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We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type
of integer understanding that can function as either an obstacle or affordance for
learners while they extend their numeric domains from whole numbers to include
negative integers. In particular, we highlight 2 key subsets of integer reasoning:
understanding or knowledge that may, initially, interfere with one’s learning integers
(which we call cognitive obstacles) and understanding or knowledge that may afford
progress in understanding and operating with integers (which we call cognitive affor-
dances). We analyzed historical mathematical writings related to integers as well as
clinical interviews with children ages 6—10 to identify critical, persistent cognitive
obstacles and powerful ways of thinking that may help learners to overcome obstacles.
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As adults, we proficiently operate with numbers, specifically negative numbers,
often without deep thought or reflection. The various metaphors, contexts, and
understanding that we bring to problems enable us to think of and use numbers
flexibly and in multiple ways. For example, consider the number -5. We can interpret
-5 as any of the following:
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* An action of removing 5 from a set.

* The integer between -6 and -4.

* An action of moving 5 units left or down.

* The number that, when added to 5, yields 0.

* The location on a number line (coordinate plane, etc.) 5 units to the left of, or
below, 0.

* Describing the equivalence class [(0, 5)] in which we define (a, b) to mean a — b.
Members of [(0, 5)] include (1, 6), (2, 7), (100, 105), and all other ordered
pairs (a, b) such that a + 5 =0 + b for a,h€ N. [More formally, we can write
(0,5)~(a, b).]

* A representation of a $5 debt.

In this article, we juxtapose the ways that children reason about integers with
the historical development of integers and the collective understanding of the
broader mathematical community. Our purpose is to document obstacles and
affordances for learners within the domain of integers and to consider similarities
and differences between and among children’s conceptions and the historical
acceptance of negative numbers. In the following sections, we synthesize previous
research on integers and situate our study within the broader literature bases of
historical analyses of mathematics, research on children’s mathematical thinking,
and the notion of cognitive obstacles and affordances.

Research on integers is relatively sparse compared to the literature on students’
understanding of mathematical topics such as rational numbers or whole numbers
(National Research Council, 2001). In fact, in our review of integer-related
research, we identified only 47 publications in research journals between 1980
and 2012 that are focused on teaching, learning, and understanding integers
(fewer than two publications per year during this 30-year span). We organized
this literature into three broad categories: research documenting the historical
development of integers and integer arithmetic; research on students’ computa-
tional fluency and understanding of integers; and research related to teaching,
instruction, or curriculum. Much of the integer research falls into the last cate-
gory, in which researchers use teaching or design experiments to develop and test
a variety of instructional models, tools, and contexts for teaching integers—e.g.,
scores and forfeits, debts and assets, number lines, and microworlds (see
Freudenthal, 1983; Janvier, 1983; Liebeck, 1990; Linchevski & Williams, 1999;
Moreno & Durén, 2004; Stephan & Akyuz, 2012; Streefland, 1996; Thompson
& Dreyfus, 1988). In the following sections, we do not provide a summary of the
entire literature base but instead synthesize literature within the first two catego-
ries of integer-related research—historical research and research on student
understanding of integers—inasmuch as these pertain most clearly to the goal of
the research we report in this article.
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What Do We Know About Integers From History?

In critically analyzing other scholars’ syntheses of the historical development
of integers, we found that some authors focused squarely on the historical evolution
of integers (Glaeser, 1981; Hefendehl-Hebeker, 1991; Henley, 1999) and others on
the intersection between integers and algebra (Gallardo, 1995, 2002; Thomaidis
& Tzanakis, 2007). Still, other authors focused on broader ideas such as the
concept of number (Klein, 1968; Neal, 2002) and how that evolved over time while
mathematics itself evolved (Schubring, 2005). Regardless of the subtle differences
in research foci, we distilled three key findings from our analysis of these histor-
ical syntheses.

First, a formal algebraic approach to number in particular and mathematics more
generally had an interdependent relationship with the status of negative numbers.
All authors listed above alluded to this idea, but Glaeser (1981), Hefendehl-
Hebeker (1991), Henley (1999), Klein (1968), Neal (2002), and Schubring (2005)
did so explicitly. The question was whether mathematical concepts and ideas were
justified because they existed in the real world or because they satisfied the condi-
tions within a mathematical system (Glaeser, 1981; Hefendehl-Hebeker, 1991;
Klein, 1968; Schubring, 2005). The underlying epistemology of justification by
internal consistency (as opposed to justification by realism) was fully realized in
a formal view of mathematics that ultimately extended our number system to
include negatives (Hefendehl-Hebeker, 1991; Henley, 1999; Neal, 2002; Schubring,
2005). But an ongoing tension existed between this more formal, generalizable,
and symbolic understanding of number and the notion that numbers were concrete,
magnitude-based signifiers of reality—in fact, the second finding that emerged
from this literature was this magnitude-based notion of number. And third, the
historical syntheses we analyzed pointed toward an important milestone in the
historical development of integers, what Henley (1999) called an operational
understanding of integers. By this term, we mean mathematicians’ use of compu-
tational procedures for integer arithmetic (e.g., the rule of signs) and the accep-
tance of these procedures as convention without providing explicit justification
for them (see also Gallardo, 2002; Neal, 2002; Schubring, 2005).

Though the historical analyses sensitized us to major shifts and trends in the
historical development of integers—the shift toward an algebraic and formal view
of mathematics, the role of magnitude, and operational fluency with integers—our
research focus was on the underlying ways of reasoning exemplified by mathema-
ticians historically when they engaged with specific integer problems. Our goal
was not to retell the story of the broader historical development of the field or to
map the progression of integer acceptance (from intermediate solutions of equa-
tions, to final solutions of equations, to coefficients, etc.). Our goal was instead to
document how specific problems were or were not solved and why, as a means to
look for commonalities and patterns that would help us identify obstacles and
affordances for integer reasoning.

In general, publications synthesizing the historical development of integers did
not provide enough detail for us to understand how, for example, a formal algebraic
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approach enabled one to solve a particular integer-related problem. Moreover, it
was not clear to us whether the three key findings from our analysis of these
documents were more philosophical in nature and would have emerged had we
focused on imaginary numbers or rational numbers as opposed to negative
numbers or if these three findings pertained to specific problem-solving
approaches related to integers themselves. Even in the two studies that explicitly
identified integer-related obstacles, Glaeser (1981) and Hefendehl-Hebeker (1991),
the obstacles were not always exemplified in particular mathematicians’
responses, and the obstacles were of a grain size that was challenging to link to
specific sense-making strategies or underlying ways of reasoning (e.g., obstacles
included the desire for a single unifying model for addition and multiplication
and the ambiguity of two zeros). Thus, we turned to the original historical writ-
ings of mathematicians to identify obstacles and affordances for integer reasoning
as they were expressed in the details of solutions to specific integer problems.

Students’ Integer Understanding

In much of the integer-related research pertaining to students’ understanding,
researchers have documented the abilities of students in Grades 5—12 to compute
(e.g., Gallardo, 1995, 2002; Kloosterman, 2012, in press; Thomaidis & Tzanakis,
2007; Vlassis, 2002, 2008). For example, Gallardo (1995) documented that less
than 40% of 12- to 13-year-olds she interviewed were able to subtract integers.
Similarly, in his analyses of mathematics results of the National Assessment of
Educational Progress in 2008, Kloosterman (2012) documented that more than
one fourth of all 13-year-olds were unable to add a positive number and a negative
number, and further, about half were unable to divide integers correctly.

Students also have difficulties solving algebraic equations (Vlassis, 2002,
2008), simplifying algebraic expressions (Christou & Vosniadou, 2012; Lamb et
al., 2012), and comparing quantities (Vlassis, 2004) after negative integers have
been introduced. For example, when simplifying -2x + 7x, students often detach,
or ignore, the negative sign in the expression -2x, add 2x and 7x to get 9x, and then
reattach the negative sign to the expression to obtain -9x. Others have found that
students tend to either assign only natural numbers to literal symbols or treat
expressions such as -x as if they represent solely negative quantities (Christou &
Vosniadou, 2012; Lamb et al., 2012).

To date, few researchers have focused on students’ ways of reasoning about
integers. Notable exceptions include Chiu’s (2001) study of the metaphors students
used when reasoning about integer problems and Peled’s (1991) theoretical
taxonomy describing levels of integer knowledge along two dimensions, a
number-line dimension and a quantitative dimension. Peled proposed a hierarchy
of development for each dimension wherein students could successfully reason
about integer arithmetic using progressively more generalizable strategies. For
example, Peled and colleagues (Peled, Mukhopadhyay, & Resnick, 1989) identi-
fied two number-line models involving integers: a divided number line and a
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continuous number line, both of which influenced the kinds of problems one could
successfully solve and, at times, the strategies themselves. Chiu drew from
Lakoff’s work on metaphor (see Lakoff & Johnson, 1980; Lakoff & Nuiiez, 2000)
and embodied cognition to identify three categories of metaphorical reasoning
that both middle school students and undergraduate mathematics and engineering
majors used during problem-solving interviews. These categories were motion,
manipulation of objects/opposing objects, and social transaction (grounded in
experiences of giving and exchanging). Chiu found that metaphors were used
during computations in only roughly one fourth of the problems posed but that
middle school students were more accurate when using a metaphor to compute.

In summary, we know that integer arithmetic is an area of mathematics that is
challenging for many, and from the work of Peled and colleagues (1989; Peled et
al., 1991) and Chiu (2001), we know that students approach negative numbers in
multiple and varied ways that include (a) using tools such as the number line or
(b) using metaphors to reason about integers by relating them to other ideas such
as oppositional quantities. Our work, then, grows out of a desire to build from and
integrate two seemingly disparate research areas to identify obstacles and affor-
dances for integer reasoning that will support the development of a framework for
integer reasoning.

Mapping the Domain of Integer Reasoning:
Identifying Obstacles and Affordances

Our purpose in this article is to identify and document cognitive obstacles and
cognitive affordances within the domain of integers. Note that we are not
presenting a comprehensive framework of integer reasoning in this article. Instead,
we begin to develop a framework wherein we highlight two key aspects of integer
reasoning: understanding or knowledge that may, initially, stand in the way of
one’s learning integers (which we call cognitive obstacles) and understanding or
knowledge that may afford progress in understanding and operating with integers
(which we call cognitive affordances).

To identify critical, persistent cognitive obstacles and powerful ways of thinking
that may help students to overcome obstacles, we draw from an analysis of
historical mathematical writings related to integers as well as analyses of clinical
interviews with students. We look to the historical record to identify challenges
and successes of mathematicians when they grappled with the idea of negative
numbers to deepen our own understanding of integers and integer operations.
However, we also take a children’s mathematical thinking perspective (e.g.,
Carpenter, Fennema, Franke, Levi, & Empson, 1999; Carpenter, Franke, & Levi,
2003; Empson & Levi, 2011; Ginsburg, 1997), the purpose of which is to under-
stand and describe children’s thinking about a particular mathematical topic—in
this case, integers. Given these goals, our first two research questions focus on the
historical development of integers and children’s understanding of integers,
respectively. On the basis of our findings in answering the first two questions, we
consider one more question. Thus, the research questions guiding our study are:
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1. What does the historical record tell us about the difficulties mathematicians faced
and what afforded progress in their ways of reasoning about negative numbers?

2.What are students’ conceptions of integers and operations on integers? In partic-
ular, what difficulties do students face when extending their numeric domains
from whole numbers to integers, and are there ways of reasoning that can help
students overcome these challenges?

