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Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy
(HC) employs rules derived from American College of Cardiology Foundation/American
Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index »0.69),
which utilize a few clinical variables. We assessed whether data-driven machine learning
methods that consider a wider range of variables can effectively identify HC patients with
ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records
of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients
with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases
and the remaining (n = 650) as non-VAr. The 2-sample t test and information gain criterion
were used to identify the most informative clinical variables that distinguish VAr from non-
VAr; patient records were reduced to include only these variables. Data imbalance stemming
from low number of VAr cases was addressed by applying a combination of over- and under-
sampling strategies. We trained and tested multiple classifiers under this sampling approach,
showing effective classification. We evaluated 93 clinical variables, of which 22 proved pre-
dictive of VAr. The ensemble of logistic regression and na€ıve Bayes classifiers, trained based
on these 22 variables and corrected for data imbalance, was most effective in separating VAr
from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method
(HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established
SCD predictors. In conclusion, this is the first application of machine learning for identifying
HC patients with VAr, using clinical attributes. Our model demonstrates good performance
(C-index) compared with currently employed SCD prediction algorithms, while addressing
imbalance inherent in clinical data. © 2019 The Authors. Published by Elsevier Inc. This is
an open access article under the CC BY-NC-ND license. (http://creativecommons.org/
licenses/by-nc-nd/4.0/) (Am J Cardiol 2019;123:1681−1689)

Hypertrophic cardiomyopathy (HC) is the most common
genetic cardiovascular disease and a major cause of sudden
cardiac death (SCD) in young individuals.1−4 This has led
to development of clinical guidelines for SCD risk stratifi-
cation and implantable cardioverter defibrillator (ICD)
implantation.1,2 The guidelines are based on retrospective
data and methods that rely on hand-crafted rules, or on
observed associations between measurements and the medi-
cal condition to identify HC patients at high risk for
SCD.1,2,4 These methods are fragile in the face of new data
and demonstrate a relatively low level of performance,
reflected by a C-index of »0.69 for the HCM Risk-SCD
prediction model.4 In this study, we use machine learning
to develop and evaluate a computational method (HCM-
VAr-Risk Model) that addresses data imbalance, and uti-
lizes a set of clinical variables to identify HC patients with
lethal VAr, characterized as sustained ventricular tachycar-
dia or ventricular fibrillation (VT/VF). Machine learning
methods offer the advantage of flexibility to update the
model as additional clinical data becomes available.
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Methods

The HC Registry is approved by the Institutional Review
Boards of the Johns Hopkins Hospital and the University of
California San Francisco. Patients were enrolled in the HC
Registry during their first visit to the Johns Hopkins Hyper-
trophic Cardiomyopathy Center of Excellence, if they met
the standard diagnostic criteria for HC, namely, unexplained
left ventricular hypertrophy (maximal wall thickness ≥15
mm)2 in the absence of uncontrolled hypertension, valvular
heart disease, and HC phenocopies such as amyloidosis and
storage disorders.

We performed a retrospective study of all HC patients
from the HC Registry, who were seen at the Johns Hopkins
Hypertrophic Cardiomyopathy Center of Excellence between
2005 to 2015. Patients were followed for a mean duration of
2.86 years (median = 1.92; twenty-fifth to seventy-fifth per-
centile = 0.94 to 4.28 years). Clinical data including symp-
toms, co-morbidities, medications, history of arrhythmias,
and risk factors for SCD2 were ascertained by the examining
physician (MRA and TPA) during the initial clinic visit, and
during each follow-up visit. Rest and stress echocardiography
(ECHO) and cardiac magnetic resonance imaging were per-
formed as part of patients’ clinical evaluation. Review of the
electronic health records for clinical data was performed
jointly by SMK, PL, and DYL. Analysis of ECHO and car-
diac magnetic resonance imaging was performed by DYL
and GVL/CPCV, respectively. All analyses were blinded to
VAr outcome. (See Supplementary Section A1-2 for detailed
imaging methods.)

