Analysis of the Uterine Lumen in Fertility-Classified Heifers: II. Proteins and Metabolites
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ABSTRACT

Survival and growth of the bovine conceptus is dependent on endometrial secretions or
histotroph. Previously, serial blastocyst transfer was used to classify heifers as high fertile (HF),
subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components (proteins
and metabolites) in the uterine lumen of day 17 fertility-classified heifers. Interferon tau (IFNT)
was more abundant in uterine lumenal fluid (ULF) of pregnant HF than SF animals as the
conceptus was longer in HF heifers. However, no differences in endometrial expression of
selected classical and nonclassical interferon-stimulated genes (ISGs) were observed, suggesting
that IFNT signaling in the endometrium of pregnant HF and SF heifers was similar. Pregnancy
significantly increased the abundance of several proteins in ULF. Based on functional
annotation, the abundance of a number of proteins involved in energy metabolism, oxidative
stress, amino acid metabolism, and cell proliferation and differentiation were greater in the ULF
of pregnant HF than SF heifers. Metabolomics analysis found that pregnancy only changed the
metabolome composition of ULF from HF heifers. The majority of the metabolites that increased
in the ULF of pregnant HF as compared to SF heifers were associated with energy and amino
acid metabolism. The observed differences in ULF proteome and metabolome are hypothesized
to influence uterine receptivity with consequences on conceptus development and survival in

fertility-classified heifers.
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INTRODUCTION

The uterus clearly impacts conceptus (embryo/fetus and associated extraembryonic
membranes) survival and development, thus affecting pregnancy success [1-5]. After hatching
from the zona pellucida (days 9—10) [6], the bovine blastocyst slowly grows into an ovoid or
tubular form on days 12 to 14 and is then termed a conceptus [7]. Peri-implantation growth of the
conceptus is highly dependent on substances present in the uterine lumen [8]. Uterine epithelia
are present in the endometrium of all mammals [9], and their secretions constitute an important
component of the histotroph, which is essential for preimplantation conceptus survival and
development in sheep [10, 11]. Based on candidate and comprehensive analyses [12-20],
histotroph in the uterine lumen of cattle is a complex mixture of amino acids, glucose, lipids,
proteins, carbohydrates, vitamins, ions, cytokines, hormones, growth factors, and other
substances.

In cattle, the endometrium transcriptome is greatly affected by progesterone and
pregnancy, e.g. the conceptus [21]. Pregnancy-induced changes in the endometrium
transcriptome are hypothesized to influence uterine lumenal secretome composition, thereby
affecting conceptus development and pregnancy success [17, 22-24]. For instance, pregnancy
increases the availability of basic (e.g. arginine, lysine, histidine) acidic (e.g.
aspartic acid/aspartate, glutamic acid/glutamate) and neutral amino acids (e.g. glutamine,
isoleucine, leucine, phenylalanine, tyrosine and valine) in the uterine lumen during the
preimplantation period in cattle and sheep [16, 25, 26]. Additionally, pregnancy modulates the
availability of proteins in the uterine lumen during the preimplantation period in cattle [12, 22].
A series of studies found that interferon tau (IFNT) has distinct effects on the endometrial

transcriptome and uterine histotroph in sheep and cattle [27-31]. IFNT is a type 1 IFN produced
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exclusively by mononuclear trophectoderm cells of the elongating conceptus in ruminants, and is
secreted predominantly between days 15 to 22 in cattle [32-34]. A primary role for IFNT is to
suppress development of the endometrial luteolytic mechanism [27, 35, 36]. However, the
paracrine actions of IFNT also stimulate the expression of classical and non-classical interferon-
stimulated genes (ISGs) in the endometrium that, along with progesterone induced effects,
modulate uterine gene expression, which is essential for establishing uterine receptivity in
ruminants [37-40].

It has been recently demonstrated that the metabolite composition of the uterine lumen
can be altered by pregnancy as early as day 7 of gestation [17], and that progesterone plays
important role regulating uterine lumenal fluid constituents around the time of onset of conceptus
elongation in cattle (days 12-14) [18-20]. Alterations in the profile of uterine lumenal
components during early pregnancy are a result of complex conceptus-endometrium interactions
which are required to support conceptus growth and pregnancy establishment. The conceptus-
endometrium crosstalk regulates conceptus and endometrium gene expression, ensures corpus
luteum maintenance, provides substrates for cell proliferation and differentiation while
preventing cell damage through oxidative stress, and induces the state of uterine receptivity. In
order to identify changes in the uterine lumenal constituents that are associated with increased or
reduced uterine capacity to support pregnancy, the current experiment utilized heifers that were
previously fertility-classified as high fertile (HF; 100% pregnancy rate), subfertile (SF; 25-33%
pregnancy rate), or infertile (IF; 0% pregnancy rate) using serial transfer of a single in vitro
produced blastocyst on day 7 followed by pregnancy determination on day 28 [1, 41].
Interestingly, conceptus development and survival on day 14 (7 days post-transfer) was not

different among fertility-classified heifers and only minimal differences in endometrial
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transcriptome were observed on day 14 [41]. Subsequently, it was observed that day 17 (10 days
post-transfer) pregnancy rate was higher in HF (71%) and SF (90%) than IF (20%) heifers.
Although no differences in conceptus recovery rate was observed between HF and SF heifers on
day 17, the conceptuses from HF heifers were on average twice as long compared to SF
conceptuses [1]. Additionally, the analysis of transcriptome data generated from endometrium
and conceptus revealed dysregulated conceptus-endometrium interactions in SF heifers [1]. The
endometrium of SF heifers was found less responsive to pregnancy on day 17, and this was
hypothesized as the main cause of embryonic mortality observed in SF heifers by day 28 [1],
Thus, in order to investigate the biology of subfertility, the present study tested the hypothesis
that specific histotroph constituents in the uterine lumen is altered in fertility-classified heifers.
Because differences in endometrial transcriptome can translate into differences in the
components available in the uterine lumen [24], the focus of the current study was to investigate
proteins and metabolites in the uterine lumen of pregnant and open fertility-classified heifers

using targeted and untargeted approaches.

MATERIALS AND METHODS

Animals. All animal procedures were conducted in accordance with the Guide for the Care and
Use of Agriculture Animals in Research and Teaching and approved by the Institutional Animal
Care and Use Committees of the USDA-ARS Fort Keogh Livestock and Range Research

Laboratory and the University of Missouri.
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Collection of Uterine Lumenal Contents. As described previously [1], fertility-classified
heifers were synchronized to estrus (day 0) and received two in vivo-produced embryos on day 7
(HF, n=21; SF, n=10; IF, n=5). Conceptus recovery rate was higher in HF (71%; 15/21) and SF
(90%; 9/10) than IF (20%; 1/5) heifers. Additional heifers (SF, n=4; IF, n=1) were synchronized
to estrus but no embryo transfer was performed. All heifers (HF, n=21; SF, n=14; IF, n=6) were
slaughtered on day 17 (10 days post-transfer or 17 days post-estrus) at the University of Missouri
slaughter facility, and reproductive tracts were collected within 30 min of slaughter. Immediately
after collection, the reproductive tracts were transported to the laboratory, and the uterine lumen
was gently flushed with 20 ml of sterile and filtered 1X PBS (pH 7.0). The conceptuses were
removed, if present, the ULF clarified by centrifugation (3000 x g at 4°C for 15 min), and the
supernatant was carefully removed with a pipette, mixed, divided into aliquots, frozen in liquid

nitrogen, and stored at -80°C until analyzed.