3. What are cognitive obstacles and cognitive affordances within the domain of
integers?

Theoretical Perspectives Guiding Our Research

An historical perspective. For the purposes of this study, we are interested
primarily in uses of history that can help us reconceptualize what rich integer
understanding should entail and better understand the construction of the field of
integer knowledge, though we acknowledge that there are many other reasons for
integrating history and mathematics education—see Fauvel and van Maanen
(2000) and Furinghetti (2007) for a broader rationale. One way researchers have
approached the use of history is through the idea of parallelism, a term referring
to parallels between the historical evolution of a mathematics topic and students’
current thinking about that same topic (e.g., Brousseau, 1997; Gallardo, 2002;
Sfard, 1995; Thomaidis & Tzanakis, 2007). Parallelism, or as some refer to it,
recapitulation, is the idea that one knows how individuals learn (and how to best
teach students) on the basis of the historical development of a particular mathe-
matical topic. For example, Thomaidis and Tzanakis (2007) offered parallelism
as an explanation for similarities they observed in historical writings and modern
secondary students’ reasoning about the ordering of numbers, and Sfard (1995)
linked parallels between the historical development of algebra with students’
current understanding of symbolic representations, particularly in equations with
parameters.

Other scholars, however, have strongly critiqued parallelism, arguing that the
circumstances and environments surrounding historical development are signifi-
cantly different from the circumstances and environments surrounding learners
today; thus, modern cultures cannot reproduce the historical formation of ideas
(e.g., Furinghetti & Radford, 2008; Radford & Puig, 2007; Schubring, 2011).
“Given that the environment changes, it becomes difficult to maintain that the
children’s intellectual development will undergo the same process as the one
children experienced in the past” (Furinghetti & Radford, 2002, p. 635). For us,
these differing perspectives raised the question of whether similarities in history
and students’ modern-day reasoning might be observed because these conceptu-
alizations are inherent in a given mathematical topic or for other reasons. We
believe that modern mathematics and current social practices cannot be separated
from the historical advances and developments that have spurred us onto different
ways of thinking—ways of thinking that are now viewed as common and natural.
What we now accept as mathematics is influenced by what was accepted and done
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historically. Thus, contemporary learning is not independent of historical develop-
ment. Yet, it may not necessarily follow the path of history.

Our position is that an understanding of the history of integers is a source by
which one might develop better and deeper knowledge of integers and the key
conceptual ideas necessary for robust integer understanding. For example, one
way we might understand negative numbers is as indicative of a process to be
performed—of a subtraction yet to be completed—as opposed to a mathematical
object in its own right. Historically, we find that the idea of subtractive numbers
was one of the earlier conceptions mathematicians had for negative numbers
(Henley, 1999). The sign - preceding -3 indicated the intention of subtracting 3,
but the specific minuend was not given; thus subtractive numbers were understood
as “quantities to be subtracted” (Henley, 1999, p. 647; see also Gallardo, 2002).

We look to the historical record as one way to identify cognitive obstacles and
cognitive affordances to which teachers and researchers may need to attend within
the realm of negative numbers. In this capacity, the historical perspective serves
to help us identify possible sources of insight and confusion. Moreover, we agree
with Herscovics (1989) that modern students’ difficulties may or may not be
related to the historical development of a concept, but there is evidence that
historical conceptions might shed light on persistent student challenges (see also
Radford & Puig, 2007; Thomaidis & Tzanakis, 2007).

A children’s mathematical thinking perspective. In the past 30 years, many
scholars have taken a children’s thinking perspective. Research in this vein is
diverse and includes, for example, the Cognitively Guided Instruction (CGI)
literature (e.g., Carpenter et al., 1999; Carpenter, Fennema, Peterson, Chiang &
Loef, 1989; Fennema et al., 1996), Steffe’s work on rational number (Steffe, 1994,
2002, 2004; Steffe & Olive, 2010), and Fuson and her colleagues’ work on
supporting fen-structured thinking (Fuson & Briars, 1990; Fuson, Smith, & Lo
Cicero, 1997; Lo Cicero, Fuson, & Allexsaht-Snider, 1999). One approach to
research on children’s mathematical thinking involves designing studies and devel-
oping models of cognition with an eye toward using those research findings to
support teachers. For example, Carpenter and Moser’s early research on children’s
thinking about addition and subtraction provided the foundation for CGI (Carpenter,
Hiebert, & Moser, 1981; Carpenter & Moser, 1984; Carpenter, Moser, & Romberg,
1982). CGI proponents then used these research-based models of children’s thinking
to “help teachers develop an understanding of their own students’ mathematical
thinking and its development” (Fennema et al., 1996, p. 406). Initially, the content
focus of CGI was on whole number operations (addition, subtraction, multiplica-
tion, and division), but it has been expanded to include base-ten concepts, algebraic
reasoning (Carpenter et al., 2003), and fractions and decimals (Empson, 1999, 2001;
Empson & Levi, 2011). Within each of these mathematical topics, research-based
models of students’ mathematical thinking are used to help teachers make instruc-
tional decisions that support the development of more sophisticated conceptual
understanding on the basis of a student’s current understanding and strategy.
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Broadly speaking, the research we present in this article is designed to develop
models of children’s integer reasoning that, in the future, may be useful to teachers.
In the realm of integers, research-based frameworks detailing and describing
students’ ways of reasoning do not exist. In our project, we addressed this need
by carefully studying children’s thinking about integers and integer operations to
add to the knowledge base within mathematics education.

Cognitive obstacles and affordances. We use the constructs of cognitive
obstacles and cognitive affordances to develop an initial framework of integer
reasoning. The notion of cognitive obstacles can be traced to the French philoso-
pher Gaston Bachelard (1938/2002) and his theory of epistemological obstacles in
the development of scientific thinking. Bachelard viewed obstacles as the heart of
cognition, both for individual learning and the historical development of scientific
thought. Essentially, an obstacle is knowledge that is useful in solving a certain
type of problem but, when applied to a new problem or context, is inadequate or
leads to contradictions (see also Brousseau, 1997; Cornu, 1991; Herscovics, 1989).
For example, children sometimes overgeneralize their experiences with natural
numbers and assume that “multiplication makes bigger” for all numbers (Bell,
Swan, & Taylor, 1981, p. 405; see also Graeber & Campbell, 1993). The idea that
a product should be larger than its factors can become an obstacle to learning
when, for example, a student is faced with a problem of the form 4 <[ |=3 or is
asked to multiply by a rational number between 0 and | and maintains that multi-
plication makes larger. Obstacles play a critical role in learning because they
compel the learner to modify and adapt some aspect of his or her thinking to
resolve the contradiction.

Bachelard’s (1938/2002) conception of epistemological obstacles set forth in The
Formation of the Scientific Mind was primarily philosophical and theoretical. He
used the construct of obstacles to address questions related to the epistemology of
scientific thinking and how scientific knowledge advances. Others, like Brousseau
(1997), have adapted Bachelard’s work to the teaching of mathematics and have
defined epistemological obstacles differently. In Brousseau’s conceptualization,
epistemological obstacles are viewed as rooted in the very nature of the knowledge
of a topic and independent of one’s culture, society, and learning environment.
Although scholars like Brousseau classified different types of obstacles (e.g.,
genetic, epistemological, didactic—see Brousseau, 1997; Cornu, 1991; Herscovics,
1989), we use the term cognitive obstacles more generally to mean understanding
or knowledge that once supported a learner’s thinking but may impede the learning
of a new concept. This understanding may be present in an individual learner’s
construction of knowledge or in the historical growth of knowledge in a particular
field. We view both sources as sites for cognitive obstacles, and we do not distin-
guish the obstacle’s source with specific terminology as some researchers do.

Our goals, however, are not restricted to obstacle identification within the realm
of integers; we also want to identify ways of reasoning and knowledge that lead
to successful problem solving with integers, which we call cognitive affordances.
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Gibson (1986) used the term affordance to describe the unique relationship
between an individual and his or her environment. He explained that a chair or a
ledge or even a rock may afford sitting, so long as one perceives that the object
can be sat upon. Similarly, a hammer may afford driving and removing nails, or
even digging, but only if those affordances are perceived. Thus, the affordances
of a context, situation, tool, location, object, or problem vary on the basis of what
an individual perceives, notices, and experiences. In the context of integers, we
seek particular kinds of affordances, namely, ways of reasoning that offer learners
the ability to solve problems they are otherwise unable to solve.

Methods

In this study, we used two complementary methodological approaches and two
sets of data to address our research questions. We used historical data from writ-
ings and publications in the realm of mathematics and empirical data from clinical
interviews with children ages 6—10 to answer our research questions. Coupling
our historical analysis with individual, clinical interviews of children enabled us
to identify (a) cognitive obstacles for mathematicians and children; (b) ways of
reasoning that helped mathematicians and children to overcome these obstacles,
which we call cognitive affordances; and (c) similarities and differences between
mathematicians’ and children’s integer understanding.

Because we were interested in children’s reasoning when the children were
initially learning about integers and expanding their numeric domains to Z (the
set of all integers), we decided to study the operations of addition and subtraction
prior to formal integer instruction. Though we realize that multiplication and divi-
sion with signed numbers are critical facets of integer understanding, we limited
the scope of our research to explore addition and subtraction in sufficient depth.

In the following sections, we describe our two data sources and our analyses.
We begin by discussing the selection of our historical texts and then describe the
students with whom we worked, the settings in which we worked, and the nature
of the interview and interview tasks we used to collect data on children’s thinking.
Because of the integrated and interrelated nature of our analysis, we begin the
analysis section with an overview of our general process and methods. This section
is followed by a description of the development of the coding scheme we used to
analyze both the historical mathematical texts and the children’s thinking data and
the analysis methods we used for both sets of data. We conclude the methods
section by explaining our process for identification of cognitive obstacles and
affordances.

Historical Data

To answer our first research question about obstacles and affordances present
in integers’ historical development, we identified and analyzed primary and
secondary historical sources that addressed negative numbers. Our analysis of the
secondary sources (a) helped us to situate the development of integer reasoning
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within the broader historical context of mathematics; (b) sensitized us to the
importance of the increasing generality of algebraic approaches and their corre-
sponding symbolisms, the role of enumeration and magnitude in the concept of
number, and the existence of operational rules for integer arithmetic long before
justification of those rules; and (c) helped us to identify potential primary sources
from which we could identify integer-specific obstacles and affordances. However,
these secondary sources did not provide sufficient information or detail for us to
identify obstacles and affordances directly from their writings.

On the basis of our own knowledge of the history of integers and other scholars’
work in this area, we generated a list of potentially important original historical
mathematical texts that addressed integers, integer arithmetic, or both. For each
historical document on the list, we located and read the original text or English
translation. Our goal was neither to conduct a comprehensive historical analysis
nor to add to the knowledge base on the historical development of integers, but
instead to consider historical development from a new perspective for the purpose
of identifying persistent, significant, historical challenges as well as reasoning
that afforded periods of progress. Thus, our selection of historical texts was not
exhaustive but purposeful and informed by other researchers’ work in this area.
The 13 texts we analyzed are listed in Table 3 in the Findings section. The histor-
ical texts span from the Ist century through the Middle Ages and to the close of
the 19th century. The integer-related writings represent the views of both Eastern
and Western mathematicians from a variety of countries and perspectives; some
texts were influential and well-known writings within mathematics, whereas
others were more obscure and lesser known writings.

