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Abstract—We consider the problem of jammer placement to
partition a wireless network, where the network nodes and
jammers are located in the real plane. In previous research, we
found optimal and suboptimal jammer placements by reducing
the search space for the jammers to the locations of the network
nodes. In this paper, we develop techniques to find optimal
jammer placements over all possible jammer placements in
the real plane. Our approach finds a set of candidate jammer
locations (CJLs) such that a jammer-placement solution using
the CJLs achieves the minimum possible cardinality among all
possible jammer placements in the real plane. The CJLs can be
used directly with the optimal and fast, suboptimal algorithms
for jammer placement from our previous work.

I. INTRODUCTION

Jamming attacks for wireless networks have been an active
area of research for many years [1]-[6]. The majority of
this work focuses on either jamming single communication
links or considers a flat network structure. Recent work has
considered jammer placement problems that take into account
the topology of a wireless network. Ref. [7] places jammers to
disrupt network traffic flows, while [8] considers node mobility
techniques for jamming of flows and anti-jamming.

In a mesh or ad hoc network, jamming attacks that target
individual links may fail because these networks often have
a self-healing property because ad hoc routing can be used
to reroute traffic around jammed links. Thus, in our previous
research [9]-[12], we have focused on jamming attacks that
can partition a wireless network into multiple disconnected
subnetworks. The problem of jammer placement to partition
a wireless is complicated by several facts. First, connectivity
is a global property of a wireless network that depends on the
topology of the network. Second, the set of wireless links that
will be blocked by a jammer is highly sensitive to the particular
location of that jammer in Euclidean space. Third, the search
space for jammer locations is the entire Euclidean space being
considered — for our work, we have constrained the search to
the real plane. In light of these issues, in our previous work
we have reduced the complexity of finding optimal jammer
placements by constraining the potential jammer locations to
the locations of nodes in the network being jammed. However,
this may make the jammer placement suboptimal and is also
not realistic, as in many real scenarios, the jammer locations
must be kept secret from the communicators.
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In this paper, we develop a technique to find a set of jammer
locations when the jammers can be placed at any locations in
the real plane. Our approach is based on the observation that
it is not necessary to consider many possible jammer locations
because they are either:

« suboptimal, because there are better locations that jam a
proper superset of the jammed nodes if a jammer were
placed at one of those locations, or

o redundant, because there are other jammer locations that
jam the same set of nodes.

The main contributions of this work are: 1) We present two
algorithms that find a set of candidate jammer locations (CJLs)
in the real plane based on finding minimum covering disks in
a depth-first search through the network. 2) We prove that an
optimal jammer placement in the CJLs is also optimal among
all jammer placements in the real plane, in the sense that
no jammer placement in the real plane can achieve a lower
cardinality for the objective of partitioning the network to
some specified degree.

The network model, jammer model, and jammer placement
objective are describe in Section II. In Section III we present
two algorithms for finding the CJLs and prove the optimality
of the CJLs for the jamming problem we consider. In Sec-
tion IV, we review algorithms to find optimal or suboptimal
jammer placements from a discrete set of locations. The
performance of these algorithms is assessed via simulation
results in Section V. The paper is concluded in Section VL.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network and Jammer Model

We consider communication networks in the real plane,
where the network can be modeled as a simple Euclidean
graph G(V, &) with the radios as the vertices V and the
communication link as the edges &€ C V x V. Each v; € V
has an associated location (x;,1;) € R2, and nodes v; and
v; share an edge if radios ¢ and j can communicate directly.
For convenience, we let the Euclidean distance between two
vertices v; and v; with locations (z;, ;) and (z;,y;), respec-
tively, be denoted by dg(v;, v;). This model can be used for a
variety of wireless nonfading and fading channel models. For
the purposes of this paper, we will consider a protocol model,
where (v;,v;) € € if dg(vi,v;) < re.