IFNT Analysis. The amount of IFNT in ULF was measured in samples from pregnant (HF,
n=15; SF, n=9; IF, n=1) and nonpregnant (HF, n=6; SF, n=1; IF, n=4) fertility-classified heifers
that received two embryos on day 7. Bovine IFNT was generated as a glycosylated recombinant
protein (rbIFNT) using bovine trophoblast protein 1 cDNA (bTP509) as template [42] and
human HEK cells by Colorado State University in collaboration with a biopharma company (J. V.
Bishop and T.R. Hansen, manuscript in preparation). Purified rbIFNT was used to generate a
monoclonal antibody in mice (9.1.1; 16.2 pug/ml) and a polyclonal antibody in goats (5.3 pg/ml),
which were used as capture and biotinylated detector antibodies, respectively, in a sandwich
Enzyme Linked Immunosorbent Assay (ELISA). The range of detection for this ELISA was 100

pg to 3,000 pg and the limit of detection for this assay was 100 pg/ml. This ELISA has been
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validated to be specific for IFNT, and does not cross-react with IFNs omega, alpha/beta, or
gamma. Uterine flush samples from open and pregnant heifers were analyzed in the same assay.
Uterine flushings were analyzed as neat (undiluted) samples or at dilutions of 1:10 or 1:500 in

order to detect IFNT in the linear range of the assay.

Proteomics. ULF proteomics analysis was conducted by the Proteomics Center of the University
of Missouri in a subgroup of 25 heifers that were determined to be pregnant (HF, n=5; SF, n=5)
or nonpregnant/cyclic (HF, n=5; SF, n=5; IF, n=5) at day 17 slaughter. The selected 25 heifers
used here are the same subgroup of animals which we performed RNA sequencing (RNA-seq) of
endometrial samples in a recent publication [1]. The selection of the pregnant heifers (HF, n=5;
SF, n=5) used in these analyzes was based on data of conceptus length and number, in an effort
for selecting samples that represented well the overall data collected within each fertility group.
For instance, in the complete data collected [1], 38.1% of HF heifers and 40% of SF heifers had
two conceptuses, and the average conceptus length was 10.6 = 7.6 (range: 1.2 to 32.2 cm) for
HF heifers and 4.7 £ 4.2 (range: 1.5 to 13.5 cm) for SF heifers. In the selected subgroup of
pregnant heifers, 2 HF and 3 SF heifers had two conceptuses, and the average conceptus size was
11.97 £ 8.14 cm (range: 1.3 to 25 cm) for HF and 6.38 + 4.5 (range: 2.1 to 13.5 cm) for SF
heifers.

Two analytical procedures were used to investigate the proteomic profile of the ULF. In
the first procedure, ULF proteins were precipitated, and in-solution digestion performed. To
increase the number of proteins identified, a second procedure was conducted in which
precipitated proteins were first loaded in 12% acrylamide SDS-PAGE for size separation, and

protein digestion was performed in slices of SDS-PAGE gels.

6102 J8gWBAON 0 UO Jasn eiquinjoD-LNossI 10 AlisteAun Aq $2//8GS//61201/81101q/€601 "0 L /I0p/1oeISqe-8|oile-a0ueApe/poidal|olq/wod dno olwsepeoe//:sdiy Wwolj papeojumoq



Description of the in-solution digestion method. Proteins in a total of 1 mL of ULF were
precipitated using 4 volumes of 5% trichloroacetic acid in 100% of ice-cold acetone solution.
Samples were vortexed and incubated at -22°C for 24 h for protein precipitation. Samples were
then centrifuged at 16,000 x g for 10 min, and the supernatant discarded. Protein pellets were
resuspended in a solution of urea/ammonium bicarbonate (6 M urea, 100 mM ammonium
bicarbonate), digested with trypsin (www.osa.sunysb.edu/Proteomics/ProteinDigestPrep), and
peptides purified by large-format, 100 uL, C18 tips (according to the manufacturer®s

instructions, Pierce/Thermo Scientific).

Description of the SDS-PAGE method. The amount of protein in ULF were first determined
using the Qubit® Protein Assay Kit with a Qubit® 3.0 Fluorometer, and variable volumes of
ULF containing 200 ug of protein were aliquoted. ULF proteins were precipitated as described in
the in-solution method, and the protein pellet was resuspended in 20 uL of 1X Laemmli buffer
(60 mM Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, and 100 mM DTT), and loaded on one of
three 12% acrylamide SDS-PAGE gels. After staining with colloidal Coomassie blue, the gels
were destained in water and each lane sliced into 8 pieces. Gel slices were frozen at -80°C until
processing. Samples were trypsin digested according to the available protocol
(http://proteomics.missouri.edu/protocols) for digestion of Coomassie-stained 1D gel bands.
Peptides were then lyophilized and resuspended in 40 pL solution of 5% acetonitrile and 1%
formic acid. Half of the sample (20 pL) was transferred to autosampler vials, and liquid
chromatography tandem mass spectrometry (LC-MS/MS) performed using a LTQ Orbitrap

XL™ mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA).
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LTQ orbitrap mass spectrometry and protein identification. A full-loop injection (18uL) of
sample was loaded onto a C8 trap column (pepmap100, ThermoFisher Scientific, Waltham, MA,
USA). Peptides were eluted from the trap column and separated on a 25 cm x 150 um inner
diameter pulled-needle analytical column packed with HXSIL C18 reversed phase resin
(Hamilton Co.) with a step gradient of acetonitrile at 400 nL./min. The Proxeon Easy nLC HPLC
system is attached to an LTQ Orbitrap XL™ mass spectrometer. Liquid chromatography
gradient conditions were initially 5% B (A: 0.1% formic acid in water, B: 99.9% acetonitrile,
0.1% formic acid), followed by 2 min ramp to 10% B. Gradient of 10-20% B over 35 min,
gradient of 20% B to 30% B over 40 min, gradient of 30% B to 90% B over 5 min, hold at 90%
B for 22 min, ramp back to (1 min) and hold at (5 min) initial conditions.

Fourier Transform Mass Spectrometer (FTMS) data were collected (30,000 resolution, 1
microscan, 300-1800 m/z, profile, AGC 5e5) and then at each cycle (approximately 3 sec), the 9-
most-abundant peptides (ignore +1 ions, ignore trypsin autolysis ions, pick peptides with > 1,000
counts) were selected for MSMS (2 m/z mass window, 35% normalized collision energy,
centroid). Dynamic exclusion was applied with the following parameters: repeat count 1, repeat
duration 30 sec, exclusion list max 500, exclusion duration 180 sec. Raw data was copied to the
Sorcerer2 IDA (SageN Research) and peak lists prepared using ReAdW. Bovine protein entries
were retrieved from NCBI using a “protein” search with the keyword bovine. A total of 126,866
Bos taurus entries were downloaded in FASTA format. A reversed sequence decoy database was

generated using DecoyDBCreator V0.1 (http://www.p3db.org/p3db1.0/tools/DecoyDBCreator/)

in which forward and reversed sequences were linked together into a single FASTA file (253,732

total sequences). Sequest searches were performed with trypsin as enzyme, two missed cleavages
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allowed, carbamidomethyl cysteine as a fixed modification, oxidized methionine as variable
mod, 25 ppm mass tolerance on precursor ions, and 1Da on fragment ions.

Scaffold (version Scaffold 4.0.6.1, Proteome Software Inc., Portland, OR) was used to
validate MS/MS based peptide and protein identifications. Peptide identifications were
accepted if they exceeded specific database search engine thresholds (XCorr >1.5) and with a
mass accuracy of <10 ppm. Protein identifications were accepted if they contained at least 2
identified peptides. The minimum number of unique peptides was set at 2 in order for a
protein to be identified. Peptide threshold was set at 95% peptide probability, with +2
accepted charge, and parent mass tolerance of 10 ppm. Using the parameters above, the decoy
False Discovery Rate (FDR) was calculated to be 1.1% on the protein level and 0.0% on the
spectrum level [43]. Total spectrum counts for proteins were used for comparisons and

statistical analysis.

