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Abstract

Recent hurricanes in the Atlantic region of
the southern United States triggered a series
of evacuation orders in the coastal cities of
Florida, Georgia, and Texas. While some of
these urged voluntary evacuations, most were
mandatory orders. Despite governments ask-
ing people to vacate their homes for their own
safety, many do not. We aim to understand the
observable and hidden variables involved in
the decision-making process and model these
in a partially observable Markov decision pro-
cess, which predicts whether a person will
evacuate or not given his or her current situa-
tion. We consider the features of the particular
hurricane, the dynamic situation that the indi-
vidual is experiencing, and demographic fac-
tors that influence the decision making of indi-
viduals. The process model is represented as
a dynamic influence diagram and evaluated on
data collected via a comprehensive survey of
hurricane-impacted individuals.

1 INTRODUCTION

The category 4 hurricane is approaching. Should I follow
the official orders and evacuate, or stay in place? Mil-
lions of individuals situated in vulnerable areas face this
question as imminent disaster threatens. Many choose to
leave while several other individuals do not. Those in-
dividuals (single persons or heads of households), who
choose to stay put have ostensibly made a sub-rational
decision. Yet, numerous interviews with such persons
clearly convey their conviction in having made the right
choice, although some do regret their choice. How
can we correctly predict these decisions of grave con-
sequences made by such individuals?

With the 5 costliest hurricanes in U.S. history occurring
during the past 13 years, 3 of which were in 2017,1 there
is a sense of urgency to better understand such evacua-
tion decision making. In August and September 2017,
two of these five storms - Harvey and Irma - made U.S.
landfall within two weeks of each other. Hurricanes have
increased in frequency over recent years just as coastal
populations have spiked [16, 7]; therefore, evacuating
successfully when needed is a critical component to re-
ducing the personal risk associated with hurricanes. Both
Harvey and Irma prompted widespread mandatory evac-
uation orders.

Affected individuals must reason with the uncertainty as-
sociated with several decision variables. For example, a
hurricane’s path cannot be forecast exactly, and even a
slight shift in the anticipated path has a deep impact on
which geographical areas are affected. Furthermore, the
extent of flooding due to the rainfall that accompanies
hurricanes is often uncertain and hard to predict. Thus,
probabilistic frameworks capable of modeling and rea-
soning with uncertainty strongly present themselves.

We administered a Qualtrics survey in December 2017,
which was completed by 822 unique respondents resid-
ing in the evacuation zones of Hurricanes Harvey and
Irma. Among these, 330 self-reported as having evacu-
ated while the remaining 492 respondents self-reported
as not having evacuated. The survey gathered data on
the demographic and experiential variables among oth-
ers that relate to the evacuation decision making of the
respondents. These collected data and other known re-
sults from the hurricane modeling literature served, in
part, to inform a new computational process model of the
decision making of individuals in impending disaster ar-
eas. We identify the variables that significantly influence
the decision making, understand how the variables po-

1NOAA Office for Coastal Management, https:
//www.coast.noaa.gov/states/fast-facts/
hurricane-costs.html
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tentially interact, and present a factored partially observ-
able Markov decision process (POMDP) [8] that predicts
an individual’s decisions.

We represent the POMDP in the language of dynamic
influence diagrams (DID) [4, 17] that naturally support a
factored representation in both formulating the problem
and solving it, and are easy to comprehend. We evaluated
this process model using a 3-fold cross-validation on the
collected survey data. The training folds were utilized
to learn some of the parameters of the DID while the
evacuation decision data in the test folds allowed mea-
suring the model’s accuracy. Our model demonstrated
an average prediction accuracy of 71.77% with a low
standard deviation. A sensitivity analysis reveals that the
model responds intuitively to hypotheses about how vari-
ous factors affect the decisions. A discussion of the cases
where the model mispredicts identifies avenues for some
improvement, albeit these are challenging to implement.
Decision-making models that are reasonably accurate for
the classes of persons studied here will have a dispropor-
tionate and positive impact on human lives saved and on
planning for disaster aid.

2 SURVEY DATA

Hurricane Harvey made landfall 25 August 2017,
prompting evacuation orders to be issued on that day and
following days. Hurricane Irma first made landfall in the
mainland US on 10th September. We administered a sur-
vey over the course of one week in December 2017 to
participants located in the evacuation zones of these two
hurricanes to collect data for understanding and model-
ing their evacuation decision making.

