10

15

20

DELDROID: An Automated Approach for Determination and Enforcement
of Least-Privilege Architecture in Android

Mahmoud Hammad®® !, Hamid Bagheri®, Sam MalekP

% Department of Software Engineering, Jordan University of Science and Technology, Jordan
b Department of Informatics, University of California, Irvine, United States
¢Department of Computer Science and Engineering, University of Nebraska-Lincoln, United States

Abstract

Android is widely used for the development and deployment of autonomous and smart systems, including
software targeted for IoT and mobile devices. Security of such systems is an increasingly important concern.
Android relies on a permission model to secure the system’s resources and apps. In Android, since the
permissions are granted at the granularity of apps, and all components in an app inherit those permissions,
an app’s components are over-privileged, i.e., components are granted more privileges than they actually need.
Systematic violation of least-privilege principle in Android is the root cause of many security vulnerabilities.
To mitigate this issue, we have developed DELDROID, an automated system for determination of least privilege
architecture in Android and its enforcement at runtime. A key contribution of DELDROID is the ability to
limit the privileges granted to apps without modifying them. DELDROID utilizes static analysis techniques to
extract the exact privileges each component needs. A Multiple-Domain Matrix representation of the system’s
architecture is then used to automatically analyze the security posture of the system and derive its least-
privilege architecture. Our experiments on hundreds of real-world apps corroborate DELDROID’s ability in
effectively establishing the least-privilege architecture and its benefits in alleviating the security threats.

Keywords: Android security, Software Architecture, Multiple-Domain-Matrix (MDM)

1. Introduction

Android is widely used for the development and deployment of autonomous and smart software systems,
including software intended for execution on a variety of mobile devices, as well as software targeted for
Internet of Things (IoT) settings, such as smart homes. Security of such systems is an increasingly important
concern. Permissions form the foundation of security in Android. Android relies on a permission-based
model for controlling the resources that each app is allowed to access. Permissions are often granted to an
app at the discretion of end user, who makes a decision based on its perceived trustworthiness and expected
functionality.

Android’s permission-based access control model, however, has shown to be ineffective in protecting system
resources and apps from security attacks [1]. All components of an Android app inherit the permissions
granted to the app, regardless of whether they need those permissions or not. As a result, a malicious
component inside an app, such as a third-party library, can leverage privileges meant for other components
for nefarious purposes [2]. Moreover, by default, a component in Android has significant leeway in terms of
the components it can communicate with, both within and outside of its parent app. The over-privileged
nature of components in Android is the root cause of various security attacks [1, 2, 3, 4, 5]. These kinds of
attacks cannot be prevented by the platform at the moment, as they do not violate the security mechanisms
supplied by Android.

Prior research efforts have proposed various solutions to help address certain instances of component-level
attacks. Some of the proposed solutions have focused on isolating specific type of component-level threats,
caused by for example advertisement [6, 7] or JNI libraries [8]; such approaches are narrowly targeted, and

I Corresponding author.
E-mail addresses: hammadm@uci.edu (M. Hammad), bagheriQunl.edu (H. Bagheri), malek@uci.edu (S. Malek).

Preprint submitted to Elsevier November 7, 2019

25

30

35

40

45

50

55

60

65

70

thus, inappropriate for applying comprehensively to other types of component-level threats. Others have
proposed component-level permission assignment for third-party components in an app [9, 10], yet they are
incapable of controlling communications among components. They also often require application modification
or developer intervention, significantly hindering their adoption in practice.

To systematically thwart these threats, we have developed DELDROID?, a fully automated system for
determination of least-privilege architecture (LP architecture) in Android and its enforcement at runtime.
An LP architecture is one in which the components are only granted the privileges that they require for
providing their functionality [11]. An LP architecture, thus, reduces the risk of an Android system being
compromised by limiting its attacks surface. In addition, when a component is compromised, the impact
is localized within the scope of that component. A smaller attack surface also facilitates both manual and
automated means of inspecting the system’s security attributes.

Establishing the least privilege architecture is quite challenging as it demands mediation of all conceivable
channels through which a component may interact with components within and outside its parent app, as well
as the underlying system resources. DELDROID leverages static program analysis to automatically identify
the architectural elements comprising an Android system, as well as the inter-component communication
and resource-access privileges each component needs to provide its functionality. It then uses a Multiple-
Domain Matriz (MDM) [12] to represent and derive the LP architecture for the system. MDM provides an
elegant, yet compact, representation of all relationships between principal elements, such as components and
permissions, in a system. DELDROID further allows a security expert to modify the architecture as needed to
establish the proper privileges for each component. Finally, DELDROID enforces automatically obtained or
expert-supplied LP architecture at runtime, thus ensuring components are not able to obtain more privileges
than that prescribed by the architecture.

By providing an efficient least-privilege determination process associated with a thorough enforcement
system, DELDROID allows users to focus their analysis efforts on a very narrowed set of interactions in
the architecture. This is especially valuable, since at the scale of a single device, the state-of-the-art inter-
component communication analysis tools produce an enormous number of potential links between message-
passing locations and possible message targets, making manual analysis required to confirm any potential
threat rather tedious and error-prone.

DELDROID can be used to limit the levels of access available to an app and its components without
modification of their implementation logic, thus allowing our approach to be applied to all existing Android
apps. Our evaluation of DELDROID using hundreds of real-world apps corroborates its ability in significantly
reducing the attack surface of Android systems and thwarting security attacks that would have succeeded
otherwise.

This paper describes several new non-trivial extensions to the preliminary version of our work described
in [13]: (1) We incorporate new security analysis rules in DELDROID to detect a broader range of inter-
component communication (ICC) attacks. In addition to the privilege escalation analysis, DELDROID is now
capable of analyzing the recovered architecture for potential Intent spoofing and unauthorized Intent receipt
attacks [1]. (2) We enrich our representation of architecture in MDM to show the type of communication
between various components of an Android system. DELDROID uses the additional information to analyze
the system architecture for new security vulnerabilities. (3) We improve our algorithm for generating Event-
Condition-Action (ECA) rules that collectively capture the determined least-privilege architecture, in turn
reducing the size of rules that need to be stored in an Android device and monitored at runtime. (4) We
report on new experiments to assess, among other things, the newly added security analysis capabilities. On
top of these technical contributions, the paper provides an in-depth description of the determination and
enforcement of least-privilege architecture in Android and a revamped discussion of this work in the context
of related research.

To summarize, this paper makes the following contributions:

o Automated derivation of LP architecture: We develop a novel mechanism, called DELDROID, to auto-
matically identify the LP architecture for an Android system. The run-time architecture captured in
an MDM further helps users and security experts better understand and maintain the security posture
of the entire system.

2The name is intended to abbreviate “determination and enforcement of least privilege architecture in AnDroid”.

75

80

85

90

95

100

105

110

115

120

e Dynamic enforcement: We show how to exploit the LP architecture to safeguard the system against
security attacks by enforcing it at runtime without modifying the current apps.

o Ezxperiments: We present results from experiments run on hundreds of real-world apps, corroborating
DELDROID’s ability in (1) effectively reducing the attack surface of Android systems through the
establishment of an LP architecture, and (2) efficiently detecting and preventing various security attacks
through analyzing the established LP architecture and its dynamic enforcement.

The remainder of this paper is structured as follows. Section 2 provides an overview of the Android
framework and its access control model to help the reader understand the discussion that follows. Section 3
motivates the research through an illustrative example. Section 4 describes DELDROID, while Section 5
describes its implementation. The evaluation results are presented in Section 6. Finally, the paper concludes
with an overview of the related literature and discussions on limitations and directions for future work.

2. Android Background and Research Motivation

This section provides a brief overview of the Android framework, and the over-privileged nature of its
access control model, to help the reader follow the discussions that ensue.

Android framework. Android is the most popular mobile platform accounting for 85% market share as
of the first quarter of 2017 [14], and more than 3.0 million Android apps are available only on Google Play,
the official Google Android app store, as of June 2017 [15]. The Android framework includes a full Linux
OS based on the ARM processor, system libraries, middleware, and a suite of pre-installed applications.
Android applications (apps) are mainly written in the Java programming language by using a rich collection
of APIs provided by the Android Software Development Kit (SDK). An app’s compiled code alongside data
and resources are packed into an archive file, known as an Android package kit (APK). Once an APK is
installed on an Android device, it runs by using the Android runtime (ART) environment.

Application configuration. Fach Android APK includes a mandatory configuration file, called mani-
fest. It specifies, among other things, the principal components that constitute the app, including their types
and capabilities, as well as required and enforce permissions. The manifest file values are bound to the app
at compile time, and cannot be changed afterwards, unless the app is recompiled.

Application components. Components are basic logical building blocks of apps. Each component
can be invoked individually, either by its embodying app or by the system, upon permitted requests from
other apps. Android defines four types of components: (1) Activity components provide the basis of the
Android user interface. Each app may have multiple Activities representing different screens of the app to
the user. (2) Service components provide background processing capabilities, and do not provide any user
interface. Playing a music and downloading a file while a user interacts with another app are examples of
operations that may run as a Service. (3) Broadcast Receiver components respond asynchronously to system-
wide message broadcasts. A receiver component typically acts as a gateway to other components, and passes
on messages to Activities or Services to handle them. (4) Content Provider components provide database
capabilities to other components. Such databases can be used for both intra-app data persistence as well as
sharing data across apps. Each component can declare a set of provided interfaces which can be invoked by
other components.

Inter-component communication. Inter-component communication (ICC) in Android is mainly con-
ducted by means of Intent messages. An Intent message is an event for an action to be performed along with
the data that supports that action. Component capabilities are then specified as a set of Intent Filters that
represent the kinds of requests handled by a given component. Intent Filters are the provided interfaces of
a component. Component invocations come in different flavors, e.g., explicit or implicit, intra- or inter-apps,
etc. An explicit Intent is delivered to the target component specified in the Intent, whereas an implicit Intent
is delivered to a component if the action specified in the Intent matches that specified in the component’s
Intent Filter. Android’s ICC allows for late run-time binding between components in the same or different
apps, where the calls are not explicit in the code, rather made possible through event messaging, a key
property of event-driven systems.

Android’s access control model. Permissions are the cornerstone of the Android access control
model. There are two kinds of privileges a component has: inter-component communication (ICC) privilege,
allowing a component to communicate with other components in the same or different app, and resource

125

130

135

140

145

150

155

160

165

170

access privilege, allowing a component to access the system resources, such as GPS, camera, telephony, etc.
Android manages both types of privilege at the app level, meaning that the permissions are granted/revoked
at the level of an app and inherited by all components in that app. This causes two kinds of over-privileges,
discussed next.

2.1. Qver-Privileged Resource Access

Android contains a plethora of sensitive system resources (e.g., GPS, camera, account manager,
power manager) accessed by obtaining a handle to a system-level, long-running service (e.g., location
service, camera service, account service, power manager service). System services are launched by
com.android.server.SystemServer service, which is started at the boot time of the Android operating
system. To use a system service, a component should have the appropriate permission that guards the ser-
vice. For example, to track the user’s location, a component needs to obtain a handle to the location service,
which requires the location permission (either ACCESS_COARSE_LOCATION or ACCESS_FINE LOCATION).

The permissions stated in the app manifest enable secure access to sensitive resources. However, a per-
mission granted to an app transfers to all of the components in the app. Android’s coarse-grained permission
model violates the principle of least privilege [16, 17], as often not all components of an app need access to
the same sensitive resources. The shortcomings of Android’s permission model have been widely discussed in
the literature [18, 19, 20], and shown to be the root cause of various security attacks, most notably privilege
escalation [21, 22].