Untargeted Metabolomics. Global metabolomic analysis of the ULF was conducted by the
Southeast Center for Integrated Metabolomics (SECIM) at the University of Florida (Gainesville,
FL) in the same 25 samples selected for proteomics. All samples were extracted following a
cellular extraction procedure without pre-normalization to the sample protein content. Global
metabolomics profiling was performed on a Thermo Q-Exactive Oribtrap mass spectrometer
with Dionex UHPLC and autosampler. All samples were analyzed in positive and negative
heated electrospray ionization with a mass resolution of 35,000 at m/z 200 as separate injections.
Separation was achieved on an ACE 18-pfp 100 x 2.1 mm, 2 pm column with mobile phase A as
0.1% formic acid in water and mobile phase B as acetonitrile. This is a polar embedded

stationary phase that provides comprehensive coverage, but has some limitations for the
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coverage of very polar species. The flow rate was 350 puL/min with a column temperature of
25°C. A total of 4 pL of each sample was injected for negative ion mode analysis and 2 plL was

injected for positive ion mode analysis.

Statistical analyses. Statistical analyses for measurements of IFNT in ULF was conducted using
SAS (SAS Institute Inc., Cary, NC). IFNT concentrations were assessed for normality using the
UNIVARIATE procedure, and because concentrations were determined not to be normally
distributed, data were rank transformed. The effect of pregnancy status (pregnant vs open),
conceptus number (one vs two) and fertility classification on ULF IFNT concentrations were
determined by analysis of variance (ANOV A) using the GLM procedure. Post-test comparisons
were conducted using the LSMEANS statement with the Fisher's protected Least Significant
Difference (LSD) option. Pearson®s correlation for conceptus size and ULF IFNT concentrations
were determined using the CORR procedure. Of note, for heifers with two conceptuses,
conceptus length was equal to the sum of both conceptuses present in the flush.

Statistical analysis of the proteomics data was performed in Scaffold (version Scaffold
4.0.6.1, Proteome Software Inc., Portland, OR). Significant proteins were identified based on
Fisher®s exact test for comparisons including two treatments (e.g. Pregnant vs Open), and
ANOVA with Fisher*s LSD post-hoc adjustment for analyses containing more than two
treatments (e.g. HF vs SF vs IF). Enrichment analysis (http://www.geneontology.org) was
performed to identify pathways that were over-represented among significantly different
proteins identified in ULF.

Statistical analysis of the metabolomics data was performed using the web server

MetaboAnalyst 4.0 (http://www.metaboanalyst.ca) [44-49]. For this analysis, a table matrix of
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m/z peak intensities with samples in columns and features in rows were created and imported to
MetaboAnalyst 4.0. Data from positive and negative ion modes were separately subjected to
statistical analyses. Data filtering was performed based on the interquartile range to identify and
remove low-quality data points, and then, the data was normalized by the sum method, log
transformed and scaled using the auto scaling method. A t-test was used to investigate if features
were differently expressed for comparisons including two treatments (e.g. Pregnant vs Open),
and ANOVA with Fishers LSD post-hoc adjustment was used when the analyses contained
more than two treatments (e.g. HF vs SF vs IF). Fold change (FC) analysis was conducted to
detect whether the abundance of differential metabolites increased or decreased in ULF for each
comparison. The calculation of FC is based on the ratio between two group means (e.g.
pregnant/open), and the fold change threshold of two was set for all analyses. Differential
metabolites were further investigated using the metabolite set enrichment analysis (MSEA)
module of MetaboAnalyst 4.0, to identify biologically meaningful pathways associated with the
significantly altered metabolites. To account for multiple comparisons, a false discovery rate
(FDR < 0.05) was applied for all analyses. Additionally, using the human database of
MetaboAnalyst 4.0, joint pathway analyses that combined the uterine transcriptome data from
fertility-classified heifers [1] with the differential metabolites detected in the ULF were
conducted, in order to further explore biological pathways that were overrepresented among

fertility-classified heifers during early pregnancy.

Integration of uterine lumenal secretome and endometrium and conceptus transcriptome.
The present ULF data was integrated with transcriptome data from endometrium and

conceptuses [1]. Gene expression data, available in Gene Expression Omnibus (GEO) database
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under the accession number GSE107891), was reanalyzed to address comparisons not performed
in the original work. Differential gene expression analysis was conducted using edgeR-robust
[50], and a false discovery rate (FDR) of < 0.05 was used as the cutoff for determining the
differently expressed genes (DEGs).

Because IFNT modulates endometrial gene expression, an analysis was conducted to
investigate the expression of ISGs by the endometrium of fertility-classified heifers.
Furthermore, we explored the expression of known genes regulating IFNT transcription in the
conceptus and endometrium.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database

(https://www.genome.]p/kegg/) was used to identify genes encoding amino acid transporters, and

the expression of those genes by the conceptus and endometrium was investigated. Additionally,
the origin of proteins that increased in the ULF by pregnancy (conceptus versus endometrium
secreted) was explored using the transcriptome data from conceptus and endometrium.
Furthermore, we investigated endometrial genes (FDR<0.05) and ULF proteins (P<0.01) that
were similarly increased by pregnancy, to identify proteins that are robustly upregulated by the
endometrium during pregnancy.

The analysis performed on endometrial transcriptome included data generated from the
same subgroup of pregnant (HF, n=5; SF, n=5) and open (HF, n=5; SF, n=5) heifers selected for
ULF analysis. The model used to test the effect of pregnancy on endometrial gene expression
was composed by gene expression data as the dependent variable and pregnancy status (pregnant
vs nonpregnant) as the independent variable. The model used to evaluate differences among only

pregnant heifers (HF, n=5; SF, n=5) was comprised of gene expression data of pregnant
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endometrium as the dependent variable and fertility group (HF vs SF) as the independent
variable.

A similar approach was used to investigate the relationship of ULF composition and
conceptus transcriptome. Because there is natural variation in conceptus length among
conceptuses collected in the same day during the period of conceptus elongation in cattle [7, 23,
41, 51, 52] and the conceptus transcriptome changes as it develops [23], we first analyzed day 17
conceptus transcriptome data from HF (n = 15) and SF heifers (n = 7) that were either short (n =
11; mean length: 2.5 = 0.4 cm) or long (n = 11; mean length: 14.5 + 1.9 cm) to explore
differences in the transcriptome of conceptuses that were likely due to stage of development. The
model used to test the effect of conceptus length on conceptus transcriptome was composed by
gene expression data as the dependent variable and category of conceptus size (short vs long) as
the independent variable. Then, the transcriptome of HF (n = 17) and SF (n = 10) conceptuses
were compared for the same set of genes of interest, to investigate the influence of ULF
composition on conceptus transcriptome, in order to explore the mechanisms associated to the
retarded growth of SF conceptuses and reduced pregnancy success in SF heifers. The model used
to test the effect of fertility-classification on conceptus transcriptome was composed by gene
expression data as the dependent variable and fertility group (HF vs SF) as the independent

variable.

RESULTS

Interferon tau (IFNT). As expected, IFNT was not detected in the ULF of open heifers (Figure

1A). Among pregnant heifers, conceptus number did not influence (P = 0.22) ULF IFNT
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abundance (Figure 1B). Consistent with differences in conceptus length [1], IFNT was higher in
in the ULF of pregnant HF than SF (P = 0.045) and IF (P = 0.02) heifers (Figure 1C). As
expected, the amount of IFNT in the ULF was correlated (r = 0.82, P < 0.01) with conceptus

length (Figure 1D).

