finally,
the AM module turns the output of the encoder to a
prototype HD vector representing a given class. During
training, the AM stores and updates a set of prototype HD
vectors; it finds the closest one to the output of the encoder
during testing. Following is a detailed description of the
three modules.

Fig. 2. A universal HD architecture for combined learning and

classification that is composed of: mapping, encoding, and AM.

Proposed HD network templates are shown in Fig. 4 for mapping and

encoding, and in Fig. 5 for AM.
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Fig. 3. Comparison between cosine similarity matrices of mapped

items using: 1) orthogonal mapping of four electrode names via the

IM, in the left; and 2) continuous mapping of quantized electrode

signals with m � 21 levels via the CIM, in the right.

A. Mapping to HD Space

The fist step is to map raw inputs or features from the
original representation to the HD representation space.
The HD representation is typically produced through a
mapping also known as projection. In the following,
we present three projection options that can be chosen
based on the type of inputs or features; we later discuss
about other options, including learning a projection in
Section VI.

1) Orthogonal Mapping: When an input can be
described by a finite alphabet of independent symbols, its
mapping to the HD vectors is simple. This can be done
by a class of data-analysis methods that is referred to as
symbolization [61]. Symbolization describes the process
of transforming raw experimental measurements into a
series of discrete symbols. Each symbol can be simply
assigned to a unique HD vector that is chosen randomly.
We can maintain all these HD vectors in the IM. The IM
here acts as a symbol table or dictionary of all the HD
vectors defined in the system. For instance, in the European
language recognition task [23], [24], the discrete inputs
(the 26 letters of the alphabet and the space) are the
initial items, and they are assigned to random HD vectors
with i.i.d. components. On the other hand, in a biosignal
processing task, the electrodes with unique names are
the primary inputs, e.g., four electrodes in the EMG task
namely “e1,” “e2,” “e3,” and “e4.” Since the name of every
electrode is a unique string, it can be easily mapped to an
HD vector using the IM with four entries. The IM, shown
in Fig. 3, represents the four basic electrodes by assigning
a unique quasi-orthogonal HD vector to every electrode:
E1 ⊥ E2 ⊥ E3 ⊥ E4. They stay fixed throughout the
computation, and they serve as seeds from which further
representations are made.

As another alternative, projection to the binary HD
vectors can be implemented by means of a cellular automa-
ton [62], [63]. The input features in the original repre-
sentation can be first binarized and then passed through

several steps of computation with a cellular automaton.
A cellular automaton consists of a regular grid of cells
each in one of the binary states. Every cell evolves in time
according to a fixed rule with a chaotic behavior that can
produce a sequence of (pseudo)random HD vectors. The
state of a cell on the next computational step depends
solely on its current state and the states of its neighbors.
After several steps of computation, the time-space state
of cellular automaton is the projection to HD space as
described in [64].

One other option is to exploit the random process
variations that are naturally present in any deeply scaled
and low voltage nanotechnology process [6], [7], [38].
The application of the use of process variations in HD
mapping is reported in [38], where groups of random-
ized delay lines are used to perform random indexing.
Another approach is to make use of linear feedback shift
registers (LFSRs) to produce sequences of random seeds
with pseudo-i.i.d. behavior. One caveat is that a generated
seed may be close to the permuted version of the previous
seed (see Section II-B for the realization of permutation
operation), as both rely on single bit shifts. We therefore
need to use a second permutation that interferes minimally
with circular shift.

2) Continuous Mapping That Preserves Similarity: The
aforementioned orthogonal mapping is well matched to
the output of symbolization, or to the input data and
features in the form of discrete symbolic primitives (letters
or words) that can be readily mapped to the HD vectors.
However, in the biosignal processing applications, each
electrode produces an analog time-varying signal where
the signal level has an amplitude in real values. Hence,
we decouple mapping of the name and the signal level of
an electrode. The latter one demands a different mapping
method to the HD space to preserve “similarity” between a
range of real values in the original representation to their
corresponding mapped HD vectors.

For this method of mapping, we limit our case to signal
levels that are first quantized using a quantization step
with a fixed number of levels (m). Accordingly, we have
extended the notion of IM to a continuous item mem-
ory (CIM) that can map a range of quantized signal
levels [14]. The CIM utilizes a method [65] of mapping
quantities “continuously” to the HD vectors that is simpler
than the method in [36]. In this continuous vector space,
two orthogonal endpoint HD vectors are generated for the
minimum and maximum levels in the range. HD vectors
for intermediate levels are then generated by linear inter-
polation between these two endpoints so that the cosine
similarity of HD vectors corresponds to the closeness of
levels.

For example, the quantization with 21 levels (m = 21)

is suitable for electrodes with an amplitude of 0–20 mV in
the EMG-based hand gesture recognition task. We choose
a random HD vector for the minimum level (Vmin) and
randomly flip d/2/(m − 1) of its bits for each successively
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higher level (once flipped, a bit will not be flipped back).
The HD vectors for the minimum and maximum levels
will then be d/2 bits apart or orthogonal to each other,
i.e., Vmin ⊥ Vmax. These HD vectors are stored in the CIM
for reuse. Fig. 3 (right) illustrates the cosine similarity
between each pair of HD vectors in the CIM. As shown,
by this mapping a linearly decreasing similarity is pre-
served between the HD vectors from Vmin to Vmax; however,
it could be nonlinear based on the nature of input data or
features as described in [59].

3) Mapping With Scalar Multiplication (Weighting): For
those real-valued features that is not clear how the quan-
tization should be done, we can use a method of map-
ping with weighting. The mapping with weighting directly
projects a real-valued feature, with full range, to the HD
space; this projection results in an HD vector whose com-
ponents are real values. The projection can be done by a
pair of IM and the scalar multiplication (·) as the basic
operation in the linear algebra described in Section II-B.
The IM first assigns a random bipolar HD vector to the
entity of a feature (F1). Then, by means of scalar multi-
plication F1 is multiplied by the scalar real value of the
feature (v) that produces a real valued HD vector: v · F1.
This scalar multiplication, or weighting, scales the initially
assigned HD vector by modulating magnitude of the vector
components without changing its direction.