Though we present a narrative of the development of integer understanding, we
claim neither that thought across mathematicians was homogeneous nor that the
development was continuous, smooth, sequential, and cumulative (Schubring,
2011). In fact, the mathematical texts (e.g., Frend, 1796; Wallis, 1685) clearly
showed that authors and subgroups/other individuals within their contempora-
neous mathematics communities expressed disagreement. Although our historical
data are a collection of mathematical texts that represent the understanding and
views of the respective authors, we also take a social and interactive stance on the
historical development of integers (Radford, 1997; Schubring, 2011). The creation
of mathematics involves negotiation within one’s mathematical community to
determine the correctness and acceptance or rejection of mathematical ideas. Our
claim, then, is that the ideas reflected in the texts we analyzed were not isolated
to a few mathematicians but that their thinking reflected prevailing thought in the
larger community while still allowing for disagreements among individuals, some
of which are acknowledged in the texts themselves.

Children’s Thinking Data

Setting and participants. Forty-seven elementary school children ages 6—10
(Grades 1—4 in the United States) participated in our study. We wanted to pursue
children’s reasoning in depth, but we also wanted to interview enough children to
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identify prevalent and persistent ways of reasoning. Other researchers had previ-
ously used 20-30 clinical interviews in studies of students’ integer conceptions
(Chiu, 2001; Peled, 1991). Using these numbers as a baseline, we increased the
number of interviews to accommodate the larger age range in our study. Students
were drawn from nine classes located in elementary schools in Texas and
California. We chose young children, as opposed to middle school or older
students, because they had received no formal instruction on integers and might
be more likely than older students to reveal intuitive and informal ideas about
negative numbers. Instruction on integers typically begins in the United States
during Grade 5, with 10- to 11-year-olds. However, some students we interviewed
had knowledge of integers or were in the process of developing integer knowledge.

We conducted the interviews at three elementary schools in three school
districts, all of which had above-average standardized test scores when compared
with their state’s respective mean. Two of the elementary schools, Schools B and
C in Table 1, were high-performing schools in terms of standardized state exam
scores. The other school, School A, had a Science, Technology, Engineering, and
Mathematics (STEM) focus and was designated a NASA Explorer School,
meaning that scientific experimentation was integrated throughout the curric-
ulum. Each of these schools was located in a large city with a diverse population.
School demographic information is summarized in Table 1.

Student participants were purposefully chosen with the help of the classroom
teacher to represent different levels of mathematical understanding. Classroom
teachers identified 2—4 students they considered to be on grade level with respect
to mathematical proficiency, 2—4 students they considered to be below grade level,
and 2—4 students above grade level. Using these criteria, teachers selectively sent

:522106011 Demographic Information and Standardized Test Scores
Demographic characteristics School A School B School C
Academic Progress Indicator 8072 9182 Exemplary
(API)/ Accountability Rating (API score) (API score) Ratingb
% Hispanic students 37% 26% 26%
% White students 2% 59% 52%
% African American students 54% 4% 14%
% Asian students 3% 4% 6%
?uﬁzz?somically disadvantaged 100% 20% 39%
Number of students interviewed 8 32 7
Number of participating teachers 3 5 1

aState API average is 790 points. PHighest of four possible performance ratings as determined by

percentage of students on campus meeting academic standards on standardized state exam.
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home permission forms, and all students who returned permission forms were
interviewed. We did not observe classroom mathematics instruction; conse-
quently, we know little about the kinds of mathematics instruction occurring in
most of the classrooms. However, we do know, on the basis of teacher self-report,
that two of the classrooms (one from School C and one from School B) regularly
implemented a problem-solving instructional approach that incorporated whole-
class discussion of children’s strategies.

Interview tasks. The 50—70 minute clinical interviews (Ginsburg, 1997) were
conducted at the children’s school sites during the school day and were videotaped.
We chose to use clinical interviews in an attempt to understand the integer
reasoning of individual children. Following Ginsburg (1997),

The interviewer, observing carefully and interpreting what is observed, has the
freedom to alter tasks to promote the child’s understanding and probe his or her reac-
tions; the interviewer is permitted to devise new problems, on the spot, in order to test
hypotheses; the interviewer attempts to uncover the thought and concepts underlying
the child’s verbalizations. (p. 39)

In these interviews, we sought to follow the child’s thinking, posing follow-up
questions in the moment that were based on the child’s ideas. As a result, the
interviews were not standardized; that is, we did not pose the same problems to
every child. The strength of these interviews is that they enabled us to engage with
a child to promote understanding and make visible his or her ways of reasoning.
For us, like Ginsburg (1997), “the clinical interview seems to provide rich data
that could not be obtained by other means” (p. 39).

Because we were trying to understand children’s reasoning about a topic with
little existing research to guide us, part of the process involved identifying problems
or tasks that provided children significant opportunities to engage with integers.
We had no such collection of tasks when we began conducting these interviews.
Thus, the use of clinical interviews helped us to identify tasks with the potential to
yield rich information about children’s integer reasoning in interview settings.

Across the 47 clinical interviews reported in this study were four consistent
categories of tasks: introductory questions (asking children to name large/small
numbers and to count backward), open number sentences, contextualized prob-
lems that could be solved using negative integers, and comparison problems. Note
that students were not asked the same questions within each of these categories.
Consistent with the nature of clinical interviews, we followed the child’s lead and
responded specifically to his or her emerging ideas. See the Appendix for exam-
ples of problems from each category.

Although context was not a major focus, we did pose contextualized problems
as well as a series of comparison tasks during many clinical interviews. We used
multiple integer-related contexts across the 47 interviews (e.g., comparing scores
for sporting events, gains and losses, money and lending, elevation differences,
and happy and sad thoughts). However, we found that young children usually did
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not explicitly use negative integers in their solutions but instead reasoned about
the magnitudes, or absolute values, of the numbers regardless of their signs. As a
result, these tasks in contexts did not provide a meaningful entry point for most
students to engage with negative integers.

Open number sentences (i.e., problems of the form -3 +[ =6 and[ |+ 6 =4,
with the location of the unknown varying) were the most prevalent type of ques-
tion we posed across all interviews. We chose to focus on open number sentences
because these types of problems are consistent with the abstract nature of negative
numbers and the formal approach that eventually ushered in their historical
acceptance. Additionally, these types of tasks had been used in other research
designed to explore children’s mathematical thinking—for example, see
Carpenter, Franke, and Levi’s (2003) Thinking Mathematically and the research
of Peled and colleagues (1991; Peled et al., 1989). For each open number sentence,
students were asked to read the problem aloud and solve the problem if they
thought it had a solution. Interviewers did not introduce the word negative but
instead used the students’ terminology (minus 3, dash 3, etc.). Open number
sentences were posed to all students, but not all students were asked to complete
the same open number sentences. Initially, we were unsure whether decontextual-
ized problems such as the open number sentences would prove useful in revealing
students’ integer understanding. Early interviews revealed that these tasks
successfully encouraged students to engage with negative-number concepts; the
remainder of the interviews helped us to elaborate on how these tasks were useful,
identify what conceptions we might be able to uncover with these tasks, and
uncover students’ varied ways of reasoning. We report here on data from only the
open number sentences in the interview. For analyses of other types of tasks, see
Bishop, Lamb, Phillipp, Schappelle, and Whitacre (2011), Lamb et al. (2012), and
Whitacre et al. (2012).

Data Analysis

Before describing details related to data analysis, we provide a general overview
of the development of the analytic framework used to code and analyze both data
sources. First, a single coding scheme was developed using the historical data as
well as the children’s thinking data; this set of codes was used to analyze both sets
of data. A list of final codes and their definitions are found in Table 2. Second, we
highlight the dialectic nature of the analysis process: That is, the analysis of the
historical texts informed the analysis of children’s thinking and the analysis of
children’s thinking informed the analysis of the historical texts. We did not analyze
the historical texts first and then analyze the children’s thinking data or vice versa;
instead, the analyses were iterative and interrelated inasmuch as insights from
each data source informed our understanding and analysis of the other.

On the one hand, the affordance of order-based reasoning was not a code that
initially emerged from our analyses of historical texts. But after seeing many chil-
dren successfully use counting strategies and other types of order-based reasoning,
we were sensitized to the importance of this approach and better able to recognize
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Table 2
Integers Coding Scheme

Ways of reasoning

. Definitions
categories

Order In this way of reasoning, one leverages the sequential and
ordered nature of numbers to reason about a problem. Using an
order-based way of reasoning, one places integers in a sequence
and can include the use of counting strategies or a number line
with motion/movement. Counting strategies include counting
forward or backward by ones (or another incrementing amount).
For example, when solving 3 — 5 =[], one might say, “Three,

2 (puts up one finger), 1 (puts up second finger), 0 (puts up third
finger), -1 (puts up fourth finger), -2 (puts up fifth finger). So
it’s -2.” When using number lines, one typically treats the start
and result as locations on the number line and the change as a
distance.

Magnitude This way of reasoning is characterized by one’s relating
numbers and, in particular, negative numbers to a countable
amount or quantity. Magnitude-based reasoning is tied to ideas
about cardinality and the view of a number as having magnitude
or substance. At times, negative numbers may be related to
contexts (e.g., debt) or evoke the idea of opposite (directed)
magnitudes. Opposite magnitudes include, for example, the
ideas of (a) directional segments (e.g., vectors), (b) a time-
certain event and the periods before and after this event has
occurred, and (c) losing and gaining amounts.

Logical In this way of reasoning, one takes a formal approach to
Necessity/ problem solving, leveraging the ideas of structural similarity,
Formal well-defined expressions, and fundamental mathematical prin-
ciples (e.g., commutativity, negation). This way of reasoning
includes generalizing beyond a specific case by making a
comparison to another, known, problem and appropriately
adjusting one’s heuristic so that the logic of the approach
remains consistent. One may reason about a problem involving
negative numbers (or make a generalization about operating
with negative numbers) by making a comparison to a similar
problem for which an answer is known and extending that
reasoning to this new domain of negative numbers. Formal
approaches can be reflected in algebraic approaches and the
search for generalizable solutions. For examples of this code,
see the Logical Necessity and Formalisms section in the
Findings.

Computational In a computational way of reasoning, one uses a procedure, rule,
or calculation to arrive at an answer to a problem involving
negative numbers, either as part of the problem statement or as
appearing in the solution set. Computational ways of reasoning
about negative quantities can be present when solving a variety
of algebraic and arithmetic problems, including solving systems
of equations, finding zeros of functions, and finding sums and
products of negative values.
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Limited

Addition
Cannot Make
Smaller

Subtraction
Cannot Make
Larger

Subtrahend <
Minuend

Negatives
Rejected

This category of reasoning reflects incomplete or limited views
of negative numbers. At times, the domain of possible solutions
is locally restricted to nonnegatives. Additionally, these strate-
gies may not be based upon appropriate mathematical founda-
tions.

This limited subcode is related to conceptualizations of addition
as joining or increasing a set. It is seen when one overgeneral-
izes that addition always makes larger and claims that a problem
for which the sum is less than one of the addends has no answer.
One response for 6 +[_|= 4 might be that there is no answer
because it is impossible to add 6 to any number and get a
number smaller than 6. The domain of possible solutions
appears to be restricted to whole numbers and the effect (or
possible effect) of adding a negative number is not considered.