Integrating ULF IFNT and transcriptome data. There were no differences in abundance of
IFNT transcripts in short compared to long conceptuses (FDR = 0.98) or between HF and SF
conceptuses (FDR = 0.21). The expression of select classical and nonclassical ISGs in the
endometrium were also not different in pregnant HF and SF endometrium (Table 1). The
expression of select genes involved with the transcriptional control of IFNT by the conceptus and
endometrium [53] is presented in Table S1. Expression of POUSFI in conceptuses was not
different between short and long (FDR = 0.20) or between HF and SF conceptuses (FDR =0.11).
EOMES expression in day 17 conceptuses was very low (FPKM<I1). Interestingly, conceptuses
from HF heifers had higher (FDR < 0.01) expression of the IFNT transactivators DLX3 and
GATA3 compared to SF conceptuses, and GATA3 and CREBBP tended (FDR < 0.1) to be higher
in HF than SF conceptuses.

Among factors from the uterus that stimulates conceptus IFNT production in vitro,
colony stimulating factor 1 (CSFI) was increased (FDR < 0.01) in endometrium from pregnant
as compared to open heifers, but no differences were observed in the endometrium of pregnant
HF and SF heifers (Table S1). Additionally, endometrial FGF2 expression on day 17 was not
affected by pregnancy or different between pregnant HF and SF heifers. Of note, endometrial

CSF2 and IL3 expression was very low (FPKM<I; Table S1).
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ULF Proteomics. There were 699 proteins identified in the ULF using the in-solution method
(Dataset S1) and 899 proteins identified using the SDS-PAGE method (Dataset S2). The
expected differences in sensitivity observed between the SDS-PAGE and the in-solution methods
are attributed to the up-front fractionation of proteins by size in the gel approach, and due to
differences in total LC-MS acquisition time between the two approaches. The gel technique was
performed using 880 min of total acquisition time per sample (8 slices x 110 min acquisition
each), whereas the in-solution digestion was analyzed in a single gradient of 110 min. The
increase in acquisition time results in increased number of proteins being identified. The
differences in nature of proteins identified by the two procedures can also be explained by
methodological differences between the two approaches. The SDS-PAGE method is detergent
based, and SDS solubilize membrane associated proteins with greater efficiency than the in-
solution digestion buffer, which does not contain any detergent. Nevertheless, there was a
significant overlap in the proteins identified between the two procedures. The majority of the
proteins identified by the in-solution method (63%; 440/699) were also detected by the SDS-
PAGE method, and 51% of the significantly different proteins identified among all comparisons
performed in the data generated by in-solution method were also significant in the analyses
conducted in the data from the SDS-PAGE method (Table 2).

The abundance of 167 (Dataset S3) and 446 (Dataset S4) proteins were differently
present in the ULF of pregnant compared to open heifers for the in-solution and SDS-PAGE
methods, respectively, and 103 of those proteins were consistently different in abundance in both

procedures (Table 2; Dataset S5).
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Based on the 103 different proteins detected by both methods, the abundance of 62
proteins increased and 41 decreased in pregnant compared to open ULF (Dataset S5).
Interestingly, pathways associated with the 62 proteins that increased in pregnant ULF using the
Reactome database included amino acid biosynthesis and metabolism (CKMT1, ACADVL,
ACAAL, ENOI1, ALDH2, ACAT1, GOT2, P4HB, GOT1, ALDOC, AHCY, PGD, CAT, ACO2,
IDH2, FABP3, ALDOA, PSPH, FH, ATIC, PSAT1, PGM2, ABHD14B, HSD17B10 and
DDAH2), metabolism of carbohydrates (ENO1, GOT1, GOT2, ALDOC, PGD, ALDOA,
PGM2), and TCA cycle (ACO2, IDH2, FH) (Table S2). Conversely, pathways associated with
the 41 proteins that increased in open compared to pregnant ULF using the Reactome database
included intraflagellar transport due to the increased abundance of three cytoskeletal proteins
(TUBB2B, TUBA1A, TUBBS), and regulation of insulin secretion, due to the increased
abundance of three G-protein subunits (GNAI2, GNB2, GNAQ) in open ULF (Table S3).

Because the SDS-PAGE method was more sensitive (Table 2), the description of the
subsequent results was focused on the data generated by the SDS-PAGE procedure. The
abundance of selected top 10 most significant proteins that increased in ULF of pregnant versus
open heifers (Table 3) included embryonic secreted factors (TKDP1, PAG11), nuclear-envelope
proteins (Lamin A/C; LMNA), mitochondrial proteins (DLD, ACAA1, ACAA2, HSPDI,
HSPA9, GLUD1), and glutathione synthase (GSS). Likewise, the selected top 10 most
significant proteins that increased in open than pregnant ULF (Table 3) included cytoskeletal
proteins (EZR, 2P4N, MYOI1B), G-protein subunits (GNAQ, GNAI2), other membrane-bound
proteins (PAS-6/7, FAM234A, RARRES1, GPC1), and a protein of the coagulation system

(Factor V).
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There were 221 different proteins in ULF of pregnant HF and SF heifers of which 142
increased and 79 decreased (Dataset S6, Figure 2). Panther pathways associated with the 142
proteins that increased in ULF of pregnant HF compared to SF heifers included vitamin B6
metabolism, amino acid metabolism (asparagine and aspartate biosynthesis, serine glycine
biosynthesis), energy metabolism (pyruvate metabolism, pentose phosphate pathway, ATP
synthesis and glycolysis), p38 MAPK pathway, and cytoskeletal regulation by Rho GTPase
(Table S4, Figure 2). Panther pathways associated with the 79 proteins that increased in ULF of
pregnant SF compared to HF heifers were related to hemostasis and included the plasminogen
activating cascade and blood coagulation pathways (Table S5, Figure 2).

There was a total of 48 differently abundant proteins in the ULF of open fertility-
classified heifers (Dataset S7, Figure 3), but there were no pathways associated with the

differently abundant proteins.

Integrating ULF proteomics with transcriptome data from the endometrium and
conceptus. Among the 62 proteins commonly increased by pregnancy in both methods (Dataset
S5), 56 were expressed by the endometrium based on our previously published RNA-seq data
[1]. The remaining 6 proteins not expressed by the endometrium includes conceptus secreted
factors (PAG11), a precursor for trophoblast Kunitz domain protein (TKDP1; Genlnfo Identifier:
296481028) and TKDP1, a precursor of serpin A3-7-like protein (LOC784932;

Genlnfo Identifier: 985701132) that was neither expressed by the endometrium or conceptuses,
and two proteins not well annotated (Genlnfo Identifier: 89611 and 2323392). The proteins
determined to be expressed exclusively by the conceptus were PAG11, TKDP1, and the TKDP1

precursor. There were also 11 proteins (ACO2, AIFM1, GDA, HSPA9, PREP, EEF2,
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HSD17B10, MTAP, PGM2, PSAT1, TPI1) that increased in the ULF by pregnancy that were
determined to be encoded only by genes expressed by the endometrium and not by conceptuses.
The expression of 45% (27/60) of the genes encoding proteins commonly increased in the
ULF by pregnancy were found to be increased in the endometrium of pregnant than open heifers
(Figure 4A, Dataset S8), indicating that these proteins are upregulated in the endometrium by
pregnancy. Interestingly, the abundance of 56% (15/27) of these proteins were also increased in
pregnant HF than SF ULF (LAP3, PSPH, ENO1, WARS, QPRT, ATIC, MDH2, AHCY,
ACAA2, CAP1, GOTI1, HSPA9, ACTN4, LOC615277, GSS), but none of them were increased
in pregnant SF than HF ULF (Dataset S6). Conversely, the expression of only 13% (5/39;
FCGBP, GNAI2, SERPINF1, TUBA1A, TUBB, and two proteins not well annotated
Genlnfo Identifier: 7547266, 7547965) of the genes encoding proteins that increased in open
ULF were found to be increased in the endometrium of open heifers (Figure 4B, Dataset S9),
suggesting that these proteins are downregulated in the endometrium by pregnancy. Of those, the
abundance of FCGBP was decreased, but TUBB and TUBAIA increased in pregnant HF than

SF ULF.