2.1 Description

Participants were recruited from regions of Texas,
Florida, and Georgia where authorities had issued
mandatory evacuation orders during Hurricanes Harvey
and Irma. In Georgia, evacuation regions were deter-
mined by ZIP code and residents in 27 zip codes, com-
prising the entirety of two coastal counties and coastal
portions of four additional counties, were ordered to
evacuate. In Florida and Texas, evacuation regions were
determined by county. While 23 counties in Florida were
asked to evacuate, Texas ordered residents of 12 coun-
ties to evacuate on the day of the landfall and following
days. These regions are depicted in Fig. 1. All partici-
pants included in the analysis reported residing in one of
the mandatory evacuation zones at the time that evacua-
tion orders were issued.

Participants were recruited to an online survey through
a Qualtrics panel. While 825 participants responded to

the survey, 822 participants were included in the final
analysis. Three were removed for duplicate participa-
tion, identified by IP address. To maximize the validity
of this time-sensitive sample, we sought to collect the
largest possible sample within a one-week window.

Figure 1: Maps of the target states with county boundaries
showing the surveyed regions in red

The survey consisted of 39 questions addressing de-
mographic variables, participants’ previous experiences
with hurricanes or other similar traumatic events, perfor-
mance on tests of cognitive bias, and whether the par-
ticipants evacuated. Twenty questions from the larger
survey provided the data for our modeling. The deci-
sion to evacuate was self-reported by respondents with
an optional reason for their choice. Out of the 822 unique
participants, 330 self-reported evacuating during the hur-
ricane, while 492 reported as not having evacuated.

2.2 Statistical Analyses

Relationships were explored among evacuation, demo-
graphic variables, and experiential variables. We sum-
marize the statistical findings relevant to the modeling in
this subsection. 2 These were computed using ANOVA
for nominal predictor variables, and bivariate Pearson
correlations were computed between evacuation status
and the demographic and experiential variables.

Among the demographic variables, only age and number
of children in the home were statistically associated with
evacuation, with younger adults and those with children
more likely to evacuate. Other demographic variables
such as sex, race, relationship status, education level,
number of elder dependents in the home, the level on
which one lived (1st floor, 2nd floor, etc.), and whether
the participant owned or rented his or her home, were all
unrelated to evacuation.

Among the experiential variables, we found that the
number of times people were asked to evacuate, the per-
ception of neighbors having evacuated, and a personal
assessment of the level of risk they experienced, were
significant factors in predicting the decision to evacuate.
While an experience of prior trauma was a significant

2Full details are available in a separate article that is under
review. We expect to disseminate the anonymized survey data.



predictor, surprisingly, prior experience with hurricanes
did not correlate with the decision to evacuate.

Logistic regression was conducted to predict self-
reported evacuation (a binary, yes/no variable), from
those variables demonstrating statistically significant
correlations with evacuation. The logistic regression was
conducted in two blocks: first demographic variables and
then experience based variables. The logistic regression
predicted evacuation from the significant demographic
predictors (age and number of children) in Block 1, and
from the significant experience based predictors (times
asked to evacuate, assessed risk, preparation level, prior
trauma) in Block 2. Note that 301 participants (37.2%)
did not respond to at least one item in the regression, and
were excluded. The evacuation choices of about three
quarters of the remaining participants were predicted cor-
rectly using the full model with both blocks of variables.

The most common reasons provided for not evacuating
were that respondents did not receive an order to evacu-
ate or did not believe (falsely) that they were in the evac-
uation zone (118 out of 492); risk had been mitigated
through other steps that had been taken (104 of 492);
did not believe they were at high risk in general (70 of
492); or did not believe risk was significant in their par-
ticular location (65 of 492). No other category of rea-
sons was provided by more than 35 respondents. Among
those who did evacuate, top reasons for their decisions
included warnings from government and media (70 out
of 330); concern that the storm is severe (56 of 330);
general references to safety or comfort (51 of 330); and
concern for the well-being of family members or other
associates (42 of 330). These observations are consistent
with the results from our statistical analysis.