2.2. Owver-Privileged Inter-Component Communication

The ICC mechanism in the Android framework provides a flexible component-based development. How-
ever, this mechanism gives the components more communication privileges than they actually need and hence
violates the principle of least privilege. Specifically, Android’s ICC mechanism leads to over-privileged archi-
tectures, where components needlessly have the ability to send Intent messages to invoke services of many
other components within and outside their parent apps, and receive a variety of Intent messages implicitly
exchanged in the system. A component is allowed to communicate with (1) all components in its parent app,
(2) protected components in other apps as long as its parent app has the required permissions, and (3) any
public (exported) component in other apps. A component is public if its VISIBLE attribute is set to true
in the manifest file or declares at least one Intent Filter. Many developers are not aware of the fact that by
specifying an Intent Filter for a component, Android by default makes that component public, thus allowing
components from other apps to invoke its interfaces [1]. Inter-app communication (IAC) privileges are thus
often granted implicitly. Finally, a component does not require a permission to specify an Intent Filter with
arbitrary action, thereby allowing that component to receive all implicit Intents exchanged in the system
with the specified action.

The over-privileged ICC mechanisms in Android are known to be the root cause of many security attacks,
most notably hidden communications [2], Intent Spoofing and Unauthorized Intent Receipt ICC attacks [1].
Moreover, comprehending the security posture of an Android system in light of this privilege management
scheme is rather tedious and error prone for a security architect.

3. Illustrative Example

To further motivate our research and illustrate our approach, we provide an example of a malicious
component that employs the extra privileges afforded by Android to launch two security attacks: information
leakage through hidden code [1, 2], and privilege escalation [3, 22].

Figure 1 shows an Android system with two apps: FunGame and Messaging. The Messaging app contains
three components. The ListMsgs Activity lists all previously received messages, and it allows a user to share
messages with paired devices using Bluetooth. The Composer Activity allows a user to compose and send
text messages using the Sender Service running in the background. Sending text messages requires SMS
permission, and performing Bluetooth tasks requires Bluetooth permission. The Messaging app has these
permissions, and hence all its components acquire them as well. Listing 1 shows part of the Sender’s program
logic for sending text messages.

LevelUp is a Service in FunGame, a malicious Android game app, which once started, via the Main Activity,
leverages dynamic class loading feature of Android to load a malicious behavior from an external JAR file

175

180

185

190

195

FunGame 0] Messaging pq -]

(3) & @ ®

@
LevelUp 2— = = |= = =23>{Sender <= = = Composer

@

®
Main ListMsgs

Explicit Implicit Dynamically Private SMS Bluetooth Location | ACtVity
Intent Intent Intent | oaded Code component permission permission permission

En‘ — --> G # () B 3 ¢ service T

Figure 1: Component-based architecture of a vulnerable Android system.

Listing 1: Vulnerable component, Sender Service, sends a text message.

1 public class Sender extends Service {

2 coo

3 public int onStartCommand (Intent intent, int flags, int startId){

4 //if (checkCallingPermission("android.permission.SEND_SMS") == PackageManager.
PERMISSION_GRANTED) {

5 String phoneNumber = intent.getStringExtra ("PHONE_NUMBER");

6 String msg = intent.getStringExtra("MSG_CONTENT") ;

7 SmsManager smsManager = SmsManager.getDefault();

8 smsManager .sendTextMessage (phoneNumber , null, msg, null, null);

9 /1%

10

placed at the location specified on line 9 of Listing 2. The dynamically loaded code allows LevelUp to
communicate with the Sender Service as shown in Listing 2. On line 11 of Listing 2, LevelUp instantiates a
DexClassLoader object and uses it to load the DEX (Dalvik Executable) file contained in the JAR file. Using
Java reflection at line 13 of Listing 2, the mDexClassLoader object loads a class called HiddenBehavior and
invokes getIntent method at line 16 of Listing 2. This method returns an implicit Intent, which LevelUp
uses to communicate with Sender, as shown in line 17 of Listing 2.

Listing 3 shows the implementation of getIntent method in the HiddenBehavior class. On line 4,
getIntent obtains a reference to the Location Manager, a service that provides periodic updates of the
device’s geographical location. On line 5, the Location Manager is used to get the user’s last known location.
Finally, in lines 7-9, it creates an implicit Intent and adds a phone number and the user’s location as the
extra payload of the Intent. This code is compiled to a DEX format and archived in a JAR file using the
dz tool, a tool that generates Android bytecode from .class files. The JAR file could be downloaded by the
malicious app after installation.

On lines 5 and 6 of Listing 1, the Sender service extracts the phone number and the location information
from the received Intent, respectively. The extracted information is used in line 8 to send a text message. The
Sender component is vulnerable to a privilege escalation attack since it performs a privileged task, sending
text messages, without checking if the caller component has the required SMS permission to perform the
task. An example of such a check is shown in line 4 of Listing 1, but in this example it is commented. This
type of vulnerability is quite common, as many developers fail to properly use the APIs or follow the best
practices for secure programming. In fact, in the Android domain, since many apps are developed by novice
programmers, misuse of APIs is rampant.

The illustrative example described in this section allows LevelUp to hide its malicious behavior to exploit
a privilege escalation vulnerability and leak the user’s sensitive information (i.e., user’s location) via text
messaging without having the SMS permission. This kind of an attack is neither effectively detectable
through static program analysis, since the malicious behavior is downloaded after installation, nor through

200

205

210

215

220

Listing 2: Malicious component, LevelUp Service, uses dynamic class loading to hide its malicious behavior.

1 public class LevelUp extends Service {
2 R
3 public int onStartCommand (Intent intent, int flags, int startId){
4 coo
5 loadCode () ;
6 }
7 public void loadCode (){
8 // read a jar file that contains classes.dex file.
9 String jarPath=Environment.getExternalStorageDirectory().getAbsolutePath()+"/Download/hiddenCode.
jar";
10 //load the code
11 DexClassLoader mDexClassLoader = new DexClassLoader (jarPath, getDir("dex", MODE_PRIVATE).
getAbsolutePath () ,null, getClass().getClassLoader());
12 //use java reflection to load a class and call its method
13 Class<?> loadedClass = mDexClassLoader.loadClass("HiddenBehavior");
14 Method methodGetIntent = loadedClass.getMethod("getIntent", android.content.Context.class);
15 Object object = loadedClass.newlInstance ();
16 Intent intent = (Intent) methodGetIntent.invoke (object, LevelUp.this);
17 startService (intent);
18
Listing 3: Code downloaded after initial installation of app.
1 public class HiddenBehavior {
2 .
3 public Intent getIntent (Context context){
4 LocationManager locMgr = (LocationManager) context.getSystemService(Context.LOCATION_SERVICE) ;
5 Location loc = locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER) ;
6 String msg = loc.getLatitude()+","+loc.getLongitude();
7 Intent i = new Intent ("SEND_SMS");
8 i.putExtra ("PHONE_NUMBER", phoneNumber);
9 i.putExtra("MSG_CONTENT", msg);
10 return i;
11 }
12}

dynamic program analysis, as malicious apps often incorporate complicated evasion tactics (e.g., timing-
bombs [23]). We show how through establishment of an LP architecture, DELDROID can effectively mitigate
such threats.

4. Approach

As depicted in Figure 2, DELDROID cousists of five steps (1) Architectural Elements Extractor uses
static program analysis techniques to elicit the system’s principal components along with their properties,
latent communications, and permissions usages from the apps comprising a system. (2) Privilege Analyzer
systematically examines each component to comprehensively determine its privileges, the permissions it can
use as well as components with which it can communicate, both inside and outside the scope of its hosting
app, as permitted by the Android runtime environment. The result of this step is captured in a Multiple-
Domain Matriz (MDM), representing the original architecture of system. (3) Privilege Reducer determines
the exact permissions and communications each component needs to fulfill its functionality. The derived
information is then captured in an MDM, representing the least privilege architecture for the system. (4)
Security Analyzer evaluates the identified LP architecture apropos potential security threats, and presents
the analysis results to the security architect who may further modify the architecture as needed to establish
the proper privileges for each component. (5) Finally, LP Enforcer regulates interactions at the granularity
of components through enforcing automatically generated or expert-supplied least-privilege architecture at
runtime. It relies on two components, i.e., Resource Monitor and ICC Monitor, within the Privilege Manager
layer that we have added to the Android runtime environment to check the conformance of ICC and resource-
access transactions to the LP architecture, captured as Event-Condition-Action (ECA) rules. The rest of
this section presents each step in detail.

4.1. Step 1: Architectural Elements Extractor

To obtain the system’s architecture, we first need to determine the principal components that constitute
the system, their properties, communication interfaces, and permission usages. Such information is obtained
from two sources, an app’s manifest file and its bytecode.

225

230

235

240

Original Architecture

A|BJ|C|PL]|P2
[2. Privilege Analyzer]— A 1]1) 1 1'—>[3. Privilege Reducer]
B 1 1 1

Elements Extractor

N

[1. Architectural]

N c|1 1

() o

A, H
e Architectural A8]c|r]r2 %[4, Security Analyzer]
'S Elements LP A][
(=
[0 Architecture —{— - > Analysis
- C
] Result
(]

\ 4

_ < Y,

System Resources

——P» Resource request

- == ICC

APKs o
[5. LP Enforcer] pélj—‘b“l
€ 3]
: I
Android Apps Layer |
(Privilege Manager Layer \ I
g Resource Monitor ICC Monitor : Legend
E /:\ I [DELDroid Step] | Database
=
-1
e ECA Rules I ——> DELDroid transaction
I

Figure 2: Overview of DELDROID.

DELDROID utilizes APKtool [24], a reverse engineering tool for Android APK files, to recover an app’s
manifest file. By simply parsing the manifest file, we can extract certain information readily available about
the components comprising an app, such as their names, types, visibility, permissions required by other
components for interaction. Table 1 partially shows the extracted information corresponding to our running
example (recall Section 3). The Component Type column represents the particular type of a component, which
could be either Activity, Service, Broadcast Receiver, or Content Provider. The Ezported column indicates
whether a component can be launched from outside its hosting app or not. The Intent Filter column shows
the interfaces provided by a component. Finally, the Granted column shows the permissions requested by an
app, and subsequently granted by Android to all of its component. Among others, the three components of
the Messaging app all have access to both the SMS (android.permission.SEND_SMS) permission and the
Bluetooth (android.permission.BLUETO0TH) permission, given that the Messaging app acquires the SMS
and the BLUETOOTH permissions.

Not all information about an app can be obtained from its manifest file. For example, Broadcast Receivers
can be registered in code without declaring them in the manifest file. Components can also programmatically
define Intent Filters in code. In addition, all ICCs are latent in the app’s bytecode. Components can
communicate with one another in two ways: (1) using Unified Resource Identifiers (URIs) to access the
encapsulated data in Content Providers, and (2) by sending Intents, either explicitly or implicitly. DELDROID
utilizes IC3 [25] to analyze each app in the system and extract such latent information from its bytecode.