This limited subcode is related to conceptualizations of subtrac-
tion as separating or removing objects. It is seen when one over-
generalizes that subtraction always makes smaller and claims
that a problem for which the difference is larger than the
minuend has no answer. For example, when solving 5 —[_]=38,
one might respond that there is no answer because it is impos-
sible to subtract a quantity from 5 and get a larger number.
Again, the domain of possible solutions seems to be restricted to
whole numbers and the effect (or possible effect) of subtracting
a negative number is not considered.

This limited subcode is most often applicable to responses to
problems of the form 3 — 5 =[], for which one maintains that
solving the problem is not possible or the problem is nonsensical
because 5 is larger than 3. How can one take something bigger
from a smaller number? The basic argument is again related to
an underlying conceptualization of subtraction as separating or
removing. We also refer to this code as removing something
from nothing or removing more than one has.

This limited subcode applies to responses showing evidence that
negative quantities exist for the individual but that these quanti-
ties are rejected as legitimate numbers. This code also applies
when, for example, negative solutions occur but are accepted as
legitimate solutions only if they have a magnitude-based inter-
pretation in the problem.

it in historical texts. Consequently, we were able to name Wallis’s (1685) use of the
number line as more than just the tool itself and as indicative of an underlying way
of reasoning that leveraged the idea of order. On the other hand, formal reasoning
initially emerged from the historical texts but was often defined in general terms.
Only when we saw students using fundamental mathematical properties to extend
their number system to negative integers were we able to operationalize this way
of reasoning. Without the historical analysis, we would have been unlikely to
identify these children’s strategies as examples of formal mathematical reasoning.
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But without the children’s thinking data, we would have been unable to exemplify
formal reasoning using specific strategies. Some codes initially emerged from the
historical data and others from the children’s thinking data, but all codes were
further refined with the other data source.

For both data sources, we used open coding and the constant comparative
method (Strauss & Corbin, 1998) to identify emergent, distinguishing themes and
features of mathematicians’ and students’ reasoning about integers, focusing on
persistent difficulties and the related ways of reasoning as well as ways of
reasoning associated with successful engagement with integer tasks. Initially, we
developed four codes (Order, Magnitude, Logical Necessity/Formal, and Limited)
representing critical, yet different, ways of reasoning. As we continued to analyze
and reanalyze both sets of data, this initial set of codes was revised and expanded.
The final set of codes reported in Table 2 includes the four initial codes listed
above and five new codes: a Computational way of reasoning code (which
describes mathematicians’ computational approaches to integer-related tasks) and
four subcodes within the Limited category that were developed to characterize the
ways of reasoning reflected in the data in more detail.

Analysis of historical data. For the historical mathematical analysis strand, our
goal was to identify potential obstacles to and affordances for conceptual change.
After creating a list of potential primary sources, as described above, we identified
passages wherein negative numbers were discussed in each historical text on our
list. We located these passages by consulting other historical syntheses for potential
locations; using the text’s table of contents, when available, to direct us to applicable
chapters or sections; and skimming texts to get a sense of the mathematical topics
that were covered and where the topic of integers might appear to identify sections
for a more focused reading. After identifying historical mathematical texts within
which (a) negative numbers were explicitly discussed or (b) problems involving
negative integers were posed and solved, we recorded whether and how these prob-
lems were solved, the topic within which negative numbers arose (e.g., negative roots
when solving equations, numeric computations), challenging problems, and ways
in which mathematicians were able to overcome these problems if, indeed, they were.
We then used the coding scheme in Table 2 to code 13 historical texts, seeking
evidence for each of the five ways of reasoning codes and the relevant subcodes and
looking for evidence of cognitive obstacles and affordances. The unit of analysis for
the historical data was the mathematician and the related historical text.

Analysis of children’s thinking interview data. We began analysis by open
coding of the videotaped interviews of students (Strauss & Corbin, 1998). We
worked directly from the video recordings and student work, transcribing as
needed. The focus of this coding was on children’s underlying ways of reasoning
about integers and operations with integers. Initially, we had low expectations that
young children would even be able to engage with these problems.

As described earlier, the development of our coding scheme was necessarily
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iterative and interconnected as we continued to read additional historical texts and
interview more children. After the coding scheme was finalized, each integer
problem posed to every child was coded for the underlying way of reasoning the
child used in his or her solution (again, see Table 2 for the list of codes). Note that a
child could, in theory, be assigned multiple codes for a single open-number-sentence
problem, but, in practice, most students were assigned only one code per problem.

Identification of cognitive obstacles and affordances. We used two related,
yet different, approaches to identify obstacles in the historical data and obstacles
for children in the interview data. In our interviews with children, we identified
ways of reasoning as cognitive obstacles if that way of reasoning was associated
with an inability to solve, or difficulty in solving, integer problems. In particular,
we found evidence for obstacles in children’s responses that were assigned codes
in the Limited category in Table 2. In relation to the historical data, Cornu (1991)
suggested that “periods of slow development and the difficulties which arose . . .
may indicate the presence of epistemological obstacles” (p. 159). We looked in
historical writings for evidence not only for codes in the Limited category in Table
2 but, additionally, that those codes were assigned for multiple mathematicians
and over long periods of time (i.e., over centuries). We also interpreted disagree-
ments across mathematicians as well as contradictions within a mathematician’s
own writings as indications of cognitive obstacles.

To document cognitive affordances, we used the codes in Table 2 to identify (a)
the ways of reasoning observed in the interview data that were present when
students engaged successfully with integer tasks and (b) the ways of reasoning
mathematicians leveraged that afforded progress historically in overcoming these
obstacles. Our final list of cognitive obstacles and affordances included those
identified in either the interview data with children or historical mathematicians’
writings. In the end, we identified three cognitive obstacles, three cognitive affor-
dances, and one way of reasoning that functioned as both an obstacle and an
affordance.

Findings

On the bases of our historical analysis of mathematical texts and our clinical
interviews with children, we document cognitive obstacles and affordances related
to integer reasoning. We begin by sharing results from the historical analysis. This
section is followed by an analysis of the children’s understanding, including the
challenges children faced while they reasoned about integers and powerful ways of
reasoning that helped them to move beyond paradoxes that negative integers
presented.

Negative Numbers—What Can We Learn From History?

For more than 1,000 years, mathematicians pondered, struggled with, operated
on, rejected, and eventually came to accept negative numbers. Not unlike their
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problematic, unwanted, and barely acknowledged cousins—the irrational
numbers—negative numbers were a source of great consternation, confusion, and
controversy. “Negative numbers troubled mathematicians far more than irrational
numbers did, perhaps because negatives had no readily available geometrical
meaning and the rules of operation were stranger” (Kline, 1980, p. 118). Negative
numbers were theoretically plausible yet practically impossible.

However, with Fermat’s and Descartes’s creation of analytic geometry, as well
as the need for more formalized and generalizable solutions to problems, mathe-
maticians saw the rise of algebra and a corresponding acceptance of negative
numbers (Freudenthal, 1983; Kline, 1980; Thomaidis & Tzanakis, 2007).
This acceptance, though, was not without objections from some of the best
mathematicians of their day. Negative numbers were referred to as “incongruous”
(Bhascara, 12th century, as cited in Colebrook, 1817, p. 217), “fictitious” (Girolamo
Cardano, 16th century, as cited in Cardano, 1545/1968, p. 11), and “false” or
“defects” (René Descartes, 17th century, as cited in Descartes, 1637/1925, p. 159).
Table 3 below displays results from our historical analysis of mathematical writ-
ings across approximately 1,800 years. For each of the writings, we summarize
the surrounding text within which the topic of integers arose and then use the
coding scheme described in Table 2 to identify negative-number challenges as
well as productive ways of reasoning that afforded progress.

Barriers to accepting negative numbers. Why were mathematicians slow to
accept negative numbers? The first and most fundamental reason for mathemati-
cians’ reluctance to accept negative quantities is reflected in the Negatives rejected
code seen throughout Table 3—the lack of a physical, concrete, or geometrically
meaningful representation. If numbers represented a countable number of objects
and negative numbers were “less than nothing” (Descartes, 1637/1925, p. 159; Frend,
1796, p. x; Wallis, 1685, p. 264), then one could not have some number of objects
that was smaller than the absence of any objects (i.e., zero). For example, how can
one have a negative number of monkeys (Bhéscara II, 1150; as cited in Colebrooke,
1817), buy a negative amount of cloth from a merchant (Chuquet, 1484; as cited in
Flegg et al., 1985), or have a negative number of denari (Fibonacci, 1202/2002)?
These impossibilities were accepted only if a reasonable explanation for the negative
solution could be generated in the given problem context.! In other words, to be
accepted, a negative solution required a magnitude-based interpretation.

Second, mathematicians struggled with negative numbers because they were
the result of nonsensical operations. For example, how can one remove something
from nothing? Though related to the necessity of having a physical, concrete

! Fibonacci (1202/2002) interpreted negative solutions as debits, and Chuquet (as cited in Flegg
et al., 1985) did similarly, explaining a negative amount of cloth as a credit from the merchant,
though Chuquet was not bothered by isolated negative quantities. Bhascara II (as cited in
Colebrooke, 1817) recognized that negative solutions existed, but he did not accept them as valid,
calling them incongruous and stating, “People do not approve a negative absolute number” (p. 217).
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Table 3

Coding of Primary Data Sources for Historical Analysis

Author

Date

Title

Description and applicable codes

Diophantus
of
Alexandria

3rd
century

Arithmetica,
Book V

Addition cannot make smaller, Negatives
rejected

Negative quantities arose in solving alge-
braic equations with unknowns; author
described them as absurd and rejected them
(Heath, 1964).

Brahmagupta

628

Brahmasphuta
Siddhanta

Computational

Rules of adding, subtracting, multiplying,
and dividing with negative quantities are
stated (Colebrook, 1817).

Bhascara I1

1150

Vija-Ganita
volume of
Siddhanta
Siromani

Computational, Magnitude (owing/having),
Negatives rejected

Negative quantities occurred as solutions to
context problems yielding nonsensical
results—e.g., a negative quantity of
monkeys (Colebrook, 1817). This solution
was rejected because it was a “negative
absolute number” (p. 217). However,
Bhascara II gave rules for performing
computations with negative quantities.
Additionally, the words for negative and
affirmative are translated literally as debt
and wealth (p. 131) and are referred to as
directed, which commentators interpreted
in terms of contrary directions (East/West)
and time (before and after).

Leonardo
Fibonacci
(Leonardo
Pisano)

1202

Liber Abaci

Magnitude (owing/having), Computational,
Negatives rejected

Negative quantities arose as solutions to
context problems solved nonalgebraically,
in one’s working from known quantities
and given relationships to unknown values
(Fibonacci, 1202/2002). Fibonacci accepted
negative solutions only if they could be
interpreted as debits (debt). For example,
an intermediate solution for one problem
called for a man to have a debit of

15 bezants (a form of currency). However,
the interpretation is confusing because it
called for the man to give part of his money
(in this case, debt) to another man to

buy a horse.
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Nicolas
Chuquet

1484

Triparty en la
science des
nombres

Magnitude (owing/having), Computational

Negative quantities arose as solutions to
context problems involving systems of
equations (Flegg, Hay, & Moss, 1985).
Chuquet used the ideas of credit, debt, and
giving to interpret negative quantities. In
one problem, for example, the solution
called for purchasing -2.5 pieces of cloth
from a merchant. This quantity did not
make sense, practically speaking (which
Chuquet acknowledged), but was a correct
result algebraically. His interpretation of the
negative solution was that the -2.5 pieces
were bought from the merchant on the basis
of a prior credit.