Arrhythmic events were recorded by reviewing electro-
cardiogram (ECG), Holter monitor, and ICD interrogation
data. VAr were defined as sustained VT (ventricular rate
≥130 beats/min/≥30 seconds duration) or VF, resulting in
defibrillator shocks or antitachycardia pacing, and were con-
firmed by an electrophysiologist (JEM, MRA). Nonsustained
VT (NSVT) was defined as ≥3 consecutive ventricular beats
at a rate of ≥100 bpm/<30 seconds in duration. Patients who
did not have implantable defibrillators (ICDs) were followed
annually by Holter monitoring; patients with ICDs had
device interrogation performed every 6 months, or more fre-
quently if they were symptomatic or had ICD discharges.

HC patients with at least 1 episode of sustained VT or
VF were labeled as VAr cases; the remainder were consid-
ered non-VAr. The computational 5-step framework
(HCM-VAr-Risk Model) used for identifying patients in
the VAr group is presented in Figure 1. The 5 steps are as
follows: (1) preprocessing to remove variables directly

correlated with VAr, and to address missing data; (2) feature
selection to identify the most informative clinical variables
for separating VAr from non-VAr cases; (3) association anal-
ysis to identify the degree of association between each predic-
tor variable and the VAr class; (4) supervised machine
learning for creating classifiers and performing classification;
and (5) a thorough quantitative and qualitative evaluation to
assess the classifier’s performance.

We preprocessed the data to remove variables known to
be noninformative with respect to VAr (such as visit date,
patient ID) as well as descriptors of VAr (e.g. number of VT
episodes, ICD shocks) and adverse outcomes (such as atrial
fibrillation, heart failure, and stroke). After this step, our fea-
ture set consisted of 93 clinical variables (Supplementary
Table S1). As some records were missing values, data impu-
tation for these values was employed using a nearest neigh-
bor approach. (See Supplementary Section B.1.1.)

Classifiers trained based on high-dimensional data often
exhibit low sensitivity and specificity, as many of the fea-
tures are not sufficiently informative for separating the dif-
ferent classes (in this case patient records indicating VAr
from non-VAr records). Moreover, some features may
show discriminating power within a limited dataset but do
not generalize beyond the training. To reduce data
dimensionality, we conducted feature selection, identifying
attributes that are most informative for VAr. Notably, using
fewer attributes to represent the dataset yields lower vari-
ance around learned model parameters and around perfor-
mance measures across training sets and test sets, and helps
avoid overfitting. Our dataset is characterized by both nom-
inal and continuous attributes (features). Although the clas-
sification method developed throughout this work is
multivariate, the feature selection step is performed in a
univariate fashion. To select highly predictive nominal
features, we utilized the well-known information gain crite-
rion,5 measuring the information gained about the VAr-
class given the value assumed by the feature. For continu-
ous features, we employed the 2 sample t test under unequal
variance,6,7 testing whether the distribution of attribute val-
ues associated with VAr cases are significantly different
from those associated with non-VAr. We included in the
reduced feature set only those continuous attributes for
which the t test indicated a highly statistically significant
distributional difference (p ≤0.05), and the nominal attrib-
utes for which the information gain value was ≥0.002. The
latter threshold was determined empirically by iteratively
removing the least informative feature, 1 at a time, and

Figure 1. HCM-VAr-Risk model schematic: an overview of the framework employed to identify ventricular arrhythmia (VAr) from clinical attributes in elec-

tronic health records (HCM-VAr-Risk Model). The first step, data preprocessing, involves removing variables known to be noninformative with respect to

VAr and variables associated with adverse outcomes such as heart failure, atrial fibrillation, and stroke. The second step is feature selection to identify the

most informative clinical variables for separating VAr cases from non-VAr cases. As a third step, association analysis was performed to identify the degree

of association between each predictor variable and the VAr class. Next, supervised machine learning was employed to create the classifiers and perform the

classification. Lastly, a thorough quantitative and qualitative evaluation was conducted to assess the classifier’s performance.
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conducting classification without it. The procedure was
repeated until deterioration in performance was observed.
The feature selection process identified 22 clinical variables
as informative for VAr in HC patients (Table 1).

Many of the attributes gathered per patient are nominal
rather than continuous-numerical (Supplementary Table S1).
These include the predicted outcome variable itself (VAr vs
non-VAr), and other items such as HC type or history of syn-
cope. The degree of association between such nominal-valued
features cannot be assessed using the standard Pearson corre-
lation, but are quantified through the polychoric correlation,8,9

which ranges over [¡1, 1], where¡1 indicates negative asso-
ciation and 1 positive association.