We consider the effect of the placement of jammers on
the topology of the communication network. Following our



2019 IEEE Wireless Communications and Networking Conference (WCNC)

previous work [9], [10], [12], we also use a protocol model
for the effect of the jammer, such that there is a jamming
radius 7; such that any radio at a distance less than or equal
to r; of a jammer will be unable to communicate with its
neighbors.

B. Jammer Placement Problem Formulation

The jammer placement problem can be formulated as fol-
lows. Let G(V, &) be the network before jammer placement
and let

T ={J1,Ja, ..

be a set of jammer placements when there are N; jammers.
Let H =HOV',E;G,T) be the residual network that is left
after jammers at positions in 7 disrupt the communications in
the original network G. Then H is specified by its remaining
vertices V' and edges £’, which can be determined from

Vi =W{veV|dg(u,v) <rjuec J}
& =E\{(u,v) |ue V\VorveV\V}.

'7JNJ‘J'LER2, izl,?,...,NJ}

For the remaining nodes in ', we aim to find a partition

FK(H) = {Vl,VQ,...,VK - V/}

S.t.0<|Vi|§bi 1=1,..., K
ViﬂVJ‘:@ i F£J
{(u,v) |lueVi,v eV, i #j1NE =0 (u,v) €E.

Here, K is the minimum number of disconnected clusters
and b; bounds the number of nodes in cluster ¢. To simplify
exposition, we bound the residual cluster cardinalities by

v

Let Jo be the jammer placement set with minimum car-
dinality that achieves the specified partitioning goal. The
generalized jammer placement problem is defined on network
G(V, &) and number of cluster K as finding:

Jo =arg min |J|

JER2)NI
st. AL (HOV',E,G6,T))
1%

An example illustrating jammer placement to partition a
network of 100 nodes into two residual subnetworks with
fewer than 50 nodes each is shown in Fig. 1. The example
network is created as a random geometric graph, with an edge
between any two nodes within a fixed communication distance.
A node is jammed if it is within the same communication
distance of a jammer. Two jammers, located at the center
of the large shaded circles, are sufficient to partition this
network. The jammers disrupt communication at all of the
red/circle nodes, and result in two residual partitions, indicated
by blue/square and green/triangle nodes, respectively.
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Fig. 1. Jammer placement to partition 100-node network into two residual
networks with fewer than 50 nodes each. Two jammers (at centers of red
circles) are sufficient. Red nodes are jammed. Solid (dashed) lines indicate
communications link that are not jammed (jammed).

For non-trivial networks, problems related to searching for
edge/vertex separator are usually NP-Complete or A'P-Hard
[13], [14] even with strict constraints on network complex-
ity [15]. We also observed such high computational demand
in our previous research [10]. In the situation where search-
ing for optimal jammer placement solution is not feasible,
we developed a suboptimal searching technique [12] which
offers orders of magnitudes speed improvement with close-to-
optimal solutions.

III. SEARCH FOR CANDIDATE JAMMER LOCATIONS

As previously described in Section I, not every location
in the plane needs to be considered for jammer placement.
This motivates us to find a set of candidate jammer locations
(CJLs), such that a minimum-cardinality jammer placement
over the CJLs will have the same cardinality as a minimum-
cardinality jammer placement over the entire real plane.

We introduce some notation used in our algorithm. We
define an augmented disk d; as a tuple of values d; =
((x4,yi,7i),vi), where (x;,y;) represents the center of a
closed disk in the plane, r; represents the radius of the disk,
and v; C V denotes the set of vertices in G that lie within
the specified disk. Let D = {dg, d1, ...} denote a set of such
augmented disks. We define a partial order on the d; by

di:dj <= Vi =1Vj, and
d; <dj <= v; Cvj.