245

250

255

260

265

270

275

Table 1: The extracted architectural elements for the Android system shown in Figure 1

Component Component Intent Permissions Intent
ID App Exported Intent
Name Type Filter Granted Used Enforced Type

1 Messaging ListMsgs Activity Yes {SMS, Bluetooth} {Bluetooth}
2 Messaging Composer Activity Yes {SMS, Bluetooth} {i1} Implicit
3 Messaging Sender Service Yes SEND_SMS {SMS, Bluetooth} {SMS}
4 FunGame LevelUp Service No {Location}
5 FunGame Main Activity Yes MAIN {Location} {i2} Explicit

IC3 is the state-of-the-art static program analysis tool for Android. For each Intent in bytecode, DELDROID
extracts the sender component, receiver component, action, categories, and data. Table 1 shows the remaining
information collected in this way for our running example. Intent i3 is not shown, since the program logic
that creates that Intent is not initially part of the FunGame (recall Listing 2). Moreover, the type of each
extracted Intent, i.e., explicit or implicit, is indicated in the Intent Type column.

DELDROID also identifies the permissions actually used by components. These are the permissions that
a component uses for (1) accessing a protected Content Provider, or (2) calling a protected API. For the
former, we have created a mapping between protected Content Providers and the required permissions. For
example, to read the contacts information from Android’s Contacts Content Provider, a component needs
android.permission.READ_CONTACTS permission. Using this mapping and the accessed Content Providers,
our approach determines the actually used permissions for a component. Since IC3 does not extract the
permissions used through API calls, for the latter case, DELDROID leverages PScout permission map [26],
one of the most recently updated and comprehensive permission maps available for the Android framework.
It specifies mappings between Android API calls/Intents and the permissions required to perform those
calls. For example, Sender component in Messaging app uses the sendTextMessage () API for sending text
messages (see line 8 of Listing 1), which requires SMS permission. We thus consider this to be a permission
that is actually used by this component, as shown in the Used column of Table 1.

Finally, DELDROID builds on our prior work [3] to extract the permissions enforced by a component at
two levels. While the coarse-grained permissions specified in the manifest file are enforced by the An-
droid runtime environment over an entire component, it is possible to add permission checks, such as
checkCallingPermission, throughout the code controlling access to specific parts of a component (see line
4 of Listing 1). DELDROID identifies both types of checks. Since the system of Figure 1 does not perform
any checks (line 4 of Listing 1 is commented out), the corresponding column in Table 1 is empty.

4.2. Step 2: Privilege Analyzer

The next step is to derive the overall system architecture from the information obtained for individual
components in the previous step. We call this the Original system architecture, as it represents the architec-
ture of system if it were to be deployed on the official Android runtime environment. DELDROID models the
system architecture as a Multiple-Domain Matrix (MDM) [12]. MDM provides an elegant representation of
complex systems with multiple concerns (domains). Each concern is modeled as a Design-Structure Matrix
(DSM) [27]—a simple matrix that captures the dependencies of one relationship type. MDM is formed by
connecting the DSMs together. We capture five domains in an MDM to represent an Android system’s
architecture for the purpose of privilege analysis.

The explicit communication domain shows all potential component-to-component interactions using ex-
plicit Intents. Similarly, the implicit communication domain shows all potential component-to-component
interactions using implicit Intents. Each non-empty cell in these domains indicates the fact that the architec-
ture of system allows for potential interaction between two components. Rows represent sender components;
columns represent receiver components. Allowed explicit communications are derived using the following
rule.

Definition 1 (Allowed Explicit Communication). Let E be a set of all exported components, and ¢y

280

285

290

295

Figure 3: The Original architecture derived from the Android system described in Section 3.

Explicit Implicit Permission Permission Permission
Communication Communication Granted Usage Enforcement
Domain Domain Domain Domain Domain
ID 1,23 4|5 12|34 5 9 n * 9 n * 9 n *
) ListMsgs 1 111 1 1 1 11 1
%D Composer | 2 1,1 1 1 1 1 11
= sender 3|1 1 1 1 1 1 1)1 1
E | Llevellp 4| 1|1 1 1 1 1 11
% Main 5 11111 1 1 1
Legend: 9 Location permission n SMS permission * Bluetooth permission

and co be two arbitrary components in the system. We say that c¢1 can explicitly communicate with ca,
if either both components belong to the same app or ce is an exported component and c1 is granted the
permissions enforced by ca:

communicate.(c1,ca) = (appey = appey) V (c2 € E N enforced., C granted.,)

The Explicit Communication Domain in Figure 3 shows the result of applying Definition 1 to Table 1.
According to the explicit communication domain, components 1, 2, and 3 can communicate with one another
because they belong to the same app, as well as component 5 since it is exported, but not component 4.
Components 4 and 5 can also communicate with all the other components in the system.

Allowed implicit communications are derived using the following rule.

Definition 2 (Allowed Implicit Communication). Let F be a set of all declared public provided
interfaces, i.e., Intent filters, and c1 and co be two arbitrary components in the system. We say that cq
can implicitly communicate with cs, if co defines a public provided Interface and either both components
belong to the same app or c1 is granted the permissions enforced by cs:

communicate;(cy, ca) = ca.filters C F A (appe; = appey V enforced.o C granted,,)

The Implicit Communication Domain in Figure 3 shows the result of applying Definition 2 to Table 1.
According to the implicit communication domain, all components in the system can communicate with
component 3 and component 5. Component 3 declares a public provided interface for sending text messages
without enforcing any permission. Component 5 is the main entry point for FunGame app, i.e., declares a
public Intent filter with android.intent.action. MAIN action.

Note that the communication domain also includes interactions between the Android framework and
components of third-party apps. Android provides over 230 protected broadcast Intents that can only be
sent by the system to the registered components. For example, when a user installs an app, the system sends
a broadcast Intent including the package name of the newly installed app to all components that listen to
the PACKAGE_ADDED broadcast Intent action. Figure 3 shows no such interactions with the system, as
no component in our running example is registered to receive protected broadcast Intents.

The three permission domains in the MDM model of Figure 3 represent the component-to-permission
relationships. Each non-empty cell corresponds to a permission that is either (1) granted to a component,
meaning that the component has that permission, as its hosting app has requested the permission in its

300

305

310

315

320

Figure 4: LP architecture determined from the Android system described in Section 3.

Explicit Implicit Permission Permission Permission
Communication Communication Granted Usage Enforcement
Domain Domain Domain Domain Domain
|012345123459n*9n*9ﬂ*
& ListMsgs 1 1 1
‘@
% Composer | 2 1 1
=
Sender 3 1 1
)
£ LevelUp 4
2
2 Main 5 1
Legend: 9 Location permission HSMS permission * Bluetooth permission

manifest file, (2) used by a component, meaning that the component is actually making APIT calls or interacts
with other apps that require the permission, or (3) enforced by a component, meaning that either the
Android runtime environment or the component itself check the permission of callers (as you may recall from
Section 4.1 there are two ways of enforcing permissions in Android). The permission domains in the MDM
are populated based on the information obtained in the first step (i.e., Granted, Used, and Enforced columns
of Table 1). For example, the MDM shown in Figure 3 indicates that the first three components are granted
the SMS and the BLUETOOTH permissions, while components 4 and 5 are granted the location permission.

4.8. Step 3: Privilege Reducer

The Original architecture derived in the previous step clearly violates the principle of least privilege. This
step aims to derive the LP architecture by granting only the privileges required by each component to fulfill
its tasks.

DELDROID uses the extracted inter-component communications (information in the Intent and Intent
Type columns of Table 1) to determine the communication privileges that are needed for each component
to provide its functionality, and removes communication privileges that are unnecessary. For instance, as
shown in Figure 4, the LP architecture allows the Composer component to communicate with the Sender
component to send text messages (indicated by “ 1” in row 2, column 3 of Implicit Communication Domain).
On the other hand, the LP architecture prohibits the LevelUp component to communicate with the Sender
component.

Furthermore, DELDROID reduces the granted permissions for each component in the Permission Granted
Domain of the LP architecture using the following rule:

Definition 3 (Required Permission). Let ¢1 be a component, and used., be a set of permissions directly
used by component c¢1. We define the required permissions for c1 as permissions either directly used by
c1 or used by component co with which ¢1 communicates:

requiredPermissions.; = {p : Permission | 3 ¢ : Component e p €
usedey V ((communicatee(ci, ca) V communicate;(c1, c2)) Ap € usedes Ap € granted.;)}

According to Definition 3, a component legitimately needs a permission in two cases: 1) the permission
is directly used by the component through, among other things, making protected API calls; 2) another
component with which the given component is interacting is using that permission. The latter may be a
legitimate case, since a component that uses a permission may require the calling component to also have
that permission. In fact, failing to check if the calling component has the necessary permission may result in
a privilege escalation attack, as discussed in the next section.

10

325

330

335

340

345

350

355

In our running example, DELDROID determines that the Sender component has a legitimate reason to
hold the SMS permission, since it uses it. The Composer component also has a legitimate reason to hold
the SMS permission, since the app it belongs to has that permission and it communicates with the Sender
component that uses that permission. The ListMsgs component, on the other hand, has a legitimate reason
to hold the BLUETOOTH permission since it uses that permission, while Sender and Composer do not need
it. The ListMsgs component, however, does not need the SMS permission, since it neither uses it nor does
it communicate with a component that uses that permission. Similarly, the LevelUp and Main components
do not use the Location permission, and thus do not have a legitimate reason to hold it.

Finally, a security architect can adjust the resulting architecture by manually granting and revoking
permissions in the MDM. For example, a security architect can revise the privileges granted to apps and
their components based on their reputation. This capability could also be useful in a forward-engineering
setting, where an Android system is developed from scratch.

The amount of privilege reduction achieved through enforcing LP architecture can be quantified by calcu-
lating the distance between the LP architecture (L) and the Original architecture (O) as shown in Equation 1.

Z?:l ZT:l Li;
Z?=1 27;1 Oij
In Equation 1, 4 and j represent the ith column and jth row of an MDM with n rows (components) and

m columns (components and permissions). In our running example, comparing the Original architecture
(cf. Figure 3) with the LP architecture (cf. Figure 4) shows 83.3% reduction in granted privileges.

Reduction(O,L) =1 — (1)

4.4. Step 4: Security Analyzer

The previous sections present derivation of the LP architecture for an Android system captured in an
MDM. Here, we describe how the resulting architecture can be used to effectively perform security analysis
of Android apps. In particular, we focus on three prominent types of vulnerabilities due to the interaction
of multiple apps, i.e., privilege escalation [22], unauthorized Intent receipt [1], and Intent spoofing [1, 4].

Definition 4 (Privilege Escalation). Let p be a permission, ¢, be a malicious component that does
not hold p, and ¢, be a vulnerable component that holds and uses p but does not enforce (check) the
components that may be using its services also hold p. In the privilege escalation attack, c,, is able to
indirectly obtain p by interacting with c,.

(communicatee(cm, cy) V communicate; (¢, cy)) Ap € usede, A p & granted.,, N p & enforced,.,

According to Definition 4, in privilege escalation, a malicious app is able to indirectly perform a privileged
task, without having a permission to do so, by interacting with a component that possesses the permission.
By applying the privilege escalation rule to the MDM representation of the system’s architecture, DELDROID
identifies communications that may result in privilege escalation attack.

To illustrate this, let us assume that instead of LevelUp using dynamic class loading to communicate with
the Sender component, the logic for this interaction is part of the component’s implementation analyzed by
DELDROID. The LP architecture for such an alternative system is shown in Figure 5. Applying the privilege
escalation rule to the LP architecture of Figure 5 reveals that LevelUp is not granted the SMS permission, and
communicates with the Sender that uses the SMS permission without enforcing it. As a result, this interaction
is potentially a privilege escalation attack, and DELDROID raises a warning for further inspection.