Although the method of mapping with weighting is
simple, normalized, and seamlessly operational with any
range of features, it requires energy-hungry floating-point
operations and storage. Hence, this style of operation
should be avoided as much as possible. During the early
design phase, we can initially use this mapping option
when we have no information about how the quantization
and mapping should be performed. Next, we can replace
it by a CIM that is able to reflect well the real-valued
features in the HD space; the CIM can be evaluated by
different techniques that linearly or nonlinearly change
the similarity between the mapped bipolar HD vectors.
By providing an example in Section V-D1, we show the
tradeoff between these two methods of mapping.

B. Encoding

After projection to the HD space, further progressive
representations should be formulated to encode the event
of interest for learning and classification. The events of
interest in biosignals processing, e.g., the hand gestures
or the mental commands, have typically spatial and tem-
poral components to be captured. Following is a detailed
description of such encoding options that can be chosen as
appropriate.

1) Spatial Encoder: As we described in Section IV-A,
an electrode maps its name to an HD vector (e.g., E1)
via the IM; it separately maps its signal level at a time
point t to V 1t via the CIM. This mapping is illustrated in
Fig. 4(a). The purpose of a spatial encoder is to combine

these mapped HD vectors across all the electrodes at a
given time-aligned sample (t), and represent them in a
single HD vector. To do so, we draw an analogy from [22]
to generate a holistic HD vector representing data from
all the electrodes by using a set of field–value pair. The
electrode name corresponds to a field of a traditional data
record, and its signal level corresponds to the value for the
field. As shown in Section II-B, the field and the value can
be bound by the multiplication operation. With this, for
example for the first electrode, we can jointly project its
name and its signal value to a bipolar bound HD vector:
E1 ∗ V 1t. To complete the holistic record, we bundle (via
the addition) all such bound HD vectors to construct a
single spatial HD vector as shown in Fig. 4(a):

St = [(E1 ∗ V 1t) + (E2 ∗ V 2t) + (E3 ∗ V 3t) + (E4 ∗ V 4t)].

The aforementioned spatial encoder outputs a bipolar
HD vector, and works well when the number of electrodes
is odd. However, when the number of electrodes is even
(as well as small), pointwise addition of the bipolar HD
vectors may produce 0s, so we end up with a ternary
system unless we break the ties. The ties should be broken
randomly and reproducibly. It can be done for example
by adding an additional random HD vector to the record;
however, it makes the encoder noncausal: two equal sets of
input data in the original space become slightly dissimilar
in the projected HD space [63]. Alternatively, using a con-
stant HD vector would lead to all output HD vectors being
slightly similar to each other even if they are supposed to
be orthogonal. To address this issue, instead of choosing
a random/constant HD vector, we compute an augmented
HD vector [63] that is reproducible with the same set of
input data, e.g., by further binding two already bound HD
vectors: (E1 ∗ V 1t) ∗ (E2 ∗ V 2t). We add this augmented
HD vector to the record, for example

St = [(E1 ∗ V 1t) + (E2 ∗ V 2t) + (E3 ∗ V 3t) + (E4 ∗ V 4t)

+ ((E1 ∗ V 1t) ∗ (E2 ∗ V 2t))].

2) Temporal Encoder: The spatial encoder captures a
vertical slicing of signals among all the electrodes at a
given time. However, the events of interest for learning
and classification have time-dependent components, e.g.,
a series of samples over time. We can temporally encode a
sequence of symbols by using the permutation operation ρ.
As described in Section II-B, the permutation can encode
a sequence of n letters to form an n-gram HD vector.
By analogy, a sequence of three spatial HD vectors with
consecutive time stamps (St−2, St−1, and St) is encoded
as follows: the first HD vector St−2 is permuted twice
ρ2St−2, the second HD vector St−1 is permuted once ρSt−1,
and finally there is no permutation for the last HD vector
St. These three new HD vectors are then combined with
the pointwise multiplication into a trigram HD vector:
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Fig. 4. HD network templates to encode time-domain (a) EMG, (b) ERP EEG, and (c) ECoG signals: 1) preprocessing or symbolization in the

original representation space; 2) mapping to the HD space; and 3) spatial �S�, temporal �T �, and histogram �H� encoders. HD network

template to encode frequency-domain features for the (d) MI EEG task: 1) preprocessing and feature extraction in frequency domain of

original representation; 2) mapping selected features to the HD space with weighting methods; and 3) spatial encoder. The output of

encoding �Q� is used in the AM (Fig. 5) for learning and inference. (a) Template for the EMG task. (b) Template for the ERP EEG task. (c)

Template for the ECoG task. (d) Template for the MI EEG task.

T = ρ2St−2 ∗ρSt−1 ∗St. For n-grams at large, this becomes

T =

n−1�

i=0

ρiSt−i.

Fig. 4(a) shows the temporal encoder that computes the
n-gram recursively where a single sample delay is denoted
by z−1. This eases the implementation of the temporal
encoder by using the distributivity of the permutation over
the multiplication as described in Section II-B. The tempo-
ral encoder is applied in cascade after the spatial encoder.
Hence, HD vector T is the output of spatial–temporal
encoding for representing the EMG hand gestures. T can
be seen as the outcome of encoding module for the AM
(referring to Fig. 2).

With the temporal encoding, one important step is to
determine the proper size of an n-gram to be able to
capture the entire event of interest. It has been done by
downsampling the signal and statistically measuring the
number of downsamples available in a hand gesture, or in

a mental command. For instance, the EMG hand gestures
can be represented by n-grams where n ∈ {3, 4, 5} [14]
whereas the ERP EEG decoding requires larger n-gram
sizes where n ∈ {16, . . . , 29}. With this larger n-gram size,
we choose to change the order of encoders for the ERP
EEG task as shown in Fig. 4(b): first doing the temporal
encoding of every electrode, and then doing the addition
to compute the spatial HD vector (S) as the output of
encoding. First doing the temporal encoding allows us to
analyze the n-gram HD vector produced from each elec-
trode to distinguish meaningful electrodes from irrelevant
electrodes in Section V-B3.

