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Abstract—Phylogenomic analyses have increasingly adopted species tree reconstruction using methods that account for
gene tree discordance using pipelines that require both human effort and computational resources. As the number of
available genomes continues to increase, a new problem is facing researchers. Once more species become available, they
have to repeat the whole process from the beginning because updating species trees is currently not possible. However,
the de novo inference can be prohibitively costly in human effort or machine time. In this article, we introduce INSTRAL, a
method that extends ASTRAL to enable phylogenetic placement. INSTRAL is designed to place a new species on an existing
species tree after sequences from the new species have already been added to gene trees; thus, INSTRAL is complementary
to existing placement methods that update gene trees. [ASTRAL; ILS; phylogenetic placement; species tree reconstruction.]

Gene trees and species trees can differ (Maddison
1997; Degnan and Rosenberg 2009), and methods for
accounting for discordance are now widely available
and are adopted by many (Szollsi et al. 2014; Edwards
et al. 2016). Discordance-aware methods come in many
forms, such as coestimation of gene trees and species
trees (e.g., Liu 2008; Heled and Drummond 2010;
Boussau et al. 2013) and site-based methods (e.g., Bryant
et al. 2012; De Maio et al. 2013; Chifman and Kubatko
2014; Schrempf et al. 2016). The most scalable approach
for species reconstruction has remained what has been
called a summary approach: gene trees are inferred
independently for all loci and are then combined to
build a species tree. Many methods are available for
combining gene trees (e.g., Kubatko et al. 2009; Liu
et al. 2009, 2010; Chaudhary et al. 2010; Mossel and
Roch 2010; Liu and Yu 2011; Wu 2012; Bayzid et al.
2013; Sayyari and Mirarab 2016a), and many of them
are statistically consistent under various models of
genome evolution. In particular, many methods have
been designed to be consistent under the multispecies
coalescent model (Pamilo and Nei 1988; Rannala and
Yang 2003), which seeks to capture incomplete lineage
sorting (ILS). Several statistically consistent summary
methods, including ASTRAL (Mirarab et al. 2014a),
NJst/ASTRID (Liu and Yu 2011; Vachaspati and Warnow
2015), and MP-EST (Liu et al. 2010) are in wide use.

Despite the progress for the de novo inference of
species trees, updating trees under the MSC model
has received little attention. As new genomes become
available, researchers often need to know their position
on an existing phylogeny. One solution is to reconstruct
the species tree from scratch each time new data
becomes available. This process can require excessive
computation and may not scale to groups with tens of
thousands of genomes (more than a hundred thousand
bacterial genomes are currently available).

A more efficient alternative is what has been called
phylogenetic placement (Matsen et al. 2010): adding

a new query species onto an existing phylogeny. For
placing a new sequence onto a single tree, we have
maximum likelihood (ML) methods such as pplacer
(Matsen et al. 2010) and EPA (Berger et al. 2011;
Barbera et al. 2019), distance-based methods such as
APPLES (Balaban et al. 2018), and divide-and-conquer
methods such as SEPP (Mirarab et al. 2012). Even
earlier, sequential sequence insertion algorithms, which
essentially solve the same computational problem, exis-
ted (e.g., Felsenstein 1981; Desper and Gascuel 2002).

Existing placement algorithms place a new sequence
onto a single tree, which is typically a gene tree. Current
methods can be used to place new sequences on an
estimate of the species tree using a concatenation of
multiple genes, but this approach ignores gene tree
discordance. We are not aware of any discordance-
aware methods for placement onto species trees. Here,
we present INSTRAL (Insertion of New Species using
asTRAL) which extends ASTRAL to enable placing a
new species onto an existing species tree.

DESCRIPTION

ASTRAL estimates an unrooted species tree given a
set of unrooted gene trees and is statistically consistent
under the multispecies coalescent model given true
gene trees (Mirarab et al. 2014a). ASTRAL seeks to
maximize the quartet score: the total number of induced
quartet trees in the gene trees that match the species
tree. Similar to earlier work (Bryant and Steel 2001),
ASTRAL uses dynamic programming to solve this NP-
Hard problem (Lafond and Scornavacca 2018). However,
to allow scalability, it constrains its search space so
that the output draws its clusters from a predefined
set X, which consists of clusters from gene trees and
others that are heuristically selected (a cluster is one side
of a bipartition). The most recent version, ASTRAL-III
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(Zhang et al. 2018) guarantees polynomial running
time and scales to data sets with many thousands of
species.