Girolamo
Cardano

1545

Ars Magna
(The Great Art)

Computational, Formal

In his treatise on the rules of algebra,
Cardano (1545/1968) described negative
solutions as fictitious or false. Negative
quantities arose as solutions to polynomial
equations, specifically to cubic and quartic
equations solved using algebraic methods.
Cardano appears to have been using the
language of the day in describing negative
roots as false but does not appear to have
been troubled by them.

René
Descartes

1637

La Géomeétrie

Computational, Formal

In Book IIT of La Géométrie, Descartes
(1637/1925) described his theory of equa-
tions and their roots. He accepted and oper-
ated with negative roots, though he referred
to them as false roots or defects (-5 was the
defect of 5). In his discussion of the Rule of
Signs, he explained how to transform an
equation so that all false roots become true
and all true roots become false.

Blaise Pascal

1669

Pensées

Subtrahend < Minuend, Negatives rejected

Pascal’s (1669/1941) statement, “I know
some who cannot understand that to take
four from nothing leaves nothing” (p. 25),
was found in a collection of unpublished
writings addressing philosophy and religion
published posthumously.
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Table 3 (continued)
Coding of Primary Data Sources for Historical Analysis

Isaac
Newton

1684

Universal
Arithmetic: Or,
A Treatise of
Arithmetical
Composition
and Resolution

Computational, Magnitude (owing/having,
directional segments), Formal

Newton (1684/1966) defined numbers as
ratios of like quantities; he used ideas of
directional line segments, difference
between, and money owed vs. gained as
interpretations of negative numbers. He
also stated the sign rules for products of
negative numbers.

John Wallis

1685

A Treatise of
Algebra, Both
Practical and
Historical

Order, Formal, Magnitude (owing/having)

Wallis (1685) accepted negative quantities
but acknowledged that they presented diffi-
culties. Wallis is often credited as being
one of the first mathematicians to use a
version of our modern number line. He
used a number line representation and

the idea of order as well as the notion of
opposite magnitudes (gain/loss) to explain
negative quantities. Wallis described a
common contemporary view that
subtracting a larger number from a smaller
number was impossible as was conceiving
of a magnitude as less than nothing. He
explained that this paradox could be
resolved if one took a formal, algebraic
view.

Jean le Rond
d’Alembert

1751

Encyclopédie,
Négatif

Subtrahend < Minuend, Subtraction
cannot make larger, Negatives rejected,
Computational, Magnitude

Calculations with negative quantities

were accepted but questions surrounding
their meaning remained (d’Alembert
(1751/2011). D’Alembert viewed negative
quantities in terms of opposite, or directed,
magnitudes and rejected the idea of
negatives as less than nothing. However,
he allowed for isolated negative quantities
but only when understood to be in a

“false position” that needed to be rewritten
or revised so that the appropriate positive
solution could arise.
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Table 3 (continued)
Coding of Primary Data Sources for Historical Analysis

William 1796 The Principles | Subtrahend < Minuend, Negatives rejected

Frend of Algebra Frend’s (1796) mission for his book was to

make the study of algebra clear by rejecting
“strange ideas of number” (p. xi) and scien-
tific principles that cannot be understood
“without reference to metaphor” (p. x). The
chief offender was negative numbers. Frend
rejected negative quantities in and of them-
selves and as solutions to equations.

Augustus De | 1902 On the Studies | Subtrahend < Minuend, Negatives rejected,
Morgan and Difficulties | Computational, Magnitude (owing/having
of Mathematics | and directional segments), Formal

De Morgan (1902) described 3 — 8 as absurd
and rejected the definition of negative quan-
tities as less than nothing. De Morgan
could, however, compute with negative
numbers and viewed signs as operations,
not as indicative of positive or negative
quantities. He used the idea of opposite
magnitudes (gains and losses and before
and after) and directional segments or
measurements and saw the value in negative
quantities in the realm of algebra.

representation of a number, this challenge was distinct in that it hinged on the
seeming impossibility of removing more than one possessed, whether working
within real-world contexts or in the formal realm of mathematics (this obstacle is
reflected in the Subtrahend < Minuend code listed in Table 3). Additionally, we
view this struggle as tied to an interpretation of zero as an absolute zero, in which
zero represents none or nothing (Glaeser, 1981; Hefendehl-Hebeker, 1991).
William Frend described this struggle in the preface of his 1796 book The
Principles of Algebra:

Though the whole world should be destroyed, one will be one, and three will be three;
and no art whatever can change their nature. You may put a mark before one, which
it will obey: it submits to be taken away from another number greater than itself, but
to attempt to take it away from a number less than itself is ridiculous. Yet this is
attempted by algebraists, who talk of a number less than nothing, of multiplying a
negative number into a negative number and thus producing a positive number. . . .
This is all jargon, at which common sense recoils. (pp. x—xi)

Similarly, 17th-century mathematician Blaise Pascal (1669/1941) in his Pensées
somewhat dismissively said, “I know some who cannot understand that to take
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four from nothing leaves nothing” (p. 25). He continued, stating that some “first
principles are too self-evident for us” (Pascal, 1669/1941, p. 25). For Pascal, if zero
was, in fact, understood to be nothing, how could someone remove something
(e.g., four) from nothing (zero)? In Pascal’s mathematical world, this subtraction
was not possible, and so the result was nothing (i.e., zero).

Third, the existence of negative numbers made the routine interpretation of addi-
tion as the joining of subsets to create a larger set problematic, as seen in the two
related codes Addition cannot make smaller and Subtraction cannot make larger.
Hence, Diophantus, in the 3rd century, characterized the equation 4x + 20 = 4 as
“absurd” because the four units as the result of the summation “ought to be some
number greater than 20” (Heath, 1964, p. 200). We find this idea confirmed as late
as the 18th century. Jean le Rond d’Alembert, who wrote the definitive text
regarding negative numbers, Négatif, for the Encyclopédie, argued that although
an answer existed to the problem x + 100 = 50, the problem itself was incorrectly
formulated:

According to the rules of algebra we have x + 100 = 50, so that x = -50. This shows
that the quantity x is 50 and that instead of being added to 100 it must [our emphasis]
be subtracted. . . . In computations, negative quantities actually stand for positive
quantities that were supposed in an incorrect position. The “-” sign before a quantity
is areminder to eliminate and correct an error made in the assumption, as the example
just given demonstrates very clearly. (d’ Alembert, 1751/2011, pp. 72-73)

Though d’Alembert could find the solution to x + 100 = 50 algebraically, he argued
that the original equation should have involved subtraction instead of addition and
been written as 100 — x = 50. In summary, mathematicians historically grappled
with what we describe as three cognitive obstacles related to negative numbers:
the lack of a physical, tangible, concrete representation for quantities less than
nothing; the problem of removing more than one has; and situations counterin-
tuitive to interpretations of addition and subtraction as joining and separating.

The eventual acceptance of negative numbers. What led to the eventual accep-
tance of negative numbers in the 18th and 19th centuries? To answer this question,
one must first understand how the conception of number itself developed and
changed over time. Dating back to Aristotle and Euclid, mathematicians histori-
cally distinguished quantities as numerable or measurable* (Ross, 1924; see also
Freudenthal, 1983; Klein, 1968; Neal, 2002). This distinction was driven by the
practical and perceptual difference between continuous and discrete objects (five
miles as compared to five sheep) as well as theoretical and philosophical concerns.
The Greek word for number, arithmos, carried with it a narrower meaning than
our modern-day understanding of number (Klein, 1968; Neal, 2002; Schubring,
2005). Arithmos was defined as a numerable (countable), finite quantity; in the

2 According to Aristotle, a numerable quantity was “divisible into non-continuous parts” (i.e.,
discrete parts defined by unity, or 1), whereas a measurable quantity was “divisible into continuous
parts” (Ross, 1924, p. 323). A number, then, was a finite, numerable quantity.
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Greek conception, numbers consisted only of what we now describe as the natural
numbers (i.e., discrete, positive units). This distinction between numerable and
measureable quantities (otherwise conceived as numbers and magnitudes) held on
through the centuries, influencing mathematical thought well into the 1800s.
Clearly, both Eastern and Western mathematicians made use of other quantities,
including what we now call rational and irrational numbers, but these quantities
were not given status as arithmos. There was a distinction between the specific
domain of quantities mathematicians labeled as legitimate numbers and the quan-
tities with which they might work or perform calculations—as seen in Table 3 in
the high number of Computational codes and their co-occurrence with the
Negatives rejected code. In fact, computational reasoning was one of four ways of
reasoning about negative numbers that, historically, enabled some mathematicians
to successfully engage with negative numbers and eventually led to their accep-
tance (see Table 3). The other three are order-based ways of reasoning (e.g., the
number line; see Wallis, 1685), logical necessity/formalisms (seen most often in
algebraic approaches to problems and the development of generalized solutions),
and magnitude (e.g., using ideas of opposite magnitudes, often in context).

During the 16th and 17th centuries, the concept of number, in general, was in
flux. Tension between the practical usefulness of new kinds of numbers and clas-
sical theoretical concerns remained (Neal, 2002). For example, in the late 1600s,
the English mathematician John Wallis (1685) used the equation x + a = 0 with
a > 0 to define negative quantities as all x such that x = -a. He went on to explain
integers in terms of a number line consistent with our modern number line, using
the ideas of motion and movement as well as opposite magnitudes. Wallis
accepted negative quantities even though they did not conform to the classical
conception of number, but realized that for many, they presented difficulties. In
discussing the idea of imaginary quantities, Wallis said, “But it is also impossible,
that any quantity (though not a supposed square) can be Negative. Since that it is
not possible that any Magnitude can be Less than Nothing, or any Number Fewer
than None” (p. 264). For some, negatives were not accepted as quantities because
they were less than nothing and thus had no magnitude.

With the rise of algebraic notation, the widespread use of symbols to represent
parameters, and the generalized solutions and systemized procedures these new
representations occasioned (due largely to Vieta and later Descartes), mathemati-
cians more readily treated numbers as mathematical symbols separate from the
countable, discrete objects they referenced (Ifrah, 2000; Klein, 1968; Neal, 2002;
Schubring, 2005). Abstraction and generalization further blurred the distinction
between number and variable, as well as between arithmetic and algebra, and
broadened mathematicians’ ideas about number itself. Meanwhile, practical appli-
cations of the day—including problems in optics, commerce, the motion of free-
falling objects, and navigation—drove mathematicians to devise new calculational
techniques (e.g., Napier’s logarithms), notational systems (e.g., Stevins’s infinite
decimal expansions), and abstract symbolisms, all of which required the use of
new and different kinds of numbers (Neal, 2002). Thus, mathematical formalisms,
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together with the demands of applied and practical problems, ushered in a para-
digm shift wherein the field’s conception of number was broadened, allowing not
only for negative numbers but rational, irrational, and even imaginary numbers.

One might conclude that by the time of Descartes, in the first half of the 17th
century, and certainly by the time of Newton and Leibniz, in the second half of
the 17th century, that the mathematics community would have finally converged
upon a view of number that we have taken as understood today. But such was not
the case. Mathematicians continued to argue about the meaningfulness of negative
numbers, and only in the 19th century, when the formal view of mathematics won
out over the magnitude view, were the negative numbers, once and for all, accepted
as legitimate mathematical objects by the entire mathematics community.

Children’s Ways of Reasoning About Negative Numbers

We now turn to children’s integer reasoning and examine challenges and
successes students have in understanding negative numbers. In this section, we
describe our findings with respect to children’s conceptions of and thinking about
integers. We begin by highlighting conceptual challenges students faced and end
the section by describing the ways of reasoning some children used to overcome
conceptual difficulties and reason in relatively sophisticated ways.

