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Leveraging Structure: Logical Necessity in the Context of Integer
Arithmetic
Jessica Pierson Bishopa, Lisa L. Lambb, Randolph A. Philippb, Ian Whitacrec,
and Bonnie P. Schappelleb

aUniversity of Georgia; bSan Diego State University; cFlorida State University

ABSTRACT
Looking for, recognizing, and using underlying mathematical structure is an
important aspect of mathematical reasoning. We explore the use of math-
ematical structure in children’s integer strategies by developing and exem-
plifying the construct of logical necessity. Students in our study used logical
necessity to approach and use numbers in a formal, algebraic way, lever-
aging key mathematical ideas about inverses, the structure of our number
system, and fundamental properties. We identified the use of carefully
chosen comparisons as a key feature of logical necessity and documented
three types of comparisons students made when solving integer tasks. We
believe that logical necessity can be applied in various mathematical
domains to support students to successfully engage with mathematical
structure across the K–12 curriculum.

Looking for, recognizing, and using underlying mathematical structure is an important aspect of mathe-
matical reasoning. For example, when students think about 13 × 8 as the sum of the products 10 × 8 and
3 × 8, they leverage a fundamental, structuring property of our number system—the distributive property.
The same property supports students to later see the equivalence of 13x and 10x+ 3x. Following the work of
both Usiskin (1988) and Kaput (1998), we see the use of mathematical structure as a key component of
algebraic reasoning. Moreover, the use of structure is consistent with research on children’s mathematical
thinking and the idea of relational thinking (Carpenter, Franke, & Levi, 2003; Empson & Levi, 2011; Jacobs,
Franke, Carpenter, Levi, & Battey, 2007). We do not think that structure falls only within the domain of
traditional school algebra; like others (Koestler, Felton, Bieda, & Otten, 2013; Mason, Stephens, &Watson,
2009), we posit that students should have opportunities to see and use structure throughout the K–12
curriculum (Common Core State Standards for Mathematics [CCSSM], 2010). In our work studying
students’ reasoning about integers and integer arithmetic, we have seen examples of students using
mathematical structure in their approaches to integer tasks. In this article, we further develop and exemplify
the use of structure by providing examples from our work investigating students’ conceptions of integers.
In particular, we discuss evidence of the use of mathematical structure embedded in students’ strategies
used for solving integer tasks—strategies we term logical necessity. In this way of reasoning, one leverages
fundamental principles and underlying mathematical structures.

The use of structure and systems—A survey of the literature

Our view of structure is grounded in the literature on algebra and algebraic reasoning (Kaput, 1998;
Kieran, 1992; Usiskin, 1988), Cuoco and colleagues’ notion of mathematical habits of mind (Cuoco,
Goldenberg, & Mark, 1996), and existing empirical research on structure, structure sense (Hoch &
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Dreyfus, 2004, 2005, 2006; Linchevski & Livneh, 1999), and relational thinking (Carpenter et al.,
2003; Empson & Levi, 2011; Jacobs et al., 2007). After sharing an overview of research related to
mathematical structure drawing on these scholars’ work, we synthesize ideas related to structure
from across these areas to situate our study.

What is structure?

Structure and algebra
Although mathematical structure cuts across various topics within mathematics, much of the literature
related to structure is in the domain of algebra. We see the use of mathematical structure within the realm
of algebra as embodying two interrelated forms of algebraic reasoning: (a) algebra as generalized arithmetic
and formalizing patterns and (b) algebra as the study of structures and systems (Kaput, 1998; Usiskin,
1988). In the first view of algebra, as generalized arithmetic, arithmetic and algebraic reasoning are linked
by generalizing relationships used to carry out computations with specific numbers. Arithmetic can be a
context for algebraic reasoning when statements that represent rules for computation, including funda-
mental properties such as commutativity, additive andmultiplicative identity elements, and the distributive
property, are generalized from patterns students notice while computing. In fact, the first essential under-
standing listed in the National Council of Teachers of Mathematics publication Developing Essential
Understanding of Algebraic Thinking is “Addition, subtraction, multiplication, and division operate
under the same properties in algebra as they do in arithmetic” (Blanton, Levi, Crites, & Dougherty, 2011,
p. 15). Regularities in calculations, when appropriately leveraged, can lead students to make and explore
generalizations about number and operation. For example, when solving 237 − 105, a student might use an
easier computation like 237 – 100 as part of his or her solution. The difference 237 – 105 might be thought
of as 237 − (100 + 5), or (237 − 100) − 5 (by the distributive and associative properties). Students can then
consider how the difference in the easier computation, 237 – 100, is affected when the subtrahend changes
from 100 to 105. Why is the difference 5 less when subtracting 237 – 105 when 105 is 5more than 100? Or,
more generally, if the subtrahend increases (and the minuend remains constant), how does the difference
change?

Algebra can be seen as a generalization of arithmetic, because observed regularities can be
transformed into explicit, formal statements—generalizations of statements about numbers and
arithmetic such as n − m > n − [m + x] where x > 0, as opposed to statements about particular
numbers 237 − 100 > 237 − 105.1 Mason identified generalized arithmetic as one context for
“seeing generality through particularity” (1996, p. 69), a critical component of generalizing in a
broader sense across various domains. Krutetskii (1976) found that when encountering new
problems, mathematically capable students “found the generality hidden behind various parti-
cular details, saw the deep inner essence of phenomena . . . [and] found elements of the
familiar in the new” (p. 240). These students could apply general principles that were based
on “properties of various mathematical objects, schemes, or problems” (p. 306). In generalized
arithmetic, students abstract, generalize, and then formalize the structures, principles, and
properties that guide computation with specific numbers; they use those ideas to determine
how to operate on classes of numbers. We view this type of mathematical activity as leveraging
underlying mathematical structure.

In the second form of algebraic reasoning, the study of structures and systems, one makes use
of the previously mentioned general properties that are attributed to operations on integers, real
numbers, and polynomials. In addition to being descriptions of how numbers operate, these
properties are also objects in their own right that, in turn, structure new sets of objects and
operations. This view of algebra—the study of systems of abstract structures and the rules
governing the behavior of elements in those systems—is the view we encounter in abstract

1This example was inspired by Schifter and colleagues’ work (2008).
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algebra (Cuoco et al., 1996; Usiskin, 1988). Kieran (1992) and Sfard (1991) have described the
treatment of fundamental properties and symbolic forms as objects (as opposed to procedures or
processes) as a structural perspective of algebra. In a structural perspective, mathematical objects
are more general and include entities like fields, groups, rings, and polynomials. Expressions no
longer refer to specific numbers, and operations are no longer performed solely on numbers.
Operations are defined on sets of mathematical objects and consist of more than computations
(e.g., factoring or using a property of equality to transform an equation). Moreover, variables are
used as tools to represent and communicate deeper structures and relationships in a given
system (Usiskin, 1988; see also Mason, 1996).

Structure and habits of mind
The use of structure is a key element in several of Cuoco and colleagues’ (1996) descriptions of
various mathematical “habits of mind.” Two of their general habits of mind—searching for regularity
and patterns (or being “pattern sniffers”) and making conjectures—are aspects of structure high-
lighted in the above discussion of generalized arithmetic. They also identified habits of mind specific
to algebra, such as the use of abstraction and extending systems. When students move through
school mathematics, they extend number systems and learn how operations function in the larger
systems. In this process, “new insights come when you see how a calculation or theorem behaves
when you put a given system inside a larger one” (p. 399). Mason (1996), too, identified extension as
an important aspect of generalization because extensions broaden “the scope of reference and
application of a result, thus placing it in ever broader contexts by removing particular restrictions”
(p. 69). The key question for students to ask themselves is “Which properties remain true under
extension?” We view this as a question about structure related to the second form of algebraic
reasoning discussed earlier.

The inclusion of structure in policy and standards documents
Additionally, the idea of mathematical structure appears both explicitly and implicitly in numerous
policy and standards documents. For example, one of the Standards for Mathematical Practice
identified in the CCSSM in the United States is “look for and make use of structure” (CCSSM,
2010). In the book Connecting the NCTM Process Standards and the CCSSM Practices (Koestler et al.,
2013), this standard is described as using patterns, conjectures, and generalizations that help students
recognize relationships that hold for large numbers of cases to generate new knowledge. In the
United Kingdom, national mathematics curriculum documents address structure in Key Stages 3 and
4 (secondary students aged 11–16 years), stating that students should “use algebra to generalise the
structure of arithmetic, including to formulate mathematical relationships” and “make and test
conjectures about the generalisations that underlie patterns and relationships” (Department for
Education, 2013, Key Stages 3 and 4). And in Japan, a core mathematical activity for lower secondary
students (12–15 year olds) is to “discover and then extend properties of numbers and geometrical
figures based on previously learned mathematics” (Japanese Ministry of Education, Culture, Sports,
Science and Technology, 2010, p. 78). The stated aim of this mathematical activity is not only to
discover mathematical facts or procedures but also to increase the quality of and to further refine
mathematical reasoning such as induction, analogy (to develop predictions and conjectures), and
deduction (to verify and justify). For this purpose, it may be necessary to re-examine the discovered
properties of numbers and geometrical figures from different perspectives, such as changing the
conditions and thinking about the converse, so that students can further extend their discoveries.
(Japanese Ministry of Education, Culture, Sports, Science and Technology, 2010, p. 96)

In terms of the CCSSM (2010), mathematical structure is explicitly addressed under algebra
standards for secondary students with the suggested guidelines of “seeing structure in expressions”
and “using the structure of an expression to identify ways to rewrite it” (p. 64). Seeing and using
structure requires choosing appropriate, equivalent forms of expressions to solve problems and being
able to interpret complex expressions by viewing parts as a single term or entity (e.g., recognizing the
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expression x2y4 � 7þ z½ �6 as the difference of two squares; see also Hoch & Dreyfus, 2005, 2006).
Transforming algebraic expressions to create equivalent expressions is also addressed in United
Kingdom and Japanese curriculum documents, although these standards are not directly linked to
the idea of structure.