Problem Statement

Quartet placement problem. Given a set of k unrooted
trees labeled with n+1 species and a backbone tree on
n species, find the tree that includes all 7 +1 species and
has the maximum quartet score with respect to the input
trees.

Thus, one species, called the query, is not present
in the backbone tree, and the goal is to insert the
query species into the backbone. A typical use of this
problem is placing a new species onto an existing species
tree (Fig. 1). Imagine a previous analysis has already
produced a set of k gene trees on n species and an
ASTRAL tree (inferred from those k gene trees). Now,
a new species with genome-wide data has become
available. To insert the new species onto a given ASTRAL
tree, we first add it to each of the k gene trees using tools
such as SEPP, pplacer, or EPA. Then, we use the
updated gene trees in addition to the existing ASTRAL
tree as input to the quartet placement problem; the
output will be a species tree with the new species
included. Just like ASTRAL, the use of the quartet score
ensures that the inferred position of the new species is a
statistically consistent estimator of its true position under
the MSC model given true gene trees.

INSTRAL (Single Query)

INSTRAL finds the optimal solution to the quartet
placement problem. Unlike ASTRAL, the number of
possible solutions to the placement problem is small
(grows linearly with 1), and thus, INSTRAL can solve
the problem exactly even for large trees. In principle,
it is possible to develop algorithms that compute the
quartet score for all possible branches, one at a time,
and to select the optimal solution at the end. However,
the ASTRAL dynamic programming allows for a more
straight-forward algorithm.

The ASTRAL algorithm can solve the placement
problem if we define the search space (set X) such that
all trees that induce the backbone tree and only those trees
are allowed. To achieve this, X should be the set of all
clusters in the backbone tree both with and without the
new species added. More precisely, let g be a set with the
new species and let B(T) denote the set of all (including
trivial) bipartitions of the backbone tree T on the leaf-set
L with each bipartition represented as a tuple: (A, L\ A)
where AC L. Then

X={q.Lug.cuv J
(A,L\A)eB(T)

[A,L\A,AUg,(L\A)Ug}.

1)

With this set X, the search space will include all
possible placement of the query on the backbone tree
(due to AUg and (£\ A)Ugq). Moreover, every bipartition

built from X is one that existed in the backbone tree
once ¢ is removed and thus only trees that induce the
backbone are allowed. Since ASTRAL finds the optimal
placement restricted to the search space, this algorithm
is guaranteed to solve the quartet placement problem
exactly. The number of clusters in this search space is
3+4(2n—3)=0(n). Thus, its running time increases as
O(nD)=0(n’k) where D is the sum of degrees of all
unique nodes in the input gene trees (see for details,
Zhang et al. 2018).

Adding Multiple New Species

If multiple queries are available, we can still attempt
to use the basic INSTRAL algorithm in one of two
ways (Fig. 1). (i) Independent placement: We add all
the new queries independently without trying to find
the relationship among the queries. This approach is
reasonable if the goal is to detect the identity of some
unknown species or if the set of new species are expected
not to belong to the same branches of the backbone
tree. If needed, we can merge separate placements
into a single tree, introducing polytomies wherever
multiple queries are placed on the same branch. (ii)
Ordered placement: We order the queries (e.g., arbitrarily)
and then add them to the backbone one at a time,
updating the backbone tree each time to include the
latest query. This ordered placement approach gives us
the relationships between queries. However, like similar
greedy algorithms (Desper and Gascuel 2002), it is not
guaranteed to find the optimal tree at the end.