3 EMPIRICALLY-INFORMED POMDP

While logistic regression offers good predictive perfor-
mance, its performance is sensitive to missing predictors.
More importantly, we seek a process-oriented and princi-
pled computational model with predictions that are con-
sistent with the observed data of the previous subsection.
These models differ from statistical curve-fitting (such
as using generalized linear models) by providing insights
into the decision-making process that possibly led to the
observed data, and are better suited for responding to
queries that explain its inference and predictions.

Real-world decision making generally involves reason-
ing with uncertainty, and decision making for evacua-
tion is particularly fraught with it. Several environmen-
tal and perception variables that influence the decision
are uncertain and evolve in nondeterministic ways. Con-
sequently, the situation “on the ground” is dynamic and

may not be perfectly perceived. This motivates modeling
an individual’s decision making using the well-known
POMDP framework. As several distinct variables consti-
tute the decision-making situation, a factored representa-
tion of the state is obviously needed. Dynamic Bayesian
networks [4, 11] offer a general and popular factored rep-
resentation for the state and its evolution across time.
In contrast to an enumerated representation, these net-
works allow us to naturally exploit conditional indepen-
dences between the variables thereby promoting efficien-
cies. Furthermore, we may combine them with decision
and utility nodes, and the resulting dynamic influence di-
agram (DID) [17] offers a language that is sufficiently
general to represent factored POMDPs. A side benefit of
using probabilistic graphical models such as DIDs is that
their predictions can be robust to missing data – several
of our participants did not respond to all questions in the
survey.

3.1 State Variables and Priors

Factors that make up the state for the hurricane domain
reflect information about the hurricane along with the
common effects and precautionary measures that follow.
These are modeled using random variables whose values
may change over time. We mention the corresponding
prior distributions at the first time-step as well.

• Hurricane level: This variable represents the strength
of the hurricane. Hurricanes are categorized using
the standard Saffir-Simpson hurricane wind scale [15].
This five-point scale is determined by the peak one-
minute sustained wind at a height of 10 meters over
unobstructed exposure. The wind speeds for each cat-
egory level are shown in Table 1.

Category Wind Speed Level of Damage
1 119-153 km/h Some
2 154-177 km/h Extensive
3 178-208 km/h Devastating
4 209-251 km/h Catastrophic
5 > 252 km/h Catastrophic

Table 1: Saffir-Simpson hurricane wind scale.

Values of this random variable are the five categories
and a value of 0 that denotes a weakening into a tropi-
cal storm or depression. The prior distribution for this
variable is the distribution of hurricanes that occurred
in 2017 [12].

• Hurricane path: The direction a hurricane is headed is
usually predicted with sufficient accuracy up to 5 days
in advance. An individual located in an impending dis-
aster zone is primarily concerned about whether the
hurricane is heading toward or away from her. There-
fore, this variable takes one of these two values with a



prior distribution of 〈.33, .66〉 obtained from the prob-
able track of centers of hurricanes historically (NHC’s
forecast cone).

• Evacuation order?: The presence of an official evac-
uation order is an important factor in determining the
expected risk. The distribution for this variable assigns
a probability of .42 to the true value of this Boolean
variable. This variable is influenced by the hurricane
level and we obtain the probability as a marginal of
the prior over various hurricane levels. As we seek to
model the decision making of individuals under evac-
uation orders, this variable is set to true.

• Rain: Hurricanes are often accompanied by rain. The
amount of rainfall, however, is not influenced by the
hurricane’s intensity. This random variable can as-
sume a value from this set, {Light, Medium, Heavy},
and the prior over this set is 〈.5, .4, .1〉.

• Preparation to stay: A factor in not evacuating de-
spite an order is the precautionary measures taken by
the individual. This includes stocking up on neces-
sary supplies, boarding up windows and doors, and
safeguarding vehicles or other property. This random
variable assumes a value {None, Somewhat prepared,
Very prepared}, and the prior is 〈.11, .35, .54〉 ob-
tained from all the responses in the survey.

• Neighbors evacuated?: A key variable in the decision-
making situation is whether neighbors facing a similar
situation have evacuated or not. Neighbors’ actions
either add further or mitigate the threat perception of
the impending hurricane. This is a Boolean variable
whose prior 〈.4, .6〉 is obtained by averaging the per-
centage of other people in the same zip code as the
responder who evacuated.