Definition 5 (Unauthorized Intent Receipt). Let ¢y, ¢y, and ¢, be three components, where ¢, and ¢,

11

360

365

370

Figure 5: The LP architecture for an alternative system, where the communication between LevelUp and Sender is part of the
app’s initial bytecode.

Explicit Implicit Permission Permission Permission
Communication Communication Granted Usage Enforcement
Domain Domain Domain Domain Domain
D |1 2 34|51 2 3 4|5 vn* vﬂ* vﬂ*
o ListMsgs 1 1 1
ap
% Composer | 2 1 1
=
Sender 3 1 1
[}
E LevelUp 4 1 1 1
U]
5 Main 5 1
Legend: 9 Location permission DSMS permission * Bluetooth permission

belong to the same app, and c, declares a public provided interface, i.e., an Intent filter, through which c,
aims to communicate with c, by means of an implicit Intent. In the unauthorized Intent receipt attack,
cm can intercept an implicit Intent sent by ¢, through declaring a provided interface similar to the one
declared by c,. As such, ¢, may gain access to all enclosed data in any matching Intents meant to be
received by c.

communicate;(Cy, Cm) A (appe, # appe,,) A I communicate;(cy, cz) A (appe, = appe,)

Unauthorized Intent receipt is an ICC attack in which a malicious component intercepts an implicit Intent
by declaring an Intent Filter that matches the sent Intent [1, 28]. In such an attack, a malicious component
can access all enclosed data in the intercepted Intent and, possibly perform a phishing attack [29].

There are three different forms of unauthorized Intent receipt based on the type of the malicious component
(¢ in Definition 5) [1]: (1) Broadcast theft in which ¢, can read the content of broadcast Intents without
interrupting the broadcast, (2) Activity hijacking in which ¢, is launched instead of a legitimate Activity,
and (3) Service hijacking in which ¢, is bound to/started instead of a legitimate one. In case a hijacking
attack is successful, ¢, may also be a victim of false response attack [1, 28] in which ¢, can return a malicious
result to c,.

As a concrete example of unauthorized Intent receipt attack, consider a legitimate application that pro-
cesses financial payments. When a user clicks on a “Pay” button, the application sends an implicit Intent to
start another Activity that processes the payment. If a malicious Activity hijacks the implicit Intent, then the
attacker could receive sensitive information from the user (e.g., card number, billing address, and payment
amount). In this Activity hijacking attack, the malicious component can also perform a phishing attack to
get even more information from the user after stealing the interface of the legitimate Activity. Phishing
attacks cannot be easily determined by users since the Android UI does not specify the currently running
application. By applying Definition 5 to the MDM representation of the system’s architecture, DELDROID
identifies communications that may result in unauthorized Intent receipt ICC attack.

Definition 6 (Intent Spoofing). Let ¢, ¢y, and ¢, be three components, where ¢, and ¢, belong to

12

375

380

385

390

395

400

405

410

415

the same app and ¢, declares a public provided interface, i.e., an Intent filter, through which it aims to
communicate with c,. In the Intent spoofing attack, c,, can communicate with the exported component
of ¢, that is not expecting an Intent from cy,. In this attack, if the vulnerable component c, performs an
action upon receiwving an Intent, the malicious component c,, can trigger that action at will for nefarious
PUTPOSES.

(communicate.(cp, ¢,y) V communicate;(Cm, cy)) A (APPev # aPPem) A Jcommunicate;(cq, ¢y) A (appey, =
appez)

Intent spoofing is an ICC attack in which a malicious component can communicate with an exported
component that is not expecting a communication from it [1, 28]. If a victim component blindly trusts the
received Intent, this attack allows a malicious component to cause a victim component to perform some
actions.

There are three different forms of the Intent spoofing attack based on the type of the victim component
(¢y in Definition 6) [1]: (1) Malicious Broadcast injection in which ¢,, can send a malicious broadcast Intent
to an exported Broadcast Receiver. Since most Broadcast Receivers act as gateways to other components,
and pass messages to Activities and Services [30], the malicious Intent can propagate throughout an app.
A more risky scenario can happen if the Broadcast Receiver ¢, is registered to receive protected broadcast
Intents that only the system can send. In such a scenario, ¢, still can send an explicit Intent to ¢,. If ¢,
blindly trusts the received Intent without checking the Intent action, ¢, may perform a task that only the
system is supposed to trigger.(2) Malicious Activity launch, analogous to cross-site request forgeries (CSRF)
in websites [31], occurs when a victim component ¢, is launched by a malicious component ¢, that it does
not expect communication from. Since Activities provide GUI interfaces, this attack can be an annoyance
to the users. Successfully launching the ¢, Activity can cause ¢, to change data in the background using
the data enclosed in the malicious Intent sent by ¢,,. (3) Malicious Service launch is similar to malicious
Activity launch except that the interaction between ¢, and ¢, occurs in the background. If a malicious
Activity launch or a malicious Service launch attack is successful, ¢, may return sensitive information to the
malicious component ¢,,.

As a concrete example of Intent spoofing attack, consider an application that contains an advertisement
(ad) library. Omnce a user clicks on an ad, the application sends an implicit Intent to an Activity, referred
to as AdActivity here, which displays details of that ad on a web page. In this case, a malicious component
can exploit an Intent spoofing attack by sending a carefully crafted implicit Intent to the AdActivity. If
the AdActivity does not properly handle the received implicit Intent, the malicious component can deny
the service of AdActivity and crash its app resulting in an inter-process denial-of-service (IDOS) attack.
Moreover, if the AdActivity blindly trusts the incoming implicit Intent, a malicious component can redirect
the user to a web page with malicious JavaScript code resulting in a cross-application scripting (XAS) attack.
We refer the interested readers to [4] for more details on these kinds of Intent spoofing attacks.

By applying Definition 6 to the MDM representation of the system’s architecture, DELDROID identifies
communications that may result in Intent spoofing ICC attack. Applying the Intent spoofing rule (Definition
6) to the LP architecture of Figure 5 reveals that the communication between LevelUp and Sender satisfies
the Intent spoofing rule. Since both LevelUp and Sender belong to different apps and also there is a
communication between Composer and Sender, two components that belong to the same app. However,
since this communication is already marked as potential privilege escalation attack via applying the Privilege
escalation rule (Definition 4), DELDROID will not raise another warning for this communication.

It is worth mentioning that all violations to the determined LP architecture are recorded and accessible
to the security architect through an Android app that we have developed, not shown in Figure 2 to reduce
the clutter in the figure. This app allows a security architect to understand the running system and adjust
the architecture as needed.

4.5. Step 5: LP Enforcer

This step regulates component interactions by enforcing the LP architecture at runtime. DELDROID
efficiently transforms the LP architecture to a set of Event-Condition-Action (ECA) rules suitable for rapid

13

420

425

430

435

440

445

450

455

460

evaluation as the system executes. It then relies on two components, i.e., ICC Monitor and Resource Monitor,
within the Privilege Manager layer that we have added to the Android runtime environment, as shown in
Figure 2.

4.6. Efficiently Generating ECA Rules

Event-condition-action (ECA) rules allow the system to automatically perform actions in response to
events given that the stated conditions hold. Each ECA rule reads as follows: “when an event occurs, check
the condition, if it holds, execute the action”. ECA rules make the system efficiently adapt while the rules are
stored in a single rule base instead of encoding them in many modules, thus improving the maintainability and
the manageability of the system. ECA rules have been widely used in the literature, including self-adaptive
systems [32, 33, 34|, databases [35, 36], business process modeling and analysis tools [37, 38, 39], and web
technologies [40, 41].

Since the identified LP architecture will be stored and monitored in resource-constrained mobile devices
in terms of a set of ECA rules, it is significantly important for such rules to be efficient in a way that would
minimize the number of required ECA rules. A naive approach for generating ECA rules that capture an LP
architecture of n rows and m columns would result in n x m ECA rules, where each cell is captured by an
ECA rule. However, such an approach results in the generation of a large number of rules, many of which
are very similar.

DELDROID generates ECA rules more efficiently. As for ICC ECA rules, i.e., the rules that capture the
explicit and implicit communication domains of an LP architecture, if a component has no legitimate reason
to communicate with any component of another app, DELDROID generates only one ECA rule that entirely
prevents that particular component from communicating with that app. This, in turn, reduces the number of
generated ECA rules from the number of components in the target app to merely one ECA rule. Similarly, if
no component of an app is allowed to communicate with any component of another app, DELDROID generates
just one ECA rule that prevents all components of the former app from communicating with components
of the latter app. Generating ECA rules in this way not only reduces the number of generated rules but
also makes the search process for an ECA rule governing a specific component or a specific app faster. Once
DELDROID finds a coarse-grained ECA rule, i.e., a rule that restricts one app from communicating with
another app, DELDROID stops the search and executes the action specified in that ECA rule.

In the case of resource access ECA rules, i.e., ECA rules that capture the Permission Granted Domain,
DELDROID generates resource access ECA rules only for the granted permissions, i.e., ECA rules that capture
only the “1”s in the Permission Granted Domain. It is worth mentioning that, in Android, it is possible for
one permission to protect more than one system resource. In such a case, DELDROID generates more than one
resource access ECA rule per granted permission. For example, the android.permission.READ PHONE_STATE
permission is required to request CARRIER_CONFIG_SERVICE in order to access the carrier configuration values,
and the same permission is required to request the TELEPHONY_SERVICE to access the TelephonyManager,
which provides access to information about the telephony services on a device.

4.6.1. ICC Monitor

This component extends the capabilities of the Android framework by intercepting each ICC transaction
passed to the ActivityManager—an Android component that administers the ICC transactions—to check
whether the transaction is allowed to run or not. Specifically, DELDROID extends the ActivityManager to
send the ICC transaction’s information to the ICC Monitor component and executes the action provided by
ICC Monitor. In case an ICC is prevented, ICC Monitor records the transaction for further inspection by a
security analyst.

For example, the following ECA rule is produced, from the LP architecture shown in Figure 4, to prevent
the LevelUp component from communicating with the Sender component:

Event: i € ICC occurs
Condition: i.sender Pkg = FunGame A i.senderComp = LevelUp A i.receiver Pkg = Messaging
Action: prevent

14

465

470

475

480

485

490

495

500

At runtime, when LevelUp tries to communicate with Sender, line (17) in Listing 2, the Android frame-
work passes the request to the ActivityManager which sends the ICC transaction’s information (sender,
receiver, and the Intent’s attributes) to the ICC' Monitor component. After that, ICC Monitor vets the ICC
transaction in light of the stored ECA rules. If a matched ECA rule is found, ICC Monitor prompts the
ActivityManager to execute the associated action (prevent the communication in this particular example).

4.6.2. Resource Monitor

As we explained in Section 2.1, components need permissions to access various system resources. Such
system resources are accessed via the Contert component, an Android component that holds information
about the application environment and controls access to resources. DELDROID modifies Context to extract
information from each resource access request, and passes it to the Resource Monitor to check whether the
requester is allowed to access the requested service.