3) Spatial Encoder and Histogram Generation: Here,
we describe a version of spatial encoder that is followed
by a histogram generation to reflect the distribution of
symbols over a specific window of time. This encoding is
useful for ECoG signals that are directly transformed to
symbols via symbolization [see Fig. 4(c)]. Symbolization
may be efficiently achieved by mapping a sequence of
ECoG samples into an l-bit code, i.e., a 1-D local binary
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pattern (LBP) [66]. An LBP code reflects the relational
aspects between consecutive values of the ECoG signals,
i.e., whether their amplitudes increase or decrease. Our
symbolization considers six consecutive ECoG samples to
compute a 6-b (l = 6) LBP code, and moves by one sam-
ple [19]. These LBP codes generate 2l different symbols
that are fed into the IM for mapping to the HD space.
The IM assigns a quasi-orthogonal HD vector to every
LBP code (in total, 64 different LBP codes). To combine
these HD vectors across all the electrodes, the encoder
generates a spatial record (S), in which an electrode name
is treated as a field, and its LBP code as the value of
this field. Hence, the IM also maps the name of elec-
trodes to quasi-orthogonal HD vectors E1⊥E2. . .⊥E100,
for a patient with the maximum number of 100 electrodes
[see Fig. 4(c)]. This allows, for example, to bind the name
of the first electrode (E1) to its corresponding LBP code
at time t (C1t). This binding (E1 ∗ C1t) generates a new
set of quasi-orthogonal HD vectors to represent LBP codes
per electrode that effectively reduces the size of IM from
64 × 100 HD vectors to 64 + 100 HD vectors. The spatial
record (S) is then constructed by bundling the bound HD
vectors of all electrodes

St = [E1 ∗ C1t + E2 ∗ C2t + . . . + E100 ∗ C100t].

The HD vector St is computed for every new sample, and
holographically represents the spatial information about
the LBP codes of all electrodes. The next step is to compute
the histogram of LBP codes inside a moving window that
should be wide enough to theoretically permit at least a
single occurrence of all possible LBP codes [67]. Consid-
ering a sampling frequency of 512 Hz, a window of 0.5 s
contains 256 LBP codes that provides a high probability for
every code to occur inside this window because 256 > 2l+1.
The histogram computed from this window can be used as
a signature for seizures: interictal (between seizures) and
ictal (during seizures) states show different distributions
of LBP codes [66], [67]. This shows that the distribution of
LBP codes, not necessarily their sequence, is an important
indicator to distinguish between ictal and interictal state.
To estimate the histogram of LBP codes inside the window,
a multiset of temporally generated St vectors is computed
as

H = [S1 + S2 + . . . + S256].

The bundling is applied in the temporal domain through
accumulation of St vectors t ∈ {1, . . . , 256} that are
produced within the window and then thresholding at half
(i.e., normalization).

4) Spatial Encoder With Weighting: When we are given
a set of extracted features that are not from the time
domain, and collectively capture the entire event of inter-
est, we can use the spatial encoder to combine all of them
into a spatial HD vector. Since these features are often
complicated and mixed (e.g., multiscale), the weighting

method (in Section IV-A3) can be used as an option to map
them. Hence, we propose to construct a spatial encoder
with weighting that is well suited to holistically map a
feature set without quantization. Examples include the
frequency-domain features for the MI EEG task, in which
we extract power spectral density (PSD) for different fre-
quency bands, and finally select nine top features among
all the electrodes as shown in Fig. 4(d).

The mapping requires an IM to assign a unique set
of orthogonal HD vectors to the feature set, i.e., F1 ⊥
F2 . . . ⊥ F9. The extracted features have scalar values,
e.g., v1 for the first feature. To represent this feature in the
HD space, we perform a scalar multiplication between the
value of feature and its corresponding HD vector: v1 · F1.
These scaled HD vectors are added across all the features
to compute the real-valued spatial HD vector

S = v1 · F1 + v2 · F2 + . . . + v9 · F9.

This new spatial encoder computes the pointwise sum
of the feature HD vectors weighted by the scalers. This
encoder is a perfect match to automatically map any
given feature set when there is no scheme for the feature
quantization and mapping. This is done by working with
real instead of bipolar vector components. The cost of this
is so large that it should be used only when necessary
(see Section VI).

C. Associative Memory

In the proposed HD architecture (see Fig. 2), the last
module is the AM that directly operates with the output
of encoding (Q). This output HD vector can come from
any previously proposed encoders, for instance, from the
spatial–temporal encoding [Fig. 4(a)] that makes Q = T ,
likewise from the temporal–spatial encoding [Fig. 4(b)]
and the spatial encoding with weighting [Fig. 4(d)] by
Q = S. The AM completes the supervised learning method
by assigning a label to the output of encoding module.
The method is based on the notion of a class prototype.
The class prototype is an HD vector (P ) representing all
items from the entire class aligned with the notion of
prototypical networks [68].

The AM initially allocates a set of class prototypes whose
number (k) is equal to the number of classes in the
task. As shown in Fig. 5(a), during training, for every
trial, the AM selects a related class prototype HD vector
based on the provided label, and updates it by adding
the HD vector produced from the output of encoding (Q).
For learning from the current training trial with a label
of, e.g., “Label1,” the AM selects the corresponding class
prototype HD vector (P1) and bundles it via the addition
operation to the output of encoding: P1 += Q. This
ensures that a single prototype representation emerges for
each class. Such accumulative updates continue until the
end of training. Simplicity of this update operation enables
incremental learning from different examples during the

Vol. 107, No. 1, January 2019 | PROCEEDINGS OF THE IEEE 133



Rahimi et al.: Efficient Biosignal Processing Using Hyperdimensional Computing

Fig. 5. Two compatible AM architectures. Both support a different

number of classes and two modes of operations: train and test. (a)

AM with multiple prototypes. (b) AM with unified prototype.

course of online functioning. By the end of training, the
AM contains all the class prototype HD vectors—as the
learned distributed patterns—that are organized based on
their labels. The class prototype vectors can be normalized
to {+1,−1}d based on the sign of components. Note the
difference between the AM and the IM: the IM holds seed
HD vectors that are assigned constants and stand for elec-
trodes/letters/signal levels, while the AM holds prototype
HD vectors that are learned and stand for classes.