Extending the notation of [16], let md(v) be the (aug-
mented) closed disk of smallest radius that contains all v; € v;
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Data: G(V, &), rj, v
Result: D = {d; = (x4, yi,7:),vi)}
create empty stack S and solution set D;
foreach v; € V do
Push V to s;
/+ depth-first search */
while S is not empty do
v =S.pop();
if 3d; = ((.CL‘Z‘,y,',’I"i),Vi) € D 5 v =v; then
| continue
end
calculate (z,y,r) = md(v);
if r > v then
find {b1,b2,...} = B((z,y,7),V);
foreach b; € {by,bs,...} do
| push v\b; into S;

end
else
| add ((z,y,r),v) to D
end
end
end
/+ prune redundant solutions x/

foreach d; € D do
foreach d; € D do
if ¢ #] and dj § di then
| remove d; from D
end
end

end
Algorithm 1: Find sufficient set of minimum disks d; via

DFS on complete set of vertices V.

ie., md(v) = ((x,y,r),V), where (z,y,r) satisfy

min r
z€R,yeR,reR+
s.t. dg(vi, (z,y)) <, Yo, ev o (1)

and v={w eV |dg(w,(z,y)) <r}

In the following definitions, let md(v) = ((z,y,7),¥).
The radius of md(v) is denoted by |md(v)| and satisfies
| md(v)| = r. From the construction of md(v), we see that if
v C w, then |md(v)| < |md(w)|. For a vertex u € V, we
say u € md(v) if u € V. The boundary of a set of vertices v
is Bv)={w eV | dg(w,(x,y)) = r}. The open minimum
disk contain v is md(v) = ((z,y,r), w\B(v)). Define the
neighborhood vertex set V,.(v) = {w € V | dg(v,w) < r}.

Algorithm 1 uses a depth-first search (DFS) starting from
the entire network to find a set of CJLs by finding consecu-
tively smaller subsets of the network. Algorithm 2 also finds a
set of CJLs but reduces complexity compared to Algorithm 1
by using a sequence of depth-first searches starting from
neighborhoods of the network nodes. In the following, we
prove that Algorithm 1 and Algorithm 2 with stopping radius
v = r; find a set of CJLs that are sufficient to find an
optimal solution to the problem defined in Section II-B. First,

Data: G(V, &), rj, v
Result: D = {d; = ((x4, yi,7i), Vi) }
create empty stack S and solution set D;
foreach v; € V do
find NV, (v;) and push to S;
/+ depth-first search */
while S is not empty do
v =S.pop ();
if 3d; = ((xi,yi,ri),vi) € D 5 v =v; then
| continue
end
calculate (z,y,r) = md(v);
if » > v then
find {b1,bo,...} = B((z,y,r),v);
foreach b; € {by,bs,...} do
| push v\b; into S;

end
else
| add ((z,y,r),v)to D
end
end
end
/* prune redundant solutions */

foreach d; € D do
foreach d; € D do
if ¢ %J and dj § di then
| remove d; from D
end
end
end
Algorithm 2: Find sufficient set of minimum disks d; via
DFS from expanded neighborhoods of vertices.

we introduce some preliminary results. Because of space
constraints, proofs are omitted for the results that are simple
to prove.

Proposition 1. Ler G = (V, ) be a simple Euclidean graph,
and v CV and u € V, u & v be given. Let w = v U {u}. If
|md(w)| > |md(v)|, then u € B(w).

Proof. Suppose that Ju € V, u ¢ v such that for w = vU{u},
| md(w)| > | md(v)| but v ¢ B(w). Then B(w) = B(v). But
the minimum disc containing a set of vertices is determined
solely by the vertices on the boundary of the disc [16].
Thus, md(w) = md(B(w)) = md(B(v)) = md(v), which
contradicts | md(w)| > | md(v)|. O

Proposition 2. Let G = (V, &) be a simple Euclidean graph,

andletv CV andu €V, u ¢ md(v) be given. Then | md(vU

{u})| = | md(v)]| if and only if u € B(v).

Corollary 1. If u ¢ md(v), then | md(v U {u})| > | md(v)|.
Next we show that if we take any vertex set and create an

augmented vertex set by adding the vertex to it that results in

the smallest increase in the radius of the enclosing minimum
disk, then any other vertex not in the augmented vertex set will
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not be in the open minimum disk containing the augmented
vertex set.