In discussing foundational conceptualizations of number and operation for secondary students,
the CCSSM authors address structure in a second, slightly different, way:

With each extension of number, the meanings of addition, subtraction, multiplication, and division are
extended. In each new number system—integers, rational numbers, real numbers, and complex numbers—
the four operations stay the same in two important ways: They have the commutative, associative, and
distributive properties, and their new meanings are consistent with their previous meanings. (CCSSM,
2010, p. 58)

When students extend their understanding of numbers to new domains (from whole numbers to
integers or from whole numbers to rational numbers), they have opportunities to look for and make
use of underlying structures and generalizations of arithmetic by deciding how calculations should
function (or reflecting on how calculations do function) within expanded number systems. It is this
application of structure that is our focus in this article.

Empirical research on structure
Much of the research related to structure centers around the idea of structure sense. According to
Linchevski and Livneh, structure sense is the ability to use “equivalent structures of an expression
flexibly and creatively” (1999, p. 191). Students applying structure sense are able to identify and
generate equivalent forms of expressions as well as identify which forms are most appropriate for the
given task or goal. Structure sense includes flexibly decomposing, recomposing, and manipulating
expressions in ways that are sensible to students (Linchevski & Livneh, 1999). Linchevski and Livneh
operationalized this construct by considering how students used order of operations to simplify
numerical expressions. They wondered whether students, desiring to simplify calculations, would
overlook underlying structures to incorrectly group terms and simplify, for example,
50 − 10 + 10 + 10 as 50 − (10 + 10 + 10) or 104 ÷ 8 ÷ 4 as 104 ÷ (8 ÷ 4)? They found that more
than 50% of students in Grade 6 did just that on these tasks.

Hoch and Dreyfus’s (2004, 2005, 2006) work on structure sense built on Linchevski and Livneh’s
notion of equivalent expressions as a key component of structure sense but also included algebraic
expressions. They defined structure sense as comprised of multiple abilities including the following:

The ability to see an algebraic expression or sentence as an entity, recognise an algebraic expression or sentence
as a previously met structure, divide an entity into sub-structures, recognise mutual connections between
structures, recognise which manipulations it is possible to perform, and recognise which manipulations it is
useful to perform. (Hoch & Dreyfus, 2004, p. 51)

They further explained that all expressions represent some type of structure that is determined by
“the relationships between the quantities and operations that are the component parts of the
structure” (p. 50). Hoch and Dreyfus (2005, 2006) explored high school students’ abilities to
recognize simple and complex forms of expressions and equations as equivalent. For example, do
students see (x + 3)4 − (x − 3)4 as the difference of squares a2 − b2? Do students see the equivalence
between the expressions 30x2 − 28x + 6 and (5x − 3)(6x − 2)? The first example makes use of the
substitution principle or substitutional equivalence: replacing a variable, a, with a compound term
(x + 3)2 (Novotna & Hoch, 2008, p. 95; see also Musgrave, Hatfield, & Thompson, 2015). The second
example illustrates transformational equivalence and the importance of recognizing the affordances
of different equivalent forms of expressions. The first expression in the second example, 30x2 − 28x +
6, is more easily recognized as quadratic and might prove useful for recognizing it as such; the
second expression is the product of linear factors, which might prove useful when finding roots.
Hoch and Dreyfus found that many high school students did not have high levels of structure sense;
they struggled to recognize and apply underlying structures when solving routine algebra tasks. This
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finding is consistent with one Kieran noted in her handbook chapter (1992): “The majority of
students do not acquire any real sense of the structural sense of algebra” (p. 412).

Some researching structure have defined and illustrated the construct to clarify it. In their definition of
mathematical structure, Mason and colleagues (2009) argued that structural thinking is critical to deep
and productive mathematical activity; they emphasized relationships, generalizations, and the importance
of properties in structural thinking. For them, mathematical structuremeans “the identification of general
properties which are instantiated in particular situations as relationships between elements” (p. 10).
Other researchers have attempted to identify different forms of structural reasoning. For example, Gates,
Cuoco, and Kang (2015) categorized more than 400 Algebra I students’ responses to problems like
“Simplify 8(982 − 4) + 3(982 − 4) − 11(982 − 4)” in a pencil-and-paper assessment. Many students used a
purely computational approach for this task: squaring 98, subtracting 4, multiplying, and adding from left
to right using the order of operations. However, Gates and colleagues identified two forms of structural
reasoning some students used in their solutions—chunking and hidden meaning. Similar to employing a
structural view of algebra is the use of a chunking approach, in which students treated the expression
(982 − 4) as a single object to obtain the new expression (8 + 3 − 11)(982 − 4). Some students, though,
transformed 982 – 4 into an equivalent form, 982 − 22, using a second type of structural reasoning Gates
and associates termed “hidden meaning.” These students used meaningful transformations to write
982 − 4 as (98 + 2)(98 − 2) or 100 × 96, revealing a hidden form that was useful for evaluating the
expression. Overall, researchers exploring structure and structure sense have emphasized the importance
of recognizing equivalent expressions and equations, transformations, properties, and flexibility. These
researchers have also found that students’ structure sense and structural reasoning may not be as
common or as robust as we educators might hope.

Relational thinking
We also see the construct of relational thinking as closely connected to mathematical structure.
Relational thinking has been conceptualized as both a form of formal algebraic reasoning and as a
type of student thinking (Jacobs et al., 2007). It emerged from the Cognitively Guided Instruction
literature and was first identified and discussed in the context of algebra with problems that
addressed the meaning of equality and one’s use of field properties when performing arithmetic
calculations (Carpenter, Franke, & Levi, 2003; Jacobs et al., 2007). Since then, it has been applied to
students’ strategies in the context of rational number (Empson & Levi, 2011).

Relational thinking is characterized by the comparison of expressions (or equations) and the
subsequent identification of relationships between those expressions that can be used to simplify the
given problem without having to perform the calculations. For example, in the problem 28 + 46 = 

+ 47, students are thinking relationally if they identify a relationship between 46 and 47 (i.e., the
difference is 1) and appropriately compensate for the unknown (it is 1 less than 28) to preserve the
equality relation (see Carpenter et al., 2003). In the realm of fractions, relational thinking might
involve using a multiplicative identity relationship to simplify the computation 20 × ¾ to 10 × 1½ to
5 × 3 by “halving and doubling” multiple times (Empson & Levi, 2011, p. 85). Jacobs et al. (2007)
defined relational thinking as “a flexible approach to calculation in which expressions are trans-
formed on the basis of at least implicit use of fundamental properties of number operations” and an
approach that involves looking at expressions “in their entirety” to notice relationships between
expressions (p. 260). Empson and Levi (2011) further extended the definition of relational thinking,
emphasizing the importance of seeing and using mathematical relationships to express numbers
(and algebraic expressions) in terms of other numbers, consistent with the idea of transformational
equivalence, a key component of structure sense.

Our conceptual framework for structural reasoning

In looking across empirical research, theoretical writings, and policy documents related to structure,
we identified several common ideas that informed our work on structure in the context of integers
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including (a) the importance of the field properties in mathematical structure (Blanton et al., 2011;
Carpenter et al., 2003; Empson & Levi, 2011; Jacobs et al., 2007; Mason et al., 2009); (b) looking at
expressions holistically and being able to treat them as mathematical objects (Empson & Levi, 2011;
Gates et al., 2015; Hoch & Dreyfus, 2004, 2005, 2006; Kieran, 1992; Mason, 1996; Sfard, 1991;
Usiskin, 1988); (c) transformational equivalence (CCSSM, 2010; Gates et al., 2015; Hoch & Dreyfus,
2004, 2005, 2006; Kieran, 1992; Linchevski & Livneh, 1999); (d) extensions of our number system (or
other mathematical systems) and the development of, or justification for, the rules for operating in
these systems (CCSSM, 2010; Cuoco et al., 1996; Mason, 1996; Usiskin, 1988); and (e) the idea of
comparison or relationships in supporting students to reason structurally (Carpenter et al., 2003;
Empson & Levi, 2011; Jacobs et al., 2007; Mason et al., 2009). Because not all the literature we
reviewed explicitly addressed mathematical structure, we combine these five themes to highlight two
related, but different, aspects of mathematical structure.2 First, mathematical structure involves the
use of fundamental properties to transform both numeric and algebraic expressions into equivalent
expressions (or equations) with an awareness of the underlying relationships between the terms. And
second, mathematical structure involves the use of fundamental properties in conjunction with
conjecturing and deduction to reason about extensions to the number system (or other more
abstract systems). Much of the research on structure, especially research on structure sense,
addresses the first aspect; the second aspect of mathematical structure is largely unaddressed in
the literature base. It is this aspect of structure on which we focus in this study.