A classifier takes as input, a vector of values (in our case,
a patient’s record) and assigns a probability indicating the
likelihood of the patient to belong to 1 of the 2 classes: VAr
versus non-VAr. We use the 22 features that effectively dis-
tinguish VAr cases from non-VAr, for representing
each patient record in our dataset. Specifically, each of the
711 patients, denoted p

i (1 ≤ i ≤ 711), is represented as a

22-dimensional vector, V i ¼ hpi1; . . . ; p
i
22 i ; where each

dimension corresponds to the clinical value obtained for the
respective attribute. The classifier takes the 22 dimensional
vectors Vi and calculates the probability of the ith patient to
be a VAr case, Pr(VAr | Vi) versus its probability to be non-
VAr, (Pr(non-VAr|Vi) = 1¡ Pr(VAr|Vi)). The higher the
value Pr(VAr | Vi

), the more likely the patient is to have
VAr. For instance, a probability of 0.95 for VAr assigned to
patient p indicates a high VAr risk, whereas a probability of
0.45 indicates a much lower risk.

As a first simple baseline, we used 4 standard machine
learning classification methods, namely, logistic regression,
na€ıve Bayes, decision tree, and random forest, in an attempt
to identify whether a patient has VAr. (Python scikit-learn
package was used to train these 4 baseline classifiers.10)
Trained on our highly imbalanced dataset, all standard clas-
sifiers performed poorly, failing to detect almost any VAr
records (Table 3). As such, we devised a method combining
over- and under-sampling together with an ensemble classi-
fier that combines the most effective classifiers to separate

Table 1

Clinical and imaging characteristics of HC cohort stratified by presence/absence of ventricular arrhythmia (VAr)

Ventricular arrhythmia

Variable No (n = 650) Yes (n = 61) p-value

Age (years) 54 § 15 49 § 16 0.03

Male 397 (60%) 37 (61%) 0.9

Body mass index, kg/m2 30 § 7 28 § 5 0.09

HC type* <0.001

Non-obstructive 186 (28%) 34 (56%)

Labile-obstructive 247 (38%) 11 (18%)

Obstructive 224 (34%) 16 (26%)

NYHA class 0.7

I 359 (55%) 32 (53%)

II-III 298 (45%) 29 (47%)

Angina 258 (40%) 21 (34%) 0.5

Family history of HC 108 (17%) 17 (28%) 0.04

ICD implantation 25 (4%) 32 (53%) <0.001

Unexplained syncope 116 (18%) 21 (34%) 0.003

Family history of SCD 151 (23%) 18 (30%) 0.3

Non-sustained VT 0 (0%) 11 (18%) <0.001

ECHO: Septal wall thickness ≥3 cm 36 (6%) 8 (13%) 0.04

ECHO: left atrial diameter (mm) 42 § 7 43 § 8 0.3

ECHO: maximal septal wall thickness (mm) 20 § 5 22 § 5 0.001

ECHO: left ventricular ejection fraction (%) 66 § 8 63 § 9 0.003

ECHO: E/A 1.4 § 0.8 1.5 § 0.9 0.6

ECHO: E/e� 18 § 11 22 § 16 0.08

ECHO Peak rest LVOT gradient (mm Hg) 31 § 33 23 § 28 0.04

ECHO: Peak stress LVOT gradient (mm Hg) 74 § 54 44 § 45 <0.001

CMR: LGE (% of LV mass) 12 § 13 16 § 14 0.1

Medications

Beta-blocker 451 (69%) 53 (87%) 0.005

Calcium channel blocker 184 (28%) 14 (23%) 0.5

RAS blockade 161 (25%) 12 (20%) 0.5

Disopyramide 24 (4%) 3 (5%) 0.9

CMR= cardiac magnetic resonance imaging; E/A = ratio of early diastolic mitral flow velocity to the late diastolic mitral flow velocity; E/e’ = ratio of early

diastolic mitral flow velocity to early diastolic mitral septal annulus motion velocity; ECHO= echocardiogram; HC = hypertrophic cardiomyopathy;

ICD = implantable cardioverter defibrillator; LGE = late gadolinium enhancement; LVOT = left ventricular outflow tract; NYHA=New York Heart Associa-

tion; RAS blockade = angiotensin-converting enzyme inhibitor, angiotensin receptor blocker; SCD = sudden cardiac death; VAr = ventricular arrhythmia;

VF = ventricular fibrillation; VT = ventricular tachycardia; LV = left ventricle.