Lemma 1. Let G = (V, E) be a simple Euclidean graph, and
v CV be given. Let

w=arg min |md(vU{u})| (2)
uEV\V

Then Vz € V such that z ¢ VU {u}, z ¢ md (v U {u}).

Proof. Let u satisfy (2), and suppose there is z ¢ v U {u}
such that z € md (v U {u}).

Consider the vertex set w = v U {z}.

By construction, z ¢ VUu = z ¢ md(v).

As previously noted, |md(v U z)| > |md(v)]. If | md(v U
z)| > | md(v)|, then by Proposition 1 z € B(w). If | md(v U
z)| = | md(v)|, then by Proposition 2 z € B(v) = B(w).

Since z € md (vUu), |md(v U z)| < |md(v Uu)|, but
by (2), |md(v U 2z)| > |md(v Uu)|. Thus, |md(v U z)| =
| md(vUu)|. Now consider the intersection of md(v U z) and
md(v Uw). If the two disks are the same, then by Lemma 1,
z € B(vUu), which contradicts z € md (v U {u}). If the two
disks are not the same, then the intersection of the two disks
can be contained in a smaller disk [16]. Since by assumption
z € md (v U {u}), z must lie in the intersection of the two
disks, which means that u was not the solution to (2).

Thus, we conclude that it must be that z ¢ md (v U {u}).

O

Lemma 2. Let G = (V, &) be a simple graph, and v C 'V be
given. Then V will be found at one of the vertices of the DFS
tree in Algorithm 1 with stopping radius v < md(v).

Proof. From the set v, find v. By definition Vv is within radius
md(v).

First we note that if v is on the DFS search tree with
stopping radius v = 0, then V is on the DFS search tree with
stopping radius v < md(v), since the specified stopping radius
will only remove vertex sets w that satisfies md(w) < .

Let wog = V. If wg # V, then let 4 = 1 and:

1) Step 1: Find a node u satisfying (2), and let w; = w;_1U

{u}. By Lemma 1, at each step u € B(w).
2) Step 2: If w; = V), stop. Otherwise, let ¢ = ¢ + 1 and
return to step 1.

Let n denote the value of ¢ at the end of the iterations. Note
that w; and w;_; differ by one vertex that is on the boundary
of w;. Thus w,,w,_1,...,Wq is a sequence of vertices on
the DFS tree from the root at w,, =V to wg = V. O

Theorem 1. Ler G = (V, &) be a simple Euclidean graph,
and v C 'V be given. If v can be covered by a jammer with
Jjamming radius r;, then the DFS tree found by Algorithm 1
with v = r; contains at least one disk d = ((x,y,r), W) such
that v C w. Thus, the nodes in v can be jammed by placing
at jammer at (x,y), the center of the disk d that is on the
DEFS tree found by Algorithm 1.

Proof. By Lemma 2, Vv is on the DFS tree with stopping radius
v < md(v). As in Lemma 2, label the vertex sets from Vv to
the root of the DFS tree as wog =V, wq,...,w,, = V.

If | md(V)| < rj, then md(V) satisfies the theorem. Other-
wise, |wo| < |w1| < ... < |wy|. Thus there must be some
set w; such that |[w;| < r; but |w; 1| > r;. By Lemma 2,
this w; 1 will be found by the DFS search with v = r;,
and w; will also be found by the DFS since the DFS search
continues to the first level where |w;| < ~. This w; satisfies
the theorem. O

Lemma 3. If v C V € G can be enclosed by a circle with
radius v and centered at (x,y), then for Vv € v, v C N2"

Proof. Let (z,y) denote the center of the circle with radius r
that contains v. Then Vv € v, dg(v;, (z,y)) < r. By the trian-
gle inequality, dg(v;, v;) < dg(vi, (z,y))+d((x,y),v;) < 2r
for Vv;,v; € v.