In the conceptual framework we used to guide our investigation of structural reasoning, we
integrate key ideas from existing research including the application of field properties and the
importance of underlying relationships and comparisons students can use in making sense of integer
operations in extensions of number systems. Our goal is to investigate students’ conjectures and
justifications about how operations ought to (or do) behave within different sets (in this case, the
integers) to determine the structure of the system under consideration. By addressing the role that
structure plays in reasoning about extensions to number systems, we begin to bridge a gap in the
literature. Further, by broadening the inclusion of structure to other mathematical topics such as
integers, we hope to better understand the opportunities students may have to see and use structure
throughout the K–12 curriculum. The following research questions guided our study:

1. In what ways do students use mathematical structure to reason about and justify extensions to
the number system when solving integer-arithmetic tasks?

2. How often does this kind of reasoning occur, is there variation across grade levels, and what are
its key features in the domain of integers?

Methods

Background and participants

The findings reported in this article are part of a larger study in which our goal was to understand
K–12 students’ conceptions of integers and integer arithmetic and how those conceptions change
over time. In this article, we focus on one aspect of integer understanding related to structural
reasoning that emerged during our analysis. Data for the larger study include clinical interviews with
160 students from 11 schools (3 elementary schools, 3 middle schools, 1 K–8 school, and 4 high
schools) in a single state in the Western United States. During the 2010–2011 school year, these
students participated in individual interviews about integer arithmetic. Because our focus was on
students’ integer conceptions and ways of reasoning, we did not gather data regarding the types of
instruction students received or curricular materials used in their classrooms.

2There are likely other aspects of mathematical structure that exist in addition to the two we highlight here.
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We conducted clinical interviews with students in grades 2, 4, 7, and 11 (40 children from each
grade level). Students in grades 2 and 4 had yet to receive school-based integer instruction. We chose
these grade levels to uncover intuitive and informal ways of reasoning about integer arithmetic
because, in our previous research, 7–10 year olds had shown evidence of some familiarity with
negative numbers. Students in grade 7 had completed instruction on integers (state standards at that
time addressed integer instruction in grades 5–7). We selected this grade level to identify the kinds of
integer understandings we might reasonably expect students to hold after completing school-based
instruction. Students in grade 11 were enrolled in either a precalculus or calculus course, and
because they would have completed a calculus course by graduation, they were deemed to be
successful high school mathematics students. (Sixteen percent of high school graduates in the
United States in 2009 completed calculus.3) This group of eleventh graders, by virtue of their course
taking, presumably had more sophisticated mathematical knowledge and, consequently, provided an
endpoint to a continuum of integer understanding in the K–12 context.

We selected participating schools on the basis of demographic information (such as the percen-
tage of children receiving free or reduced-cost lunch and the ethnic composition of the school),
variation in mean achievement scores on standardized state assessments, and existing relationships
with teachers and staff. For each grade level we selected schools close to or at the state-achievement
mean, below the state mean, and above the mean. We purposefully selected schools to include varied
demographics and achievement data to ensure a range of participants. At each participating school,
two teachers at each targeted grade level were identified by the school principal or volunteered to
participate. All students in the two teachers’ classes were invited to participate. Participating students
were randomly selected from among all who returned signed consent forms (247 total students
returned signed consent forms: 65 second graders, 63 fourth graders, 73 seventh graders, and 46
eleventh graders). At each school 9–11 students per grade level were selected to participate in the
interviews.

Clinical interview

The 60–90-minute clinical interviews (Ginsburg, 1997) were conducted at the students’ school sites
during the school day and were videotaped. Although we sought to understand and follow the child’s
thinking during the interviews, the interviews were standardized. All children were asked the same
set of 47 questions except for those students who did not have negative integers in their numeric
domains.4 However, we often posed follow-up questions to better understand and respond to the
students’ emerging ideas. The interview had four categories of tasks: introductory questions (asking
children to name large/small numbers and to count backward), open number sentences (problems of
the form -3 +  = 6 and  + 6 = 4, with the location of the unknown varying), contextualized
problems that could be solved using negative integers (we selected two contexts, debt and elevation,
common in state-adopted textbooks), and comparison problems (for a given pair of numbers like -3
and – -3, “Indicate which is larger, write an equal sign if they are equal, or write a question mark if
the information given is insufficient to compare the numbers”). The introductory questions, open
number sentences, and context problems are included in Appendix A in the order they were posed
in the interview.

At the beginning of the interview, students were given the following tools and were told they
could use them to solve problems: 20 unifix cubes, a number line labeled from 0 to 10 with 10
unlabeled tick marks to the left of zero (i.e., no negative integers were written on the number line),
blank paper, and a written copy of the problems on which to record their answers. Findings shared

3According to the National Center for Education Statistics analysis of high school course-taking (http://nces.ed.gov/programs/coe/
indicator_cod.asp, retrieved November 3, 2015).

4In other words, these students indicated during the early part of the interview that numbers did not extend below (or less than)
zero.
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in this article are from responses to only the open number sentences and focus on structural
reasoning as expressed in the construct of logical necessity (which we define in the Findings section).
(For analyses of other types of tasks, see Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2011;
Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2014; Bishop et al., 2014; Lamb et al., 2012; Whitacre
et al., 2012; Whitacre, Bishop, Philipp, Lamb, & Schappelle, 2014)

Pilot data

During the 2009–2010 school year we conducted a pilot study to (a) develop and test integer tasks,
(b) help us determine which grade levels to select for the larger study, and (c) begin to describe the
varied approaches and reasoning students used to solve integer arithmetic problems. We describe the
pilot study here because it was this study that initially led us to the construct of logical necessity and
because two illustrative excerpts shared later in the article are from interviews conducted during the
pilot study.

We interviewed 74 students as part of the pilot study including 60 elementary students
(Kindergarten through grade 5), 6 middle school students (grades 6 – 8), and 8 high school students
(grades 9–12). The pilot interviews themselves were similar to the standardized interview described
previously containing the same four categories of questions—introductory questions, open number
sentences, contextualized problems, and comparison problems. However, in the pilot study we often
tested different sequencing of problems and different number choices, tried different story problem
contexts, asked only a subset of the questions from the standardized interview, or posed follow-up
questions in-the-moment that were based on the child’s ideas. As a result, we did not pose the same
tasks to every child in the pilot study. In some cases, students were interviewed multiple times over
several days or even months to test different tasks and to determine whether and how integer
reasoning might change over time. The strength of the pilot interviews was that they enabled us to
engage with a child to promote understanding and make visible his or her ways of reasoning. It was
because of this flexibility during pilot study interviews we first noticed that some students leveraged
structural reasoning in their responses.

Coding and analysis

The interviews were coded at the problem level for both correctness and the underlying way of
reasoning the child used. The Ways of Reasoning coding scheme was developed and refined
iteratively over a period of 2 years. We began by analyzing the 74 pilot interviews (before conducting
the 160 interviews described previously), describing children’s strategies with progressively more
detail while the codes were developed. We identified five broad categories we call Ways of Reasoning
and subcategories within each way of reasoning that provide more detail as to the child’s specific
strategy or strategies. Codes were refined and new codes were added when we began coding a subset
of the 160 interviews. The final coding scheme contained five ways of reasoning: Order-based,
Computational, Analogy-based, Formal, and Developmental (see Appendix B for definitions) and a
total of 39 subcodes embedded within these five broader Ways of Reasoning. Each problem was
assigned a way of reasoning code (some responses involved more than one way of reasoning and,
thus, received multiple codes). For example, some students solved -3 + 6 =  counting up from -3 to
6 by ones. This type of solution would be coded as an Order-based way of reasoning because
counting leverages the ordered and sequential nature of numbers. Another student might answer the
same problem using Analogy-based reasoning explaining, “It’s like I borrowed 3 dollars from my
friend. It’s like I owe him; that’s minus 3. And I give him 3 from the 6 my mom gave me, and now I
have 3.” We would code this response as analogy-based reasoning about integers because the student
is comparing negative integers to money and owing to reason about the problem.

The two primary coders who developed the coding framework trained five additional coders.
Each additional coder coded four interviews independently and discussed all coding decisions with

216 J. P. BISHOP ET AL.

D
ow

nl
oa

de
d 

by
 [S

D
SU

 S
an

 D
ie

go
 S

ta
te

 U
ni

ve
rs

ity
] a

t 1
1:

31
 2

4 
Ju

ne
 2

01
6 



the primary coders (who had double-coded the same interviews). Upon completion of coder
training, the set of 160 interviews was independently coded by 7 coders. Twenty percent of the
interviews (32 interviews, 8 per grade level) were randomly selected for double coding to check the
reliability of the coding; coders were blind as to which interviews would be double coded.
Additionally, coders identified interviews that were challenging to code, and those interviews were
double-coded with one of the primary coders. All coding disagreements were resolved, and final
codes for double-coded interviews were generated. A total of 42 (or 26.25%) of the 160 interviews
were double coded, and interrater agreement was 92% at the Ways of Reasoning level and 83% at the
subcode level.