* Classification of HC was established based on LVOT/mid-cavitary gradients, as:1. Nonobstructive HC (gradients <30 mm Hg at rest and stress).2. Labile-

obstructive HC (<30 mm Hg at rest, ≥30 mm Hg with stress).3. Obstructive HC (≥30 mm Hg at rest and stress).
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VAr records from non-VAr records, while addressing
imbalance. Figure 2 illustrates the data partitioning scheme
used in the combined over- and undersampling scheme, as
it was applied to the training set. A detailed description of
the classification model and its testing is presented in Sup-
plementary Section B1.2.

To address data imbalance, we also applied methods that
were previously reported in the study, such as simple over-
sampling, simple undersampling, adaptive synthetic sam-
pling approach11 and meta-classification12 and found that
the performance of our combined under- and oversampling
using SMOTE was superior. Hence, we report only the
results obtained using our method (HCM-VAr-Risk Model)
that combines under- and oversampling and compare it
against the baseline classifiers.

To compare our VAr identification model (HCM-VAr-
Risk Model) with contemporary clinical practice, we evalu-
ated the performance of our model when trained on datasets
represented through 2 different feature sets. These feature sets
were constructed based on attributes identified as predictive
of VAr in established clinical guidelines.1,2 The first feature
set comprised attributes deemed informative for SCD risk
stratification in the American College of Cardiology Founda-
tion/American Heart Association (ACCF/AHA) guidelines
for HC diagnosis and treatment.2 The second comprised
attributes in the HCM Risk-SCD prediction model employed
in the European Society of Cardiology (ESC) guidelines.1,4

To assess the performance of our HCM-VAr-Risk Model,
we used several common performance measures,5 namely,
specificity, sensitivity (recall), false-negative rate (miss rate),
and area under receiver-operating characteristics (ROC)
curve. The first 3 measures are defined as follows:

Specificity ¼
TN

TN þ FP
;

Sensitivity ¼
TP

TP þ FN

False Negative Rate ðMiss RateÞ ¼
FN

FN þ TP
;

where TP (true positives) denotes VAr records that are cor-
rectly labeled as VAr by the classifier; TN (true negatives)
denotes records that are not associated with VAr and are
not assigned to this class by the classifier; FP (false posi-
tives) denotes records not associated with VAr that are
misclassified by the classifier as VAr; FN (false negatives)
denotes VAr records that were incorrectly labeled by the
classifier as non-VAr. The ROC curve shows the true-posi-
tive rate, calculated as TP

TPþFN
, as a function of false-posi-

tive rate, calculated as FP
FPþTN

(FP—false positive).
Classifier performance is assessed based on the area under
the ROC curve (AUC; also referred to as C-index).

Results

Demographic and clinical features of the HC cohort are
presented in Table 1; a list of all clinical variables tested
in the HCM-VAr-Risk model is available in Supplemen-
tary Table S1. Our cohort consists of 711 patients with a
clinical diagnosis of HC. VAr, characterized by sustained
VT or VF occurred in 8% of the HC population. The VAr
group was younger, had greater septal wall thickness, and
was more likely to have nonobstructive hemodynamics
and family history of HC. No difference was observed in
the amount of late gadolinium enhancement in the left
ventricle (reflecting replacement fibrosis) in the 2 groups
(Table 1).

Our feature selection process identified 22 clinical varia-
bles whose values distinguish VAr from non-VAr cases
within the HC population (Table 2). Of these, 11 variables
were negatively correlated with VAr, whereas the remain-
ing 11 were positive associated with VAr. We found that
lower values of LVOT gradients at rest/stress, global longi-
tudinal early diastolic strain rate, baseline systolic/diastolic
BP, exercise capacity, left ventricle ejection fraction, body
mass index, statin use, and age are associated with higher
risk of VAr in HC. Furthermore, unexplained syncope, fam-
ily history of HC or SCD, NSVT, inducible VT by noninva-
sive programmed stimulation, and higher values for septal
hypertrophy, E/e0 and (less negative) global longitudinal