Metabolomics

A total of 1,378 metabolites were detected (122 identified and 1,256 unknown) in the
positive ion mode (Dataset S10) and 551 metabolites detected (84 identified and 467 unknown)
in the negative mode (Dataset S11). Identified metabolites included amino acids and amino acid
derivatives, ions, carbohydrates, purines, polyphenols, lipids, and other constituents. Overall,
there were 315 differential metabolites (70 identified) in the ULF of pregnant versus open heifers

(Datasets S12 and S13). A striking difference was observed in pregnancy induced changes in
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the metabolites found in the uterine lumen of HF and SF heifers (Table 4). In HF heifers, there
were 271 differential metabolites (67 identified) comparing ULF from pregnant and open heifers
(Datasets S14 and S15). Surprisingly, no significant differences in metabolite composition were
observed in the ULF of SF heifers that were pregnant or open.

Additionally, there were 13 differential metabolites in the ULF of pregnant HF and SF
heifers, but only one (L-Methionine) identified (Datasets S16 and S17), and its concentration
increased in pregnant HF than SF ULF. Furthermore, in the comparison among only open
fertility-classified heifers, there was one unidentified metabolite (m/z 109, retention time: 8.5
min) that was increased in the ULF of SF than HF and IF heifers (Dataset S18).

Results from the fold change (FC) analysis of pregnant and open ULF are presented on
Datasets S19 and S20, and Supplementary Figures 1A and S1B. The top 20 metabolites with
highest FC differences are summarized in Table 5. Of note, the abundance of 76% (145/192) of
the metabolites with FC > 2 were increased in pregnant compared to open ULF. Results of FC
analysis comparing only ULF from pregnant HF and SF heifers are presented on Datasets S21
and S22, and the top 20 identified metabolites with highest differences in FC are summarized in
Table 6. The abundance of 59% (102/173) of the metabolites with FC > 2 were increased in HF
compared to SF ULF, further indicating that pregnancy induced changes in uterine lumenal
metabolites were greater in HF than SF heifers.

Metabolite set enrichment analysis (MSEA) identified significant pathways associated
with the differential metabolites between pregnant and open ULF (Figure SA). The top five
pathways were urea cycle, glycine and serine metabolism, glutamate metabolism, and arginine
and proline metabolism. Furthermore, the top five most significant pathways associated the

metabolites uniquely increased in HF ULF by pregnancy were urea cycle, ammonia recycling,
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glycine and serine metabolism, arginine and proline metabolism, and the Warburg effect (Figure
5B). Additionally, joint pathways analysis identified several pathways which were
overrepresented among genes (FDR < 0.05) and metabolites (FDR < 0.05) that increased by
pregnancy. These pathways included key biological events during early pregnancy, including
biosynthesis and metabolism of amino acids, lipids, and carbohydrates (Dataset S23 and Figure
6A). Interestingly, pathways associated with differently expressed genes (FDR < 0.05) and
metabolites (FC > 2) between pregnant HF than SF endometrium and ULF, respectively,
included amino acid biosynthesis and metabolism (e.g. phenylalanine, tyrosine, tryptophan,
glutamine and arginine), energy metabolism (e.g. TCA cycle, pentose phosphate pathway), and
lipid metabolism (e.g. metabolism of glycerophospholipids and steroid biosynthesis) (Dataset

S24 and Figure 6B).

Expression of genes encoding amino acid transporters by the endometrium and
conceptuses. Because the majority of the differential metabolites were associated with amino
acid metabolism, we further investigated the expression of amino acid transporters by the
endometrium and conceptuses. Endometrial expression of five genes encoding amino acid
transporters was increased (SLC1543, SLC7A1, SLC1541, SLC7A49, and SLC3A2) and three
genes decreased (SLC746, SLC7A3 and SLC6A414) by pregnancy (Dataset S25). Additionally,
among pregnant heifers, the expression of SLC7A41, a transporter of cationic amino acids
(arginine, lysine and ornithine) [54], was upregulated in HF endometrium (Dataset S26).
Conceptus expression of amino acid transporters did not differ among short and long
conceptuses (Dataset S27), but the expression of SLC746 was increased in HF conceptuses, and

SLC6A19 was increased in SF conceptuses (Dataset S28). The top five most expressed amino
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acid transporters in day 17 conceptuses were SLC3A42, SLC1544, SLC43A42, SLC15A41 and

SLC7A48.

DISCUSSION

In our recent work, endometrial responses to pregnancy in fertility-classified heifers was
assessed by comparing the endometrium transcriptome of open with pregnant animals [1]. This
analysis found 3,422 differently expressed genes (DEGs) in the endometrium of HF heifers, but
only 1,095 DEGs in the endometrium of SF heifers. This diminished endometrial response to
pregnancy was hypothesized as the main cause of early embryo loss by day 28 in SF heifers [1,
41]. Results of the current study further supports the theory of dysregulated conceptus-
endometrium interactions in SF heifers, resulting in compromised conceptus development and
failure to establish pregnancy. For instance, there were 271 differential metabolites in the ULF of
HF heifers that were pregnant or open, but no significant changes in ULF metabolite profile were
observed among SF heifers regardless of pregnancy status. Additionally, the majority of the
metabolites differently abundant between the ULF of nonpregnant and pregnant heifers were
increased by pregnancy. Sponchiado et al. (2019) reported an overall reduction in the number of
metabolites detected in the ULF of pregnant than cyclic heifers on day 7 of gestation or estrous
cycle. However, crosstalk between the conceptus and endometrium increases considerably
during and after maternal recognition of pregnancy on day 16 [21], and the observed increase in
metabolites detected in the ULF by pregnancy, as well as in pregnant HF than SF ULF, are
hypothesized to influence uterine receptivity and consequently conceptus development and

survival.
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In the present study, several metabolites associated with glutamine metabolism were
increased in pregnant HF than SF ULF, such as 3-hydroxy-3-methylglutarate by 6.6-fold, N-
methyl-L-glutamate by 4.6-fold, and glutarate by 3.5-fold. Although glutamine is a nonessential
amino acid that can be synthesized from glucose, it is a key substrate for highly proliferative
cells, and some cancer cells lines have been described as ,glutamine addicted™ because they
cannot survive without exogenous glutamine [55, 56]. In addition to providing a carbon source
for the synthesis of lactic acid during glycolysis [57], glutamine is also an important donor of
nitrogen for synthesis of nonessential amino acids (that are used for synthesis of new proteins)
and nucleotides, and glutamine synergizes with essential amino acids to activate the mechanistic
target of rapamycin (mTOR) complex 1 (mTORC1) [58]. Activation of mMTORC1 promotes cell
growth and metabolism [59] and also plays an important role in ovine conceptus elongation [60].
Progesterone can alter the ULF abundance of metabolites involved with glutamate metabolism
(e.g. glutamate, glutamine, alpha-ketoglutaramate) during the onset of conceptus elongation in
cattle [20], however circulating progesterone concentrations did not differ among the fertility-
classified heifers used in the present study [1].