The same mapping and encoding are used for both
learning (training) and classification (inference, or test-
ing); however, the AM has a train versus test mode. When
testing, we call the output of the encoder a query HD vector
since its class label is unknown. The query HD vector of
the test trial is then sent to the AM to identify its source
class. The AM in the test mode determines the class of
the test trial by comparing its query HD vector to all the

learned prototype HD vectors using the cosine similarity.
The cosine similarity search computes k similarity scores
among which the AM selects the highest one and returns
its associated label as the class that the query HD vector
has been generated from. Efficient solutions are required
to search through a large AM [69]. The initial imple-
mentation of the AM on the PULP accelerator with eight
cores and specialized bitwise instructions shows 10× faster
execution compared to a single core without optimized
bitwise instructions [16].

1) Associative Memory With a Unified Prototype: Fig. 5(b)
illustrates another version of the AM that requires only
one unified prototype HD vector (P ). This AM, instead
of storing the prototype HD vectors separately per class,
computes a single prototype HD vector as a record where
the “fields” are the prototype HD vectors and the values
are their mapped class labels in the HD space. To map the
class labels to the HD space, we pair the AM to the IM that
assigns a set of orthogonal HD vectors to the label set. For
every training trial, its associated label is mapped to an HD
vector (L) which is bound to the output of encoding L ∗Q;
this bound pair is added to the unified prototype HD vector
P += L ∗ Q. During testing, we retrieve the label of test
trial by unbinding the query HD vector from the unified
prototype HD vector L′ = Q ∗P , which results in the noisy
HD vector of label (L′). To do the cleanup, we use the IM
that returns L based on similarity search.

V. E X P E R IM EN TA L R E S U LT S

In this section, we present our experimental results for
the proposed HD network templates developed in Mat-
lab.3 We show how they can be configured to be used in
different biosignal processing applications, compare them
with the state-of-the-art counterparts, and highlight their
benefits. Table 1 gives an overview of these configured HD
network templates—simply referred to as HD classifiers
from here on—and their assigned biosignal processing
tasks. We start from the simple task of multiclass EMG
hand gesture recognition from few time-domain inputs,
and move, step by step, to other tasks with increased
complexity. Next, we consider the EEG ERP binary classifi-
cation task with 64 time-domain inputs. We then consider
the ECoG-based seizure detection task that demands a
universal encoder to operate with different patients having
36–100 electrodes implanted. Finally, we consider two
challenging tasks for the MI EEG: 1) a task of classifying
three classes with frequency-domain features extracted
from 16 electrodes; and 2) a task of four-class classification
from a large number of multiscales features extracted
from 22 electrodes. In the following sections, we describe
each of these tasks in detail and present our findings.
The accuracy term throughout this paper is referred as
macroaveraging test accuracy that computes a simple aver-
age over classes for the test set.

3A collection of projects and codes based on HD computing is
available at:https://github.com/HyperdimensionalComputing/collection
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A. EMG-Based Hand Gesture Recognition

The EMG data acquisition is based on four sensors that
cover the muscles involved in the hand movement from
a physiological point of view. The data set [14] for five
subjects is based on the recording of the EMG signals of
the common hand gestures in a daily life. The selected
gestures are: closed hand, open hand, two-finger pinch,
point index, and rest position, forming five classes. For
every gesture, the recording is composed of ten repe-
titions of the gesture, each with 3 s of the muscular
contraction. Every contraction is followed by 3-s rest
position.

The gestures are sampled at 500 Hz, and for the pre-
processing a low-pass filter extracts the envelope of the
signal, and a notch filter removes the residual power-line
interference. The preprocessed signals from the four elec-
trodes are downsampled by 250. These four preprocessed
and downsampled values are used as the input features.
The SVM, as the state-of-the-art method [31], learns and
classifies with these four time-aligned features. However,
a gesture is spanned over time for 3 s, and generates up
to six sequences of such time-aligned features that makes
a linear growth in the number of features from 4 to 24.
The SVM cannot efficiently classify with this linearly
increased number of features and its accuracy drops sig-
nificantly [14]. On the other hand, the configured HD
classifier for the EMG task, shown in the first row of
Table 1 and Fig. 4(a), can capture the temporal component
of gestures. This is accomplished by the spatial–temporal
encoding that uses an n-gram where n ∈ {3, 4, 5}; the size
of n-gram is set per subject.

Fig. 6 compares the learning curves of HD classifier and
the SVM: plotting the classification versus the number of
training trials. The bars show the average accuracy, and
the errors are the standard deviation across five subjects.
The HD classifier shows an average accuracy of 86.8%
(7% higher than the SVM) when only 10% of the total data
set is used for training. Although the classification accuracy
is improved by increasing the training trials for both of
them, the learning slope of HD is superior to the SVM.
By increasing the training trials to 25%, the HD classifier
reaches to 97.8% which is 8.1% higher than the SVM. After
this learning point, increasing the number of training trials
is not useful for the HD classifier as it has already learned
and is able to generalize very well. However, this is not the
case for the SVM since it requires 3.2× as much training
data (i.e., 80% of total trials) to reach the level of accuracy
as the HD classifier with 25% of trials.

HD classifier shows further advantages using 64 high-
density flexible EMG electrodes [15]: It achieves an aver-
age classification accuracy of 96.64% for five gestures,
with only 7% degradation when training and testing across
different days—a large improvement over degradations of
more than 30% using the SVM. Moreover, HD maintains
this accuracy when trained with only three trials of ges-
tures; it also demonstrates comparable accuracy with the

Fig. 6. Learning curve in the EMG task: the HD classifier learns

�.�× faster than the SVM to reach to the maximum accuracy of

97.8%.