The advantage in using the independent insertion
approach is that adding m queries requires time that
increases linearly with m, whereas the time needed
for the ordered placement increases proportionally

to m3. The de novo execution of ASTRAL-III on
n+m species requires O(((m+n)k)>73) time in the
worst case (Zhang et al. 2018). In contrast, INSTRAL-

independent would run in O(m.D.n)=0(mn?k) and

INSTRAL-ordered would require O(m3k 4 (n+m)nnik).
Thus, the relative running time of ASTRAL-III and
INSTRAL-ordered depend on values of n, m, and
k, while INSTRAL-independent is always faster than
ASTRAL-IIL

We can also ask a statistical consistency question:
Starting from a correct backbone tree and placing
several new species using INSTRAL, is the output tree
guaranteed to be correct with high probability as the
number of error-free gene trees drawn under MSC goes
to infinity? In the independent placement scenario, the
output is an unresolved tree and cannot be a statistically
consistent estimate of the species tree. However, due to
the consistency of each placement, with arbitrarily high
probability, all placements are on the correct branch of
the backbone given enough gene trees, and therefore,
the output tree will not have wrong branches with high
probability (but it will have missing branches). In the
ordered placement scenario, since each placement is
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FIGURE 1.

Left: The quartet placement problem. A backbone species tree with four leaves ({x,y,w,z}) and k=4 gene trees are given; each

gene tree also has new species (here, {A, B,C}). Note that the first gene tree is discordant with the species tree. Top right: placing a single new
species (A) on the backbone tree requires computing the quartet score (QS) for each placement and finding the maximum. Here, the optimal
placement is on the terminal branch of y, which matches 16 out of 20 quartets on {x,y,w,z,A} in the gene trees. Middle right: placing multiple
species can be done by ordering them and placing them one at a time. Bottom right: alternatively, all new species can be placed independently,
and the results can be merged at the end (creating polytomies when multiple new species are placed on the same branch).

correct with an arbitrarily high probability given enough
genes, we can make all placements be correct with an
arbitrarily high probability. Thus, the ordered placement
result is a statistically consistent estimate of the species
tree (see Supplementary material available at Dryad
at http://dx.doi.org/10.5061 /dryad.cs59t13 for proof).
Note that this consistency is despite the fact that the
ordered placement is not an optimal solution to the
problem that ASTRAL seeks to solve.

BENCHMARK

Data Sets

We first benchmark INSTRAL on a simulated data set
previously generated by Mirarab and Warnow (2015).
This data set has 200 ingroup taxa and an outgroup
species and is generated using SimPhy (Mallo et al. 2015).
By setting the maximum tree heights to 107, 2x 10°, or

5 x 10° generations, this data set has created three model
conditions with respectively, moderate, high, or very
high levels of ILS; the average normalized (Robinson and
Foulds, 1981) distance (RF) between true gene trees and
the true species tree are 15%, 34%, and 69%, respectively.
In our experiments, we use gene trees inferred using
FastTree-II (Price et al. 2010) from sequence data. These

inferred trees have relatively high levels of gene tree error
(25%,31%, and 47% for the three model conditions). For
each replicate, we also have estimates of the species tree
using both ASTRAL-II and concatenation with ML (CA-
ML) performed using FastTree-II. We have 100 replicates
per condition, and each replicate has 1000 gene trees,
from which we have randomly sampled 200 and 50
gene trees to create three different input sets. Thus, in
total, we have 9 model conditions (ILS level x# Gene).
Following (Mirarab and Warnow, 2015), three replicates
are removed because their gene trees are extremely
unresolved; this leaves us with 9 x 100 —3 x3=891 data
sets in total.

Leave-One-Out Experiments

Comparision to ASTRAL. For each data set, an ASTRAL
species tree inferred from gene trees is available. For
each of the 200 ingroup species in each data set, we
prune it from the ASTRAL tree and we use INSTRAL
to add it back onto the tree, using FastTree gene
trees as input. Thus, overall, we have 891 x200=1.782 x

10° independent placements. When there are multiple
placements with equal quartet scores (happens in only
63 cases), we break ties identically to the full backbone
ASTRAL tree.
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TaBLE 1.  For each condition, we show the number of cases where
(left) the INSTRAL tree has a different (i.e., higher) quartet score than the
full ASTRAL tree, (middle) the (Robinson and Foulds, 1981) distance (RF)
of the INSTRAL tree to the true tree is different than the RF distance of
the full ASTRAL tree to the true tree, and (right) the INSTRAL tree has a
reduced RF distance to the true tree compared with the full ASTRAL tree

50 genes 200 genes 1000 genes
Moderate ILS 11; 8; 1 5; 3:0 4; 4;0
High ILS 41; 31;13 12; 8;5 5; 3;2
Very high ILS 178;140;26 41,33;7 19;12;6

Note: All numbers are out of 20,000 insertions, except for very high ILS,
which is out of 19,400.