Then by definition, v C A2" for Vv € v. O

Theorem 2. Let G = (V, E) be a simple graph, and v C V be
given. If v can be covered by a jammer with jamming radius
rj, then 3d = ((z,y,r), w) with v.C w such that d is on the
DFS tree found by Algorithm 2 with v = r;. Thus, the nodes
in v can be jammed by placing at jammer at (x,y).

Proof. By applying Lemma 3, v C N.'7 for all v € v.
A1§orithm 2 is equivalent to applying Algorithm 1 for each
N7, v € v. Apply Theorem 1 with the subgraph of G that
has vertex set ;7. Then for each Vi, 3d = ((z,y,7), W)
with v. € w such that d is on the DFS tree found by
Algorithm 2 with v = ;. O

Theorem 3. Let j be a set of jamming locations in the real
plane, j; € R2. Then for each location, j; € j, there is at
least one alternative location k; corresponding to one of the
augmented disks found by either Algorithm 1 or Algorithm 2,
such that the jammer placed at k; will jam a superset of the
nodes jammed by a jammer placed at j;. Thus, the centers of
the augmented disks found by Algorithm I or Algorithm 2 are
sufficient to find an jamming strategy of minimum cardinality.

Proof. For each jamming location j;, find the set of vertices
v; that would be jammed. By applying Algorithm 1 or
Algorithm 2, Theorem 1 and Theorem 2 guarantee that the
DES trees created will contain at least one vertex set that is a
superset of v;. Chose any such vertex set w and call the min-
imum disk containing that set md(w) = ((Zw, Yw, Tw), W)-
Thus, the jammer at j; can be replaced with a jammer at
(2w, Yu) With no loss of optimality. Since this can be done for
every j; € j, any solution j with j; € R? can be replaced with
a solution of equal cardinality where the locations correspond
to the centers of minimum disks on a DFS search tree created
by either Algorithm 1 or Algorithm 2. Thus these algorithms
produce a candidate set of points from which can be found a
solution of minimum cardinality that jams a superset of the
nodes of the solution j. [

IV. SEARCHING FOR JAMMER PLACEMENT LOCATIONS

In our previous work [10], [12], we have developed optimal
and suboptimal approaches to find a minimum cardinality
jammer placement over a constrained set. These formulations
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naturally extend to using the centers of the D found by
Algorithm 1 instead of the locations of the network nodes.
We briefly review those algorithms here.

For network G(V,€) and D, we introduce the jamming
graph G;(Vy,Ey), in which V; = VUVp and £; = {(i, k) €
Vi xV; | dg(i, k) < r;}. Note that Vp is the set of the central
locations of all CJLs in D, and & is the edge set in which an
edge between nodes ¢ and k indicates that a jammer placed
at location of node ¢ will block all reception at node placed
at location k, and vice versa. Let A(/) denote the adjacency
matrix for Gy, with AEQ = 1 if there is an edge connecting

nodes 4 and &k and AE‘Q = 0, otherwise. We say that an edge
(link) is jammed if at Tleast one of the nodes connected to the
link is jammed. Let N = |V| and Np = |Vp|.Note that, in
jamming graph G;, nodes in V are labeled from 1 to N and
nodes in Vp are labeled from N +1 to N + Np.

As we have shown in Theorem 3, placing jammers solely on
locations included in Vp is sufficient for finding the jammer
placement solution with minimum cardinality.

A. Optimal Approach

We first introduce some notation that is used in the optimal
approach. Jammers are restricted to be placed at the locations
of one of the nodes or CJLs. Let x be the binary vector
with length |Vp|, which indicates whether a jammer should
be placed at location of CJL. And let y(*) be the binary
vector with length N, where & € {0,...,K} with K is
the number of clusters. Let y(?) denote a special cluster that
includes all nodes being jammed by at least one jammer in
J. Hence 9\ =1 <« 3J, € J 3 dg(vi,Jm) < 7}
and yfk) =1 <= w; € cluster k, yi(k) = 0 otherwise for
kel,... K.