• Traffic: The most common mode of transportation for
evacuees is by road due to its accessibility and low
cost. This may subsequently congest the major high-
ways and block the smaller roads as well. Indeed, mul-
tiple individuals cited the worsening traffic situation as
a reason for not evacuating in our survey. This random
variable can assume a value from {Heavy, Manage-
able}, and the prior over this set is 〈.46, .54〉 inferred
from the prior over evacuation order.

In addition to these experiential variables, demographic
variables such as age, health condition, prior trauma,
number of dependents, availability of transportation, em-
ployment status, and the safety of the house also com-
pose the state of the decision-making problem. Age takes
one of {≤20, 21-40, 41-60, ≥61} values and its prior is
〈.05, .35, .28, .32〉 based on the distribution in the sur-
vey. Health condition takes one of {Good, Need Sup-
port} values and its prior is uniform. Prior trauma is a
binary variable and is true with probability .35 based on

the survey responses. The dependents variable includes
younger and older dependents as well as any pets. It
takes a true value with a probability of .26 obtained from
our survey data. The availability of transportation is a
binary variable which is true 90% of the time. Employ-
ment is taken as true with 60% probability based on the
2017 US population statistics. The safety of the house is
a binary variable with a uniform distribution.

Notice that the values of these demographic variables do
not change with time, and are considered time invariant.

3.2 Individual’s Observation Variables

An individual experiences the situation as a hurricane ap-
proaches through her observations. Perception is noisy
and offers a hazy lens through which the individual
learns about the state. As such, the observations are fac-
tored as well and are influenced by the corresponding
state variables in the same time-slice.

• Flooding? and Power failure?: Commonly observed
effects of a hurricane are flooding due to excessive rain
and power failures due to high wind. We model both
these events as Boolean variables. While high winds
are a given, an observation of flooding primarily de-
pends on the state variable Rain.

• Times asked to evacuate: An order of evacuation is
often followed up by repeated announcements on tele-
vision, radio, emergency alert systems, and door-to-
door canvassing. As such, individuals in our survey re-
ported receiving multiple reminders to evacuate. Mul-
tiple alerts were seen as indicators of a greater hur-
ricane threat. This observation variable depends on
whether an evacuation order is issued and takes one of
{0, 1-2, 3-4, ≥5} values.

• Rain and Wind: These two observation variables cap-
ture an individual’s perception of whether there is
heavy rain currently and high winds are blowing, re-
spectively. Of course, the latter is influenced by the
hurricane level.

• Traffic perception: Despite traffic not being heavy, in-
dividuals may perceive it to be dense based on their
prior experiences. This false assumption eventually
affects their decision. This observation variable is in-
fluenced by the actual state of traffic and takes one of
{High, Low} values.

• Neighbor evacuate?: It is natural to check whether
your neighbor in a similar situation is evacuating or
not, and a neighbor’s presence early in the timeline
may be misjudged as the neighbor staying put. This
Boolean observation variable is influenced by the cor-
responding state variable.



• Tweets to evacuate?: Social media allows families and
friends to remotely keep track of the disaster situation
and any evacuation orders. It allows them to quickly
convey their advice and worries about the individual’s
decision so far. We collected several such tweets is-
sued during the time period hurricanes Harvey and
Irma were active. This variable is influenced by evac-
uation order and takes a Boolean value.

• Call from Work?: Respondents in our survey reported
receiving calls to report to work despite the presence
of evacuation orders.

3.3 Hidden Variables

We introduce meaningful hidden variables each of which
models the collective impact of its parents. These nodes
help in aggregating related variables and avoiding a com-
binatorial explosion of the conditional probabilities due
to multiple variables affecting a single node.

• Weather threat perception: Wind and rain obser-
vations together indicate the current status of the
weather. This hidden variable may assume a value in
the set {Good, Bad} and its conditional probability ta-
ble (CPT) is shown in Table 2.

O Rain O Wind Good Bad
None Normal .95 .05
None High .7 .3
None Extreme .1 .9

Normal Normal .8 .2
Normal High .5 .5
Normal Extreme .05 .95
Heavy Normal .5 .5
Heavy High .1 .9
Heavy Extreme .01 .99

Table 2: CPT for hidden variable representing weather threat
perception.