SVM when trained with one trial per gesture—one-shot
learning.

B. Single-Trial Binary Classification of EEG ERPs

We consider a data set of EEG ERPs for six subjects [70].
The subjects are seated in front of a computer screen where
a cursor moves horizontally (to left or right) in order to
reach a target. The subject has no control over the cursor’s
movement and is asked only to observe the performance
of an autonomous agent that controls the cursor, knowing
that the goal is to reach the target. To study the EEG
ERPs generated by observing an erroneous movement of
the cursor, there is a probability of ≈0.20 in every trial for
the cursor to move in the wrong direction (i.e., opposite
to the target location). A trial is labeled as “correct” if the
cursor moves toward the target; otherwise it is labeled as
“error.” Trials have an approximate duration of 2 s. There
are two recording sessions, the first one for training and
the second for testing. Each experimental session consists
of ≈640 trials. Full details of the experimental protocol
are provided in [34]. In the following, we explain their
method for the EEG signal acquisition, preprocessing, and
classification. We refer to it as the baseline for comparing
with our HD classifier.

The EEG signals are recorded at a sampling rate
of 512 Hz using 64 electrodes according to the standard
10/20 international system. For the preprocessing, the sig-
nals are spatially filtered using common average reference
(CAR) [53]. By applying the CAR filter to an electrode,
the average signal level of the entire electrode array is
subtracted from that of the electrode of interest. If the
entire head is covered by equally spaced electrodes and
the potential on the head is generated by point sources, the
CAR results in a spatial voltage distribution with a mean of
zero [71]. We will demonstrate later that this spatial filter
can be eliminated from the preprocessing with negligible
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effect on our classification accuracy as the HD classifier can
work on raw data. Then, a 1–10-Hz band-pass filter (BPF)
is applied to remove the unwanted frequency components.
For every subject, a time window corresponding to the
erroneous and the correct cursor movements is extracted
for further analysis and classification.

As the state of the art, a Gaussian statistical classifier
is used for binary classification of a single trial [34]. The
Gaussian classifier estimates the posterior probability of a
given trial corresponding to one of the two classes. Fol-
lowing domain expert knowledge [47], specific electrodes
(FCz, Cz, or both, based on the sensitivity of subjects)
are chosen to be used as the inputs to the classifier. The
classifier parameters are then tuned using a stochastic
gradient descent on the mean square error [46]. Our aim
is to replace the aforementioned baseline preprocessing
and classification by an efficient and fast HD classifier that
enables a natural operation with all the 64 electrodes, and
with less training and preprocessed data. For this task, the
HD classifier is configured with the IM and the CIM for
mapping, the temporal–spatial encoder [Fig 4(b)], and two
prototypes in the AM for the two classes (P1 for the correct
and P2 for the error) as summarized in Table 1.

1) Fast Learning: We assess how fast the training of HD
classifier can be done while maintaining a classification
accuracy as high as the baseline. We have observed that
only some of the training trials can produce a nonredun-
dant HD vector to be added to the class prototype [18].
Hence, during the training session, every time a new
nonredundant trial is encountered, the AM is updated and
the classification accuracy is measured for the entire test
set. For the very first trials, the AM is almost empty, but
as new trials are encountered it will be lightly populated
leading to an increase in the accuracy.

We target the classification accuracy of the baseline that
is achieved by using all available trials in the training
session, working with the one or two selected electrode(s),
and with the CAR preprocessing method. We provide the
same setup for the HD classifier, but with fewer training
trials, to assess how fast the target baseline accuracy can be
reached. As shown in Fig. 7(a), the HD classifier is able to
learn faster with some variation across subjects reflecting
the significant individual variability: it requires only 0.3%
of the nonredundant training trials for S6, and up to 96%
for S1. On average, across all the subjects, the HD classifier
reaches the target baseline classification accuracy of 70.5%
when trained with only 34% of nonredundant training
trials. This translates directly to ≈ 3× faster learning.

2) No Electrode Selection and Less Preprocessing: We
assess the ability of the HD classifier to operate with
noisy inputs and electrodes that do not carry meaningful
information. Fig 7(b) compares the classification accuracy
of the baseline method with two instances of our HD clas-
sifier. The first one has a setup equivalent of the baseline
as aforesaid: uses one or two electrode(s) depending on
the subjects, applies the CAR preprocessing filter on every

Fig. 7. Comparison of the HD classifier with the baseline Gaussian

classifier in the EEG ERP task. (a) The HD classifier on average

learns ≈3x faster while meeting the target accuracy of the baseline

Gaussian classifier (70.5%). (b) Accuracy of the baseline Gaussian

classifier vs two instances of the HD classifier: (1) Using the

selected electrodes and the CAR preprocessing as in the baseline;

(2) Using all the 64 electrodes without the CAR preprocessing.

electrode before the BPF step, and uses all training trials.
As shown in Fig 7(b), this instance of the HD classifier
surpasses the baseline accuracy across the six subjects. The
HD classifier exhibits 67.7%–82.7% classification accuracy,
with an average of 74.5%, which is 5% higher than the
baseline with the same conditions.

The second instance of the HD classifier operates with
all the 64 electrodes and without the CAR preprocessing
filter. There is no CAR filter in the chain of preprocessing:
every electrode signal is immediately passed through a
BPF followed by the scaling and quantization step before
mapping to the HD space by the CIM. Note that the simple
BPF cannot be removed since the EEG ERPs are in the
frequency range of 1–10 Hz.

Despite using the 64 electrodes without any electrode
selection and no CAR filtering, the HD classifier main-
tains almost the same range of classification accuracy
(i.e., 62.3%–79.1%) across the six subjects as shown in
Fig. 7(b). This HD classifier shows on average 2.2% higher
classification accuracy compared to the baseline. Note that
the HD classifier achieves this by naturally using largely
meaningless electrodes regardless of the subjects, while the
baseline carefully selects a subset of electrodes per individ-
ual subject that can provide meaningful information for
the Gaussian classifier. This also confirms the amenability
of HD classifier to operate with less preprocessed data.
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Fig. 8. Analyzability of the learned HD code that identifies the

most useful electrodes (FCz and Cz). The x-axis shows the sorted

electrodes (the top 32 out of 64) based on the average score across

the six subjects.