Figure 2. Methods to address data imbalance: data partitioning scheme for the combined over- and undersampling classification method. The topmost cylin-

der represents the entire dataset. The rectangles below it represent the split into test and training sets for fivefold crossvalidation. The non-VAr records

(majority class) in the training set are randomly undersampled such that the non-VAr to VAr records ratio is 3:1. The VAr records (minority class) in the train-

ing set are oversampled using SMOTE to generate new minority class records, doubling the original number of minority class records. This combined under-

and oversampling yields a balanced training set, containing the same number of VAr and non-VAr records.
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systolic strain/strain rate are positively associated with
VAr. Table 2 provides a list of these predictive variables,
along with the corresponding polychoric correlation and
p-values, indicating their degree of association (or lack
thereof) with VAr.

We found that combining the ensemble classifier com-
prising logistic regression and na€ıve Bayes with over- and

undersampling led to higher sensitivity, higher AUC, and
lower false-negative rate, compared with the 4 simple clas-
sifiers (na€ıve Bayes, logistic regression, decision tree, and
random forest) alone (Table 3 and Figure 3). Figure 4
illustrates the C-index (AUC = 0.83) for our method
(HCM-VAr-Risk Model), which assigns individualized
probabilities for VAr.

Table 2

Variables included in the HCM-VAr-Risk Model

Variables Type of variable p-value

Polychoric correlation

(association with VAr)

Stress LVOT gradient (mm Hg) (−) Continuous 0.00001 ¡0.273

Unexplained syncope (Presence +) Nominal 0.0003 0.264

NSVT (Presence +) Nominal 0.0005 0.994

HC type (Non-obstructive +) Nominal 0.001

(1) Non-obstructive 0.366

(2) Labile-obstructive ¡0.283

(3) Obstructive ¡0.112

SBP before exercise test (mm Hg) (−) Continuous 0.001 ¡0.232

Global longitudinal early diastolic strain rate (−) Continuous 0.001 ¡0.213

Maximal IVS thickness (mm) (+) Continuous 0.003 0.125

Global longitudinal systolic strain rate (+) Continuous 0.003 0.171

Exercise time on treadmill (−) Continuous 0.007 ¡0.167

ECHO LVEF (%) (−) Continuous 0.01 ¡0.198

IVS/PW ratio (+) Continuous 0.01 0.195

DBP before exercise test (mm Hg) (−) Continuous 0.01 ¡0.177

METs (−) Continuous 0.01 ¡0.131

VT by NIPS during follow-up (Presence +) Nominal 0.01 0.667

Body mass index (kg/m2) (−) Continuous 0.03 ¡0.115

Global longitudinal LV systolic strain, % (+) Continuous 0.03 0.235

Age (−) Continuous 0.03 ¡0.150

LVOT gradient at rest (mm Hg) (−) Continuous 0.04 ¡0.119

Family history of SCD (Presence +) Nominal 0.05 0.097

Family history of HC (Presence +) Nominal 0.06 0.195

E/e0 (+) Continuous 0.06 0.167

Statin use (−) Nominal 0.06 ¡0.052

DBP = diastolic blood pressure; E/e0 = ratio of early diastolic mitral flow velocity to the early diastolic mitral septal annulus velocity; HC = hypertrophic

cardiomyopathy; IVS = interventricular septum; IVS/PW = ratio of maximal thickness of inter ventricular septum and maximal thickness of posterior wall of

left ventricle; LV = left ventricle; LVEF = left ventricle ejection fraction; LVOT = left ventricular outflow tract; METS =metabolic equivalents; NIPS = non-

invasive programmed stimulation; NSVT = nonsustained ventricular tachycardia; SBP = systolic blood pressure; SCD = sudden cardiac death.

Variables identified through feature selection (22 of the 93 variables), as highly informative of ventricular arrhythmia (VAr). Variables are listed in increas-

ing order of their respective p-value (third column). Variables that have not been associated with VAr prediction in the ACC-AHA or ESC guidelines are

shown in boldface.