As a concrete example, the following ECA rule is produced, from the LP architecture shown in Figure 4,
to grant ListMsgs permission to access the Bluetooth service:

Event: resourceaccessrequest
Condition: requester = ListMsgs A service = Context.BLUETOOTH_SERVICE
Action: allow

When the ListMsgs component performs Bluetooth management tasks such as initiating device discovery
or listing all paired devices, it tries to obtain a handle to the BluetoothManager service. The Android
framework dispatches the request to the Context, which then sends the request to the Resource Monitor.
Upon receiving the resource access request, Resource Monitor checks it against the ECA rules and performs
the corresponding action (allows the request in this particular case).

As another example, when the LevelUp component executes the dynamically loaded code shown in List-
ing 3, it tries to obtain a handle to the LocationManager service (recall line 4 of Listing 3). The Android
framework dispatches the request to the Context, which then sends the request to the Resource Monitor.
Since there is no ECA rule that grants LevelUp access to the device’s location, Resource Monitor prevents
LevelUp from obtaining a handle to the Location Manager service.

5. Implementation

DELDROID is a Java application that takes as input an Android system consisting of a set of APK files.
As described earlier, the architecture extraction capability was built on top of several prior static program
analysis tools [3, 25, 26]. Each tool provides specific information that DELDROID uses to tailor the LP
architecture. After that, DELDROID conducts a security analysis on the established LP architecture and
records the security vulnerabilities that are found. The derived LP architecture and results of analysis are
stored in a comma separated values (CSV) file. The implementation of DELDROID consists of more than
4,000 lines of code (LOC), not counting the existing tools on which it relies.

The enforcement mechanism in DELDROID is implemented on top of the Android Open-Source Project
(AOSP) [42] version 6 (Marshmallow), API level 23. AOSP is the open-source repository for Android system
maintained by Google. The Privilege Manager Layer introduced a new package in the Android runtime
environment. We also modified other components such as ActivityManager and ContextWrapper. The total
framework changes account for approximately 400 LOC. The changes were made such that any existing
Android app could continue to run in our version of Android runtime environment without modification.
Moreover, our modifications to the Android version 6 are not restricted to this version and we expect that
they can be applied to the other versions of the framework without technical difficulties.

We built the modified AOSP on an Ubuntu server with a 64-core AMD processor and 264GB RAM.
It took about an hour to complete the build process. We have successfully installed the modified Android
system image on a Nexus 5X phone and on the Android emulator using Android Fastboot tools [43] and
Android debug bridge [44].

15

505

510

515

520

525

530

(b)

Malicious
23%
Benign Contagio Malgenome
38% 31% 36%
Vulnerable AndroTotal
39% 33%

Figure 6: (a) Distribution of the entire experimental subjects across various repositories from which the subject apps are
downloaded; (b) distribution of apps from various malware repositories that were used in our experiments.

6. Experimental Evaluation

This section presents the experimental evaluation of DELDROID. Our evaluation addresses the following
research questions:

e RQ1. How effective is DELDROID in reducing the attack surface of Android systems and aiding the
architect with understanding their security posture?

e RQ2. How well does DELDROID perform in practice? Can it detect and prevent security attacks in
real-world apps?

e RQ3. How efficient is DELDROID in generating ECA rules that capture the determined LP architec-
ture?

e RQ4. What is the performance of DELDROID?

We constructed datasets of benign, malicious, and vulnerable Android apps as shown in Figure 6(a). The
benign dataset is a collection of 370 apps, randomly selected from the Google Play store. To prevent any bias
in the results, we did not use any particular criteria, such as high ranking or high downloads, in selection of
the Google Play apps. Therefore, these apps vary in terms of their 5-star ranking, as depicted in Figure 7 (a),
as well as their number of downloads, as depicted in Figure 7 (b). The second dataset is a collection of 389
vulnerable apps identified in prior literature [45]. Finally, the malware dataset contains 225 apps obtained
from various malware repositories [46, 47, 48]. Figure 6(b) illustrates the distribution of apps from various
malware repositories that were used in our experiments.

6.1. RQ1. Attack Surface Reduction

By reducing the privileges granted to software components, DELDROID helps the security architects (or
automated analysis tools) to focus their analysis effort on a narrowed set of interactions. To evaluate the
degree to which DELDROID reduces the attack surface of Android systems, we ran DELDROID on 10 bundles
of apps, each containing 30 non-overlapping apps. We chose this number of apps, since it represents the
average number of apps a smartphone user regularly uses per month, as shown in a recent study [49]. Each
bundle contains apps randomly selected from the app datasets as follows: 24 benign apps, 3 vulnerable apps,
and 3 malicious apps. Figure 8 depicts a histogram of the Google Play categories of the benign apps.

Table 2 shows the structure of the bundles, including the number of entries in the Communication Do-
mains, i.e., the Explicit Communication Domain and the Implicit Communication Domain, as well as the
Permission Granted Domain for both the Original and LP architectures. To measure the degree to which
DELDROID reduces the attack surface of Android systems, we used Equation 1. For example, in bundle 1, the

16

(a) (b)

4-5

61.1%

14%
10K - 50K

100K - 1M
50K - 100K

Figure 7: The popularity of the Google Play apps in terms of their (a) 5-star ranking and (b) number of downloads as of June
of 2018.

Table 2: Summary of app bundles, and Original and LP architecture obtained from running DELDROID over the bundles.

Bundle Components . Tntent ” In.tent . (.]ommunication Domz%ins F’e.rrrlissiorl Granted DoTnain
Explicit Implicit Filter | Original LP Reduction (%) | Original LP Reduction (%)

Bundle 1 306 344 79 176 29,031 42 99.86 1,642 178 89.16
Bundle 2 432 468 379 287 78,237 625 99.20 2,954 143 95.16
Bundle 3 422 574 212 200 65,709 173 99.74 2,510 109 95.66
Bundle 4 449 348 370 511 80,372 205 99.74 4,234 146 96.55
Bundle 5 353 304 277 292 56,868 345 99.39 1,536 81 94.73
Bundle 6 541 890 476 4919 85,556 661 99.23 4,461 329 92.63
Bundle 7 562 412 38 324 82,863 137 99.83 1,577 109 93.09
Bundle 8 362 417 267 242 50,208 250 99.50 1,946 92 95.27
Bundle 9 265 180 98 166 25,817 129 99.50 1,568 57 96.36
Bundle 10 421 322 1231 185 50,001 74 99.85 2,386 127 94.68
Average 411.3 425.9 342.7 730.2 | 60,466.2 264.1 99.58 2,481.4 1371 94.33
Avg. (per app) 13.7 14.2 114 24.3 2,015.5 8.8 99.56 82.7 4.6 94.47

17

535

540

545

550

555

=Y
wu

45

B
o

w
wn

w
o

Frequency
N
(V)]

26

N
o

22

18

[
w

15 15

14

10 2 | 13
10

Google Play Category

Figure 8: Histogram of Google Play categories.

LP architecture contains 42 inter-app communication (IAC) and 178 resource access permissions, whereas
the Original architecture contains 29,031 TAC and 1,642 resource access privileges. On average, across all
bundles, 99.56% of TAC and 94.47% of resource access privileges are reduced.

Table 3 shows the number of potential ICC attacks in both the Original and LP architectures. Recall
from Section 4.4 that DELDROID analyzes both the Original and LP architectures and pinpoints potential
ICC attacks including privilege escalations, unauthorized Intent receipts, and Intent spoofing attacks. For
example, in bundle 5, the Original architecture contains 26,914 possible privilege escalation attacks, whereas
the LP architecture contains only 2 such attacks that need investigation. On average, an analyst needs
to verify 14 potential privilege escalation security issues for a bundle of 30 apps using our approach. In
fact, in the case of bundles 1 and 4, all potential privilege escalation attacks are already resolved with
the LP architecture, eliminating the need for further investigation. Similar patterns can be observed for
unauthorized Intent receipt and Intent spoofing attacks. For example, in bundle 10, the Original architecture
contains 2,015 potential Intent spoofing and 214 potential unauthorized Intent receipt ICC attacks, whereas
the LP architecture contains only 1 potential Intent spoofing and 3 potential unauthorized Intent receipt
attacks that need investigation. On average, an analyst needs to investigate 28 potential Intent spoofing and
8 potential unauthorized Intent receipt for a bundle of 30 apps using our approach. Note that an analyst
needs to verify less than 2 security issues per app on average. Even in some cases, such as in bundle 1, all
potential ICC attacks are already resolved with the LP architecture, entirely eliminating the need for further
investigation.

The results confirm the effectiveness of our approach in reducing the attack surface and hence reducing
the effort required to assess the security properties of an Android system.

6.2. RQ2. Attack Detection and Prevention

To evaluate DELDROID’s ability to detect and prevent security attacks, we used 54 malicious and vul-
nerable open-source apps for which the steps and inputs required to create the attacks were known. To
validate the attacks, we manually reviewed the code and affirmed the existence of security issues. In total,
the resulting combination of apps had 18 privilege escalation and 24 dynamically loaded ICC attacks. We

18

560

565

570

575

Table 3: Summary of ICC attack surfaces in both Original and LP architectures across app bundles.

Privilege Escalation Intent Spoofing Unauthorized Intent Receipt

Bundle Original LP Red(;(():)t ion Original LP Rec};s)t ion Original LP Red(l(l%(j; ion
Bundle 1 25,944 0 100.00 2,242 0 100.00 297 0 100.00
Bundle 2 35,601 110 99.69 1,980 65 96.72 204 21 89.71
Bundle 3 22,721 2 99.99 3,132 0 100.00 299 7 97.66
Bundle 4 33,551 0 100.00 4,020 57 98.58 599 4 99.33
Bundle 5 26,914 2 99.99 12,402 24 99.81 1,646 7 99.57
Bundle 6 24,745 2 99.99 1,416 17 98.80 33 24 27.27
Bundle 7 15,503 1 99.99 1,077 1 99.91 78 0 100.00
Bundle 8 27,663 14 99.95 6,283 115 98.17 297 4 98.65
Bundle 9 19,428 8 99.96 4,638 4 99.91 371 10 97.30
Bundle 10 16,953 3 99.98 2,015 1 99.95 214 3 98.60
Average 24,902.3 14.2 99.94 3,920.5 28.4 99.28 403.8 8 98.02
Avg. (per app) 498.0 0.3 99.94 130.7 0.9 99.28 13.5 0.3 98.02

Table 4: The ability of DELDROID to detect ICC security attacks.

Actual ICC | Malicious ICC Malicious ICC Benign ICC Precicion (%) Recall (%)
attacks detected (TP) | not detected (FP) | detected (FP) | TP / (TP + FN) | TP / (TP + FP)

18 \ 18 \ 0 \ 1 \ 94.74 \ 100.00

Table 5: The ability of DELDROID to prevent ICC security attacks at runtime.

Actual ICC | Malicious ICC Malicious ICC Benign ICC Precicion (%) Recall (%)

attacks prevented (TP) | not prevented (FP) | prevented (FP) | TP / (TP 4+ FN) | TP / (TP + FP)

42 42 \ 0 \ 1 \ 97.67 \ 100.00

created a bundle of these 54 apps, ran DELDROID to obtain and analyze the LP architecture, and deployed
the apps on our version of Android runtime environment. We then exercised the apps to create the attacks
and determined whether DELDROID was able to prevent them. We report on the precision and recall of both
detection and prevention. The precision shows the ability of DELDROID to detect/prevent system transac-
tions that are actually malicious. On the other hand, the recall shows the ratio of the detected/prevented
security attacks to all known attacks in the system.