• Safety threat perception: Flood and power failure ob-
servations, and safety of the house are combined to
understand how safe is the individual in his or her ge-
ographical area. The conditional probability table of
this hidden variable is shown in Table 3.

• Mobility: Finally, the demographic factors age, health
condition, and transportation availability influence a
person’s mobility. An extract from the full DID with
this node and its several parents is shown in Fig. 2.

While the weather and safety threats may change with
time, an individual’s mobility remains fixed.

A fourth variable that somewhat falls in this category is
the assessed risk posed by the approaching hurricane to
the individual’s own safety and her property. In contrast
to the previous hidden variables, our survey specifically

House Safety O Power Failure O Flooding Safe Unsafe
Safe Not Possible Not Possible .99 .01
Safe Not Possible Possible .9 .1
Safe Not Possible Flooded .7 .3
Safe Possible Not Possible .8 .2
Safe Possible Possible .7 .3
Safe Possible Flooded .6 .4
Safe Failed Not Possible .65 .35
Safe Failed Possible .6 .4
Safe Failed Flooded .5 .5

Unsafe * * 0 1

Table 3: CPT for the hidden variable representing safety threat
perception.

Figure 2: Factors influencing the hidden variable mobility. For
clarity, we prefix hidden variables with ’HN’ and shade them
darker. All network extracts visualized in OpenMarkov.

asked the participants to assess this risk that they faced
on a 7-point Likert scale with 1 being the lowest risk.

Figure 3: Factors influencing an individual’s assessed risk.
Variables prefixed with ’O’ and shaded in a different color are
the observation variables. The number in square parenthesis
denotes the index of the time-slice containing that node.

We model the individual’s assessed risk as shown in
Fig. 3. While hidden variables weather threat percep-
tion and safety threat perception obviously influence the
risk, an evacuation order raises the risk considerably. On
the other hand, the individual’s preparation to stay put
and ride out the storm mitigates it.

Participants’ responses to our survey question on as-
sessed risk and their responses to its parents were utilized
as part of expectation-maximization [9] to learn the CPT
of assessed risk. During this process, a subset of the sur-
vey responses is given as evidence to the network in or-
der to learn the CPT. With each case loaded as evidence,
the probability distribution is updated based on the value
for the assessed risk node and the number of times this



combination of states of the parents was encountered ear-
lier (experience). The CPT is initialized with an intuitive
Gaussian distribution and the experience values are ini-
tialized with a uniform distribution. The assessed risk
variable at previous time-step 0 is marginalized using a
uniform distribution to obtain the CPT at time-step 1.

3.4 Actions

Individuals in impending disaster areas face the choice of
evacuating or not evacuating. They may also choose to
make a decision about evacuating after collecting more
definite information on the observed variables. We label
this third choice as Get info. As such, an individual can
choose between three actions at each time-step.

Figure 4: The Action decision node is shaded in blue. Vari-
ables that have outgoing edges to the decision node form the
information set of action.

Figure 4 is an extract from the full DID that shows the ac-
tion decision node and its information set. As expected
for a POMDP, the observation variables described in Sec-
tion 3.2 constitute this set (in addition to the previous ac-
tion) and influence the policy.

3.5 Reward Function

As the DID models the evacuation decision making of
an individual, an utility node in this DID models the indi-
vidual’s costs and preferences. Parents of the utility node
are those variables that correlated significantly with the
binary evacuation variable in our statistical analyses of
Section 2.2. Consequently, these include state variables
representing prior trauma experienced by the individual,
whether neighbors evacuated, age and number of chil-
dren that influence the hidden variable mobility, the traf-
fic situation, assessed risk, and obviously the individual’s
decision. We show this subnetwork in Fig. 5. Because
the state of the POMDP, which is the ground situation, is
dynamic, a utility node is included in each time-slice and
the corresponding expected utility may change from one
time-slice to the next. The considered utility is the sum
of these time-step utilities.