“+” indicates that the variable has a higher value in patients with VAr, compared with non-VAr patients, and “−” indicates a lower value of the variable in

patients with VAr. The rightmost column shows the value of the polychoric correlation between each variable and VAr. The p-value is calculated during the

feature-selection process. The polychoric correlation is an additional measure used to indicate the direction of association (positive or negative correlation)

between VAr and each of the variables identified as predictive of VAr by our feature selection method.

Table 3

Comparison of performance between baseline classifier and classifier resulting from the HCM-VAr-Risk Model

Performance Baseline

HCM-VAr-Risk Model combination

of over and under-sampling

Sensitivity 0.20 (0.06) 0.73 (0.03)

Specificity 0.96 (0.04) 0.76 (0.04)

False-negative rate (miss rate) 0.80 (0.06) 0.27 (0.05)

AUC (C-index) 0.80 (0.04) 0.83 (0.05)

AUC = area under receiver-operating curve.

Comparison of performance between the simple baseline logistic regression classifier (denoted baseline) and the classifier resulting from our HCM-VAr-

Risk Model, trained on datasets represented through the 22 features identified by our feature selection method. Standard deviation is shown in parentheses.

The best performance attained for each measure is shown in boldface.
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We compared the performance of the HCM-VAr-Risk
model with that reported by earlier studies, namely employ-
ing ACCF/AHA guidelines2 and ESC guidelines (HCM
Risk-SCD Model).4 Table 4 lists 2 sets of variables (rows 1
to 2) compared with the set of 22 clinical variables identi-
fied by our HCM-VAr-Risk Model. Our model demon-
strated higher specificity, sensitivity, area under ROC curve
(C-index), and lower false-negative rate compared with
published predictors utilized by current clinical guidelines
(Table 5). Notably, the C-index attained by our model
(0.83) is significantly higher than that reported in the study
by O’Mahony et al4 (0.69), which forms the basis of ESC
guidelines. The dataset used in their study4 is not publicly
available and as such we could not use it for training/testing
our model. Thus, we compare the performance level
attained by our model with that reported in O’Mahony
et al’s study while applying the same evaluation metric,
C-index.

We did not include adverse clinical outcomes such as
atrial fibrillation, stroke, or heart failure in the list of

clinical variables because our goal was to identify demo-
graphic, clinical, and imaging features that predict adverse
outcomes (VAr in this case) in HC. Since HC patients with
more severe cardiac phenotype would be expected to have
other adverse cardiac outcomes, we examined whether
atrial fibrillation and heart failure are associated with VAr
in our HC cohort. We found a positive association between
VAr and atrial fibrillation (p = 0.008 using the 2-sample
t-test; polychoric correlation = 0.26), and between VAr and
heart failure (p = 0.039, polychoric correlation = 0.172).
Inclusion of atrial fibrillation and heart failure in our model
did not increase the C-index, but led a small reduction in
specificity of our model from 0.76 to 0.73.

Discussion

This is the first application of machine learning to distin-
guish HC patients at high versus low risk for VAr using clini-
cal variables, while addressing data imbalance. Although
previous studies have developed data-driven models toward

Figure 3. Comparison of performance between baseline model and HCM-VAr-Risk Model. Performance of the simple logistic regression classifier (baseline

model) and the classifier resulting from our under- and oversampling scheme (HCM-VAr-Risk Model) for classifying patient records as VAr versus non-

VAr. Classifiers were trained on records using the 22 most informative features to represent patients. The x-axis shows the performance measure, whereas the

y-axis shows the levels of performance with respect to specificity, sensitivity, and false-negative rate.

Table 4

Comparison of variables and performance of the ACCF/AHA and ESC guidelines with the HCM-VAr-Risk Model, to predict SCD in HC patients

Feature set Variables Performance

Feature set 1

(ACCF/AHA guidelines2)

History of NSVT, abnormal blood pressure response to exercise, family history of SCD, maxi-

mum LV wall thickness ≥3cm, unexplained syncope, family history of SCD, number of SCD

risk factors

Not available

Feature set 2

(ESC guidelines
1)

Age (years), maximal LV wall thickness (mm), left atrial diameter (mm), LV outflow gradient

(mm Hg), family history SCD, history of NSVT, syncope

C-index/AUC = 0.69

Feature set 3

HCM-VAr-Risk Model

(our method)

Features identified by our feature-selection method

(shown in Table 2)

C-index/AUC = 0.83

AUC = area under receiver-operating curve; LV = left ventricle; LVOT = left ventricular outflow tract; NSVT = nonsustained ventricular tachycardia;

SCD = sudden cardiac death.