Conceptual challenges children faced when operating with negative integers.
After analyzing interviews of the students (none of whom had prior, school-based,
formal instruction on integers), we found that the introduction of negative numbers
presented significant conceptual contradictions to most students, contradictions
that might require students to reconceptualize the idea of number itself. In fact,
many of the students had difficulty initially engaging with open number sentences
involving negative numbers.

To illustrate, we share students’ responses for the three most frequently posed
open number sentences across all 47 interviews (the most commonly posed prob-
lems were 3 —-5=[_],4+[ ]=3,and 5[ _]=8). For the problem 3 -5 =[],
26 of the 46 children (56.5%) who were asked to solve this task gave a correct
answer, but eight of the 20 students who missed the problem 3 —5=[_] gave answers
of not possible or 0, which received the Subtrahend < Minuend code. Other students,
after expressing that the problem was confusing, then tried to apply a recalled fact
and answered 2. Fifteen of the 41 students (36.6%) who were asked to solve
4+[_]=3 answered correctly. Students who missed the problem most often claimed
this problem was “not a real problem” or impossible, answers that received the
Addition cannot make smaller code (24 of 26 students). Alternatively, some children
found the sum or difference of the two given numbers and gave an answer of 1 or
7. Finally, none of the 25 students asked this question got 5 —[_]= 8 correct; 12 of
the 25 students who missed the problem explained that subtraction should not make
the difference larger (reflected in the Subtraction cannot make larger code) or they
gave answers of 3 or 13 by finding the sum or difference of the given numbers.
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On the basis of students’ responses to these problems and other number sentences
posed during clinical interviews, we identified three consistent obstacles young
children faced when they solved problems involving negative numbers: (a) a view
of number as representing something concrete and countable in conflict with being
asked to represent numbers that were “less than nothing” (or “under zero”);
(b) trying to remove more than one has (e.g., 3 — 5, the result of which is a negative
number) or removing something from nothing (e.g., 0 — 5); and (c) contradictions
to generalizations children formed about the ways addition and subtraction function
in whole numbers, namely that addition does not make smaller and subtraction does
not make larger. In Table 4 we list each of these obstacles, their related codes from
Table 2, and illustrative examples of children’s ways of reasoning. Additionally, we
have identified related responses from mathematicians.

We have found that young children can, at times, resemble early mathematicians
in their struggles to understand and accept negative numbers. For example, chil-
dren’s definitions of number often sounded like mathematicians’ ideas of arithmos.
Although they may entertain the existence of other kinds of quantities, children
are reluctant to give them full number status. Violet’s and Elena’s statements in

Table 4

Children s Negative-Number Obstacles and Similarities to Mathematicians

Obstacle

Children’s responses

Mathematicians’ related responses

The existence
of quantities
less than
nothing and
the lack of a
tangible,
concrete, or
realistic inter-
pretation for
negative
numbers
(Negatives
rejected)

“Negative numbers aren’t
really numbers because we
don’t really count with them in
school. And there’s no negative
1 cube (holds up a Unifix®
cube).” A number is “how you
know how much something is.”
(Violet, second grade)

“A number shows how much of
something you have; ... [-8] is
not actually a number because
it’s less than a number. . . . It
just doesn’t really have any
volume for it, like what it has.”
(Elena, third grade)

“Zero is nothing and negative
is more nothing.” (Rebecca,
second grade)

The Indian mathematician Bhascara
II explained, “People do not
approve a negative absolute
number”; thus, negative solutions
were considered “incongruous.”
(Colebrook, 1817, p. 217)

Fibonacci and Descartes did not
accept negative solutions unless the
result could be interpreted as some-
thing positive.

“Above all, he [the student] must
reject the definition still sometimes
given of the quantity -a, that it is
less than nothing. It is astonishing
that the human intellect should ever
have tolerated such an absurdity as
the idea of a quantity less than
nothing; above all, that the notion
should have outlived the belief in
judicial astrology and the existence
of witches, either of which is ten
thousand times more possible.”
(De Morgan, 1902, p. 72)
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Table 4 (continued)
Children's Negative-Number Obstacles and Similarities to Mathematicians

Removing
something
from nothing
or removing
more than one
has

(Subtrahend <
Minuend)

“Three minus five is zero
because you have 3 and you
can’t take away 5, so take away
the 3 and it leaves you with
zero.” (Sam, first grade) When
asked to solve 3 —4 and 3 -3,
Sam answered 0 to both.

“Three minus five doesn’t
make sense because three is
less than five.” (Nola, first
grade)

When solving 3 -5=[],
Andrew (second grade) replied,
“How come there’s three and
take away five? [ don’t have
enough. ’Cuz look, there’s
three (holds up 3 fingers) and |
cannot take away five "cuz
there’s not enough.”

“I know some who cannot under-
stand that to take four from nothing
leaves nothing.” (Pascal, 1669/1941,
p- 25)

“3 — 8 is an impossibility; it requires
you to take from 3 more than there
is in 3, which is absurd. If such an
expression as 3 — 8 should be the
answer to a problem, it would
denote either that there was some
absurdity inherent in the problem
itself, or in the manner of putting it
into an equation.” (De Morgan,
1902, pp. 103—104)

Counter-
intuitive
situations
involving
routine inter-
pretations of
addition and
subtraction
(Addition
cannot make
smaller;
Subtraction
cannot make
larger)

“4 +[]=3is not a real
problem. It’s not true” (he
crossed out the problem).
“Four minus 1 would equal 3.”
(Brad, first grade)

In response to the problem

6 +[_]=4, Brian (first grade)
said, “What’s that plus for?
Isn’t it supposed to be a
minus?”

In response to the problem

5 —[_]=8, Ryan (first grade)
said, “I wouldn’t be able

to do it because it would
always be behind 8 if it was
minus something. Because

if it was minus 0 it would be 5.
It [the difference] would
always be behind 8.”

Diophantus claimed that the equa-
tion 4x + 20 = 4 was “absurd”
because the 4 was less than the

20 units that were added.

(Heath, 1964, p. 200)

D’Alembert (1751/2011) argued
that the equation x + 100 = 50
should have involved subtraction
instead of addition and been
written as 100 —x = 50.
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Table 4 that negative numbers are not really numbers appear to be rooted in the
idea that numbers are “used for counting” or “to know how many.” We define an
understanding of number that appears to be equated with numeration, counting,
and magnitude and, consequently, restricted to whole numbers as a magnitude-
based or cardinal view of number—-by this definition, we mean an understanding
of number as a tangible amount of something, tied to numeration and counting
sets of objects. In fact, each of the children’s cognitive obstacles described in Table
4 seems to stem from a magnitude-only view of number. For example, the cogni-
tive obstacle of removing something from nothing rests on the assumption that
integers represent something—a countable something. Similarly, the overgener-
alizations that addition cannot make smaller and subtraction cannot make larger
draw upon interpretations of adding and subtracting as joining and separating
countable sets of objects. For this reason, we identify a magnitude-based way of
reasoning as a fourth cognitive obstacle for children, in addition to and related to
the three previously mentioned obstacles.

Mathematicians, too, were reluctant to give negative quantities status as
numbers, but not because their only understanding of number was as representing
cardinal sets of objects. Their objection was rooted in ancient Greek conceptions
of number and distinctions among arithmetic, algebra, and geometry. Interestingly,
some mathematicians, almost paradoxically, used magnitude-based interpreta-
tions to reason about integers productively. For example, De Morgan (1902)
referred to the idea of opposite magnitudes in explaining that

a negative solution indicates that the nature of the answer is the very reverse of that
which it was supposed to be in the solution; for example, . . . if we supposed that 4 was
to receive a certain number of pounds, it [-c] denotes that he is to pay ¢ pounds. (p. 121)

Yet, De Morgan called the expression 3 — 8 “absurd” on the basis of the same
magnitude-based view of numbers (p. 104). For De Morgan, magnitude was both
an obstacle and an affordance!

We have shared cognitive obstacles for both children and mathematicians, and
these obstacles may be expected given each group’s early experiences with
number. However, we all know that mathematicians no longer struggle with these
conceptual obstacles related to negative numbers. They understand that addition
does not necessarily result in a larger sum and accept the possibility of subtracting
a larger number from a smaller number. How can one explain this acceptance?
Modern mathematics can be characterized by a formal algebraic approach based
on foundations laid in the 1800s when mathematicians came to fully embrace
formalisms and unifying structures. In a Kuhnian sense, the old paradigm with
its strict division between geometry and arithmetic, number and magnitude, and
the theoretical and concrete was swept away with successive algebraic extensions
of the concept of number (Kuhn, 1962). Likewise, not all the students in our study
reasoned about number in the ways described in Table 4. In the next section, we
describe ways in which children have displayed powerful and successful ways of
reasoning about integers.
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Children’s successful ways of reasoning about integers. Some students not
only had negative integers in their domains but also could correctly solve problems
like 35 =[_]and -2 +[_|= 4. We have found, perhaps surprisingly, that children
as young as age 6 can overcome coghnitive obstacles and mathematical contradic-
tions that many of their peers could not. Below, we present three ways of reasoning
that children used appropriately to correctly solve integer problems: leveraging
ordering relations for sets of numbers, employing the concept of logical necessity,
and, perhaps most surprisingly, seeing negative numbers as having magnitude. We
share these ways of reasoning not because they are common but because we believe
that they are mathematically powerful approaches to integer reasoning that all
children should eventually be able to understand and apply when solving integer
tasks. Across all 47 children, 45% (or 21 children, including students from each of
the three schools represented) used ordering relations, logical necessity, or magni-
tude to successfully solve at least one problem during the course of the interview.
That is not to say that these ways of reasoning characterized these young students’
thinking, but they occurred with enough regularity that we believe that teachers
and researchers could productively attend to and build on them. Further, we propose
that these types of reasoning are deeply mathematical; they are foundational for
reasoning about numbers and mathematics in more sophisticated, formal, and
structured ways, yet they are developmentally appropriate for children this age. In
the following sections, we explain each of these ways of reasoning; relate them to
the modern, formal, mathematical approaches in which they are grounded; and
describe how children used these mathematical principles in their solutions.

Ordering relations. The idea of order is a basic principle of our number system.
Lakoff and Nuiiez (2000) identified order as a foundational component of math-
ematical cognition; arithmetic as “motion along a path” is one of their four
“grounding metaphors” (p. 21). They suggested that negative numbers are
constructed as point locations within this motion metaphor, using the idea of
symmetry on the number line. Some young students leveraged the idea of order,
though not in its formal form, when solving problems involving integers. In
particular, these students imposed some kind of ordering on Z and then used the
ordinal, or positional, nature of numbers in their strategies. In the remainder of
this section we briefly sketch the mathematical background of ordering relations
and consider how some students’ strategies leveraged the mathematical ideas of
order in developmentally appropriate ways.

Children’s initial experiences with ordering occur when they learn to count and
reason about before and after and smaller and greater. Mathematicians have
formalized this idea and developed a variety of ways to order sets using ordering
relations. For different ordering relations, one uses different criteria to compare
elements. In some orders, like the familiar less-than ordering of N (the natural
numbers), one can compare every pair of elements. But in other orders, like the
subset ordering of S (the power set), one cannot.