Although it was not our purpose in the larger study to investigate structure, we found that some
students leveraged underlying mathematical structure in their strategies. Thus, in this article we
focus on one of the strategies observed in the larger study, a subcode in the Formal Way of
Reasoning category—logical necessity. Logical necessity exemplifies a way in which students engaged
successfully with mathematical structures, fundamental principles, and invariant transformations of
equations when solving integer tasks.

Findings

In this study, we investigated whether, how, and with what frequency students used mathematical
structure when solving integer-arithmetic tasks. We also sought to identify key features of mathe-
matical structure that students used when reasoning about integers. To answer our first research
question, we describe the construct of logical necessity and relate it to the practice of looking for and
using structure. We then share interview excerpts to illustrate examples of logical necessity used by
students solving integer tasks. To answer our second research question, we provide data on the
frequency of logical-necessity use, trends across grade levels, and characteristics of logical necessity
that emerged from our analysis.

Logical necessity defined and exemplified in the realm of integer arithmetic

One finding from our study is a particular strategy involving mathematical structure that some
students used to solve integer problems. This approach, which we call logical necessity, is more
formal in nature than the other types of reasoning we saw; it includes students’ use of underlying
mathematical principles to justify existing procedures or to extend their number systems from whole
numbers to the entire set of integers so that students treat negative numbers in ways consistent with
principles already accepted as true for whole numbers. When students in our study engaged with
integer tasks, some were in the process of extending their personal numeric domains5 from whole
numbers to include negative numbers. As a result, using and identifying common underlying
properties and structures is a powerful sense-making strategy that supported these students in
making conjectures about how integer arithmetic should operate in their newly expanded number
systems. Other students used properties and mathematical structures to help them justify rules and
procedures they already knew to be true. We use the term logical necessity to describe a strategy
wherein students treat negative numbers like formal objects that are part of a mathematical system
and use the ideas of structural similarity, well-defined expressions, deduction, fundamental mathe-
matical principles (e.g., commutativity, negation), and, sometimes, proof by contradiction in their
problem-solving approaches. On the basis of the research literature, we see logical necessity as closely
related to research on relational thinking (Carpenter et al., 2003; Empson & Levi, 2011; Jacobs et al.,
2007). (Note that we are using the term logical necessity to describe a strategy that students in our

5A student’s personal numeric domain is the number system within which he or she operates. It is the set of values that the student
has knowledge of, considers to be legitimate numbers, and can use as input values for arithmetic operations.
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study used. We are not making claims about what a logically necessary inference, in an objective
sense, is.)

A key characteristic of logical necessity in the context of integers is maintaining consistency with
what one knows to be true for one’s personal numeric domain (for most students, that number
system is whole numbers). For example, when using logical necessity, a student may reason about a
problem involving negative numbers (or make a generalization about operating with negative
numbers) by making a comparison to a similar problem for which an answer is known and
extending some element of that reasoning. A student may know that -5 + 1 is -4 (perhaps by
using a number line or counting strategy). He or she may use this fact, together with the assumption
that the commutative property holds for the extended number system, to determine a plausible
answer for the related problem 1 + -5. Then, the child may reflect and consider, more generally, the
meaning of adding a negative number. Additionally, we found that each occurrence of logical
necessity in our data set involved the use of a comparison between two problems. Sometimes, the
numbers were held constant and the operations changed, and other times the operation was constant
and other features (e.g., order or a second addend) were changed.

In the following sections, we share five examples of logical necessity across a range of grades
to identify key features of logical necessity and to illustrate how mathematical structure can be
used productively in the context of integer arithmetic. We chose these examples to (a) exemplify
the three different comparisons students made, (b) for the clarity of students’ explanations, and
(c) to represent the different grade levels, ethnicities, and genders of students who used logical
necessity. Female and male students at all grade levels in our study as well as students from
different ethnic backgrounds (Latino, African American, and Caucasian) used logical necessity.
Our choice of examples reflects that diversity. The first two cases we share involve comparisons
in which the sign of the number is varied, the second two cases involve comparisons in which
the operation is varied, and the last case involves a comparison in which the order of the
addends is varied.

Comparisons in which the sign of the number is varied
In the following sections, we present cases of both an 11th-grade student and a 2nd-grade student
who invoked logical necessity by comparing two expressions for which the minuend (or first
addend) and operation remained constant and the sign of the subtrahend (or second addend) was
varied.

The case of Beth. Beth was an 11th grader in our main study who, like many of the eleventh graders
we interviewed, knew how to correctly solve integer problems and was efficient in her use of
strategies, often using standard procedures. As our first example of logical necessity, we highlight
Beth’s response to the problem 6 – -2 = . Initially, Beth solved 6 – -2 =  by invoking a
computational procedure she knew and rewrote 6 – -2 as 6 + +2 to get 8.

Beth: My answer is 8. I just, I guess you can kind of think of it as 6 minus, 2 [sic], the
negative signs just cancel each other out and turn into positives . . . It’s 6 plus 2 . . .

Interviewer: You said 6 plus 2 is 8. I can understand that. But I still don’t know that I understand
why 6 minus negative 2 is 8.

When she was asked to revisit the original problem,6 Beth eventually turned to the number line,
comparing 6 – 2 and 6 – -2.

Beth: Um, so, maybe I can go to a number line (she picks up a provided number line). So if
you’re at 6, and you know that minus normally sends you to the left (moves pen on

6As part of the interview protocol, interviewers asked each participant about the meaning of 6 – -2.
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number line to the left of 6). So 6 minus 2 would send you this way (draws arrow
oriented to the left). You would have 4. And since that [4] can’t be the same answer
since it’s a different problem (she points to the original problem of 6 – -2 = ), you
have to go right 2 (she moves her pen two spaces on the number line to 8).

Interviewer: Why do you have to go right?
Beth: Well, because, okay, ‘cuz 6 minus 2 is 4. So 6 minus negative 2 can’t be 4. It just, it, I

mean, unless there were multiple dimensions to this number line. . . .
Interviewer: So your rationale for going to the right is what?

Beth: It’s, it’s logic, I guess. Because if 6 minus 2 equals 6 minus negative 2 [she writes
6 − 2 = 6 −(-2)], um, you wouldn’t write them differently. You wouldn’t write the same
problem [differently]. Uh, well, see my logic breaks there because you do write
problems like that—that are equal but you write them different ways. It wouldn’t—I
don’t know, just to me, it wouldn’t make sense to have 6 minus 2 equal 6 minus
negative 2 because you’re taking away a different quantity. Positive 2 is a different
quantity than negative 2. So, if you’re taking [away] different numbers, you can’t get
the same answer.

Beth held the operation of subtraction constant and compared the results of subtracting 2 versus
subtracting -2 from 6. She reasoned that if subtracting 2 represents a movement to the left, then
subtracting -2 (its opposite), should represent a movement to the right, the only other possible
option on a 2-dimensional number line. In our interpretation, Beth was grappling with the under-
lying structure of our number system, essentially arguing that subtraction should be a well-defined
function that yields unique output values given unique inputs (in other words, mapping the set of
integers to itself using addition (or subtraction) is a one-to-one function).

In the given problem, one could consider a function f, thatmaps integers onto integers via f(a) = 6− a∀ a
� Z. Because f is a one-to-one function (which is necessary for additive inverses to exist) and 2≠ -2, we know
that f(2)≠ f(-2). Or, in Beth’s language, “It wouldn’t make sense to have 6minus 2 equal 6 minus negative 2
because you’re taking away a different quantity” (i.e., because 2 ≠ -2 then 6 − 2 ≠ 6 – -2). Beth’s explanation
reflects an informal understanding of structural principles in our number system in her use of sophisticated
mathematical ideas to justifywhy 6– -2 cannot be 4 andmust be 8. In fact, she argued that this difference has
to be 8 tomaintain the internal consistency andmathematical structure of integers and integer arithmetic in
our number system. If not, if 6 – -2 could equal 4, our number system, as we know it, would break.

The case of Violet. As another example, we present the reasoning of Violet, a second grader
interviewed in our pilot study (Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2014). We selected
Violet because of the clarity of her reasoning and her explicit use of the term “opposite.” Although
many other students who used logical necessity reasoned in a similar manner, their responses were
not as articulate as Violet’s. In her strategies, Violet consistently leveraged an underlying view of
numbers as ordered, as reflected in her use of the number line as well as in her ability to extend
counting strategies into negative integers. For example, Violet solved the problem -9 + 5 =  with a
counting strategy, counting up from -9 to -4 by ones, and she solved the start-unknown problem 

+ 5 = 3, using trial and error on the number line.
However, Violet could not solve the problem 5 +  = 3. Her response to 5 +  = 3 was “There’s

no way to do that. . . . Because you have to do 5 minus something equals 2.7 If you add to that, say 5
plus 2, that would be 7 not 3.” Because this problem contradicts the widely held overgeneralization
that addition makes larger when interpreting addition as joining quantities or sets, we suspected that
open number sentences of this form might be particularly problematic (see Bishop et al., 2011, 2014;
Bofferding, 2014; Peled & Carraher, 2008). Similarly, we expected the open number sentence 5 –  =

7It is not clear whether Violet meant that she needed to subtract 2 from 5 to equal 3, or if she misspoke and meant to say “5 minus
something equals 3.”
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8, which Violet could not solve, to be challenging because it contradicts the notion that subtraction
makes smaller.