In HD computing, the input data are naturally clustered
in the HD space, and the noise generated by meaningless
electrodes tends to cancel out. This desirable property
makes it possible to apply HD computing for clustering
data with minimal knowledge about the nature of the data.

3) Learning Transparent Codes With Interpretable
Features: Apart from the excellent performance of HD
classifier with all the 64 electrodes, its learned code is
transparent and can be analyzed to find out the important
features related to the ERP task. More specifically, rather
than asking for information from the domain expert, the
learned HD vectors can be used to identify what electrodes
provide meaningful data for the classification. Using the
domain expert knowledge, Chavarriaga and Millán [34]
identify FCz and Cz, or both electrodes as the most useful
electrodes for their baseline classifier. We observe that the
same subset of electrodes can be identified as useful by
the following HD algorithm.

The algorithm is inspired by the distribution of distances
in the HD space. For each electrode, we compute a score
that measures the distance between two class prototypes
that are generated solely by the electrode. This is supplied
by first doing the temporal encoding in Fig. 4(b); note that
in this encoder if two electrodes i and j receive an identical
input stimuli, their encoded n-gram HD vectors become
identical (Ti = Tj). Before computing the scores for elec-
trodes, we need to compute a set of HD vectors P1i where
i ∈ {1, . . . , 64}. P1i is computed for every electrode i by
adding its related n-gram HD vector (Ti) over all the trials
belonging to the correct class. Similarly, P2i HD vectors
are computed from the trials related to the error class

P1i +=Ti ∀ Correct trial

P2i +=Ti ∀ Error trial.

For every electrode i, we can then assign a score by
measuring the distance between their P1i and P2i

scorei = 1− cos(P1i, P2i).

In other words, this score reflects how well a given
electrode discriminates between the two class prototypes:
the larger, the better.

Fig. 8 shows the computed scores for each electrode and
across the subjects. The electrodes are sorted in the x-axis

according to their average score over the subjects; only
the top 32 electrodes out of 64 are shown. As shown, the
FCz and Cz electrodes are on top of the sorted list and
have the highest discriminative scores for the six subjects,
on average. However, all subjects do not exhibit the same
sensitivity to these two electrodes. For example, S4 does
not show a clear distinction between electrodes.

C. ECoG-Based Seizure Detection

We consider an anonymized data set of 16 patients of
the epilepsy surgery program of the Inselspital Bern for a
total of 99 recordings. Each recording consists of 3 min of
interictal segments (immediately preceding the seizure),
and the ictal segment (ranging from 10 to 1002 s), fol-
lowed by 3 min of postictal time; see [19] for more
details. Two recent state-of-the-art methods use local pat-
tern transformation [33] for seizure detection: 1) a method
uses histograms of LBPs (2l integer features per elec-
trode) that performs best with a linear SVM classifier; and
2) akin to LBP, a local gradient pattern (LGP) is further
proposed that with an MLP neural network outperforms
LBP+SVM. We compare the performance of our HD clas-
sifier [see Fig. 4(c) and Table 1] with the LBP + SVM
and the LGP + MLP methods by measuring specificity and
sensitivity using a few seizures for training.

For the majority of the patients (ten out of 16), our
HD classifier quickly learns from one or two seizures,
and achieves perfect (100%) specificity and sensitivity
with k-fold cross validation, where k is the total number
of seizures minus the number of trained seizures. For
the remaining minority of six patients, our HD classifier
requires more seizures (three to six) for training. For these
patients, we use 22 seizures for training and test with the
remaining unseen 38 seizures. The HD classifier almost
maintains its top performance with 100% sensitivity for
five of six patients. In an identical setup, our HD classi-
fier, on average, achieves higher specificity and sensitivity
than the other methods. Moreover, the low specificity of
LBP+SVM and LGB+MLP clearly limits their usefulness for
long-time recordings [19].

D. Multiclass Classification of MI EEG

To increase the complexity of classification task,
we move to multiclass brain–computer interfaces based on
the MI recordings. The classifiers for the MI-based record-
ings face particular challenges to operate with complicated
frequency-domain features, and with few training trials
(≈15 per class per run) since the subjects quickly become
exhausted. We first consider a data set [49] with five
subjects that are asked to imagine three tasks: imagination
of left hand, or right hand, or feet movements. Every
subject participates in four runs, each with 45 trials. The
MI-based brain–computer interfaces use the power of EEG
oscillations in different frequency bands to decode the sub-
ject’s intention. Hence, the power spectral densities (PSDs)
are extracted as features for the classification. They are
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extracted for the frequency bands of 4–48 Hz from 4 s
of the MI command recorded from 16 electrodes. After
a normalization and scaling step, the real-valued features
are sorted based on a Fisher scoring algorithm as shown in
Fig. 4(d). Fisher score, as a filter-based approach, assesses
the correlations between features and the class labels to
find out features that are efficient for discrimination [72].
It assigns the highest score to the feature on which the
data points of different classes are far from each other
while requiring data points of the same class to be close to
each other. The nine highest ranking features are selected
to serve as inputs to the classifier.

For the baseline classification, we first use a Gaussian
classifier [49]. However, the Gaussian classifier fails to
achieve high accuracy with simultaneous classification into
three classes, hence we instead choose the SVM [32] with
parameters optimized for larger margin and regulariza-
tion. We reuse the same feature extractor for the HD clas-
sifier which is configured with the weighting method for
mapping the nine features, the spatial encoder [Fig. 4(d)],
and three prototypes in the AM (one for each class),
as summarized in Table 1. To evaluate the performance
with fewer training trials, one run (out of four) is used for
the training, one for the evaluation (i.e., model selection),
and two for the testing. Fig. 9(a) compares the average
test accuracy of the HD classifier versus the SVM measured
through fourfold cross validation with two folds for testing.
The HD classifier shows 53%–98% accuracy across all the
subjects (77% on average). Compared to the optimized
SVM, the HD classifier improves the minimum, maximum,
and average accuracy by 6%, 4%, and 2%, respectively.
These accuracy benefits are achieved by a simpler algo-
rithm that is trained in a single pass over the training data.