Of course, none of the young children we interviewed made these distinctions,
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nor did they treat Z in a set-theoretic way. However, we do see underlying math-
ematical ideas of order and ordering relations reflected in some children’s ways
of reasoning. In particular, 43% of students in our study (20 of 47) used the ordinal
and sequential nature of integers at least once in solutions that involved counting
or the use of the number line, the context of motion and movement, or both. For
example, many students who correctly solved the problem 3 — 5 =[] used a
counting-back strategy. Typically students counted backward starting at 3, saying,
“Three, 2 (put up one finger), 1 (put up second finger), zero (put up third finger),
-1 (put up fourth finger), -2 (put up fifth finger). The answer is -2.” In this strategy,
-2 is a position; it is the place one lands when starting at 3 and counting back 5; it
is the number before -1 and after -3.

Similarly, we saw Lynn use a counting strategy while she debated whether to
count up or down to solve -8 —3 =[_]. Note that in her explanation she used the
language of “counting down,” and in her counting she uses 8§, 7, 6, 5 rather than
-8, -7, -6, -5, attaching the “negative” after completing the counting sequence.

Il just start counting by, start counting down at 8 because it’s negative. Eight, 7 (holds
up one finger), 6 (holds up two fingers), 5 (holds up three fingers). Negative 5. (Pause.)
Wait, I think it’s switched. I don’t know. At first I was thinking since it was a minus
[the subtraction symbol in -8 — 3] so it would have to be a minus. But now I’m thinking
since this one was a plus (she points to the previous problem -3 + 6 =[_]) and I had to
do minusing, that this one [-8 — 3 = []] is plus on the negative numbers. (Lynn
correctly counted up 6 units from —3 for the previous problem but because the absolute
values of the numbers decreased, she said it was “like minusing” to her.) I want to
change my answer and count up now. Eight, 9 (holds up one finger), 10 (holds up two
fingers), 11 (holds up three fingers). Negative 11. (Lynn, Grade 2)

Lynn used a counting-down strategy, but because her starting point was in the
negative numbers, she struggled to decide which way was “down.” She eventually
decided that -8 — 3 did not operate like 8 — 3 after comparing the former to an
earlier problem involving addition. Because she had counted from -3 to -2 to -1
and so forth when solving -3 plus 6, then she needed to “count up” (what we tradi-
tionally would describe as counting down) to solve -8 minus 3 because, as she
explained, “Minusing is plus on the negative numbers.” Lynn’s explanation is a
reminder that when one operates with negative numbers, counting does not feel
quite the same as with positives (see also Ball, 1993; Bishop et al., 2013). In
particular, when the magnitude of a negative number increases, the number itself
gets smaller; hence, she described counting from -8 to -11 as “counting up.”
Other students leveraged the ordered nature of integers by using a number line.
For example, when solving 3 —5 =[], Lucy initially made stacks of three and
five unifix cubes but quickly turned to a number line. She put a pointer at 3 and
moved it 5 spaces to the left while counting the number of movements aloud (1, 2,
3,4, 5). She answered 02 (her invented notation for -2) and said, “That number
line actually helped me a lot” (Lucy, Grade 1). Her response after being asked
whether the cubes helped her was telling: “When I used cubes, I mean what could
they help me with this? How am I gonna do it?” For Lucy, -2 appeared to represent
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not a countable number of objects but instead a location on the number line that
existed as part of an ordered sequence of numbers.

Though not as formalized as the modern mathematical definition of ordering
relations, young children’s conceptions of the mathematical idea of order were
used successfully to solve new and novel problems (to them) involving integers.
Thus, we identified ordering relations, or an order-based understanding of negative
numbers, as a cognitive affordance for children’s integer reasoning.

Logical necessity and formalisms. We use the term logical necessity to describe
a way of reasoning wherein students use a more formal approach to problem
solving that leverages the ideas of structural similarity, well-defined expressions,
and fundamental mathematical principles (e.g., commutativity, negation). This
way of reasoning includes generalizing beyond a specific case by making a
comparison to another known problem and appropriately adjusting one’s heuristic
so that the underlying logic of the system and approach remains consistent.
Hefendehl-Hebeker (1991) described this idea using the phrase “the principle of
the permanence of formal laws” (p. 30; see also Freudenthal’s [1983] algebraic-
permanence principle; both permanence principles are based on Hermann
Hankel’s and George Peacock’s formulations of this principle). She explained the
principle’s meaning, saying, “Formulas valid in the system of natural numbers are
to remain valid in the extended number systems” (Hefendehl-Hebeker, 1991, p.
31). The key characteristic of this principle is maintaining consistency with what
we know to be true for whole numbers. In other words, new types of numbers
should not operate in ways that violate properties for whole numbers.

Logical necessity is a fundamental idea in the discipline of mathematics. For
example, when employing proof by contradiction, one proves a proposition to be
true indirectly, by showing that its negation leads to a contradiction of what is
already known. Consider, for a moment, the product of two negative numbers.
First, take the Peano axioms as the basic, underlying assumptions for behavior of
natural numbers and also require these relationships to hold for extensions of the
natural numbers (in this case Z). One can then argue that the product of two nega-
tive numbers is positive because it must be! It is a logical necessity or outgrowth
of the structure, underlying assumptions, and rules of operation for our number
system. Were it not so (i.e., evoking a proof by contradiction), inconsistencies such
as 1 = 0 would appear, and our number system as we know it would break.

Approximately 15% of students in our study (7 of 47) used logical necessity at
least once during the interview. We see a hint of logical necessity in Lynn’s
counting strategy above when she compared addition to subtraction and reasoned
that the two operations cannot behave in the same way. In other words, one cannot
count down for both addition and subtraction of a positive number; they must be
well-defined operations yielding unique values when given the same input.
A clearer example is seen in Terrell’s way of reasoning about the problem
-5 — -3 =[_]. Before solving this problem, he solved -5 +-1 =[], answering -6.
He then reasoned that,
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-5—-3 ... itwould probably be something, it would probably be, um, minus two [his
term for -2] because if you add, if you use addition with this (pointing to the numbers
-5 and -3 in the original number sentence), it would be farther from positive numbers.
So if you do the opposite it should be closer. (Terrell, Grade 4)

Here, Terrell compared the operations of subtraction and addition, holding the
numbers -5 and -3 constant. Terrell reasoned that if addition moves one further
from the positive numbers, then its opposite, subtraction, should move one closer
to the positive numbers. Terrell even extended this reasoning to the problem
-7—-9=["], correctly reasoning that the answer was “regular 2.”

Ryan, a first grader, claimed that problems of the form 5 + [_] = 3 were not
possible to solve early in his interview. Ryan had negative numbers in his numer-
ical domain, could correctly order them, and solved problems like 3 —5 =[],
-4+7=[],and[_]- 5 = -8 successfully using order-based ways of reasoning.
Ryan, however, was troubled by 5 + [ _]= 3, asking, “If you add something, how
does it get to 5? If it’s 5 plus, then it’s [the sum] always past 3.”

Toward the close of the interview, we posed the problem -2 + 5 =[] to Ryan.
His answer was 3, which he obtained by using a counting strategy, counting up
five from -2. We then asked him to consider the problem 5 +-2=[_]. He answered,
“Three,” explaining,

Because it’s pretty much the same thing (points to -2 + 5). Five plus negative 2 and
negative 2 plus 5. If you add the same things, and you just say 5 first and [negative]
2 second, it’s still the same thing. . . . You always add the same things together.

Ryan used a fundamental principle of mathematics, the commutative property, to
reason about a possible meaning for adding a negative number. He assumed that
all numbers, even negative numbers, obey the commutative property for addition;
consequently, his answer had to be 3. For his newly expanded numeric system to
be consistent and logical, 3 was the necessary answer. Immediately, we asked Ryan
to solve 6 +[_]=4, which Ryan compared to the problem he had previously solved,
5+ -2 =3, saying, “It’s kinda like that one [he points to 5 + -2 = 3] because there’s
plus a negative. Six plus negative 2 goes two back.” When reminded that he had
earlier said that this kind of problem was “impossible,” he smiled and said, “Now
it’s plus a negative. So if it’s a negative number, you have to fill it back in. . . . It’s
like minus.”

By using the principle of logical necessity, some children were able to approach
and use numbers in a more formal, algebraic way, leveraging key mathematical
ideas about inverses and fundamental algebraic properties to solve problems
previously unsolvable for them. This way of reasoning, which is integral to
modern mathematics, helped some students to conjecture about meanings for
adding and subtracting negative numbers and then to accept or reject those
conjectures on the basis of whether the structure and logic of the system were
preserved. We see this as a powerful way of reasoning for young children and,
therefore, identify logical necessity and formalisms as a cognitive affordance for
children’s integer reasoning.
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Magnitude. For most children, a magnitude-based understanding of numbers
was challenging to extend in ways to help them reason about negative integers,
hence its inclusion earlier as an obstacle. However, some students were able
to view negative integers as representing countable amounts; in fact, approxi-
mately one fourth of the students in our study (11 of 47) productively used
magnitude-based strategies at least once during the interview. Consider one
of our first graders, who treated -8 as eight “negative 1s” or as equivalent to
-l1+-1+-1+-1+-1+-1+-1+-1. When solving -8 — -1 =[], he
answered -7 and explained, “You take away a negative because there is eight
negative 1s altogether so that would make negative 8. And you take away just 1
of it and now it’s negative 7.” This student reasoned about a meaning
for subtracting a negative number by treating -8 as comprised of a countable
number of negative 1s. He could then remove one of those objects, reducing the
number of negative ls in his set. Just as he could count oranges, he could count
negative Is.

Another student, Jacob, when presented with the problem -7 —[_|=-5, answered
negative two. He explained his answer using unifix cubes.

Well, this one I need little cubes. . . . [It] would be like real numbers, but just add the
minus sign. You just do 7 plus, well actually, 7 minus 2 equals 5. That’s the answer
for real numbers. So I just added a negative to all of them, and there is my answer.

Here we see Jacob treat negative numbers like “real” numbers to productively
reason about and solve problems involving negative integers. In particular, he
treated -7 and -5 as having magnitude and representing a countable number of
objects that could be represented with cubes. Jacob had earlier stated, “The nega-
tive numbers are like that [the real numbers] because you just add a minus sign.”
Similarly, Carlee, a fourth grader, treated negative numbers like “normal”
numbers when solving -5 — -3 =[_]. She answered, “Negative 2,” and explained,
“Five minus 3 is an easy fact for me. So, um, using negatives it will probably be
the same thing like using normal numbers. It will probably be the same thing, but
with negatives it’ll probably be negative 2.”

We highlight these strategies because of the seeming paradox they present.
Magnitude-based, or cardinal, views of number may initially seem to limit the
possibility of reasoning about negative numbers. Yet, some students could view
negative numbers as having magnitude, but not necessarily as less than nothing,
and representing tangible amounts (e.g., amount owed, depth of a hole, the number
of negative 1s). Moreover, they used these ideas to reason about operations with
negative numbers in robust, mathematically correct ways. As a result, we identify
amagnitude-based way of reasoning as both a cognitive affordance and an obstacle.

Discussion and Implications

Using data from historical writings of mathematicians and student interviews,
we have identified a total of three cognitive obstacles, three cognitive affordances,
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and one type of integer understanding that can function as either an obstacle or
affordance. We see these obstacles and affordances, which are listed in Table 5,
as foundational components in an initial framework of integer reasoning.