As shown in Table 4, DELDROID marked 19 inter-app communications as potential privilege escalation
attacks, correctly detecting 18 attacks, i.e., true positive. Our manual inspection of the behavior that was
wrongly classified as an attack showed that this was due to the shortcomings of the underlying static program
analysis tools used in DELDROID. In particular, since the analysis tools relied upon in our work are not path-
sensitive, DELDROID is bound to over-approximate the behavior of Android architectures, sometimes leading
to such false positive outcomes. Overall, DELDROID achieves 94.74% precision and 100% recall in detection
of privilege escalation attacks. Given DELDROID’s reliance on static program analyses, it is unable to detect
security attacks launched via dynamically loaded code. In spite of that, as shown next, our experiments show
that such attacks are effectively thwarted by an LP architecture.

To evaluate DELDROID’s ability to thwart security attacks, we configured DELDROID to prevent all 19
detected privilege escalation attacks during the analysis step. We then manually exercised all known privi-
lege escalation (19 cases) and dynamically loaded ICC (24 cases) attacks. As shown in Table 5, DELDROID

19

580

585

590

595

600

Table 6: Comparing the number of generated ECA rules between DELDROID and the Naive approach.

Bundle Communication ECA rules Pemission granted ECA rules
Naive ~ DELDROID Improvement (%) | Naive DELDROID Improvement (%)

Bundle 1 | 93,636 1,035 98.89 1,917 211 88.99
Bundle 2 | 186,624 1,534 99.18 3,573 257 92.81
Bundle 3 | 178,084 893 99.50 3,094 115 96.28
Bundle 4 | 201,601 1,416 99.30 5,556 161 97.10
Bundle 5 | 124,609 1,238 99.01 1,840 99 94.62
Bundle 6 | 292,681 1,687 99.42 5,593 344 93.85
Bundle 7 | 315,844 1,027 99.67 2,046 151 92.62
Bundle 8 | 131,044 1,039 99.21 2,307 92 96.01
Bundle 9 70,225 1,051 98.50 1,964 69 96.49
Bundle 10 | 177,241 1,069 99.40 2,794 172 93.84
Average | 177,159 1,199 99.21 3,068 167.10 94.26

Table 7: DELDROID’s offline performance.
Recovery LP Determination Analysis ECA Rules

(min) (sec) (sec) (sec)
Average 69.5 0.787 0.001 0.008
Std Dev 2.7 0.299 0.001 0.002

was able to prevent all of the attacks from succeeding by intercepting either the ICC or resource access
calls. However, one of the prevented ICCs was a legitimate communication that corresponded to the erro-
neously detected privilege escalation attack. Overall, DELDROID achieves 97.76% precision and 100% recall
in prevention of security attacks.

6.3. RQS. Efficiently Generating ECA Rules

Table 6 compares the numbers of generated ECA rules by DELDROID and the Naive approach (recall
Section 4.6). For example, in bundle 1, the Naive approach would generate 93,636 ICC ECA rules, whereas
DELDROID generates 1,035 ICC ECA rules showing more than 98% reduction in the number of rules that
need to be monitored. On average, for an Android system with 30 apps, the Naive approach would generate
177,159 ICC ECA rules, whereas DELDROID generates 1,199 ICC ECA rules to capture the communication
domains in the LP architecture. Similarly, the Naive approach would generate 1,917 resource access ECA
rules for bundle 1, whereas DELDROID generates 211 resource access ECA rules for the same bundle. On
average, for an Android system with 30 apps, the Naive approach would generate 3,068 resource access
ECA rules, whereas DELDROID generates 167 resource access ECA rules to capture the Permission Granted
domain.

The results presented in Table 6 confirm the efficiency of DELDROID in generating ECA rules to capture an
LP architecture and hence reducing the time required to validate components’ communications and resource
access requests at runtime.

6.4. RQ4. Performance

We measured the execution time of running DELDROID on the 10 bundles of apps shown in Table 2. These
experiments were conducted on a MacBook Pro with 2.2 GHz Intel Core i7 processor and 16 GB DDR3 RAM.
We repeated our experiments 33 times to achieve a 95% confidence interval. Table 7 summarizes the results.
On average, for an Android system with 30 apps, it takes less than 70 minutes to execute DELDROID and

20

605

610

615

620

625

Time (Second)

N WV VN o A o 4 da. - ™ Sy " ¥ — s o a A AN~

) -
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196

ICC Transactions

ICCtime M Checking time

Figure 9: The performance overhead for validating ICC transactions.

obtain the ECA rules, but the great majority of this time is spent in the one-time effort of recovering the
architecture of an Android system from its implementation artifacts. A less precise but more efficient forms
of program analysis could be substituted for architecture recovery, at the expense of a higher rate of false
positives.

To evaluate the runtime overhead of DELDROID, we measured the time it takes to check the ECA rules for
an intercepted ICC transaction on a Nexus 5X phone. To that end, we created a script that sends 200 requests
(e.g., start an app, click a button) to an Android system, simulating its use. Each request causes the system
to perform an ICC of some sort. We found that, on average, the performance overhead is 6.45 milliseconds
with 5.35 milliseconds standard deviation, which accounts for 3.95% performance overhead as depicted in
Figure 9. Most users cannot perceive delays of this magnitude, per Android development guidelines [50], and
thus, we believe DELDROID poses an acceptable overhead.

6.5. Threats to Validity

We provide an overview of the threats to validity of our experimental setup and the evaluation results as
well as the actions we have taken to mitigate these threats.

One threat to validity of our work is whether the obtained results can be generalized to apps outside
our study. To mitigate this threat, we derived benign, vulnerable, and malicious apps from diverse sources.
Benign apps vary across application domains (see Figure 8), application popularity (see Figure 7), and in
terms of app size [51]. For example, Gemmy Lands app is one of the included apps in our dataset. The size
of this app is 57MB and it has 10,000,000 downloads with 4.5 star-rating [52]. The vulnerable apps in our
study have been discovered and verified in a previous study [45]. Similarly, our malicious apps are drawn
from repositories containing apps manually labeled as malicious by security experts.

A threat regarding RQ4 is the selection of Nexus 5X phone to measure the performance of DELDROID at
runtime. The runtime performance using another Android device might be different than the reported one.
However, since this device has been released in 2015, it is not the most advanced Android device. Therefore,
we believe that the reported performance would be similar or even better on the currently available Android
devices in the market.

Finally, the reported accuracy of DELDROID, in terms of precision and recall, depends on the quality of
our experimental dataset, e.g., whether vulnerabilities and attacks are representive of true vulnerabilities and
attacks in real world. To reduce this threat and to also challenge DELDROID, we did not use benchmarks that

21

630

635

640

645

650

655

660

665

670

675

contain hand-crafted apps such as DroidBench [53] or ICC-Bench [54], instead we used real-world benign and
malicious Android apps with security attacks implemented by experts from outside of our research group.

7. Limitations of DELDroid

There are of course limitations in our approach. Despite numerous benefits of giving the security architect
the ability to adjust the architecture, including the ability to grant/revoke privileges to/from the apps based
on their corresponding trust level, such manual adjustments are subject to unintentional errors. For instance,
the architect’s revision of the system may result in granting unnecessary permissions, which in turn breaks
the principle of least privilege, or revoking a necessary permission, which may lead to an app malfunction.
To reduce the risk of such an error-prone human intervention, we recommend limiting it to situations where
the adjustments are necessary; recall from Section 2 that the manual adjustment feature is entirely optional
in DELDROID and the enforcement process can exclusively rely on automatically determined least-privilege
architecture.

Although DELDROID is compatible with the existing apps, the user needs to install our modified version
of Android on a mobile device, which potentially voids the manufacturer warranty. Conceivably, DELDROID
could be adopted in future versions of Android or by Original Equipment Manufacturer companies, e.g.,
Samsung and Huawei, for installation on devices.

Another limitation of our approach is the possible false positives our approach may produce. These
possible false positives are due to two facts. The first fact is that the current prototype implementation
of DELDROID does not support analysis of dynamically loaded code. We believe a fruitful avenue of future
research is to complement DELDROID with dynamic analysis techniques that can check the integrity of loaded
code [2] and hence reducing the possible false positives.

The second fact is that the static analysis tools [3, 25, 53] that DELDROID relies upon are not (1) path-
sensitive and (2) they cannot analyze obfuscated code nor ICC calls made by native binaries within an
Android app leading to possible false positives. Our future work involves integration of dynamic analysis
techniques as well as analysis of native binaries to effectively support recovery of the architecture from, and
enforcing policies on, those aspects of the system.

This paper introduces a technique that broadly supports detection and mitigation of a wide range of ICC-
based vulnerabilities [1, 22]. Android apps, however, can communicate through other types of mechanisms,
including remote procedure calls. While this paper provides substantial supporting evidence for addressing
permission-induced vulnerabilities that arise due to the Intent-based event messaging—shown to be the
primary communication mechanism in Android—it would be interesting to see how DELDROID fares when
applied to other types of vulnerabilities, which forms a thrust of our future work.

8. Related Work

A large body of research has focused on Android security. Here, we provide a discussion of the related
efforts in light of our research.

Much work focuses on performing program analysis over Android applications for security [55]. Epic [56]
is a static analysis technique for detecting ICC attacks in Android apps. CHEX [57] is a static analysis
tool for detecting component hijacking vulnerabilities. FlowDroid [53] is another precise static taint analysis
approach for Android apps. Chin et al. [1] discussed several ICC attacks that can be achieved through
receiving an Intent by unauthorized receipt or spoofing an Intent, and they have provided ComDroid, a tool
that is meant to be used by developers to analyze their apps before releasing them. Felt et al. [22] studied
permission re-delegation security attacks (aka, privilege escalation) in mobile systems and web browsers; they
showed the wide spread of this attack and provided an IPC inspection mechanism to prevent such attacks.
ScanDroid [58] is a data-centric static analysis tool for reasoning about the data flow in Android apps; it
creates security specifications from the app’s manifest file. These studies focus on a single app or require the
source code for their analysis. Moreover, all of these studies are architecture-agnostic.

Numerous techniques have been developed for ICC analysis [3, 45, 59, 60]. DidFail [59] introduces an
approach for tracking data flows between Android components. IeccTA, similarly, leverages an Intent resolu-
tion analysis to identify inter-component privacy leaks [45]. Amandroid [60] is a taint static analysis tool for
detecting Intent-based data leak and data injection. Along the same line, COVERT [3] presents an approach

22

680

685

690

695

700

705

710

715

720

725

for compositional analysis of Android inter-app vulnerabilities. More recently, LetterBomb [4] presents an
approach for automatic exploit generation for vulnerabilities exposed in an Android app’s Intent-based inter-
face. While these research efforts are concerned with the analysis of information/permission leakage between
Android apps, they do not really address the problem that we are addressing, namely the automated deter-
mination and dynamic enforcement of least-privilege architecture in Android. DELDROID, to our knowledge,
is the first tool with this capability.