Then in [10], the optimal formulation of jammer placement
problem with CJL is formulated as the binary integer linear
program (ILP):

N @B

Y x>1 “4)

Zy<k>>1 k=1,...,.K (3
>y <k (©6)
Zy<k>_zy(k—1><o k=2,...,K (1)
N,
g3 Al <0 i=1,...N  @®)
m=N-+1
k k ..
k=1,...,K (9
zi, ™ € {0,1} i=1,...,N,
k=0,...,K (10)
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Fig. 2. Distributions of ratio between the size of augmented disk set and
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Fig. 3. Average size of integer programming under both formulations

comparing to network order and order of G ;

The size of our optimal ILP formulations is (K +1) x N +
|Vp|. The distribution of the ratio between |Vp| and |V| for
a set of 1000 random network topologies (see Section V for
details) is shown in Fig. 2 as a violin plot. For most networks
with order up to 300, the number of CJLs doesn’t go beyond
2N, which doesn’t affect the size of ILP as significantly as K
when K > 2.

B. Suboptimal Approach

Solving a large integer programming problem can be com-
putationally intensive. So, we also present results for a sub-
optimal jammer placement algorithm developed in [12] that

o finds an edge separator £g that partitions G into K
clusters via multi-resolution graph cut, and

o finds the optimal jamming set (OJS), which is the mini-
mum cardinality jammer placement that jams at least one
vertex of each edge in the edge separator, via an ILP of
size much smaller than that considered in Section IV-A.

Readers are referred to [12] for details of this approach.
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The average sizes (in terms of the number of variables) for
the integer programs used in both the optimal and suboptimal
formulations are compared in Fig. 3 for 1000 random network
topologies (again, see Section V). For reference, the cardinal-
ities of the original network and the CJLs are shown. The
average ILP size for the suboptimal approach is much smaller
than for the optimal approach and has a much lower rate of
growth. The average ILP size for the suboptimal approach is
even smaller than the network order for networks with over
100 nodes.

V. SIMULATION RESULTS

In this section, we compare the performance and running
time of jammer placement algorithms using the CJLs with
that of jammer placement at only the network nodes’ loca-
tions. All simulations are programmed in Python with the
network analysis module NetworkX and the Gurobi integer
linear programming solver. The simulations were executed
on computers with a 3.1GHz Intel Core i7 CPU with 8MB
cache and 16GB RAM running Ubuntu 16.04 LTS. All figures
show the performance averaged over 1000 different network
topologies.

The simulation results are all for graphs generated using the
Random Geometric Graph (RGG):

GV, &) =RGG(n,r.)

V= {Uz(xuyz) | TiyYi ~ U[O» V ﬁ)}
E={(u,v) |u,v € V,dg(u,v) <r.t CVxV.

Each simulation topology is generated by randomly placing
nodes in the region [0, /755) * [0, /105) and then creating
edges for all pairs of vertices v and v if they are within the
communication radius, dg(u,v) < r.. This graph models a
scenario in which:

o Radios are homogeneous with identical spatial den-
sity, equal transmit power, omnidirectional antennas, and
equal noise figure.

« The channel obeys an exponential path-loss model.

o The jamming radius is equal to the communication radius
(rj = r. = 0.15).

For all the simulations, the objective is to partition the network
into 4 disconnected subnetworks, with the cardinality of each
subnetwork constrained to be no more than one-fourth the
original network order.

We first consider the effectiveness of using the CJLs for
jammer placement instead of using the locations of the net-
work nodes, V. As shown in Fig. 4, by using the CJLs as
the set of possible jammer locations, the average number of
jammers required to achieve the network partition objective
is reduced for both optimal and suboptimal search algorithms
for finding a minimum cardinality jammer placement. More
details of the relative performance are also shown in Table I;
the performance of the optimal solver is not listed for networks
of over 100 nodes because of the extremely long times required
to find such solutions. The results in Table I (top of next
page) show that the average number of jammers required is
reduced by up to 21%, with typical improvements around 12%

x
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% Optimal Search, CJLs
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Fig. 4. Value of jammer placement objective function (number of jammers
needed to meet the partitioning objective) for networks with different orders
under optimal and suboptimal formulation, with or without CJL

TABLE 11
CJL SEARCH TIME
Order Time(s)

25 0.434
50 5.540
75 15.571
100 29.977
150 74.581
200 141.406
300 340.570
400 637.464
500 1028.107

to 14% for the suboptimal solver. The performance of the
suboptimal solver with the CJLs is only slightly worse than
the performance of the optimal solver without the CJLs.