Glutamate and glutamine are precursors of arginine [61]. Arginine is a precursor of nitric
oxide (NO) and polyamines (putrescine, spermidine, spermine and agmatine) that regulates key
events during early pregnancy, such as angiogenesis, placentation and embryonic development
[60, 62, 63]. The secreted phosphoprotein 1 (SPP1; also known as osteopontin), an extracellular
matrix protein secreted by the uterine lumenal epithelium [11, 64], interacts with arginine and
plays an important role in conceptus elongation and attachment through the activation of mTOR
complexes 1 and 2 (MTORC1 and MTORC?2) [60, 65]. Interestingly, in the present study, the

expression of a cationic amino acid (arginine, lysine and ornithine) transporter SLC7A41 [54] was
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increased in the endometrium by pregnancy, and also increased in the endometrium of pregnant
HF than SF heifers on day 17. Furthermore, the concentrations of arginine and lysine in the ULF
were significantly increased (FDR < 0.01) by pregnancy, and N-alpha-acetyl-L-Lysine, an amino
acid derived from lysine, was increased by 3.4-fold in the ULF of pregnant HF than SF heifers.
Lysine is another essential amino acid, and has been observed to induce cell proliferation in vitro
and in vivo [66]. Lysine can be converted into carnitine [67], and two amino acid derivatives of
carnitine were upregulated in pregnant HF than SF ULF; the abundance of isovalerylcarnitine
increased by 7.3-fold, and acyl-carnitine (5-OH) by 2.5 fold. The primary role of carnitine is
associated with the transport of long-chain fatty acids from the cytosol into the mitochondria for
beta-oxidation, as acyl CoA (long chain fatty acid bound to coenzyme A) is not permeable to the
inner mitochondrial membrane [68, 69]. The increase in acyl-carnitine, composed by carnitine
bound to acyl CoA, may indicate increased abundance of long-chain fatty acid in the ULF of
pregnant HF than SF heifers, and a number of long-chain (C11-20) and very long-chain (C21-25)
fatty acids were increased in ULF of pregnant HF than SF heifers [Moraes et al., companion
Biology of Reproduction manuscript]. Additionally, L-carnitine also possesses antioxidant [70]
and anti-inflammatory [71] properties, which are important biological processes during early
pregnancy [72, 73].

The importance of arginine and glutamine in porcine embryo development has been
demonstrated [74-76]. Knockdown of the arginine, lysine and ornithine transporter (SLC7A1) in
the ovine trophectoderm using morpholino antisense oligonucleotide (MAO) retarded conceptus
development [61], indicating the importance of these amino acids during conceptus growth in

ruminants. In the present experiment, the expression of SLC7A6, which mediates mediates
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arginine efflux in exchange with glutamine [77, 78] was increased in HF than SF conceptuses,
supporting the idea of abnormal arginine and glutamine metabolism in SF conceptuses.

Cancer cells and perhaps preimplantation embryos metabolize glucose preferably through
aerobic glycolysis rather than oxidative phosphorylation, which is a metabolic adaptation of
rapidly proliferative cells known as Warburg effect [79-82]. The main explanation for the switch
from oxidative phosphorylation in normal somatic cells to aerobic glycolysis in cancer cells, is
that highly proliferative cells have other critical metabolic requirements that extend beyond
energy production. For instance, cells undergoing mitosis have large requirements for biomass
production, as one parent cell has to duplicate all its contents to form two identical daughter
cells, and this alternative glucose metabolism (Warburg effect) diverges glucose to create
macromolecular precursors for synthesis of fatty acids, amino acids, and nucleotides. One of the
most notable characteristics of cells undergoing the Warburg effect is that these cells uptake
more glucose and produce more lactic acid than noncancer cells [81, 83]. This is a result of
pyruvate being diverged from the TCA cycle and metabolized to form lactic acid [79]. Although
less ATP is generated through the aerobic process (2 mol of ATP per mol of glucose compared
to 38 mol of ATP for oxidative phosphorylation), this alternative glucose metabolism provides
sufficient energy and anabolic precursors to support cell proliferation [79]. In fact, the pentose
phosphate pathway (PPP) plays a key role in this process, producing ribose sugars for nucleotide
synthesis, and generating sufficient levels of nicotinamide adenine dinucleotide phosphate
(NADPH) for the biosynthesis of macromolecules [84]. Interestingly, in the present study, the
abundance of two key enzymes which participate in the PPP were upregulated in the ULF of
pregnant HF than SF heifers; transketolase (TKT) was increased by 47-fold, and 6-

phosphogluconate dehydrogenase (PGD) was increased by two-fold in the ULF of pregnant HF
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as compared to SF heifers. The Warburg effect was one of the most significant pathways
associated with the differential metabolites identified between pregnant and open ULF, and with
the metabolites uniquely increased in HF ULF by pregnancy. Thus, taken together, these results
demonstrate increased availability of substrates required for conceptus development in pregnant
HF than SF ULF, which likely contributed to the increased rate of development of HF conceptus,
and consequently, with the higher pregnancy rate of HF heifers.

Histidine is an essential amino acid, and thus it cannot be synthesized de novo and must
be provided in the diet [85]. Histidine availability in the uterine lumen during the
preimplantation period has been observed to increase in cattle [16, 25] and sheep [26]. In the
present experiment, histidine increased by 3.5-fold in pregnant than open ULF, and the
expression of the histidine transporter (SLC1543) increased by 4.6-fold in the endometrium by
pregnancy. The SLC15A3 transporter is an ISG [25]. Although IFNT concentrations were higher
in ULF of pregnant HF than SF, SLC1543 expression by the endometrium did not differ among
pregnant fertility classified heifers. L-Methionine was increased by 13-fold in the ULF of
pregnant than open heifers, and by 18-fold in the ULF of pregnant HF than SF heifers.
Methionine is the initiating amino acid for the synthesis of proteins in eukaryotes [86, 87].
Preimplantation bovine embryos uptake methionine from its environment [88], and the absence
of methionine in the culture media reduces blastocyst development rate in bovine embryos
produced in vitro [89]. Methionine is also important for controlling oxidative stress, as it can be
metabolized into cysteine, that along with glutamate and glycine are precursors of glutathione
(GSH) [90, 91], a major antioxidant in mammalian cells [92]. Furthermore, GSH is also a key
regulator of cell proliferation [93], and therefore might play an important role during the

exponential growth of the ruminant conceptus during elongation. Moreover, concentrations of
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GSH in the ULF have been observed to increase during early pregnancy in ewes [26], and
glutathione metabolism in the uterus appears to be influenced by progesterone and day of the
cycle during the period of onset of conceptus elongation in cattle [20]. In the present study,
glutathione synthetase (GSS) was increased by 19-fold in the ULF of pregnant compared to open
heifers, and by 3-fold in pregnant HF than SF ULF. Additionally, glutathione disulfide (GSSG),
the oxidized form of glutathione (GSH), was increased by 5-fold in the ULF of open than
pregnant heifers. The increase in GSSG in ULF of open heifers may be because nonpregnant
heifers lack conceptus derived glutathione reductase (GSR) and disulfide isomerases (PDI),
which can converted GSSG back into GSH [92]. Under oxidative stress, glutathione peroxidases
(GPX) and peroxiredoxin 6 (PRDX6) can catalyze the oxidation of GSH by hydrogen peroxide
into GSSG plus water, but GSR and PDI can convert GSSG back into GSH [92].