1) MI Classification With Four Classes: Finally, we con-
sider another data set for the MI-based brain–computer
interfaces: the BCI competition IV-2a [73]. This challeng-
ing data set contains nine subjects, with four classes (right
hand, left hand, feet, and tongue imaginations) recorded
from 22 EEG electrodes. It has two separate sessions for
train and test each with 48 trials. For the preprocessing and
feature extraction, a filter bank (nine filters from 4–40 Hz)
with common spatial pattern (CSP) is used [48]. The CSP
is a linear transformation that projects the data into a space
where data variance is maximized for one class relatively
to another one. In addition to these static energy features,
dynamic energy features are computed along with a CNN
to improve classification accuracy [35]. The CNN surpasses
the SVM and achieves an average classification accuracy of
69.6% across the nine subjects as the state of the art for
this data set [35].

For the HD classifier, we scale the same architecture
used in the previous MI task [Fig. 4(d)], by increasing
the number of input features and the class prototypes
(Table 1, the forth row). As shown in Fig. 9(b), the HD
classifier achieves a higher classification accuracy com-
pared to the CNN (71.1% versus 69.6%). This confirms

Fig. 9. Comparison of the HD classifier with the SVM and CNN in

two MI tasks. (a) The MI EEG task with three classes. (b) The MI EEG

task with four classes.

the superiority of the proposed HD templates and their
scalability to handle complicated tasks with a larger num-
ber of features and classes. Nevertheless, this HD classi-
fier uses the spatial encoder with the weighing method
that generates an HD vector with real-valued components
requiring floating-point hardware and storage. To reduce
the hardware complexity of the classifier, we substitute its
weighting method with a pair of IM and CIM similar to
the spatial encoder in Section IV-B1. We evaluate the lin-
ear and nonlinear quantization and similarity-preserving
techniques in the CIM, and find out that a CIM hard coded
by 100 levels (m = 100) with logarithmically changing the
similarity is a good match with the features. The configura-
tion of the HD classifier is shown in the last row in Table 1.
The HD classifier maps the real-valued input features to
the bipolar HD vectors, as opposed to the HD vectors with
real components, and performs the classification with 1%
average accuracy loss (70.1% versus 71.1%).

VI. D I S C U S S I ON

There are good reasons to prefer to use vectors as a means
of representing items in memory: vector representation
allows items to be treated as complex entities, and also
allows for fuzzy composites of items to be constructed;
furthermore, vectors are amenable to implementation in
neural models [8], [11], [13], [40]. In HD computing,
or VSAs, the fixed-size HD vectors represent symbolic infor-
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mation. These symbols, or HD vectors, can be combined
using a small set of arithmetic operations (e.g., MAP).
At the symbolic level, we should choose how to map items
to the HD vectors, and how to combine them to create
more complex representations. These choices greatly influ-
ence the performance. Text and language applications are
well matched to this computing framework because the
data already come in the form of symbolic primitives (let-
ters or words), which are readily mapped to HD vectors.
However, it is challenging for other types of data such as
time series from multiple sensors.

To address this issue, we provide a small set of net-
work templates that easily map analog multisensory inputs
to HD vectors and construct a complete representational
architecture by careful use of MAP operations. These initial
solutions can be improved in different aspects. Exam-
ples includes the use of thermometer codes (see part
I of the Appendix), or locality-sensitive hashing (LSH)
for mapping continuous quantities into the HD vectors.
The distance-preserving bit sampling LSH can convert �1-
norm to Hamming distance with successful applications
in arterial blood pressure time series [74], [75]. All these
methods—without learning—come under umbrella of ran-
dom projection (see [76] for a review). Nevertheless,
a hybrid approach combining deep learning and HD com-
puting can be taken where deep learning (either super-
vised or unsupervised) is used to learn natural features
of the data that allow for its mapping into an HD vector.
These vectors may then be combined and manipulated
within the HD framework for high-level reasoning tasks.

VII. C ON C LU S I ON AND FU TUR E WORK

In this paper, we propose a full set of HD network
templates for multiclass learning and inference in var-
ious biosignal processing applications. These templates
facilitate designing versatile, fast, robust, and extremely
energy-efficient classifiers by solely using simple native
operations of brain-inspired HD computing without involv-
ing any biologically implausible or inefficient algorithms.
Experimental results with the EMG-based hand gesture
recognition, the EEG-based brain–computer interfaces
(both ERP and MI), and the ECoG-based seizure detec-
tion demonstrate that the HD classifier usually reaches
higher classification accuracy (or, at least equal) com-
pared to the state-of-the-art counterpart. More impor-
tantly, this is accomplished by little or no prior knowledge
about the task: 1) the HD classifier demands much less
training data thanks to its simple and one-shot learning;
2) it also naturally operates with noisy and less pre-
processed inputs; and 3) there is no need for domain
expert knowledge or electrode selection process. Last
but not least, the produced HD code is analyzable and
interpretable.

Future work is focused on efficient hardware imple-
mentation of HD computing for brain–computer interfaces,
epileptic seizure onset detection, and identification of icto-
genic brain regions.

A P P E ND I X
H Y P E RD IM EN S I ONA L C OMPUT I NG
CONC E P T S

A. Hyperdimensional Space

Dimensionality d = 10 000 is high dimensional; 10
or 100 are not. Small demonstrations can be made with
d = 1000, and even very large tasks (e.g., modeling of
networks with billions of nodes) can be managed with d

less than 100 000.
High-dimensionality together with operations of the

right kind are more important than the nature of the
dimensions. Operations and properties that have proven
useful are listed below.

B. Elements/Points of the Space

• HD vectors or, more generally, the elements of a space
of (vector-like) points.

• Similarity metric: based on distance, dot product,
cosine, correlation.