Others have focused on enforcing policies at runtime [61, 62, 63, 64, 65, 66]. SEPAR [61] is a recent
work for automatic synthesis and enforcement of security policies allowing the end-users to safeguard the apps
installed on their devices from ICC attacks. SEPAR’s policy enforcement relies on the Xposed framework [67]
that requires root access to the device. Further, unlike our approach, SEPAR cannot prevent malicious
hidden behaviors. Kirin [64] extends the application installer component of Android’s middleware to check
the permissions requested by applications against a set of security rules. These predefined rules are aimed
to prevent unsafe combination of permissions that may lead to insecure data flows. Kynoid [63] performs
a dynamic taint analysis over a modified version of Dalvik VM. DeepDroid [65] presents an enforcement
extensions based on dynamic memory instrumentation of system processes. ASM (Android Security Modules)
[66] is a framework that provides a programmable interfaces for defining reference monitors for Android similar
to the proposed reference monitors for Linux [68] and TrustedBSD [69]. These research efforts share with ours
the emphasis on dynamic enforcement of security policies. Our work differs fundamentally in its emphasis
on both providing an architectural solution and allowing a security architect to adjust the privileges at the
architectural level.

The importance of limiting the privileges assigned to Android components have also been discussed in
the literature [9, 10, 28, 70, 71, 72, 73, 74, 75]. Kantola et al.[28] described heuristics to allow the Android
framework distinguish between inter-app and intra-app communications and hence detect any unintentional
inter-app communication. Unlike DELDROID, the proposed heuristics are not totally backward compatible
with the existing apps and they require modifications by the apps’ developers. Shehab and AlJarrah [70]
proposed a policy-based approach for controling the access of different pages in web-based Android apps
to mitigate potential attacks. However, unlike DELDROID, their approach requires source code and it is
limited only to web-based multi-page apps generated by the Apache Cordova framework [76]. Wang et al. [9]
proposed Compac, an approach for reducing the permissions assigned for third-party components in an app.
Similar to Compac [9], FLEXDDROID [10] is an Android security model and isolation mechanism for limiting
the permissions granted to third-party libraries. Dietz et al. [73] presented Quire, an approach that adds two
security mechanisms into Android to prevent privilege escalation attack. The first security mechanism tracks
the inter-process communications (IPCs) in a device to either allow an app to run with reduced privilege of
its caller or with its full privileges by acting explicitly on its own behalf. The second security mechanism
allows an app to create a signed statement that can be verified by any app on the same phone. Shekhar et
al. developed AdSplit [74] on top of Quire. AdSplit is an approach that runs an advertising library and its
hosting app in separate processes with different user identifiers. This separation eliminate the need for an
app and its advertising library to share the same permissions. Similar to AdSplit, AdDroid [75] introduces
advertising API and corresponding advertising permissions as part of the Android platform. AdDroid allows
for permission separation between advertising libraries and their hosting apps. Unlike DELDROID, these
approaches do not control interactions among components and they also require developer intervention to
modify their apps, significantly hindering their adoption in practice.

Schmerl et al. [77] describe an architectural style for Android in ACME [78] that, among other capabilities,
supports analysis of certain security properties. Unlike DELDROID, their work does not provide a mechanism
for determining the LP architecture, nor does it provide any runtime enforcement mechanism.

Finally, the importance of enforcing the principle of least privilege was introduced in the seminal work
of Saltzer et al. [79], and is well recognized by many researchers. Notably, Scandariato et al. [80] lays the
formal definition of the least privilege violation and provides a technique to identify such violation in UML
models. To the best of our knowledge, DELDROID is the first solution capable of automatically recovering
the architecture of an Android system to derive and enforce an LP variant of it.

23

730

735

740

745

750

755

760

765

770

9. Conclusion

Many autonomous and smart software systems, particularly those intended for execution in mobile and
IoT settings, are developed and deployed on top of Android. As such systems permeate every facet of our
society, their security grows in prominence. This paper presents DELDROID, an automated approach for
determining the least-privilege architecture for an Android system and its enforcement at runtime. The
least-privilege architecture narrows the attack surface of an Android system, making it easier to evaluate its
security posture, and thwarts certain class of security attacks.

DELDROID utilizes static analysis techniques to automatically extract the inter-component communication
and resource-access privileges each component needs to fulfill its task. The determined LP architecture is
elegantly represented as an MDM matrix. This representation further allows a security architect to adjust the
identified LP architecture as needed to establish the proper privileges for each component. DELDROID, finally,
enforces automatically obtained/expert-supplied LP architecture at runtime, governing privileges obtained
by each component as prescribed by the architecture.

Our experiments on hundreds of real-world apps show between 94% to 99% reduction of attack surface
and the ability to thwart security attacks exploiting the over-privileged nature of Android with a recall of
100% and a precision of 97%.

Android apps increasingly use both dynamically loaded code and native binaries. Being able to model
those aspects of the apps in MDMs and building related security rules for their associated vulnerabilities,
along with modeling the interactions among managed and native code in MDMs can provide further attack
detection and prevention. At the same time, it may complicate analyses and in turn may lead to scalability
issues. Such challenges constitute interesting avenues of future work.

Our research artifacts, including tools and evaluation data, are available publicly [51].

10. Acknowledgment

This work was supported in part by awards CCF-1755890, CCF-1618132 and CCF-1252644 from the
National Science Foundation, W911NF-09-1-0273 from the Army Research Office, HSHQDC-14-C-B0040
from the Department of Homeland Security, and FA95501610030 from the Air Force Office of Scientific
Research.

References

[1] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, Analyzing inter-application communication in Android,
in: International Conference on Mobile Systems, Applications, and Services, ACM, Bethesda, Maryland,
2011.

[2] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, G. Vigna, Execute this! analyzing unsafe and
malicious dynamic code loading in Android applications, in: NDSS, San Diego, California, 2014.

[3] H. Bagheri, A. Sadeghi, J. Garcia, S. Malek, Covert: Compositional analysis of Android inter-app
permission leakage, IEEE Transactions on Software Engineering 41 (9) (2015) 866-886.

[4] J. Garcia, M. Hammad, N. Ghorbani, S. Malek, Automatic generation of inter-component communica-
tion exploits for Android applications, in: Proceedings of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2017),
ACM, PADERBORN, GERMANY, 2017, pp. 661-671.

[5] H. Bagheri, J. Wang, J. Aerts, S. Malek, Efficient, evolutionary security analysis of interacting android
apps, in: Proceedings of the 34th IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2018, pp. 386—397.

[6] P.Pearce, A. P. Felt, G. Nunez, D. Wagner, Addroid: Privilege separation for applications and advertisers
in Android, in: Proceedings of the 7th ACM Symposium on Information, Computer and Communications
Security, ACM, 2012, pp. 71-72.

24

775

780

785

790

795

800

805

810

815

[7]

[10]

[11]

[12]

[14]
[15]

[16]

[24]

S. Shekhar, M. Dietz, D. S. Wallach, AdSplit: Separating Smartphone Advertising from Applications,
in: T. Kohno (Ed.), Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, August
8-10, 2012, SEC’12, USENIX Association, Bellevue, WA, 2012, pp. 553-567.

M. Sun, G. Tan, NativeGuard: protecting Android applications from third-party native libraries, in:
G. Acs, A. Martin, I. Martinovic, C. Castelluccia, P. Traynor (Eds.), 7th ACM Conference on Security
& Privacy in Wireless and Mobile Networks, WiSec’'14, Oxford, United Kingdom, July 23-25, 2014,
WISEC’14, ACM, 2014, pp. 165-176.

Y. Wang, S. Hariharan, C. Zhao, J. Liu, W. Du, Compac: Enforce component-level access control in
Android, in: Fourth ACM Conference on Data and Application Security and Privacy (CODASPY), San
Antonio, TX, 2014.

J. Seo, D. Kim, D. Cho, I. Shin, T. Kim, Flexdroid: Enforcing in-app privilege separation in android.,
in: The Network and Distributed System Security Symposium (NDSS), San Diego, CA, 2016.

R. N. Taylor, N. Medvidovic, E. Dashoty, Software architecture: foundations, theory, and practice, Wiley
Publishing, 2009.

U. Lindemann, M. Maurer, Facing multi-domain complexity in product development, in: The future of
product development, Springer, Berlin, Germany, 2007.

M. Hammad, H. Bagheri, S. Malek, Determination and Enforcement of Least-Privilege Architecture
in Android, in: IEEE International Conference on Software Architecture (ICSA), IEEE, Gothenburg,
Sweden, 2017, pp. 59-68.

Smartphone os market share, 2017 g1, http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

Number of available apps in the google play store, https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

S. Bugiel, S. Heuser, A.-R. Sadeghi, Flexible and Fine-grained Mandatory Access Control on Android
for Diverse Security and Privacy Policies, in: USENIX Security Symposium, Washington DC, 2013.

S. Smalley, R. Craig, Security Enhanced (SE) Android: Bringing Flexible MAC to Android, in: NDSS,
The Internet Society, San Diego, California, 2013.

W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, T. Tanaka, A Small But Non-negligible Flaw in the
Android Permission Scheme, in: Int’l Symp. on Policies for Distributed Systems and Networks, Fairfax,
VA, 2010. doi:10.1109/POLICY.2010.11.

Z. Fang, W. Han, Y. Li, Permission based Android security: Issues and countermeasures, Computers &
Security 43 (2014) 205-218. doi:10.1016/j.cose.2014.02.007.

A. Egners, U. Meyer, B. Marschollek, Messing with Android’s permission model, in: Int’l Conf. on Trust,
Security and Privacy in Computing and Communications, Liverpool, United Kingdom, 2012.

L. Davi, A. Dmitrienko, A.-R. Sadeghi, M. Winandy, Privilege escalation attacks on Android, in: Int’l
Conf. on Information Security, Boca Raton, FL, 2010.

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, E. Chin, Permission re-delegation: Attacks and defenses.,
in: USENIX Security Symposium, San Francisco, California, 2011.

K. Coogan, S. Debray, T. Kaochar, G. Townsend, Automatic static unpacking of malware binaries, in:
Working Conf. on Reverse Engineering, Washington, DC, 2009.
URL http://dx.doi.org/10.1109/WCRE.2009.24

Apktool: A tool for reverse engineering Android apk files, https://ibotpeaches.github.io/Apktool/.

25

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://dx.doi.org/10.1109/POLICY.2010.11
http://dx.doi.org/10.1016/j.cose.2014.02.007
http://dx.doi.org/10.1109/WCRE.2009.24
http://dx.doi.org/10.1109/WCRE.2009.24
https://ibotpeaches.github.io/Apktool/

820

825

830

835

840

845

850

855

[25]

[42]

D. Octeau, D. Luchaup, M. Dering, S. Jha, P. McDaniel, Composite constant propagation: Application
to Android inter-component communication analysis, in: Int’l Conf. on Software Engineering, IEEE,
Florence, Italy, 2015.

K. W.Y. Au, Y. F. Zhou, Z. Huang, D. Lie, Pscout: analyzing the Android permission specification, in:
ACM CCS, Raleigh, NC, 2012.

D. V. Steward, The design structure system: A method for managing the design of complex systems,
IEEE transactions on Engineering Management (3) (1981) 71-74.

D. Kantola, E. Chin, W. He, D. Wagner, Reducing attack surfaces for intra-application communication
in android, in: Proceedings of the second ACM workshop on Security and privacy in smartphones and
mobile devices, ACM, Raleigh, NC, 2012, pp. 69-80.

A. P. Felt, D. Wagner, Phishing on mobile devices, in: Web 2.0 security and privacy workshop (W2SP),
IEEE, Oakland, CA, 2011.

H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, N. Medvidovic, Software architectural principles in con-
temporary mobile software: from conception to practice, Journal of Systems and Software 119 (2016)
31-44.

A. Barth, C. Jackson, J. C. Mitchell, Robust defenses for cross-site request forgery, in: Proceedings of
the 15th ACM conference on Computer and communications security, ACM, Alexandria, VA, 2008, pp.
75-88.