Among all of these placements, in only 316 cases
(<0.2%) the output trees have different quartet scores
compared with the original ASTRAL tree. Note that
INSTRAL is guaranteed to find the optimal placement,
and therefore, its quartet score is always at least as good
as the ASTRAL tree. Thus, these 316 cases are those
where ASTRAL has failed to find the optimal placement
for a species. We note that 178 out of 316 cases correspond
to the model condition with very high ILS and only
50 genes. Increasing the number of genes and reducing
the amount of ILS both decrease the number of cases
where ASTRAL is sub-optimal (Table 1). For example,
with moderate ILS/1000 genes, only four out of 20,000
placements using INSTRAL improved quartet scores
compared with ASTRAL. Only 176 of 316 cases result
in any change in the RF distance of the inferred tree
compared with the true tree, and only in 59 out of 176
cases did INSTRAL reduce the RF distance compared
with ASTRAL. Thus, removing and reinserting a species
using INSTRAL is generally consistent with the ASTRAL
tree but in rare cases improves quartet scores.

Comparison to concatenation using ML (CA-ML). An
alternative to INSTRAL is to simply concatenate all the
genes and use ML to place the query on an existing tree.
We compare INSTRAL to this CA-ML approach using
EPA-ng (Barbera et al. 2019) v0.3.5 for ML placement.
To avoid biasing results towards one method, we use
the true species tree as the backbone, both for INSTRAL
and CA-ML. For CA-ML, we use RAXML (Stamatakis
2014) to compute branch lengths of backbone and GTR+T"
model parameters based on true alignment. We test
INSTRAL with two types of input. In one case, gene
trees are computed de novo using FastTree-IL. In leave-
one-out experiments, we approximate this scenario by
simply removing each species from the species tree but
keeping it in all our estimated gene trees. In the second
case, gene trees are updated using EPA-ng; thus, we first
remove the query species from all gene trees and then
place it on each gene tree using EPA-ng. Due to memory
requirements of EPA-ng (up to 35GB), we could only run
it for up to 200 genes and we restrict leave-one-out tests
to only 50 randomly selected leaves.

In terms of accuracy, INSTRAL outperforms the CA-
ML using EPA-ng regardless of the amount of ILS or
the number of genes (Supplementary Table S1 available

on Dryad and Fig. 2a). For example, with high ILS and
200 genes, CA-ML fails to find the correct placement in
17% of cases, while INSTRAL is incorrect in 5% and
8%, respectively, with de-novo and EPA-ng gene trees
(Supplementary Table S1 available on Dryad). When
methods are wrong, there are typically off by one edge
and only rarely by two or more edges (Supplementary
Fig. S1 available on Dryad). As the level of discordance
goes up, the error increases for all methods, and
contrary to our expectations, the relative performance
of methods does not change. However, as the number
of genes increases from 50 to 200, INSTRAL enjoys a
substantial reduction in error but CA-ML benefits less
from increased gene sampling for moderate to high
levels of ILS (e.g., for moderate ILS, mean error drops
from 0.08 edges to 0.04 for INSTAL+de novo but only
from 0.18 to 0.17 for CA-ML). In all conditions, using de
novo gene trees resulted in improved accuracy compared
with using EPA-ng for updating gene trees; however,
INSTRAL+EPA-ng is still substantially more accurate
than CA-ML.