Our findings indicate that the primary difficulties surrounding negative
numbers are related to four cognitive obstacles. First, numbers are used primarily
for numeration and counting objects in our early mathematical experiences, hence
the first obstacle, viewing numbers solely from a magnitude-based perspective.
Second, the cardinal nature of numbers corresponds to a tangible and concrete
representation of a number. For example, 7 is the number of toy bears [ have in a
pile; -7 does not typically carry the same kind of meaning, which brings us to the
second cognitive obstacle. Negative numbers, when conceived of as less than
nothing, often defy concrete, tangible representation. Third, how can one remove
more than one has (as in the problem 3 — 5) or remove something from nothing?
And fourth, we struggle with negative numbers because their very existence seem-
ingly contradicts deeply held notions about the meanings of the operations of
addition and subtraction. When expanding their numeric domain to include nega-
tive numbers, learners are confronted with the fact that addition can, in fact, make
smaller and subtraction can make larger. Our data show that these are challenges
learners are likely to face while they struggle to make sense of and operate with
negative numbers. Further, we claim that students should be given opportunities
to grapple with these contradictions because only in their resolution will students
develop a robust understanding of this new kind of number.

Despite the existence of these cognitive obstacles, we found that particular ways
of reasoning may help learners to think more productively and successfully about

g?)t;gl;itsive Obstacles and Affordances Identified in Children's Thinking and Historical Texts
Children’s | Historical
thinking texts
Cognitive Obstacles
Magnitude X X
Existence of quantities less than nothing (Negatives X X
rejected)
Removing more than one has (Subtrahend < Minuend) X X
Overgeneralizations that addition cannot make smaller X X
and subtraction cannot make larger
Cognitive Affordances
Magnitude X X
Order X X
Logical Necessity/Formal X X
Computational X
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negative numbers. First, we found that understanding numbers as ordered—that
is, as locations on a number line or elements in an ordered sequence—supported
both mathematicians and children to engage with integer tasks using number lines
and counting sequences. Second, we found that some students and mathematicians
used magnitude-based reasoning as an affordance; they appropriately treated
numbers as countable amounts or as representing objects. Third, we identified
logical necessity/formal ways of reasoning as an affordance for integers wherein
one looks for and makes use of underlying structures and principles to reason about
integers. Formal ways of reasoning extend well beyond the domain of integers as
this way of reasoning supports learners to engage in fundamental mathematical
practices. And fourth, although computational reasoning functioned as a cognitive
affordance for mathematicians historically, it did not for students in our study, most
likely because they had not yet learned integer arithmetic. Because we did not
interview older children who had already learned integer arithmetic, we do not
know whether or how computational reasoning would function in these students’
thinking about integers. We identified four cognitive affordances in the domain of
integers present in the historical data and the interview data: order, magnitude,
logical necessity/formal, and computational ways of reasoning. These four affor-
dances along with the previously mentioned obstacles focus on ways of reasoning,
a topic that is largely absent from existing integer research. Additionally, our iden-
tification of order and magnitude as affordances builds on earlier work by Peled
and colleagues (1991; Peled et al., 1989) and Chiu (2001) by documenting specific
ways in which children engaged in these ways of reasoning in more and less produc-
tive ways. In summary, we have developed an initial, research-based framework
for integers that highlights two key aspects of integer reasoning, obstacles and
affordances, and that adds to the knowledge base within mathematics education.

Relating Children’s and Mathematicians’ Integer Reasoning

In this study, we highlight the value of using two seemingly disparate data
sources to better understand the conceptual field of integers and develop an initial
framework of integer reasoning. The children’s thinking data enabled us to exem-
plify and clearly describe specific strategies and details related to cognitive
obstacles and affordances. But we found that by understanding the historical
affordances and constraints faced by mathematicians who were thinking about
integers, we were able to more clearly see and make sense of children’s mathemat-
ical thinking. We are not suggesting that children’s reasoning develops in parallel
with the historical development of the mathematical ideas but that the analyses
were interrelated, mutually dependent, and shared interesting similarities.
Although we are sharing what we deem to be useful similarities between children’s
difficulties with negative numbers and mathematicians’ struggle to accept nega-
tive quantities as numbers, we also recognize three fundamental differences
between children and early mathematicians. First, generally speaking, mathema-
ticians could compute with negative numbers and understood operations with them
long before they gave negative quantities the status of number. In the case of the
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young children we studied, not only was accepting negative quantities as numbers
a difficulty, but they also were unable to compute with negative numbers. So,
unlike some mathematicians who could find negative solutions to problems but
then rejected those solutions, many of the children in our study could not obtain
negative solutions. Second, some mathematicians could conceive of negative
quantities as formal objects disconnected from numeric systems and leverage
algebraic representations. And third, for many children a magnitude-based under-
standing of number was their only understanding of number. For mathematicians,
it was not that they could not conceive of negative numbers but that they held
differing, and sometimes competing, conceptions simultaneously.

We also know that the children in our study will come to accept negative quan-
tities as numbers long before adulthood, but unlike mathematicians of old, our
students today are encultured into a world in which negative numbers appear not
only in school mathematics but also in temperatures, measures below sea level,
and the like. Students today also have access to models, tools, and representations
(e.g., the number line and chip models) that were products of successful historical
approaches to integers. Thus, there are important differences between the histor-
ical path to accepting negative quantities as negative numbers and children’s paths
to accepting negative numbers today.

Despite the differences surrounding historical integer reasoning and children’s
current thinking, learners today appear to encounter similar obstacles and affor-
dances, perhaps because residual aspects of historical development are embedded
into our current representations, tools, and ways of reasoning (Radford & Puig,
2007; Schubring, 2011). Ideas that were, historically, catalysts for productive
integer reasoning are now accepted as routine mathematical practice. For example,
consider the affordance of order-based reasoning. We see an order-based under-
standing of number reflected in Wallis’s (1685) use of the number line in his text
A Treatise of Algebra Both Historical and Practical. Wallis is often credited as
being one of the first mathematicians to use a version of our modern number line,
coordinating both positive and negative number lines. Henley (1999) described
the development of this type of understanding of negative numbers as a paradigm
shift for mathematicians. Negative numbers could thereafter be viewed as quanti-
ties to the left of zero on the number line (as opposed to less than nothing), and
their ordering meant that the statement -2 < -1 could be interpreted to mean that
-2 comes before -1 (not restricted to the interpretation that -2 is smaller in magni-
tude than -1). What was groundbreaking then is seen as commonplace now.
Students today can access a representation, centuries in the making, that presents
them with an alternative view of numbers as ordinal.

The number line and counting strategies that students encounter and produc-
tively use today are the product of historical cognition reflected in what is
commonly accepted as standard mathematical practice and embedded in current
tools and representations. These tools provide opportunities for students to treat
negative numbers as positional and as sequentially related to other numbers and
not necessarily as having to represent a tangible amount. Thus, we are not
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surprised to see this similarity between modern students’ thinking and the
historical development of integers. Radford and Puig (2007) explained this type
of relationship with their Embedment Principle, which posits that similarities exist
because the historical dimension is embedded into our current social mathematical
practices and the resultant semiotic representations and tools we use today (see
also Furinghetti & Radford, 2002, 2008; Schubring, 2011). One way to explain the
relationship between historical thinking about integers and children’s mathemat-
ical thinking is that students today encounter the products of historical cognition
deposited in tools, representations, and commonly accepted ways of reasoning
and leverage them to transform their own integer reasoning in powerful ways.
Although our study and the data we collected were not designed to determine the
nature of the relationship between children’s current thinking and the historical
development of integers, we see this as an important area for future research.

Limitations and Future Directions for Research

We believe that many of the limitations of our study point toward new directions
for research. For example, our clinical interview was not standardized, and
because not all students were asked to solve the same open number sentences, we
could not link the correctness of student responses and ways of reasoning to
specific problem types. A promising direction for future research would be to
determine if particular obstacles and affordances are more and less prevalent for
specific problem types; which problems, in general, were easier and harder for
students; and if a child’s grade level is related to success with different types of
problems. Additionally, our sample did not include low-performing schools (as
measured by standardized state tests). Although we included students who were
identified by their teachers as below grade level with respect to mathematical
proficiency, we do not know what differences might exist if interviews had been
conducted at low-performing schools. On a related note, we know little about the
instruction in classrooms and thus cannot explain the emergence of certain affor-
dances documented in our study. We do know, however, that in the academic year
in which we conducted the clinical interviews, the teachers had not provided any
formal, school-based instruction on integers. Consequently, future research should
be situated in a wider variety of schools, and researchers might seek to identify
links between instruction and the emergence of cognitive affordances and obsta-
cles. Finally, the historical analysis of mathematics texts includes context prob-
lems, whereas our analysis of the clinical interviews did not. By including context
problems in our analyses, we might possibly have identified more and different
magnitude-based approaches from children or perhaps even obstacles and affor-
dances different from those we report here.

In closing, although we did not set out in this study to determine how best to
teach integers, we understand that readers may look for instructional implications
from our work. A conclusion that one might draw from our study is that teachers
ought to teach integers to children using order-based or formal views of number,
but we do not embrace this conclusion! On the basis of our work with children,
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together with our study of the historical development of integers, we conclude that
many views of numbers will arise for learners. We believe that students should be
encouraged to make sense of and negotiate among these different ways of
reasoning and to develop multiple ways of understanding numbers. Thus, one
instructional goal should be for children to approach negative numbers using
ordering relations, magnitude, and logical necessity/formal views of number and
to flexibly move among these ways of reasoning.

We encourage teachers, researchers, and curriculum writers to remember that
children are extraordinary problem solvers and are capable of powerful mathemat-
ical reasoning when given the opportunity. Our findings point to the potential
benefits of encouraging students to grapple with big mathematical ideas and the
historical contradictions that puzzled mathematicians of old. Children proved more
than capable of engaging with these problems and the formal mathematical
reasoning they fostered. Ryan, Terrell, and Lynn, for example, encountered novel
problems, and their approaches resembled those of current-day mathematicians
when they used inherent mathematical structures and the tools of the discipline
itself for insight into possible solutions. These children have taught us not to avoid
complex mathematical ideas but to use students’ questions and points of confusion
as opportunities.
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APPENDIX
Sample Interview Questions
1. Introductory Questions

a) Name a big number. Name a bigger number. Name a small number.
Name a smaller number. (If child names 0, ask her if she can name a
number smaller than zero.)

b) Please count backward starting at 5. (If child stops at 0 or 1, ask, “Can
you keep counting back?”)

2. Open Number Sentences

2)6-11=[] B)6+[]=4 O -11+6=[]
d)s5-[]=8 o[]-6=-3 f)-5-2=[]
9 6+-3=] W[ J+-4=-9 D)-9+[]=-4

3. Contextualized Problem

a) Yesterday you borrowed $8 from your friend to buy a school t-shirt.
Today you borrowed another $5 from the same friend to buy lunch.
What’s the situation now? (If needed, “Does your friend owe you money,
do you owe your friend money, or is it some other situation?”)

b) Can you write an equation or number sentence that describes this story?
(After child writes an equation ask, “Can you explain how this number
sentence [or equation] relates to the story?”’)

¢) I am going to show some equations that other students wrote for this
problem. They may or may not match yours. Please write yes next to the
equation if you think it matches the story about you and your friend or
write no if it does not match. Then explain your response.

8+-5 =-13
8+5 =13
8-5=-13

4. Comparison Tasks

o

For each pair, circle the larger, write if the two quantities are equal, or
write “?” if there is not enough information to determine which is larger.

a3 -7 b) 0 9
¢)-5 -6 d) -100 5
e)—-3 -3 f)[] -]