Feature sets 1 and 2 include variables identified as pertinent by 2 previous studies: feature set 1 consists of the attributes deemed as informative for identifi-

cation of HC patients at high risk for SCD in the ACCF/AHA guidelines2 for HC diagnosis and treatment. Feature set 2 consists of attributes utilized by the

HCM Risk-SCD Model.1,5 Feature set 3 denotes the 22 attributes identified as informative by our feature selection methods (HCM-VAr-Risk Model). The

rightmost column shows performance, in terms of C-index/AUC, for feature sets 2 and 3. Performance level was not reported by the respective studies that

identified feature set 1, and is thus not shown.
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identifying risk for HC, none aimed to assess risk of VAr in
the HC population. Moreover, none was based just on clinical
variables.13−15 A study by Lyon et al14 identified subgroups
of HC patients displaying different electrophysiological and
structural phenotypes using computational analysis of 12-
lead Holter ECGs. Similarly, a study by Rahman et al15

developed a machine learning approach to distinguish
between ECG signals of HC from non-HC patients. Notably,
none of the previously developed models handled class
imbalance, which often occurs in the context of HC patients
with high-risk versus low-risk for VAr.

In the context of risk stratification, particularly when
assigning a severe event such as a VAr label to a record,
high sensitivity (correct identification of cases with VAr)
and low false negatives (i.e., avoiding missing actual VAr
cases) are especially important. Although our method
(HCM-VAr-Risk Model) outperforms the simple baseline
classifiers in terms of sensitivity, false-negative rate, and
C-index, it has lower specificity (correct identification of
non-VAr cases)—Table 3 and Figure 4. There is usually a
trade-off between sensitivity and specificity; however, a
classifier that aims for high sensitivity is preferable, given
the goal of accurate VAr classification. That said, having a
large number of false-positives (low specificity) is clearly
undesirable as it generates false alarms. Although the speci-
ficity of the simple logistic regression classifier is much
higher (0.96) compared with that attained by our model
(0.76), the former fails to identify almost any high-risk case
(minority class), attaining a sensitivity of just 0.20. Our
model’s significantly higher sensitivity while retaining
acceptable level of specificity demonstrates its effective-
ness in correctly identifying the large majority of both VAr
and non-VAr cases.

Unlike our study, which employs a data-driven feature
selection method to separate HC patients with history of
VAr from those without VAr, the ACCF/AHA2 and ESC
guidelines1 incorporate a hierarchical approach that
includes weighting of some variables such as family history
and maximum left ventricular wall thickness in VAr risk

prediction. The ESC guidelines1 are based on a predictive
5-year risk model (HCM RISK-SCD Model)4 that excludes
patients with previous history of VF, which makes direct
comparison with our cohort problematic. Another differ-
ence between our method and the ACCF/AHA guidelines2

is the inclusion of arbiters such as complex genotypes, api-
cal aneurysms, and late gadolinium enhancement for VAr
risk prediction in the published guidelines.

Our dataset is highly imbalanced, that is, the number of
non-VAr patient records greatly exceeds (by 11-fold) the
number of VAr records. This is expected in HC, which is
characterized by phenotypic heterogeneity and variable
penetrance. Furthermore, only a minority of HC patients
demonstrate adverse outcomes.16 Learning classifiers using
off-the-shelf packages on such an imbalanced dataset typi-
cally result in poor performance (Table 3), as demonstrated
by the failure of logistic regression, na€ıve Bayes, decision
tree, and random forest classifiers to correctly identify
majority of the VAr cases. In contrast, our HCM-VAr-Risk
Model, which directly addresses the imbalance, identified
VAr cases with a sensitivity of 0.73 and a low false-nega-
tive rate of 0.27. We anticipate that our method can also be
applied to other HC outcomes and to diseases that are asso-
ciated with a wide spectrum of clinical phenotypes.