Comparing the total running time, INSTRAL+EPA-
ng takes twice as much time as CA-ML (Fig. 2b).
INSTRAL+EPA-ng took on average about 200's, of which,
on average only 3 s were spend by INSTRAL and the
rest was used up by EPA-ng on gene trees. However,
note that gene tree updating using EPA-ng enjoys trivial
parallelism (each gene tree can be assigned to a different
CPU), whereas CA-ML does not enjoy trivial parallelism.
Finally, using INSTRAL+EPA-ng requires a lot less
memory than CA-ML using EPA-ng. CA-ML needed up
to 35GB of memory (mean 19GB), while INSTRAL+EPA-
ng runs with less than 0.5GB of memory in every case
(Supplementary Fig. S2 available on Dryad).

Ordered Placement

To see if the agreement with ASTRAL remains if more
species are placed using INSTRAL, we perform a second
experiment. Here, we prune a portion (%, %, or %) of
species from the ASTRAL species tree, order removed
species randomly, and then place them one after another
on the backbone tree, updating the backbone tree each
time (Ordered Placement in Fig. 1). In the end, we have
a tree on the full leaf-set; this tree, which we call the
INSTRAL tree, can be thought of as a greedy solution to
the same problem ASTRAL seeks to solve.

ASTRAL and INSTRAL trees have similar RF dis-
tances to the true tree, but ASTRAL is somewhat more
accurate in the hardest conditions (Fig. 3a). Overall, the
normalized RF error of ASTRAL is on average 0.3% lower
than INSTRAL (corresponding to roughly half an edge),
and these improvements are statistically significant (P <«
107 according to a paired t-test). Among all 891 x 3=
2673 INSTRAL trees that we have computed, 1470 have
RF distances to the true tree that are identical to the
ASTRAL tree. Differences in the RF distance are seen
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FiGure 2. Comparison of concatenation using ML (CA-ML) and INSTRAL run on de novo gene trees or on gene trees updated using EPA-ng.

Both method place on the true species tree in a leave-one-out experiment (50 species per replicate) with 200 or 50 genes. a) Mean and standard
error of placement error, measured as the number of nodes between the correct placement and placed edge. Results are over 2500 placements for
moderate and high and 2350 placements for very high ILS. b) Total running time in seconds, measured on the same machine, and all methods

run with a single core both for EPA-ng and INSTRAL.

more often among replicates with very high ILS (mean
RF difference: 0.7%), 50 genes (mean RF difference:
0.7%), or starting trees with 1/4 of the species (mean
RF difference: 0.6%). Increasing the number of genes,
increasing the size of the starting tree, and reducing the
ILS reduce the number of mismatches between ASTRAL
and INSTRAL (Fig. 3a).

Unlike leave-one-out tests, for multiple insertions,
the quartet score of INSTRAL can be higher or lower
than ASTRAL. Overall, when the two trees do not
agree, ASTRAL tends to have higher quartet scores
(Fig. 3b and Supplementary Fig. S3 available on Dryad).
Out of 2673 cases, ASTRAL has higher quartet scores
in 1210 cases, while INSTRAL is better in 231 (they
tie in the remaining 1232). Reducing the number
of genes and increasing the level of ILS both mag-
nify the improvements of ASTRAL compared with
INSTRAL.

Scalability

To test the scalability of INSTRAL, we started with
a backbone tree of 10,000 species from a previous
publication (Zhang et al. 2018), and down-sampled it
to smaller trees (down to 250). Each time, we placed
400 to 800 genomes on the backbone and computed the
time INSTRAL took for the insertion (Fig. 4). On the
backbone of 10,000 species, each placement took close to
16 minutes on average. As the backbone size decreased,
the running time rapidly decreased and was close to 8
s on a backbone tree of 250 species. As expected, the
running time grows faster than linearly with the size of

the backbone (proportional to n!*3 in this case).