M. C. Huebscher, J. A. McCann, A survey of autonomic computing—degrees, models, and applications,
ACM Computing Surveys (CSUR) 40 (3) (2008) 7.

N. Bencomo, S. Hallsteinsen, E. S. De Almeida, A view of the dynamic software product line landscape,
Computer 45 (10) (2012) 36-41.

J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: 2007 Future of Software
Engineering, IEEE Computer Society, 2007, pp. 259-268.

J. Widom, S. Ceri, Active database systems: Triggers and rules for advanced database processing,
Morgan Kaufmann, 1996.

N. W. Paton, O. Diaz, Active rules in database systems, in: Active Rules in Database Systems, Springer,
1999, pp. 3-27.

S. Abiteboul, V. Vianu, B. Fordham, Y. Yesha, Relational transducers for electronic commerce, Journal
of Computer and System Sciences 61 (2) (2000) 236—269.

S. Ceri, P. Fraternali, Designing database applications with objects and rules: the IDEA Methodology,
Addison-Wesley, 1997.

F. Bry, M. Eckert, P.-L. Patranjan, I. Romanenko, Realizing business processes with eca rules: Benefits,
challenges, limits, in: International Workshop on Principles and Practice of Semantic Web Reasoning,
Springer, 2006, pp. 48—62.

G. Papamarkos, A. Poulovassilis, P. T. Wood, Event-condition-action rule languages for the semantic
web, in: Proceedings of the First International Conference on Semantic Web and Databases, Citeseer,
2003, pp. 294-312.

E. Behrends, O. Fritzen, W. May, F. Schenk, Combining eca rules with process algebras for the semantic
web, in: Rules and Rule Markup Languages for the Semantic Web, Second International Conference on,
IEEE, 2006, pp. 29-38.

AOSP: Android open source project, https://source.android.com/.

26

https://source.android.com/

860

865

870

875

880

885

890

895

[43]

[44]
[45]

[51]
[52]

[53]

[60]

[61]

Fastboot: A special diagnostic and engineering protocol for booting Android devices., https://source.
android.com/source/running.html.

Adb: Android debug bridge, https://developer.android.com/studio/command-line/adb.html.

L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau,
P. McDaniel, Iccta: Detecting inter-component privacy leaks in Android apps, in: Int’l Conf. on Software
Engineering, IEEE, Florence, Italy, 2015.

Y. Zhou, X. Jiang, Dissecting Android malware: Characterization and evolution, in: IEEE Symposium
on Security and Privacy, IEEE, San Francisco, California, 2012, pp. 95-109.

Contagio malware repository, http://contagiodump.blogspot.it.

F. Maggi, A. Valdi, S. Zanero, Andrototal: A flexible, scalable toolbox and service for testing mobile
malware detectors, in: Workshop on Security and Privacy in Smartphones and Mobile Devices, Berlin,
Germany, 2013.

So many apps, so much more time for entertainment, http://www.nielsen.com/us/en/insights/
news/2015/so-many-apps-so-much-more-time-for-entertainment.html.

Keeping your app responsive, https://developer.android.com/training/articles/perf-anr.
html,.

DELDroid website, http://www.ics.uci.edu/~seal/projects/deldroid.

Gemmy lands app, https://play.google.com/store/apps/details?id=com.nevosoft.
mylittleplanet.
S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, P. McDaniel,

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps, in: ACM SIGPLAN Conference on Programming Language Design and Implementation, Edin-
burgh, United Kingdom, 2014.

Icc bench, https://github.com/fgwei/ICC-Bench.

A. Sadeghi, H. Bagheri, J. Garcia, S. Malek, A taxonomy and qualitative comparison of program analysis
techniques for security assessment of android software, IEEE Transactions on Software Engineering 43 (6)
(2017) 492-530.

D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, Y. Le Traon, Effective inter-component
communication mapping in Android: An essential step towards holistic security analysis, in: USENIX
Security Symposium, Washington DC, 2013.

L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, Chex: statically vetting Android apps for component hijacking
vulnerabilities, in: conference on Computer and communications security, ACM, New York, NY, 2012.

A. P. Fuchs, A. Chaudhuri, J. S. Foster, Scandroid: Automated security certification of Android, Uni-
versity of Maryland, Tech. Rep. CS-TR-4991.

W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer, Android taint flow analysis for app sets, in: Interna-
tional Workshop on the State of the Art in Java Program Analysis, ACM, Edinburgh, United Kingdom,
2014.

F. Wei, S. Roy, X. Ou, Robby, Amandroid: A precise and general inter-component data flow analysis
framework for security vetting of Android apps, in: ACM CCS, Scottsdale, Arizona, 2014.

H. Bagheri, A. Sadeghi, R. Jabbarvand, S. Malek, Practical, formal synthesis and automatic enforcement
of security policies for android, in: Proceedings of the 46th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, 2016, pp. 514-525.

27

https://source.android.com/source/running.html
https://source.android.com/source/running.html
https://source.android.com/source/running.html
https://developer.android.com/studio/command-line/adb.html
http://contagiodump.blogspot.it
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/training/articles/perf-anr.html
http://www.ics.uci.edu/~seal/projects/deldroid
https://play.google.com/store/apps/details?id=com.nevosoft.mylittleplanet
https://play.google.com/store/apps/details?id=com.nevosoft.mylittleplanet
https://play.google.com/store/apps/details?id=com.nevosoft.mylittleplanet
https://github.com/fgwei/ICC-Bench

900

905

910

915

920

925

930

935

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]

A. Sadeghi, R. J. Behrouz, N. Ghorbani, H. Bagheri, S. Malek, A temporal permission analysis and
enforcement framework for android, in: Proceedings of the 40th International Conference on Software
Engineering (ICSE), 2018, pp. 846-857.

D. Schreckling, J. Kostler, M. Schaff, Kynoid: real-time enforcement of fine-grained, user-defined, and
data-centric security policies for Android, Information Security TR. 17 (3) (2013) 71-80.

W. Enck, M. Ongtang, P. McDaniel, On lightweight mobile phone application certification, in: Proceed-
ings of the 16th ACM conference on Computer and communications security, Chicago, Illinois, 2009.

X. Wang, K. Sun, Y. Wang, J. Jing, Deepdroid: Dynamically enforcing enterprise policy on Android
devices., in: NDSS, San Diego, California, 2015.

S. Heuser, A. Nadkarni, W. Enck, A.-R. Sadeghi, Asm: A programmable interface for extending Android
security, in: USENIX Security Symposium, San Diego, California, 2014.

Xposed module repository, http://repo.xposed.info/.

J. Morris, S. Smalley, G. Kroah-Hartman, Linux security modules: General security support for the
linux kernel, in: USENIX Security Symposium, ACM, Berkeley, CA, 2002.

R. N. Watson, Adding trusted operating system features to freebsd, in: USENIX Technical Conference,
Boston, MA, 2001.

M. Shehab, A. AlJarrah, Reducing attack surface on cordova-based hybrid mobile apps, in: Proceedings
of the 2nd International Workshop on Mobile Development Lifecycle, Portland, Oregon, 2014.

H. Bagheri, E. Kang, S. Malek, D. Jackson, A formal approach for detection of security flaws in the
android permission system, Formal Aspects of Computing 30 (5) (2018) 525-544.

H. Bagheri, E. Kang, S. Malek, D. Jackson, Detection of design flaws in the Android permission protocol
through bounded verification, in: FM 2015: Formal Methods, Vol. 9109 of Lecture Notes in Computer
Science, 2015, pp. 73-89.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, D. S. Wallach, Quire: Lightweight provenance for smart
phone operating systems., in: USENIX Security Symposium, Vol. 31, San Francisco, California, 2011.

S. Shekhar, M. Dietz, D. S. Wallach, Adsplit: Separating smartphone advertising from applications., in:
USENIX Security Symposium, Vol. 2012, Bellevue, WA, 2012.

P. Pearce, A. P. Felt, G. Nunez, D. Wagner, Addroid: Privilege separation for applications and advertisers
in android, in: Proceedings of the 7th ACM Symposium on Information, Computer and Communications
Security, Acm, Seoul, Republic of Korea, 2012, pp. 71-72.

Apache cordova: develop mobile apps with html, css and js, https://cordova.apache.org/.

B. Schmerl, J. Gennari, A. Sadeghi, H. Bagheri, S. Malek, J. Camara, D. Garlan, Architecture mod-
eling and analysis of security in Android systems, in: European Conference on Software Architecture,
Copenhagen, Denmark, 2016.

D. Garlan, R. Monroe, D. Wile, Acme: An architecture description interchange language, in: CASCON
First Decade High Impact Papers, IBM Corp., Toronto, ON, Canada, 2010, pp. 159-173.

J. H. Saltzer, M. D. Schroeder, The protection of information in computer systems, IEEE Computer
Society Press 63 (9) (1975) 1278-1308.

R. Scandariato, K. Buyens, W. Joosen, Automated detection of least privilege violations in software
architectures, in: European Conference on Software Architecture, Copenhagen, Denmark, 2010.

28

http://repo.xposed.info/
https://cordova.apache.org/

Mahmoud Hammad is an Assistant Professor in the Software Engineering De-
partment at Jordan University of Science and Technology. He received his Ph.D.
in Software Engineering from the University of California, Irvine on August of 2018
under the supervision of Dr. Sam Malek. Hammad received his M.S.c. in Software
Engineering from George Mason University in 2013, and his B.S.c. in Computer Sci-
ence from Yarmouk University in 2005. He conducts research in software engineering
with a focus on mobile security, software architecture, and autonomic computing. He
is a member of ACM and ACM SIGSOFT.

Hamid Bagheri is an Assistant Professor in the Department of Computer Science
and Engineering at University of Nebraska-Lincoln. He is a co-director of the ES-
QuaReD Laboratory at UNL. Prior to joining UNL, he was a project scientist at
University of California, Irvine, and also a postdoctoral research fellow at MIT. He
obtained his PhD in Computer Science from University of Virginia, the M.Sc. in
Software Engineering from Sharif University of Technology, and his B.Sc. in Com-
puter Engineering from University of Tehran. His research interest lies in advancing
software reliability through practical software analysis and synthesis.

Sam Malek is an Associate Professor in the School of Information and Computer
Sciences at the University of California Irvine (UCI). He is also Director of the Insti-
tute for Software Research at UCI. He received the B.S. degree in Information and
Computer Science from the University of California, Irvine, and the MS and Ph.D.
degrees in Computer Science from the University of Southern California. His general
research interests are in the field of software engineering, and to date his focus has
spanned the areas of software architecture, autonomic computing, software security,
and software analysis and testing.

29

	Introduction
	Android Background and Research Motivation
	Over-Privileged Resource Access
	Over-Privileged Inter-Component Communication

	Illustrative Example
	Approach
	Step 1: Architectural Elements Extractor
	Step 2: Privilege Analyzer
	Step 3: Privilege Reducer
	Step 4: Security Analyzer
	Step 5: LP Enforcer
	Efficiently Generating ECA Rules
	ICC Monitor
	Resource Monitor

	Implementation
	Experimental Evaluation
	RQ1. Attack Surface Reduction
	RQ2. Attack Detection and Prevention
	RQ3. Efficiently Generating ECA Rules
	RQ4. Performance
	Threats to Validity

	Limitations of DELDroid
	Related Work
	Conclusion
	Acknowledgment