• Orthogonality: Randomly chosen vectors are dissim-
ilar, unrelated, uncorrelated, quasi-orthogonal. Most
of the space is dissimilar—nearly orthogonal—to any
given point. The number of mutually dissimilar vec-
tors far exceeds dimensionality, and finding one more
such vector is easy.

C. Operations

Note: The terms “addition,” “multiplication,” and “per-
mutation” are meant to be understood in a more general
(modern/abstract algebra) sense.

• Addition is an operation on two or more vectors that
yields a vector.

• Multiplication is an operation on two or more vectors
that yields a vector.

• Permutation is a unary operation on a vector that
yields a vector.

— The number of possible permutations is very
large (d!), but permutations themselves are not
elements of the space of representations.

— Permutation is an example of a more general
unary operation on vectors, namely, multiplica-
tion by a matrix. However, reducing it to a cir-
cular shift operation reduces the complexity of
permutation as well as its inverse to O(d) rather
than O(d2).

• Normalization converts an intermediate results of an
operation into an element of the space over which
the operations are defined. For example, if the ele-
ments of the space are binary vectors, the arithmetic
sum–vector of two or more vectors has to be normal-
ized by a threshold function to make it binary.

• Scalar product or dot product provides a measure of
similarity between two vectors.
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D. Properties

Note: The properties refer to (pseudo)random vectors
with i.i.d. components. Thanks to high dimensionality, the
conditions listed below need only be satisfied approxi-
mately or with high probability. Note also that the algebra
of addition and multiplication approximates a field over
the vector space.

• Multiplication and permutation are invertible.
• Multiplication distributes over addition.
• Permutation distributes over both addition and multi-

plication.
• The sum vector is similar to each of its argument

vectors.
• The product vector is dissimilar to each of its argu-

ment vectors.
• The result of a (random) permutation is dissimilar to

the argument vector.
• Multiplication and permutation are “randomizing”

operations that preserve similarity.
• Addition and multiplication are associative.
• Addition is commutative.

By the Law of Large Numbers, the reliability/
predictability of the computations is directly related to
vector dimensionality.

E. Examples of HD Spaces and Operations

• Real vectors: Holographic reduced representa-
tion (HRR) was the first among these systems. It uses
d-dimensional real vectors whose components are
i.i.d. normal with zero mean and 1/d variance.
Addition is by normalized vector sum, and
multiplication is by circular convolution.

• Complex vectors: Vector components are random
phase angles, addition is by componentwise complex
addition followed by normalization, and multipli-
cation is by componentwise complex multiplication
(addition of phase angles).

• 50–50 binary vectors: Addition is by componentwise
majority rule followed by tie breaking, and multipli-
cation is by componentwise XOR.

• Bipolar (±1) vectors: The MAP architecture uses com-
ponentwise addition and multiplication, followed by
normalization and is equivalent to the binary.

An operation can have a property that is useful in some
contexts but needs a workaround in others. An example of
such is the self-inverse property of multiplication of binary
vectors with componentwise XOR. It may work well for
undirected graphs but poorly for directed graphs.

F. Mapping With Vectors

A key notion of HD computing is that a vector can
represent a mapping and that a mapping vector can be
computed from examples in a single pass using the vector
operations. Similarly, vectors for composed entities such as
a network, are computed from vectors for the constituents

(i.e., the nodes) with the HD operations in a single pass.
This is much like traditional computing and very different
from standard neural nets that compute mappings with
gradient descent (backpropagation) in multiple passes
over a set of examples. To apply a vector map to another
vector, we simply multiply with the mapping vector and
possibly follow it with a memory retrieval.

G. HD Memory

The long-term memory function of standard neural nets
is encoded into—and is confounded with—the same set
of weights that perform mappings between vectors. In HD
computing, the two are separate. The memory corresponds
to a computer RAM and it stores vectors made with the HD
vector operations. Memory retrieval means finding the best
matching vector (or vectors, i.e., nearest neighbors) in the
set of vectors stored in the memory, which also yields a
measure of confidence in the retrieved vectors.

H. Generality

The HD operations and memory are sufficient for
general computing. For example, the Lisp programming
language could be implemented with them.

Some computing operations that are native to HD have
no simple counterpart in traditional computing. They
include vectors as mappings and as semantic pointers.
However, operating with numbers is awkward and ineffi-
cient. Thus traditional computing can be deemed quantita-
tive and HD computing qualitative.

I. Theory on Coding Continuous Values
in HD Vectors

Using the 50–50 binary vectors (binary spatter codes)
we describe a method to encode graded values (quantities)
into binary HD vectors via the thermometer code (unary
coding). A thermometer code has a number of 1s to
represent the quantity, followed by 0s:

111 . . . 111000 . . . 000.

Assume that x in the range [0, 1] is represented by a d-bit
thermometer code, with the number of 1s proportional to
x. If we want the ends of the range to have orthogonal
HD vectors, the thermometer code for 0 has no 1s and the
thermometer code for 1 has d/2 1s. For example, 1000 1s
followed by 9000 0s represents 0.2.

Take the thermometer code for x, T (x), multiply (XOR)
it with a random label L, and permute the result with a
random permutation (not rotate) ρ. Then, the value x is
encoded by the HD vector

X = ρ(L ∗ T (x)).

Multiplying by L makes temperature look random, and
permuting with ρ scrambles the coordinates. We can then
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read the thermometer by counting the number of 1s in
L ∗ (qX), where q is the inverse permutation of ρ and L

is its own inverse. We can do the same for the y coordinate
but need a random label L′ and a random permutation ρ′

that are unique to the y-axis. The position (x, y) can then
be labeled with X ∗ Y . If we are given x and the vector
X ∗ Y , we can compute y.

The coding maintains temperature differences because
neither XOR nor permutation affects Hamming distance h

(both operations preserve similarity)

h(X1, X2) = h(ρ(L ∗ T (x1)), ρ(L ∗ T (x2)))

= h(L ∗ T (x1), L ∗ T (x2))

= h(T (x1), T (x2)). �
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