BroLoGICAL EXAMPLES

We have tested INSTRAL on three biological data
sets: two transcriptomic data sets on insects by (Misof
et al., 2014) and plants by (Wickett et al., 2014), and
an avian data set by (Jarvis et al., 2014). The insect
data set includes 1478 protein-coding genes from 144
species spanning all of the insect diversity and has been
recently re-analyzed using ASTRAL by Sayyari et al.
2017. The plant data set includes 103 species and 424
genes, and the original study reported an ASTRAL tree.
The avian data set consists of 48 genomes representing all
the orders of birds. For this data set, statistical binning
was used to build 2022 supergene trees (Mirarab et al.
2014b) and Sayyari and Mirarab 2016b have published
an ASTRAL tree on these supergene trees. Among these
data sets, the avian data set has extremely high levels of
gene tree discordance.

For each of these data sets, we removed species one
by one and placed them back onto the species tree
using INSTRAL. In every case, INSTRAL found the same
position for the new species as the backbone ASTRAL
tree. In contrast, EPA-ng on concatenated data of 1KP
(the only data set where we were able to test CA-ML)
failed to find the same placement as the backbone for
35 out of 103 species and was on average away from the
backbone position by 0.53 edges (Supplementary Fig. S4
available on Dryad).

We also tested the ordered placement, where we
randomly selected half of the species (20 replicates),
removed them, ordered them, and inserted them back
on the remaining part of the tree using INSTRAL. The
resulting INSTRAL-ordered trees were similar to the full
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FiGure 3. Comparison of ASTRAL and INSTRAL. a) A RF: The Robinson Foulds (RF) distance of the ASTRAL tree to the true tree minus
the RF distance of INSTRAL-ordered tree to the true tree (negative: INSTRAL is better). The size of the starting tree is set to %, %, or % of species
(51, 101, or 151). For three levels of ILS (boxes), each with three numbers of genes, boxplots show distributions of ARF (100 points everywhere,
except for very high ILS, where it is 97 points.) b) Change in the quartet score (QS) versus the ARF for the starting tree with % of species (see
Supplementary Fig. S3 available on Dryad for others). The marginal bars show the projection of data on each axis.

TaBLE 2. The average and standard deviation of RF distance between ASTRAL and INSTRAL trees as well as the change in the quartet
score (INSTRAL-ASTRAL) on 20 random sets for each biological data set

Avian Insects 1KP
Mean Stdev Mean Stdev Mean Stdev
RF 0.0311 0.0592 0.0195 0.0126 0.0115 0.0131
QS —0.0001098 0.0002973 —0.0000026 0.0000361 —0.0000039 0.0000057

Note: For each random set of leaves as a backbone tree, ordered placement has been done.

ASTRAL tree (Table 2), recovering the same tree in one- of the avian data set, where the INSTRAL differed
third of cases and changing by one or two branchesina from ASTRAL in nine branches. In both cases, two or
majority of the remaining cases (Supplementary Fig. S5a  three unstable taxa had moved by several branches,
available on Dryad). In several replicates, trees changed causing the high incongruence (Supplementary Fig. S5b
for five or more branches, including two replicates available on Dryad). More broadly, changes are mostly
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FIGURE4. The running time scaling of INSTRAL versus backbone
size n. Starting with a simulated data set with 10,000 leaves, we prune
random sets of leaves to create smaller trees. Dots and bars show the
average and standard error of the running times of inserting a new
genome to the backbone (800 insertions for n < 5000 and 400 insertions
for n > 5000). The slope (1.32) of the line fitted to this log-log plot gives
an empirical estimate of the running time increasing proportionally to

n'3, which is consistent with the theoretical running time complexity
of ©(n.D).

among unstable taxa. For example, in the avian tree,
Hoatzin, the most challenging taxon, moves by one
branch in several replicates. The resulting INSTRAL
trees have reduced quartet scores compared to ASTRAL
trees (Table 2). Overall, these results indicate that for
data sets with very high ILS, using INSTRAL instead
of ASTRAL runs the risk of producing sub-optimal
trees.

AVAILABILITY

INSTRAL is available on GitHub (https://github.
com/maryamrabiee/INSTRAL) in open-source. It is
implemented in Java with straight-forward installation
(the only dependency is Java 6+). A template tutorial
and instructions to run INSTRAL is given there. The
generated data, scripts to generate those data and
results given in this article are also available on GitHub

(https:/ /github.com/maryamrabiee /INSTRAL-results).

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061 /dryad.cs59t13.
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