We identified 12 variables that have not been associated
with VAr in HC by previous studies, as well as 10 estab-
lished SCD risk factors (including younger age, unex-
plained syncope, NSVT, wall thickness, and family history
of SCD)17,18 that are utilized in the ACCF/AHA2 and/or
ESC guidelines.1 We did not detect an association between
VAr and LA diameter (ESC guidelines), abnormal BP
response, or left ventricular LGE (ACCF/AHA guidelines).
Presence of LGE, which reflects replacement fibrosis, is
frequent in HC patients, but its utility as an independent
risk factor for SCD in HC is unresolved.19,20

Notably, lower LVOT rest/stress gradients were associ-
ated with higher VAr risk in our study. This result is sup-
ported by a previous study that reported an association of
nonobstructive HC with VAr, and of obstructive HC with
atrial fibrillation, heart failure, and death.21 The mechanism

Table 5

Performance comparison of the combination of under- and oversampling

logistic regression classifier, when trained on datasets represented through

2 different feature sets

Feature set 1 Feature set 2 Feature set 3

Sensitivity 0.53 (0.05) 0.56 (0.03) 0.73 (0.03)

Specificity 0.70 (0.05) 0.76 (0.03) 0.76 (0.04)

False-negative rate

(miss rate)

0.46 (0.05) 0.43 (0.04) 0.27 (0.05)

C-index 0.61 (0.07) 0.77 (0.04) 0.83 (0.05)

Feature set 1: history of nonsustained ventricular tachycardia, abnormal

blood pressure response to exercise, family history of sudden cardiac

death, maximum LV wall thickness ≥3 cm, and unexplained syncope.

Feature set 2: age (years), maximal LV wall thickness (mm), left atrial

diameter (mm), LV outflow tract gradient (mm Hg), family history of sud-

den cardiac death, history of nonsustained ventricular tachycardia, and

syncope.

Feature set 3: The 22 features identified as predictive of VAr by our

HCM-VAr-Risk Model.

Standard deviation is shown in parentheses and the best performance

attained for each measure is shown in boldface.

Figure 4. Receiver-operating characteristic (ROC) curve for HCM-VAr-

Risk Model: ROC curve showing performance of the HCM-VAr-Risk

Model using the combined under- and oversampling approach. The x-axis

shows the false-positive rate, whereas the y-axis shows the true-positive

rate.
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underlying the association between nonobstructive HC and
VAr22,23 could be presence of a greater degree of LV myop-
athy in patients with nonobstructive HC.24 The association
between statin use and VAr in HC is novel. Interestingly,
statin therapy has been demonstrated to have a modest ben-
eficial effect on SCD in the setting of CAD,25 and to induce
regression of cardiac hypertrophy and fibrosis in experi-
mental models26,27 of HC.

We used speckle tracking to image myocardial defor-
mation and also performed conventional measurements of
systolic and diastolic function by ECHO. Our results indi-
cate that HC patients with VAr have a more severe cardiac
phenotype, characterized by greater impairment of sys-
tolic and diastolic cardiac mechanics. It is unlikely that
the impairment of cardiac mechanics is age related
because younger age28 was associated with VAr in our
study. Our findings of more severe cardiac HC phenotype
is supported by lower exercise capacity29 in the VAr
group, which does not appear to be related to LVOT
obstruction, because patients with nonobstructive HC24

had higher risk for VAr.
The HCM-VAr-Risk Model supports identification of

patients with VAr based on their clinical record, within the
realistic context of a highly imbalanced case population.
This approach can be applied as part of a system alerting
physicians of high or low VAr risk based on a patient
record, enabling interventions such as ICD implantation in
high-risk patients and avoiding ICDs in low-risk patients.
Specifically, our machine learning method can assign VAr
probability to any HC patient for whom values of the infor-
mative variables are available. Although we have shown
very good prediction performance in the face of data imbal-
ance, the relatively small dataset reduces the statistical
power. Future work includes testing and extending the gen-
eralizability of our model using additional datasets and pro-
spective studies.

In conclusion, this is the first application of machine
learning to predict VAr in HC patients. Our machine learn-
ing-based approach demonstrates good performance (sensi-
tivity = 0.73, specificity = 0.76, C-index = 0.83) compared
with currently employed SCD prediction algorithms, while
addressing the imbalance inherent in clinical data. The set of
clinical attributes identified by our method includes several
new predictors of VAr in HC, and indicates that patients
with VAr have a more severe cardiac HC phenotype.
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