The overall findings from the proteomics analysis further supports our theory of
dysregulated endometrium response to pregnancy in SF heifers. While the pathways associated
with the proteins that increased in pregnant HF than SF heifers were involved in important
biological processes during early pregnancy (e.g. energy metabolism, amino acid biosynthesis,
cell proliferation and differentiation), pathways associated with proteins that increased in
pregnant SF than HF ULF were associated with hemostasis (plasminogen activating cascade and
blood coagulation). These results strongly suggest that HF heifers have a uterine environment
that is more receptive to promote conceptus growth and development than SF heifers. The
present experiment also identified 27 genes and proteins that were similarly increased by
pregnancy in the endometrium and uterine lumen, respectively, and therefore the expression of
those genes by the endometrium is likely regulated by conceptus signaling. Interestingly, 56% of

these proteins were also increased in pregnant HF than SF ULF, and are involved in crucial
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biological events during the preimplantation period, such as energy metabolism (ACAA2,
ENOI1, MDH2, LOC615277, QPRT) [94-98], glutathione synthesis (GSS) [99], attachment
between trophectoderm and uterine lumenal epithelium (HSPA9) [100], de novo purine
biosynthesis (ATIC) [101], amino acid metabolism (PSPH, GOT1, LAP3, WARS, AHCY) [102-
106], and cytoskeletal organization and cell signaling (ACTN4, CAP1) [107, 108].

In this study, HF heifers had greater IFNT in the ULF than SF heifers, even though no
differences in /FFNT mRNA was observed between HF and SF conceptuses or between short
versus long conceptuses. Longer conceptuses have a greater number of trophectoderm cells, and
therefore are able to secret greater amounts of IFNT. As expected, IFNT in the uterine lumen
was highly correlated with conceptus size (r = 0.82). Likewise, an earlier study reported no
differences in /FFNT mRNA levels between bovine conceptuses that were either long (>10 cm) or
short (< 5 cm), but IFNT protein was substantially increased in the uterine flush from long
conceptuses [32].

We further explored conceptus expression of genes that regulates IFNT transcription. The
expression of IFNT transactivators DLX3, GATA3, GATA2, and CREBBP were found to increase
in HF than SF conceptuses. Besides stimulating IFNT expression, these transcription factors also
mediate important biological processes during preimplantation development. For instance, DLX3
and GATA2/3 play important role mediating gene expression in the placenta, regulating
trophoblast differentiation, angiogenesis, and coordinating embryonic-extraembryonic signaling
cross-talk [109-112], and CREBBP signaling controls vital cellular processes such as cell
proliferation, differentiation and apoptosis [113-115]. Among endometrial secreted factors that
stimulate IFNT transcription, CSF/ expression was higher in the endometrium of pregnant than

open heifers, but no differences were observed between pregnant HF and SF heifers. Despite the
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observed differences in ULF IFNT, IFNT signaling in the endometrium was not different in
pregnant HF and SF heifers, as no differences in the endometrium transcriptome were observed
for the expression of genes encoding selected classical and non-classical ISGs. This result was
not unexpected, as very low amounts of IFNT and other Type I IFNs will maximally induce ISG
expression based on in vitro experiments [116, 117], and the elongating conceptus produces and
secretes a considerable amount of IFNT as it elongates [118]. Nonetheless, the transcriptome
analysis in the present experiment was performed by bulk RNA-seq, and thus cell-type specific
changes in ISG expression which could be of great importance for pregnancy establishment may
not have been detected by this approach. Based on our findings, it is reasonable to speculate that
IFNT actions in the endometrium to establish uterine receptivity [27, 40] were not substantially
different between pregnant HF and SF heifers. However, the bovine conceptus can modulate
endometrial gene expression independently of IFNT [119] but dependent on conceptus size
[120], and HF conceptuses were on average twice as long than SF conceptuses [1]. Of note, the
adequate conceptus size or concentrations of IFNT that are necessary to successfully induce
pregnancy recognition and optimal uterine receptivity in cattle are still unknown and may vary
among individual animals.

Studies in sheep and cattle support the idea that IFNT exits the uterus and induces the
expression of ISGs in maternal tissues, such as on white blood cells (WBC), CL and liver [52,
121, 122]. Interestingly, IFNT infusions into the uterine or jugular vein in sheep during days 10-
13 of the estrous cycle have been shown to protect the CL against luteolysis induced on day 11
by exogenous administration of PGF2a [117]. Similarly, intrauterine infusions of low doses of
PGE]1 has been reported to block the luteolytic effects induced by intrauterine infusions of

PGF2a in cattle [123]. Because PGE1 and PGE2 acts through the same EP receptors, and PGE2
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was similarly increased in the ULF of pregnant HF than SF heifers [Moraes et al., Biology of
Reproduction companion manuscript], it is possible that because SF heifers had shorter
conceptuses [ 1], the concentrations of IFNT and PGE2 in the ULF may have been insufficient to
effectively protect the CL against luteolysis, which consequently, contributed to the observed
reduced reproductive efficiency in SF heifers.

In summary, the current study found substantial differences in uterine lumenal
components of fertility-classified heifers. These differences are hypothesized to indicate
dysregulated conceptus-endometrium interactions in SF heifers with consequences on conceptus

growth and signaling, leading to pregnancy loss in SF animals.
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FIGURE LEGENDS

Fig. 1. Concentrations of interferon tau (IFNT) in the uterine lumenal fluid (ULF) were
measured in samples from pregnant (HF, n=15; SF, n=9; IF, n=1) and nonpregnant (HF, n=6; SF,
n=1; IF, n=4) fertility-classified heifers receiving two embryos on day 7. Concentrations of [IFNT
in the ULF according to pregnancy status (A), among pregnant heifers with one versus two
conceptuses (P = 0.22) in the uterine lumen (B), among pregnant fertility-classified heifers (HF
vs SF P=0.045; HF vs IF P=0.02; SF vs I[F P =0.13) (C), and the Pearson correlation (r =

0.82, P<0.01) between IFNT in the ULF and conceptus size (D).

Fig. 2. Venn diagram showing proteins differently abundant in the uterine lumenal fluid (ULF)
of pregnant HF and SF heifers according to the SDS-PAGE procedure. The blue arrows indicate
the Panther pathways associated with the 142 proteins that increased or with the 79 proteins that
decreased in the ULF of pregnant HF compared to SF heifers. The overrepresented proteins and
enriched pathways are highlighted. Panther pathways associated with the 142 proteins that
increased in ULF of pregnant HF compared to SF heifers included vitamin B6 metabolism,
amino acid metabolism (asparagine and aspartate biosynthesis, serine glycine biosynthesis),
energy metabolism (pyruvate metabolism, pentose phosphate pathway, ATP synthesis and
glycolysis), p38 MAPK pathway, and cytoskeletal regulation by Rho GTPase. Panther pathways
associated with the 79 proteins that increased in ULF of pregnant SF compared to HF heifers
were related to hemostasis and included the plasminogen activating cascade and blood

coagulation pathways.
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Fig. 3. Venn diagram showing the differently abundant proteins among open fertility-classified

heifers.

Fig. 4. Summary of genes and proteins that were similarly increased by pregnancy in the
endometrium and in the ULF, respectively (A). Summary of genes and proteins that were

similarly decreased by pregnancy in the endometrium and in the ULF, respectively (B).

Fig. 5. Significant metabolic pathways associated with the differential metabolites between
pregnant and open ULF (A), and metabolic pathways associated with the metabolites uniquely

increased in HF ULF by pregnancy (B).