Violet had no model to help her make sense of adding or subtracting a negative number (as
in 6 + -2) or the corresponding problems that necessitated doing so (e.g., 5 +  = 3). When
asked explicitly to interpret and solve problems with such signs, Violet said, “You can’t add with
negative numbers [pointing to -2 in 6 + -2].” She responded similarly when thinking about the
expression 5 – -3, explaining that solving it was not possible and that -3 needed to be 3 to make
the problem solvable. To be clear, Violet could add a negative number but only as the first
addend. Thus, she could solve  + 5 = 3 using a number line but could not solve 5 +  = 3; she
had not yet developed a meaning for a negative change value.

Two months later, we interviewed Violet again as part of our pilot study and were surprised at her
response to the problem 5 +  = 2:

I’m not sure it’s this, but [she writes −3 in the box]. ‘Cuz negative 3 is kind of like minusing 3. . . . I was just
thinking that negative 3, well, it has a minus sign in front, so people might think that you’re minusing.

She continued her explanation, reasoning that her answer could not be positive 3 because then
she would be going to 8 (not 2). Violet further clarified her thinking in another problem, 4 +  = -3,
saying, “If you add negative 7, to me, it’s kind of like you’re going backwards. . . . It goes the opposite
direction of what the signs say it’s supposed to go.” Violet appeared to reason about her answer to
the problem 4 +  = -3 by thinking about the two related expressions 4 + 7 and 4 + -7. She
explained, “If you go to 4 and then you go all the way to 7 more, that would be adding positive 7.”
When comparing 4 + +7 to 4 + -7, the difference was that she was now adding negative 7. She
continued, “If you add negative 7, to me, it’s kind of like you’re going backwards.”

Violet’s conjecture leveraged a critical component of understanding integers, namely, that of negation
(Lamb et al., 2012; Thompson & Dreyfus, 1988). Although she did not use this term, Violet treated the
negative sign as negating, or doing the opposite of what one would do with positive numbers. In solving the
problem 4 + = -3, she essentially held the first number and the operation constant, varying the sign of the
second addend. She reasoned that when one added a negative number, the result was the opposite (a
movement left) of what it normally would be (a movement right). Violet implicitly recognized that the
answers for a + b and a + -b, for b≠ 0, must differ, and she determined how they might differ by leveraging
the idea of negation.We view this example of logical necessity as leveragingmathematical structure because
Violet generalized beyond a specific case by making a comparison to another, known, problem and
broadened her meaning for addition so that her number system remained consistent. In particular, she
compared the sum of 4 and 7 with the sum of 4 and -7 and used her initial understanding of additive
inverses and negation to develop possible meanings for adding (and subtracting) negative numbers.

Comparisons in which the operation is varied
We now present cases of a fourth-grade student and a seventh-grade student who both invoked
logical necessity by comparing expressions for which the operation varied.

The case of Armando. Armando was a fourth grader in our main study who, like many of our other
fourth-grade participants, had heard of negative numbers and could proficiently use counting
strategies to correctly solve problems like 3 − 5 =  and -4 +  = 2. For example, Armando
described his strategy for solving -3 + 6 = : “I counted up 6 and I got to 3. . . . I counted, I started
from negative 3, and went negative 2 (raised on finger), negative 1 (raised a second finger), negative
0, I mean 0, (raised a third finger), 1 (raised a fourth finger), 2 (raised a fifth finger), 3 (raised a sixth
finger).” After the next question, -8 − 3 = , was posed, Armando sat silently for about 30 seconds.
Then, with rising intonation and a furrowed brow, he answered, “Negative 11?” When asked how he
thought about that problem he replied, “Well I looked back up at this problem [points to
-3 + 6 = ], negative 3 plus 6. I got 3 because I counted up; I mean, I counted down with negative
3, negative 2. And then I thought, ‘Well, minus [as indicated by the subtraction sign in -8 – 3] must
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be going up. So I have to go up.’” And I got 11. . . . Negative 8, negative 9 (raises one finger), negative
10 (raises second finger), negative 11 (raises third finger).”

When asked to clarify what he meant by “going up” and “going down,” Armando said, “Like
I, I went up, I went up in the. . . . I went down in the numbers [pointing to the problem -3 + 6].
Like from negative 3 to negative 2, I went down in the numbers. And then [pointing to the
problem -8 − 3] I went up by going up from 8 to 9, negative 8 up to negative 9.”

In this instance of logical necessity, Armando used what he knew about the sum of -3 and 6 to
help him make a reasonable conjecture about how subtraction might function when the starting
value was a negative number. Armando reasoned that if addition means to “count down,” then
subtraction “must be going up.”8 The inverse relationship that exists between addition and subtrac-
tion when operating with whole numbers was extended to the entire set of integers. Armando solved
this subtraction problem by making a comparison to another, known problem using the mathema-
tical idea of an inverse operation, which again, we see as an example of engaging with and using
mathematical structure. This comparison enabled him to broaden his meaning for subtraction so
that operations within his expanded number system remained consistent.

The cases of Armando and Violet involve students who had had no school-based instruction on
integers and integer arithmetic. Logical necessity had a conjectural quality in these instances,
inasmuch as students were making decisions about how operations might function in an expanded
number system. They did not already know how those in the mathematical community do operate
with negative numbers. Instead, much like explorers encountering new terrain, they followed
hunches and intuitions to map the traits and behaviors of a new number system in a systematic,
logical, and structural fashion. When students encountered negative numbers, they decided, on the
bases of the rules of the existing system, how these numbers should operate; students determined
which rules should be maintained (e.g., commutativity) and which could be relaxed (e.g., addition
need not make the sum smaller). They were, however, quick to admit their uncertainty, often
hedging conjectures with phrases like “I’m not that good at negative numbers, so I’m just gonna
kind of guess.” “I was just thinking,” “in my way of thinking,” or “I wasn’t sure.” These conjectural
cases of logical necessity contrast with Beth’s reasoning and the next case we present (the case of
Alma). In these cases, Beth and Alma already knew the rules for operations with integers. Their use
of logical necessity and mathematical structure was to justify a claim or result they already knew to
be true.

The case of Alma. Alma was a seventh grader who participated in our main study. Her interview
occurred after she had completed the integer unit in her mathematics class. Overall she used a mix of
strategies, including order-based reasoning (primarily referring to number lines andmotion/movement),
efficient computational procedures, and, at times, more formal ways of reasoning to correctly solve
integer tasks. In this example, Alma was solving the problem -5 – -3 = . She initially answered -8 and
then paused. “No, it’s negative 2. Because when you add, like when I’m adding negative 5 to negative 1,
it’s gonna be negative 6. [The problem she had just solved was -5 + -1 = .] So it [-5 + -1] can’t be the
same as this [-5 – -3]. So when you subtract negative 3 from negative 5 it’s gonna be negative 2.”

Unlike Beth, who varied the sign of the subtrahend when comparing 6 – -2 to 6 – 2, Alma varied
the operation; she compared the sum of two negative numbers (-5 + -1) to the difference of two
negative numbers (-5 – -3). She reasoned that because addition and subtraction were opposites, the
results of those operations would be “the other way around.” When asked to say more about her
reasoning, she continued, “It [the result to -5 – -3] can’t be the same because it’s [circles the addition
symbol in -5 + -1] a different sign you’re working with. . . . It’s [-5 – -3] not gonna like work the

8What Armando calls “counting down” from -3 to -2 to -1 is, in fact, what we in the mathematical community describe as counting
up. In the counting sequence -3, -2, -1, the magnitude or absolute value is decreasing, but the numbers are getting larger.
However, for many children like Armando, the idea of counting up (and counting down) with negative numbers is tied to
increasing (and decreasing) magnitudes. Thus we see Armando describing his strategy for solving -3 + 6 =  as counting down
and his strategy for solving -8 − 3 =  as counting up.
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same as this one [-5 + -1]. It’s gonna work the other way around, like it’s gonna work different.”
Later, she applied the same reasoning to the open number sentence -7 – -9 = , justifying her answer
of 2 because “when you add -7 to -9 it’s -16. So when you’re doing the opposite, when you’re
subtracting -9 it’s like doing the opposite. So it’s like adding 9.”

Alma justified her solutions to problems involving the difference of two negative numbers by
comparing them to problems involving the sum of two negative numbers and using the inverse
relationship of addition and subtraction. The idea of inverse operations was critical in her reasoning.
If the sum of -5 and -3 was -8, then the difference between -5 and -3 (the opposite operation) could
not have the same solution. In fact, it should “do the opposite” in Alma’s words. Again, we view
Alma’s reasoning as engaging with important mathematical structures such as inverse operations
and negation.

Notice that both Alma’s and Armando’s use of logical necessity involved comparisons that varied
the operations of addition and subtraction, leveraging their inverse relationship. In contrast, Violet’s
and Beth’s use of logical necessity involved comparisons that varied the signs of a number and
leveraged the idea of negation (i.e., the negative sign negates what one would normally do when
operating with positive numbers). In the following case we share a third type of comparison: one that
varied the order of the addends. We see each of the three types of comparisons as powerful sense-
making strategies for students.

Comparisons in which the order of the addends is varied
For our final case we present a first-grade student who invoked logical necessity by comparing
expressions for which the order of the addends varied.