The multiattribute reward function is logically structured

Figure 5: State and hidden variables that influence the reward
function (hexagonal utility node) in addition to the action.

as follows. Mobility dominates other variables because
an immobile individual is unable to evacuate even if the
risk is high. If the individual is mobile, the final reward
is a weighted combination of the reward contributions of
the variables. After mobility, assessed risk has the high-
est weight of 3 and the other variables – traffic, neigh-
bor evacuation, and prior trauma – are assigned an equal
weight of 1. The Get info action is assigned a high cost
if the assessed risk is high and a lower cost if the risk is
assessed to be low, regardless of the other variables.

3.6 Transition Function

A significant benefit of using a DID to represent the
POMDP is that it decomposes the overall transition func-
tion of the POMDP into transitions between the state fac-
tors due to actions. We show the full two time-slice DID
that models the transition function in the supplement.

As we mentioned previously in Section 3.1, variables
that pertain to demographics such as age, health, and
others do not change with time (see the top portion of
the DID). Wooten and Tsokos [19] model the change
in hurricane level as a Markovian process. We utilized
the transition function of this Markovian model in our
DID to model how the hurricane level changes. The path
of the hurricane continues to stay the same with a 75%
chance. Once an evacuation order has been announced
it is rarely revoked unless the strength of the hurricane
drops significantly. If an order has not been announced
then its announcement depends on the strength as well as
the path of the hurricane.

The transition of assessed risk when the individual
chooses to not evacuate or to get information is obtained
from the expectation-maximization learning method as
explained in Section 3.3. If the previous action is to evac-
uate, then the assessed risk drops to Level 1 regardless of
the values of other variables.

Preparation to stay back is significant only when the pre-
vious decision is to get information. Otherwise, the dis-
tribution is uniform. Also, there is no possibility for the
individual to become less prepared than before. A neigh-



bor who has evacuated is generally not expected to return
until the hurricane has passed. However, if they had not
evacuated then the probability of her evacuating in the
next time-step is same as the prior.

If it has started raining, then it continues with the same
intensity with a probability of .85 whereas there is a 40%
chance for it to start raining and a 10% chance of it being
heavy. There is a high chance of traffic increasing when
the previous decision is to evacuate. Otherwise, the prob-
ability of traffic depends on whether an evacuation order
is present or not.

3.7 Observation Functions

The observation functions are designed to reflect the un-
certainty in the perception of the environment. Thus, all
of these were populated based on the survey responses.
For example, we show the CPT for the observation node
times asked to evacuate in Table 4. Given an evacuation
order, we utilized the distribution of answers to our sur-
vey question to arrive at the probabilities. Otherwise, an
individual most likely did not hear it.

Action (t-1) Evacuation Order 0 1-2 3-4 ≥ 5
Get info Announced .45 .42 .08 .05
Get info Not Announced .95 .04 .01 0

* * .25 .25 .25 .25

Table 4: CPT for observation variable representing times asked
to evacuate.

3.8 Time Steps

The two time-slice DID is unrolled into four time-steps.
Each new time-step signifies a major change in either the
intensity or the direction of the hurricane under consid-
eration. The number of time-steps was found to be four
using this criterion in the cases of Hurricanes Harvey and
Irma. The first time-step occurs when the evacuation or-
der is first announced.

4 SENSITIVITY ANALYSES

Sensitivity analysis allows us to understand the impact
of a change in the conditional probabilities of a hypoth-
esis variable on a target random variable. As our model
is strongly driven by data, the analysis serves as a tool
to partly verify whether the variables and their CPTs are
reflecting the influences intuitively. We deploy the sen-
sitivity analysis to answer a series of questions, which
clarify and help explain how the model works.

While sensitivity analysis can be performed in multiple
ways [6], we rely on the method used by the Hugin Ex-

pert system. First, select a cell in the CPT of the hy-
pothesis variable. For various hypothetical probabilities
in this cell, we may obtain the corresponding inferred
probabilities of the values of the target random variable.
This sensitivity function is shown as a line graph – one
line for each value of the target variable. A sensitivity
value for each state of the target variable is then simply
the derivative of the sensitive function (the slope of the
line).

Figure 6: Sensitivity functions showing how the probabilities
of various assessed risk levels changes with the probability of
the hurricane initially being a category 5 at landfall.