Fig. 6. Joint pathway analysis using differently expressed genes (DEG) in the endometrium and
the differential metabolites detected in the uterine lumenal fluid (ULF) of open and pregnant
heifers (A). Joint pathway analysis for the DEG in the endometrium of pregnant HF and SF
heifers, with the metabolites that were differently abundant in the ULF of pregnant HF and SF

heifers (B). The histograms present a summary of the joint evidence from enrichment and

topological analysis performed on MetaboAnalyst 4.0 using the human database. The enrichment

analysis uses the input datasets of genes and metabolites to identify pathways that appear more
frequently than expected by random chance. The topology analysis evaluates the importance of

metabolites and genes within a given pathway based on their position in the pathway [49].
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Table 1. IFN-stimulated gene (ISG) expression in the endometrium of open and pregnant fertility-classified heifers'

Classical ISGs

STATI
STAT2
IRF9
ISG15
B2M
MICI
0OAS1Y
RSAD?2
IFIH]
MX1
MX2
CXCL10
Non-classical ISGs

CTSL
CST6
GRP
IGFBPI
SLC241
SLC5411

Open FPKM'

50+2
16£0.3
11+1
2010
721 £25
11+£2
33+6
11+4
11+1
50+11
4+2
6+1

2+04

196 £ 21
2558 £518
79 +£21

68+ 11

0.7£0.1

Pregnant
FPKM'

252 +18
48+ 4
81+6

1433 £ 185

1956 =174
26+3

576 + 38

593 + 88
96 +9

934 +70

317+42

93+ 18

4+1
361 +£50
2889+ 171
160 £ 27
153+ 19

1+0.1

FDR

6.61E-85
8.10E-40
2.06E-102
6.22E-113
3.84E-31
1.50E-05
1.37E-106
2.27E-67
1.63E-87
7.40E-116
9.20E-79
5.62E-29

2.43E-02
4.18E-04
2.98E-02
5.71E-02
1.10E-05
2.07E-02

HF Pregnant
FPKM'

269 + 30
5216
888
1618 =253
2106 £ 209
26+ 4
599 + 51
663 +116
101 +£10
1007 £ 111
361 +60
110 +27

5+1
408 £ 95
2994 £ 204
144 + 43
174 +35
1+03

SF Pregnant
FPKM'

236 +22
44+ 6
74+7
1248 +269
1807 £ 285
25+6
552 + 61
523 +136
90+ 15
862 + 83
272 +57
76 25

3+1
313+£35
27851292
177136
132+13
1+0.1

FDR

0.67
0.35
0.39
0.30
0.40
0.90
0.74
0.52
0.67
0.56
0.34
0.35

0.54
0.93
0.86
1.00
1.00
0.94

'Data is presented as fragments per kilobase of transcript per million mapped reads (FPKM) + standard error of the mean (SEM).
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Table 2. Proteins differentially abundant in ULF of open and pregnant fertility-classified heifers by method

Number of proteins significantly (P < 0.05) different among comparisons

Comparisons - -
In-solution method (699) SDS-PAGE method (899) Common different proteins
Pregnant vs Open 167 446 103
HF Pregnant vs Open 97 341 50
SF Pregnant vs Open 95 212 48
Only Pregnant HF vs SF 37 221 14
Only Open HF, SF, IF 27 48 2
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Table 3. Abundance of the top 10 proteins that increased or decreased in pregnant compared to open ULF

Jholoiwepeoe)/:sdpy wouy papeojum

Identified Proteins Genlnfo Identifier Protein P-value Open1 Pregnan

Proteins increased in pregnant ULF

Pregnancy-associated glycoprotein 11 28603724 PAG11 <0.00010 0.0 53
Trophoblast Kunitz domain protein 1 precursor 296481028 TKDP1 <0.00010 0.0 4.7
Mitochondrial acetyl-Coenzyme A acyltransferase 1 156254808 ACAA1 < 0.00010 0.0 4.0
Dihydrolipoamide dehydrogenase 296488519 DLD < 0.00010 0.0 1.1
3-ketoacyl-CoA thiolase, mitochondrial 121956694 ACAA2 < 0.00010 0.1 5.2
Glutathione synthetase 296481143 GSS <0.00010 0.1 2.5
Bovine Glutamate Dehydrogenase 298508694 GLUD1 <0.00010 0.6 10.3
Heat shock 70 kDa protein 9 122144079 HSPA9 <0.00010 0.5 7.0
Lamin A/C 296489648 LMNA <0.00010 0.1 2.0
Heat shock protein 60 kDa, mitochondrial isoform X1 982914181 HSPD1 < 0.00010 3.0 28.1

Proteins increased in open ULF

PAS-6 and PAS-7 proteins 1632779 PAS-6/7 <0.00010 4.5 0.1
Guanine nucleotide-binding protein G(qg) subunit alpha 158508558 GNAQ <0.00010 2.6 0.3
Guanine nucleotide-binding protein G(i) subunit alpha-2 198282135 GNAI2 <0.00010 3.4 0.4
Factor V 163038 FACTORV < 0.00010 13.9 2.2
Retinoic acid receptor responder (tazarotene induced) 1 112362395 RARRES1 <0.00010 3.7 0.6
FAM234A; Alternative name: ITFG3 114149324 FAM234A < 0.00010 4.2 0.7
MYO1B protein 151554811 MYO1B < 0.00010 9.1 1.8
Bovine Tubulin (1jff) 193885177 2P4N <0.00010 49.1 10.0
Glypican 1 157279068 GPC1 < 0.00010 3.6 1.0
Ezrin 27806351 EZR < 0.00010 33.3 14.0

1Average of total spectrum count for proteins identified in the uterine lumen flush of open and pregnant heifers.
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Table 4. Number of the differential metabolites (FDR < 0.05) identified in the uterine lumen of fertility-classified heifers for each

comparison of interest

Comparisons

Identified Metabolites

Unknown Metabolites

Total Metabolites

Pregnant vs Open
HF Pregnant vs Open
SF Pregnant vs Open

Pregnant HF vs SF

Open HF, SF, IF

70
67

o - O

245
204
0
12
1

315
271
0
13
1
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Table 5. Top 20 identified metabolites with greatest fold change (FC) difference in the uterine lumen of pregnant and open heifers

lonization mode® m/z Retention time Pregnant/Open FC log2(FC) FDR

Positive mode
L-Methionine 150.1 1.4 13.1 3.7 <0.01
Hypoxanthine 137.0 6.1 0.1 -2.9 <0.01
Glutathione Disulfide 307.1 3.9 0.2 2.4 0.04
Isovalerylcarnitine 246.2 8.1 4.7 2.2 0.02
R-Malate 157.0 1.0 4.4 2.1 <0.01
2-Hydroxyphenylalanine 182.1 3.4 3.9 2.0 <0.01
L-Histidine 156.1 0.7 3.5 1.8 <0.01
Methionine Sulfoxide 166.1 0.8 3.5 1.8 <0.01
N-Alpha-Acetyl-L-Lysine 189.1 1.2 3.3 1.7 <0.01
Phenylalanine 166.1 6.3 3.2 1.7 <0.01

Negative mode

N-Methyl-L-Glutamate 160.1 0.9 29.4 4.9 <0.01
3-Hydroxy-3-Methylglutarate 161.0 2.9 6.3 2.7 <0.01
Inosine 267.1 6.0 0.2 -2.6 0.02
6-Keto Prostaglandin G1 369.2 9.8 6.1 2.6 <0.01
N-Acetylneuraminate 308.1 0.8 4.8 2.3 0.03
Fumaric Acid 115.0 2.0 4.5 2.2 <0.01
Malate 133.0 1.0 4.4 2.1 <0.01
L-Tyrosine 180.1 3.4 4.3 2.1 <0.01
Threonine/Homoserine 118.1 0.7 3.6 1.8 <0.01
Glutarate 131.0 4.6 3.5 1.8 <0.01

! Global metabolomics was conducted by ultra-high-performance liquid chromatography (UHPLC)-tandem mass spectrometric (LC-MS/MS).
Electrospray ionization was used to produce gas phase ions, and all samples were analyzed in the positive and negative ionization modes.
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