The case of Ryan. The last example of logical necessity we present occurred during an interview
with Ryan, a first grader who participated in our pilot study. Although this third type of
comparison was not as common as the other two types, other students who varied the order of
the addends gave explanations similar to Ryan’s. We chose this example because of the clarity of
Ryan’s reasoning and his explicit use of the commutative property (although he did not name it as
such). Ryan knew of negative numbers, recognized them symbolically, could correctly order them,
and solved problems like 3 − 5 = , -4 + 7 = , and  − 5 = -8 successfully by using counting
strategies that he extended below zero. Ryan was troubled, however, by 5 +  = 3, asking, “How
do you get to 3 if it’s plus? . . . If you add them, how do they get to 3?” Ryan explained, “If you
add something, how does it get to 3? If it’s 5 plus, then it’s [the sum’s] always past 3.” He did not
think that this problem was solvable. Toward the close of the interview, we posed the problem
-2 + 5 =  to Ryan. His answer was 3, which he obtained using a counting strategy, counting up
five from -2. “It was negative 2, negative 1 (puts up one finger), 0 (puts up second finger), 1 (puts
up third finger), 2 (puts up fourth finger), and then 3 (puts up fifth finger).” We then asked him
to consider the problem 5 + -2 = . This was the first time we had posed a problem that involved
adding a negative number as the second addend, and we did so immediately after asking him to
solve -2 + 5, hoping that he would notice that the addends were the same. Ryan’s answer to 5 + -2
was 3, which he explained as follows:

Because it’s pretty much the same thing (points to -2 + 5). Five plus negative 2 and negative 2 plus 5. If you add
the same things, and you just say 5 first and [negative] 2 second, it’s still the same thing. . . . You always add the
same things together.

In this example of logical necessity, Ryan invoked a fundamental principle of mathematics, the
commutative property of addition, to reason about a possible meaning for adding a negative
number. He assumed that negative numbers obey the commutative property of addition; conse-
quently, his answer had to be 3. For Ryan’s newly expanded numeric system to be consistent, 3 was
the necessary answer. We next asked Ryan to solve 6 +  = 4, which Ryan compared to the problem
he had previously solved, 5 + -2 = 3, saying, “It’s kinda like that one [he pointed to 5 + -2 = 3]
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because there’s plus a negative. Six plus negative 2 goes two back.” When reminded that he had
earlier said that this type of problem was “impossible,” he smiled and said, “Now it’s plus a negative.
So if it’s a negative number, you have to fill it back in. . . . It’s like minus.” Ryan extended the
fundamental property of commutativity for the addition of whole numbers to this new type of
number, which enabled him to develop a possible meaning for adding a negative number and then to
solve a previously counterintuitive problem wherein the sum was smaller than one of the addends.

Trends across the data

In the previous sections, we documented the use of logical necessity in students’ approaches to
integer arithmetic and showed how this strategy supports students to engage with mathematical
structure. We now share our second finding by looking across the interview data from our main
study to determine how often this type of reasoning occurred and to consider trends across grade
levels. Of the 160 students we interviewed in grades 2, 4, 7, and 11 in our main study, 119 had
negative numbers in their personal numeric domains (i.e., could entertain the idea of numbers less
than zero), and 41 students showed no evidence of knowing of negative numbers. Looking across the
interviews, we identified the number of student responses that included logical necessity anywhere
during a student’s explanation. If, at any time in a student’s response to a given question he or she
invoked this strategy, that response was considered an instance of logical necessity. The relative
frequency of logical-necessity use across the grade levels is shown in Table 1.

Across the 119 students and the 25 open number sentences posed, the logical-necessity code was
invoked 24 times across 12 different students on 11 of the 25 open number sentences. We found that
for all students, regardless of grade level, logical-necessity use was rare, with only 10% of the students
who knew of negative numbers (12 of 119) using this strategy.9 The number of instances did increase
slightly from seventh to eleventh grade, from 7 to 10 occurrences, but we view this as a nominal
increase. Eight of the 12 students who used logical necessity when solving open number sentences
did so on more than one problem.

Additionally, this form of reasoning appeared in solutions for multiple open number sentences
(11 of the 25), indicating to us that logical necessity was not tied to particular problems. However, it
was invoked most frequently on the following tasks: -5 − -3 =  (4 instances), 6 − -2 =  (4
instances), 6 + -3 =  (4 instances), -8 – 3 =  (3 instances), and -7 – -9 =  (3 instances). All but
one of these 11 problems involves the explicit addition or subtraction of a negative number.

Features of logical necessity

As mentioned earlier, each of the 24 instances of logical necessity in our data set involved the use of a
comparison between two problems. Thus, our third finding is the identification of comparisons as the
key feature of logical necessity along with the three types of comparisons students made when operating

Table 1. Occurrence of logical necessity by grade.

Logical-Necessity Use

Number of students Number of occurrences Number of distinct problems

Grades 2 & 4* (n = 39, 17 males and 22 females) 4 (10.3%) 7 6
Grade 7 (n = 40, 17 males and 23 females) 4 (10%) 7 6
Grade 11 (n = 40, 23 males and 17 females) 4 (10%) 10 7
Total Across Grades 12 (10%) 24 11

*Only the 39 grades 2 and 4 students who had negative numbers in their personal numeric domains are included in this table.
There were no instances of logical-necessity use for those 41 grades 2 and 4 students who showed no evidence of knowing of
negative numbers.

9This result is consistent with findings Kieran reported in her synthesis of research on algebra. She reported that 7%–10% of
students demonstrated a structural conception of expressions and equations (1992, p. 408).
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with integers. Those three types of comparisons are (a) varying the sign of the number (e.g., 6 – -2
compared to 6 − 2), (b) varying the operation (-8 – 3 compared to -8 + 3), and (c) varying other features
such as the order of addends (e.g., -2 + 5 compared to 5 + -2). Moreover, in all but 1 of the 24 instances of
logical necessity, students generated the comparison problem on his or her own, as part of the response
(the exception being one grade 2 student, whose attention was drawn to a previously solved addition
problem by the interviewer after she struggled to solve a related subtraction problem). Table 2 briefly
presents explanations and examples of the three types of comparisons students in our study made.

Two thirds of the instances of logical necessity (16 of 24) involved comparisons in which the sign
of the number was varied (e.g., see Violet’s and Beth’s responses). This was the most common type
of comparison students made. Within this group, four students (all in fourth or seventh grade)
reasoned about negatives and positives as separate, but related, classes of numbers; we describe this
subset of comparisons as Negative Land and Positive Land. For example, Morgan, a fourth grader,
reasoned about -5 – -3 by comparing it to 5 – 3. She reasoned that because 5 – 3 moves one closer to
zero (or to the left of 5), then -5 – -3 should also move one closer to zero (than -5), even though the
result of the subtraction (-2) is to the right of the starting value (-5). She rationalized, “It’s [the
negatives are] like the opposite with these (she gestured to right side of number line).” Other
students echoed this idea, explaining that because negatives “are on the wrong side of zero,” they,
in general, behave oppositely. Note that using logical necessity to reason about the classes of positive
and negative numbers occurred with only the following open number sentences, all of which
involved the sum or difference of two negative numbers: -5 – -3 = , -7 – -9 = , and -5 + -1 = .

In the second most common type of comparison (10 of 24 instances of logical necessity), the
operation was varied, as in the examples of Alma’s and Armando’s reasoning. The following pairs of
expressions were compared in this way: -8 – 3 and -8 + 3, -5 – -3 and -5 + -3, and -5 + 5 and -5 – 5.
Finally, two instances of logical necessity involved comparisons varying other problem features. We
refer the reader to Ryan as an example of this type of comparison. Ryan used the commutative
property to vary the location of the addends, comparing -2 + 5 (to which he already knew the
answer) to 5 + -2 to surmise the meaning of adding a negative number.

We also observed that logical necessity emerged in cases in which students were justifying a result they
knew to be true and in cases in which students were conjecturing about how an operation within Z could
function. Of those students in our study who used logical necessity, all the eleventh graders in our study
used logical necessity to justify a procedure or rule, whereas all the second and fourth graders who used
logical necessity conjectured about how negative numbers might behave by applying and relaxing
properties and generalizations they had made about whole numbers. And, despite the fact that formal
integer instruction was completed by the time seventh graders were interviewed, four of the seven
instances of logical necessity for this grade level were conjectural in nature (judged by the tentative

Table 2. Types of logical necessity comparisons.

Type of Comparison Example Frequency*

Comparisons in which the sign of the number was varied 6 − 2 =  and 6 − -2 = 

Students use the result of
6 − 2 to help them reason
about 6 – -2

16 instances

Comparisons in which the operation was varied -8 + 3 =  and -8 − 3 = 

Students use the result of
-8 + 3 to help them reason
about -8 − 3

10 instances

Comparisons in which other features, such as the order of addends, were varied -2 + 5 =  and 5 + -2 = 

Students use the result of
-2 + 5 to help them reason
about 5 + -2

2 instances

*In 4 of the 24 occurrences of logical necessity, students made more than one kind of comparison.
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language used and the presence of hedges), indicating that some of these students had not yet memorized
computational rules and procedures.

In summary, we found that logical necessity is a powerful way of approaching some integer tasks.
Of the 119 students who knew about negative numbers, 12 (or 10%) used logical necessity on 24
occasions. Logical-necessity use did not emerge as prevalently as we might hope; however, it
emerged with multiple students at each grade level, and we believe that it is something that can
and should be encouraged in instruction. Moreover, we have identified the use of carefully chosen
comparisons and contrasting cases as a key feature of logical necessity that we believe can be applied
both within and outside the domain of integers to support students to successfully engage with
mathematical structures.