The average time needed to find the CJLs for networks
with different sizes is shown in Table II. The average time
to solve for the CJLs is less than 30 seconds for networks
with up to 100 nodes, but an average of approximately 17
minutes is needed for networks with 500 nodes. The total time
to solve the jammer placement problem will depend on the
time to find the CJLs plus the time to determine the optimal
jammer placements over the CJLs, which is larger than the
original problem of placing the jammers at the locations of
the communicators.

The suboptimal approaches to solving the jammer place-
ment problem are capable of reducing the execution time by
orders of magnitudes [12]. This reduction in execution time
still holds with the CJLs. Table III shows that for networks
with up to 500 nodes, a jammer placement solution can still be
found within a few milliseconds, with or without CJLs, which
is almost negligible compared to the time needed to find the
CJLs or solve the ILP optimally.

Table IV compares the average execution times of solving
the original (without the CJLs) ILP optimally with that of
searching for the CJLs. The results show that as the network
size grows, the time needed to optimally solve the ILP grows
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TABLE 1
AVERAGE NUMBER OF JAMMERS REQUIRED.

Optimal solver Suboptimal solver
Order | no CJL w/CJL  Improvement (%) no CJL w/CJL Improvement (%)
25 1.9 1.5 21% 2.1 1.8 14%
50 2.4 2.0 17% 2.9 2.5 14%
75 2.9 2.5 14% 34 2.9 15%
100 3.1 2.8 10% 3.8 33 13%
150 — — — 44 39 11%
200 — — — 5.0 44 12%
300 — — — 6.0 5.3 12%
400 — — — 6.9 6.0 13%
500 — — — 7.8 6.8 13%
TABLE III
REFERENCES

SUBOPTIMAL FORMULATION ILP TIME COMPLEXITY

Ord no CJL(ms) w/ CJL(ms) A

25 3.026 2.799 -7.49%

50 2.787 2.713 -2.66%

75 2.156 2.844 31.93%

100 2.202 2.686 21.95%

150 2.123 3.028 42.60%

200 2.398 3.596 49.94%

300 2.668 4.616 72.97%

400 3.313 5.400 62.99%

500 3.607 6.364 76.47%

TABLE IV
OPTIMAL FORMULATION ILP TIME COMPLEXITY AND CJL OVERHEAD

Order ILP w/out CJL(s)  Search CJL(s) Ratio
25 3.619 0.434 11.98%
50 21.864 5.540 25.34%
75 103.573 15.571 15.03%
100 530.792 29.977 5.65%

much faster than the time to find the CJLs. In combination
with the performance results above, these results suggest that
finding the CJLs and then using the suboptimal solver for the
larger jammer placement problem may offer a good tradeoff
between performance and complexity.

VI. CONCLUSION

In this paper, we developed an approach to finding a
minimum cardinality jammer placement to partition a wireless
network when jammers can be placed anywhere in the real
plane. Our approach is based on finding a set of candidate
jammer locations (CJLs) that are a sufficient search space for
a minimum cardinality jammer placement. We develop two
depth-first search algorithms to find the CJLs, and we evaluate
the effects on performance and running time of using the
CJLs in comparison to our previous approach of constraining
jammers to be placed at the locations of the network nodes.
The results show that by extending the search space to the
ClLs, the average number of jammers required to partition a
wireless network is decreased by approximately 10% to 20%,
at the expense of an increase in complexity that is primarily
attributable to the time to find the CJLs.
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