Is assessed risk influenced by the strength and path of the
hurricane? Figure 6 shows the sensitivity analysis with
assessed risk as the target variable. Observe that the risk
is indeed influenced by the strength of the hurricane: as
probability of the hurricane initially making landfall as
category 5 increases, risk levels ≥ 5 exhibit a positive
slope and for other levels the slope is negative. However,
the path of the hurricane did not impact the risk. We
believe this is because the network has only seen cases
where the hurricane is headed toward the individual and
none where the hurricane veers away.

Figure 7: Sensitivity functions showing how the probabilities of
assessed risk levels are affected by the changes in probability
of individual’s house being safe.

Does the safety of the house significantly impact risk as-



sessment? Observe from Fig. 7 that assessed low risk-
levels of 1 and 2 exhibit positive slopes as the probability
of house being safe increases. Indeed, risk level 2 proba-
bility increases steeply. Furthermore, the probabilities of
higher risk levels reduce as we may expect.

Figure 8: Sensitivity functions showing how the probabilities
of mobility values change with the probability of the presence
of transportation.

Does the presence of transportation most affect the indi-
vidual’s mobility? What are the other factors influencing
mobility? Figure 8 reveals that mobility is highly sensi-
tive to changes in the probability of having transportation
(sensitivity value is .58). This was closely followed by
the individual’s employment situation with a sensitivity
value of .32 – employment inhibits the ability to move.

5 PERFORMANCE EVALUATION

We implemented the DID representing the POMDP in
Hugin Expert, and utilized Hugin’s Java application
programming interface (API) to process and test the pre-
diction accuracy of the network.

We evaluated the prediction accuracy of the model us-
ing 3-fold cross-validation on data pertaining to the 822
respondents in our survey. A Python program converted
the shuffled data from the survey into key-value pairs in-
put to Hugin. During each run of the cross-validation,
data in the two training folds were utilized to learn the
CPT of the Assessed Risk node and others. Recall that
Section 3.3 discusses how this CPT is learned.

Each participant record in the test fold (there are 274
records in this fold) was propagated individually through
the DID using Hugin API. Demographic state variables
for a participant do not change with time and their val-
ues were entered as evidence first. This was followed by
entering the values of the experiential state variables into
the corresponding nodes at the initial time-step. The par-
ticipant’s observations are entered into the nodes prefixed
with ‘O’ in the second time-slice. An example record

Dependents: “Absent”
Age: “a61 above”
Prior Trauma: “Absent”
Hurricane Level 0: “Cat 5”
Evacuation Order 0: “Announced”
Preparation to Stay 1: “Very”
O Flooding 1: “Possible”
O Power Failure 1: “Failed”
O Times asked to evacuate 1: “t1 2”
O Neighbor Evacuations 1: “Not Evacuated”

Table 5: An example subrecord containing demographic, experi-
ential, and observational data entered as evidence into the DID.

listing evidence values for an individual is shown in Ta-
ble 5. To allow consideration of these observations, we
set the initial decision to be Get info. As such, the model
predicts a decision to evacuate or not in subsequent time-
steps. The evacuation decision with the highest expected
utility is chosen as the model’s prediction.

(a) Confusion matrix (NE -
Not evacuate, EV - Evacu-
ate). Numbers not in bold
are the mispredictions.

NE EV
NE 105 23
EV 58 88
Accuracy: 70.44%

(b) Decisions at various
time steps (GI - Get Info)

t 1 2 3
GI 12 1
NE 116 11 1
EV 146

Table 6: Results for cross validation run 1.

(a) Confusion matrix

NE EV
NE 124 27
EV 43 80
Accuracy: 74.45%

(b) Decisions at various
time steps

t 1 2 3
GI 21
NE 130 21
EV 123

Table 7: Results for cross validation run 2.

(a) Confusion matrix

NE EV
NE 105 21
EV 60 88
Accuracy: 70.44%

(b) Decisions at various
time steps

t 1 2 3
GI 21 3
NE 105 18 3
EV 148

Table 8: Results for cross validation run 3.