Discussion

In this article, we demonstrated how integers and integer arithmetic can provide fertile ground for
exploration of mathematical structure through a particular approach some students used when
solving integer problems—logical necessity. In particular, we found that some students leveraged
fundamental principles, invariant transformations, and underlying mathematical structures in their
problem-solving strategies. In addition to describing how students use mathematical structure when
solving integer tasks through logical necessity, we identified the use of comparisons as a key feature
of the use of structure in the context of integers. Each instance of logical necessity in our data set
involved a comparison between two related problems in which some key mathematical attribute of
the problem statement was purposefully exploited to justify a proposed solution. We documented
three types of comparisons students made when solving arithmetic problems: varying the sign of the
number, varying the operation, or varying another feature (such as the order of the addends).
Additionally, every instance of logical necessity involved either justification of an already known
answer, procedure, or rule or a conjecture about how an operation on integers should behave based
on previous knowledge about how the operation behaves with whole numbers.

In this study we have documented a new form of structural reasoning, logical necessity, in a
content area not typically associated with structural reasoning. Much of the existing empirical
research to define, exemplify, or categorize different types of structural reasoning has been focused
on equivalent expressions and transformations of those expressions that reflect underlying and
structuring relationships between quantities (CCSSM, 2010; Hoch & Dreyfus, 2004, 2005, 2006;
Kieran, 1992; Linchevski & Livneh, 1999). In contrast, we have shown that the topic of reasoning
about number systems in general, and integers in particular, provides rich opportunities for students
to look for and make use of structure. Specifically, our data indicate the importance of comparing,
conjecturing, and generalizing as key components of logical necessity as students consider the effects
of broader contexts on mathematical objects (in our case, extensions of number systems). Although
some scholars have linked number systems to structure on the basis of mathematical or theoretical
arguments (Cuoco et al., 1996; Mason, 1996; Usiskin, 1988), we have presented empirical evidence
from student interviews to document how students can engage with mathematical structure in the
context of number systems through the use of logical necessity. Additionally, our data illustrate ways
to practically enact the vision advocated for in policy documents that call for the use of structure
across the curriculum (CCSSM, 2010; Japanese Ministry of Education, Culture, Sports, Science and
Technology, 2010). We suggest that one way to support students’ use of structure is by identifying
opportunities to address structure in the context of what teachers are already doing—such as solving
typical integer tasks like those shared in this article.

As described in the Findings section, we found that making comparisons that are based on
underlying mathematical relationships is a key feature of logical necessity. The use of contrasting
cases (6 – -2 compared to 6 − 2 in the case of Beth), known information (6 − 2 = 4), and some form
of deductive reasoning (applying the meaning of additive inverses) were combined in each instance
of logical necessity. Thus, we contribute to the growing literature on structural reasoning by
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extending existing research to identify relationships as a key element of structural reasoning.10 For
example, looking holistically at expressions to identify relationships between them is a key compo-
nent of relational thinking (Carpenter et al., 2003; Empson & Levi, 2011; Jacobs et al., 2007).
Similarly, Mason and colleagues (2009) defined mathematical structure as being able to see “relation-
ships between elements” as instantiations of general structuring properties (p. 10). Students use
relationships in logical necessity when they vary some attribute of a given problem to create a
comparison problem and then exploit the underlying relationship between the compared attributes.
Often when people compare objects (or strategies or equations), they notice distinguishing features
and variations that they may not have noticed previously. Through the comparison of alternatives,
people can identify key differences and the potential consequences of those differences. Not only
have we found that relationships are an important element in structural reasoning, but we have
identified how these relationships function in the context of integer arithmetic through the compar-
ison of problem attributes. Moreover, we have begun to identify key problem attributes in the realm
of integer addition and subtraction, including (a) the sign of the number (along with a correspond-
ing interpretation of “–” as negation—see Lamb et al., 2012; and Thompson & Dreyfus, 1988), (b)
the operations of addition and subtraction (and the inverse relationship between them), and (c) the
order of addends (and the appropriate use of the commutative property). The list of attributes would
likely change if, for example, we had been studying integer multiplication or even fraction division.
We suspect, however, that the act of making comparisons between carefully chosen contrasting cases
would be constant across content domains and, therefore, may be a more general feature of
instruction and curriculum design that will support students to look for, recognize, and use
mathematical structure.

Limitations and future research

Because the purpose of our interviews was to investigate students’ integer-related reasoning, not to
provide opportunities for them to make use of logical necessity, we suspect that we are likely under-
representing the prevalence of this type of reasoning by students. The fact that students did not use logical
necessity does not imply that they cannot engage in this type of reasoning. One reason logical necessity
may not have been as prevalent in our data as we would have hoped is the lack of opportunities for
students to engage in reasoning of this type in school settings. Another reason is the nature of our
interviews. Our focus in the interviews was on understanding the strategies students used without
support rather than trying to support the use of any particular strategy; consequently, in all but one
instance of logical necessity that occurred in the main study, students themselves generated the second
comparison problem. We believe that with active support for the use of logical necessity, a greater
percentage of students will use it. Consequently, one area for future research is to investigate features that
increase the prevalence of logical necessity. For example, we wonder about the potential effects of
introducing explicit comparisons in interview and teaching situations rather than waiting for students
to generate their own problems. With additional instructional supports in place, will more students
engage in logical necessity?We also encourage future work to validate pairs of tasks we have identified as
productive for students’ use of logical necessity, to explore new problem pairs and their corresponding
attributes, and to investigate other contextual features (e.g., interventions in the form of probing
questions) that support logical necessity use. We also see potential for researchers to investigate how
logical necessity can be supported in classrooms during integer instruction (as opposed to interview
settings) by making use of our suggested problem pairings.

Another limitation of this study is our narrow focus on integers and integer operations. By
restricting our study to the context of integer arithmetic and the use of open number sentences, we

10We also find noteworthy that contrasting cases and their connecting feature(s) have been identified as features that support and
refine thinking in general (see Bransford, Franks, Vye, & Sherwood, 1989; National Research Council, 2000) as well as in domain-
specific thinking within mathematics.
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may have overlooked or failed to identify other key features of logical necessity that could emerge in
other content domains and with other types of problems. In the future, researchers might focus
explicitly on structural reasoning and explore the use of logical necessity and other forms of
structural reasoning in other number systems (such as rational and irrational numbers). By broad-
ening the contexts for investigation, researchers may identify new comparisons students use that are
productive for logical necessity. However, one important outcome of our study is to highlight an
often overlooked and under-researched aspect of mathematical structure: the use of fundamental
properties in conjunction with conjecturing and deduction to reason about extensions to the number
system (or other more abstract systems). Without a focus on integers, we might not have been able
to identify and exemplify this aspect of mathematical structure. We encourage researchers to
continue to expand the notion of structure as a researchable construct because it is a productive
area for research.

Implications

More than 20 years ago, Kieran (1992) identified the development of structural conceptions in
students as an important next step in research related to algebra. Our results indicate instruc-
tional changes that could provide students with increased opportunities to develop understand-
ing of mathematical structure, both within the context of integer instruction and in other
mathematical topics.

Incorporate paired comparison tasks into instruction

At the beginning of the study, our research team did not expect students as young as six and seven
years to engage with logical necessity to reason about integer arithmetic. Likewise, classroom
teachers may not expect (a) that these simple integer tasks can engender this type of rich reasoning
or (b) that their students are capable of producing these explanations and strategies. Thus, our first
instructional implication is to incorporate purposefully sequenced integer tasks that students in our
study used to reason more formally about underlying structural aspects of mathematical systems
(Bishop, Lamb, Philipp, Whitacre, & Schappelle, in press). Purposefully sequencing related problems
such as -8 + 3 and -8 − 3, as seen in Armando’s case, may encourage students to grapple with which
way to count when starting with a negative number. This practice may lead to conversations about
comparing and ordering negative numbers.

The suggested problem combination of -8 + 3 and -8 – 3 varies the operations of addition and
subtraction, whereas other combinations might instead vary the sign of the number. Problem
combinations that vary the sign of the number provide a different type of contrast that supports
students to justify or make sense of adding and subtracting a negative number. For example,
consider comparing 6 + -3 and 6 + 3 or comparing -5 + -1 and -5 + 1. In these pairs, the sign of
the second addend is varied whereas the operation is held constant. We conjecture that because
the idea of negation is tacitly indicated in the problem statements themselves, students may
respond similarly to Violet and Beth, especially if students are familiar with an interpretation of
the minus sign as “the opposite of” (Lamb et al., 2012). In the case of Ryan, the interviewer posed
a contrasting pair of problems that supported logical necessity (in this example, -2 + 5 followed
by 5 + -2). We believe that the exchange with Ryan illustrates the potential pedagogical benefit of
introducing an explicit comparison, and we suggest that one way to enhance the use of logical
necessity is to introduce an explicit comparison by posing a carefully chosen follow-up problem
or asking students to compare two problems instead of waiting for them to generate their own
comparison problems.

Table 3 shows tasks that include different comparisons in service of particular goals related to integer
instruction.We envision teachers posing the first task in the given pair (e.g., 7 + 5 under the secondgoal) and
then using the second task (7 + -5) to build on what students already know about a more familiar task to
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successfully engage with (or justify the result of) the second task. The problem pairs in Table 3 could also be
rewritten as True/False statements instead of used as stand-alone problems (e.g., True/False -8 + 3 = -8− 3).
Additionally, these tasks may support classroom discussions about logical necessity, underlying mathema-
tical structures including fundamental properties and their importance, and equivalent transformations.

Use probing questions to support logical necessity

Even with the use of paired comparison tasks, students may need additional support in making the
structural aspects of their reasoning explicit. In some instances of logical necessity, the interviewer
posed additional questions that supported student reasoning; they may have asked for justification,
pushed for alternative models/explanations of integer arithmetic, asked for clarification, or proble-
matized some aspect of the student’s response. Thus, certain contextual conditions, like the presence
of probing questions, may support students to engage in logical necessity. Our second instructional
implication, then, is to incorporate probing questions to support students to engage in logical
necessity and make their reasoning explicit (see Bishop et al., in press for a more detailed discussion
of probing questions). For example, if students used procedures or rules to transform problems like
-5 – -3 = , 6 – -2 = , and 6 + -3 = , the following types of follow-up questions were often posed:
“Why can you change the problem like that (e.g., -5 – -3 to -5 + 3)?” or “Does changing the signs
always work? Why do you think it always works?” Additionally, students were sometimes asked to
generate an explanation for solving the original open number sentence (i.e., before they changed the
problem): “I noticed that when you solved this problem (6 – -2 = ), you changed it to 6 + 2 = . I
understand how you solved 6 + 2, but do you have a way of thinking about what it means to subtract
negative 2 from 6?” In other instances of logical-necessity-use, follow-up prompts may have
problematized contradictions in student reasoning to provoke cognitive dissonance.

Probing questions sometimes, but not always, appeared to positively support students to make
logical necessity explicit. At other times, students spontaneously engaged in logical necessity without
any interviewer support. Because we did not code the larger data set for interviewer moves, we do
not know how probing questions, in general, influenced the emergence of logical necessity. However,
to provide students with the best opportunity to engage in logical necessity, we encourage the
judicious use of probing questions along with carefully chosen contrasting pairs of problems.

Table 3. Integer tasks to encourage use of logical necessity.

Goal Integer Tasks Feature Compared and Key Understandings Leveraged

Make sense of or justify adding and
subtracting a positive integer when
the starting value is a negative
number

-8 + 3 and -8 – 3
-5 + 5 and -5 − 5

Vary operation
Leverage inverse operations and knowledge of zero (in second
pairing)

Make sense of or justify adding a
negative number

7 + 5 and 7 + -5
-5 + 1 and -5 + -1
5 + 1 and -5 + -1

Vary sign of number
Leverage negation/additive inverses (In the third pairing, the
signs of both addends are varied.)

-3 + 6 and 6 + -3
-9 + 5 and 5 + -9

Vary order of addends Leverage commutative property

Make sense of or justify subtracting
a negative number

-5 − 3 and -5 − -3
6 − 2 and 6 – -2
10 − 4 and -10 − -4

Vary sign of number
Leverage negation/additive inverses (In the third pairing, the
signs of the minuend and subtrahend are varied)

-5 + -3 and -5 – -3
- 7 + -9 and -7 – -9

Vary operation
Leverage inverse operations

-5 – -5 and -5 – -1
-7 – -7 and -7 – -8

Vary subtrahend
Leverage knowledge of zero (These pairings are useful if
students can productively engage with -5 – -5, -7 – -7, or both.
If not, consider posing 5 − 5 before -5 − -5.)
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Provide opportunities to conjecture

Our final instructional implication is based on the importance of conjectures as related to logical
necessity. Instead of showing or telling students rules, we suggest that providing them more
opportunities to hypothesize about how operations could or should behave would encourage them
to think about underlying mathematical structure. Conjecturing also provides students opportunities
to engage in argumentation, particularly if multiple, contrasting conjectures are advanced. As
mentioned earlier, we believe that possibilities for logical necessity exist beyond the realm of integers
and can be leveraged when students begin to reason about any new type of number—fractions,
imaginary numbers, irrational numbers, and so on. Given the use of mathematical structure we have
seen students use in integer arithmetic, we encourage teachers to allow students to take a conjectural
stance toward developing the meaning of operations with extensions of the number system, be it
with integers, rational numbers, or other types of numbers. We believe that instruction can be
designed so that progress and understanding are powered by logical necessity.

Summary

In closing, we have shown that logical necessity can be used when students engage in integer tasks.
About 10% of students in our study who had heard of negative numbers used logical necessity to
approach and use numbers in a formal, algebraic way, leveraging key mathematical ideas about
inverses, the structure of our number system, and fundamental algebraic properties to solve
problems previously unsolvable for them. This kind of thinking, which is integral to modern
mathematics, helped students to conjecture about meanings for adding and subtracting negative
numbers and then to accept or reject those conjectures on the basis of whether the structure and
logic of the system were preserved. We see this as a powerful way of thinking and an important form
of structural reasoning for students to develop. Although the majority of the research on structure is
situated in algebra or prealgebra contexts, our work provides evidence that with the emergence of
logical necessity, structure can be addressed within other mathematical topics. Just as this article
moves beyond transformational equivalence and clear links to algebra into the idea of number
systems and extensions of those systems, we wonder what other aspects of mathematical structure
exist and can be fruitfully explored. A broader understanding of where and how students use
mathematical structure across more mathematical topics will help us in our efforts to broaden
students’ opportunities to see and use structure across the K–12 curriculum.
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Appendix A: Integers problem solving interview

Introductory Questions
1) Name a big number. Can you name a bigger number?
2) Name a small number. Can you name a smaller number? If the child responds, “Zero,” ask, Is there a number

smaller than zero?
3) Can you count backward, starting at 5? If child stops at 0 or 1, ask, Can you keep counting back?
4) What can you tell me about negative numbers? (Ask only if the student has previously mentioned the term

“negative.”)

Open Number Sentences
5) 5 + 6 =  6) 4 +  = 9 7)  − 4 = 6
8) 8 −  = 4 9) 3 – 5 =  10) 6 +  = 4
11) 5 −  = 8 12)  + 6 = 2 13) -3 + 6 = 

14) 8 – 3 = 

15) Yesterday you borrowed $8 from your friend to buy a school t-shirt. Today you borrowed another $5 from the
same friend to buy lunch. What’s the situation now? Can you write an equation or number sentence that describes
this story? Explain how this number sentence (equation) relates to the story?

16) -2 +  = 4 17)  − 5 = -1 18) -9 +  = -4
19) -2 −  = -8 20) -5 +  = -8 21) -3 −  = 2
22) -8 −  = -2 23) -8 +  = 0 24) -5 + -1 = 

25) -5 – -3 =  26) 6 – -2 =  27) 6 + -3 = 

28) 3 +  = 0
29) Imagine that you are standing on the beach. There is a bird flying 20 feet above the surface of the water and a fish

swimming 5 feet below the surface of the water. How many feet higher is the bird than the fish? Can you write an
equation or number sentence that describes this story? Explain how this number sentence (equation) relates to the
story?

30) -5 – -5 =  31) -7 – -9 =  32)  + -7 = -3
33)  + -2 = −10 34) 3 −  = -6 35) -2 – 7 = 
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Appendix B: Integers ways-of-reasoning coding framework

Ways of reasoning
categories Definitions

Order-based In this way of reasoning, one leverages the sequential and ordered nature of numbers to reason about
a problem. Strategies include use of the number line with motion as well as counting forward or
backward by 1s or another incrementing amount.

Analogy-based This way of reasoning is characterized by relating numbers and, in particular, signed numbers, to
another idea, concept, or object and reasoning about negative numbers on the basis of behaviors
observed in this other concept. At times, signed numbers may be related to contexts (e.g., debt or
digging holes). Analogy-based reasoning is often tied to ideas about cardinality and understanding a
number as having magnitude.

Formal In this way of reasoning, signed numbers are treated as formal objects that exist in a system and are
subject to mathematical principles that govern behavior. Students may leverage the ideas of structural
similarity, well-defined expressions, the structure of our number system, and fundamental principles
(such as the field properties). This way of reasoning includes generalizing beyond a specific case by
making a comparison to another, known, problem and appropriately adjusting one’s heuristic so that
the logic of the approach remains consistent or generalizing beyond a specific case to apply properties
of classes of numbers, such as generalizations about zero.

Computational In this way of reasoning, one uses a procedure, rule, or calculation to arrive at an answer. For example,
some students used a rule to change the operation of a given problem along with the corresponding
sign of the subtrahend or second addend (i.e., changing 6 – -2 to 6 + 2 or 5 + -7 to 5 – 7). Students
explained these changes by referring to rules like “Keep Change Change” (keep the sign of the first
quantity, change the operation, and change the sign of the second quantity).

Developmental The category of reasoning often reflects preliminary attempts to compute with signed numbers. For
many strategies in this category, the domain of possible solutions is locally restricted to non-negatives.
For example, a child may overgeneralize that addition always makes larger, and, as a result, claim that
a problem for which the sum is less than one of the addends (6 +  = 4) has no answer. The domain
of possible solutions appears to be restricted to whole numbers and the effect (or possible effect) of
adding a negative number is not considered.
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