Tables 6, 7, and 8 show the results for each of the three
cross-validation runs. We show both the confusion ma-
trix and the predicted decisions at various time-steps for
the test fold in each run. Recall that the decision at time-
step 0 is set as Get info and we do not show it. Once the
network recommends evacuate or not, subsequent deci-
sions become irrelevant for that individual. The average



accuracy across all three runs is 71.77% with a standard
deviation of 1.89% and a high of 74.45%. Our model
predicts a decision to evacuate or not at time-step 1 for
a majority of the participants. For example, in run 1
it rendered a decision that the participant will evacuate
or not in time-step 1 for 95% of the respondents. In-
deed, coastal residents in Georgia began evacuating im-
mediately on receiving the evacuation order. The DID
takes about 45 seconds on an Intel Core i7, 64GB RAM,
Ubuntu PC to render a decision.

Among the mispredictions, our model incorrectly pre-
dicts evacuate for more respondents than an incorrect
prediction of not evacuate. A deeper analysis of the data
reveals that the false predictions in the confusion matri-
ces (numbers not in bold) often reflects human behavior
that is hard to understand. We found that 62 respondents
had decided to not evacuate despite assessing the risk
level to be very high – at 6 or 7 – and they were mo-
bile. Additionally, more than 100 who did not evacuate
falsely believed that they were not in an evacuation zone
although an evacuation order was issued for their place
of residence. Consequently, the number of respondents
for whom the model mispredicted evacuate is higher.

6 RELATED WORK

Formal data collection efforts on factors affecting po-
tential evacuees are scarce: we know of just one small
survey of affected individuals by NYC’s Mental Health
and Hygiene Department after Hurricane Sandy [2]. The
survey revealed that those who witnessed suffering dur-
ing the WTC attacks (i.e., prior trauma), those who were
staying in lower floors, and those who expected heavy
damages to their homes had evacuated more than the oth-
ers. Many of these findings are consistent with the find-
ings from our survey and serve to reinforce the inclusion
of these factors in our model.

Initially, it was believed that the decisions are solely
based on the different kinds of warnings. Subsequently,
it was identified that different people react differently to
the same announcement of disaster warning [10]. Pre-
vious research on evacuation decision modeling has ex-
plored the use of decision trees composed of binary
questions based on personal interviews [5]. Though the
model was able to achieve high accuracy of prediction,
we observe that it is not probabilistic and requires inter-
viewing the individual. Therefore, there is no room for
ambiguity or an option to skip a question and still get
predictions.

Hasan et al. [7] developed a statistical mixed-logit
composed of numerous factors and variables including
state/location, home ownership, prior hurricane experi-

ence, education level, dependents, and income. Most
of these variables were included in our survey question-
naire. While some of them were found to be significant
predictors of evacuation and included in our model, oth-
ers not found to be influencing the decision were dropped
from subsequent analyses. A key point of difference is
that the logit model is not a process model.

7 CONCLUDING REMARKS

We presented a POMDP model, represented as a DID
with four time-steps, to model the evacuation decision
making of an individual in an impending disaster zone.
The responses of a directed survey received from the res-
idents of US states of TX, FL, and GA who were asked
to evacuate during Hurricanes Harvey and Irma served to
inform this model. The interrelations between the vari-
ables and the CPTs depict the situation and the differ-
ential importance of the factors in the decision-making
process. Data from the survey responses were used to en-
ter the evidence for the variables in the model and arrive
at the decisions with a reasonably good accuracy. The
paper presents a descriptive process model that aims to
capture an individual’s actual decision making, and not
normative recommendations (which was to evacuate for
all surveyed individuals). A graphical representation in
the form of a DID facilitates comprehension and explain-
ability of its inference and predictions, which promotes
its use by agency staff who may not be experts in AI.

Human decision making is known to suffer from cogni-
tive biases and these may affect evacuation decision mak-
ing as well. Indeed, there is preliminary research [18, 3]
on the evacuation behavior of residents in areas fre-
quently affected by hurricanes with a focus on the psy-
chological aspects of decision making (but lacking a
computational model). Our administered survey also
tested for some cognitive biases in individuals: it ad-
dressed three well-established and potentially relevant
biases generally evident across populations: gambler’s
fallacy associated with overconfidence in predictive abil-
ity [1]; the illusion of control which occurs when peo-
ple confuse chance with skill and thus behave as though
their actions control the outcome of a random event [14],
and the confirmation bias [13]. An ongoing analysis
will reveal whether any of these biases were significantly
evident in the surveyed population. However, we cau-
tion that mathematical models of these biases do not ex-
ist, which makes their inclusion in our decision-making
model not trivial.
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