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Reasoning about integers provides 
students with rich opportunities to look 
for and make use of structure.
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t
and 
Negative 
Numbers

The following problem involves basic integer 
arithmetic. How would you solve it? How do 
you think your students would solve it?

Solve for the unknown: 
6 + –3 = 

When we viewed students’ responses to this 
problem, we were surprised to see an impor-
tant type of reasoning emerge. Some students 
were able to use fundamental properties and 
the underlying structure of our number system 
to reason about problems similar to this one in 
ways that did not involve rules or procedures. 
For example, when solving 6 + –3 = ,  
seventh-grader Michaela answered, 

Three. I was thinking about the opposite. . . . 
I took away the negative sign [from –3] and 
said, “What if I added 6 and 3? That would 
be 9, so you’re going forward.” Then I knew if 
you added a negative [as in 6 + –3], it would 
go backward. 

Strategies like Michaela’s exemplify the 
Common Core Standard for Mathematical 
Practice of looking for and using mathemati-
cal structure (CCSSI 2010). Michaela lever-
aged the underlying structure of the num-
ber system—namely, the fact that additive 
inverses exist within the set of integers and are 
opposites—to justify her solution. 

Recognizing and using mathematical 
structure are key components of mathemati-
cal reasoning. We believe that one productive 
way to support students’ use of structure is by 
identifying opportunities to address structure in 
the context of what teachers are already doing 
(for example, when solving typical integer tasks 
such as Michaela’s), rather than developing ad-
ditional tasks or new curriculum materials. We 

Jessica Pierson Bishop, Lisa L. Lamb, 
Randolph A. Philipp, Ian Whitacre, and 
Bonnie P. Schappelle
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have found that the topic of reasoning 
about number systems in general, and 
integers in particular, provides rich 
opportunities for students to look for 
and make use of structure. When stu-
dents extend their understanding of 
numbers to new domains (e.g., from 
whole numbers to integers), they have 
opportunities to identify and use un-
derlying structures and generalizations 
of arithmetic by deciding how opera-
tions should function (or reflecting 
on how operations do function) and 
which properties remain true within 
expanded number systems. This broad 
view of structure within the context of 
integer arithmetic is our focus in this 
article.

STRUCTURAL REASONING AND 
LOGICAL NECESSITY
To illustrate the potential of structural 
reasoning in the realm of integers, we 
consider three vignettes and explore 
the students’ responses through the 
lens of mathematical structure. We 
use the vignettes to help identify and 
illustrate characteristics of one type 
of reasoning about structure, called 
logical necessity—a way of reasoning 

in the context of integers that we 
have identified from our work with 
middle-grades students. The vignettes 
are representative cases from a larger 
study of students’ ways of reasoning 
about integers. In our larger study, we 
conducted individual problem-solving 
interviews focused on integer addition 
and subtraction with 160 students in 
grades 2, 4, 7, and 11 in the south-
western United States. The majority 
of questions in the standardized in-
terviews were open number sentences 
similar to the problem that Michaela 
solved. (For more information about 
the results of the study in relation to 
students’ use of structure, see Bishop 
et al. 2016.) 

Vignette 1
Armando was a fourth grader who 
had heard of negative numbers and 
could use counting strategies to  
correctly solve problems like  
2 – 6 =  and –7 +  = 4. For exam-
ple, Armando described his strategy 
for solving –3 + 6 =  as “counting up 
6.” He explained, 

I started from negative 3, and went 
negative 2 [raised one finger], 

negative 1 [raised a second finger], 
0 [raised a third finger], 1 [raised a 
fourth finger], 2 [raised a fifth fin-
ger], 3 [raised a sixth finger].

When the next question, –8 – 3 =  , 
was posed, Armando sat silently, and 
then with rising intonation answered, 
“Negative 11?” When asked how 
he thought about that problem he 
replied, 

I looked back up at this problem, 
negative 3 plus 6. I got 3 because I 
counted up, negative 3, negative 2. 
And then I thought, “Well, minus 
[as indicated in the problem –8 – 3] 
must be going down.” And I got 
negative 11. Negative 8, negative 9 
[raises first finger], negative 10 [raises 
second finger], negative 11 [raises 
third finger].

In this vignette, Armando built on 
what he knew, using the solution 
from the previous problem and the 
inverse relationship between addition 
and subtraction to help him make 
a reasonable conjecture about how 
subtraction might function when the 
starting value was a negative number. 
Armando reasoned that for addition, 
one counts up; and for subtraction, one 
“must be going down.”  He extended 
the inverse relationship that exists be-
tween addition and subtraction when 
operating with whole numbers to 
the entire set of integers. By compar-
ing the given problem with another, 
known problem, Armando broadened 
his meaning for subtraction so that   
operations within his expanded num-
ber system remained consistent (i.e., 
when adding a positive number, count 
up, and when subtracting a positive 
number, count down, regardless of the 
starting value). We view Armando’s 
use of logical necessity as engaging 
with important mathematical struc-
tures like inverse operations; in so 
doing, he extended his number system 

86  MATHEMATICS TEACHING IN THE MIDDLE SCHOOL  ●  Vol. 22, No. 2, September 2016

G
B

H
0
0
7
/T

H
IN

K
ST

O
C

K

This content downloaded from 130.191.17.38 on Fri, 21 Jul 2017 23:48:00 UTC
All use subject to http://about.jstor.org/terms



Vol. 22, No. 2, September 2016  ●  MATHEMATICS TEACHING IN THE MIDDLE SCHOOL  87

and the corresponding operations to 
include signed numbers.

Vignette 2
For this vignette, refer to Michaela’s 
strategy for solving 6 + –3 = . 
Michaela, a seventh grader, justified 
representing 6 + –3 as starting at 6 and 
moving back 3 units using negation 
and the relationship between additive 
inverses. Michaela argued that because 
3 and –3 are opposites (that is, 3 + –3 = 
0 or –(–3) = 3, more formally), adding 
a negative number would involve an 
action (going backward) that was the 
opposite of adding a positive number 
(going forward). She started with what 
she knew about operations with whole 
numbers and then leveraged the idea of 
additive inverses to justify her answer of 
3. When reasoning about this problem 
and similar problems that involved add-
ing a negative number, other students 
invoked commutativity;  they thought 
about changing 6 + –3 =  to –3 + 6 
= . This use of logical necessity is 
highlighted in the third vignette.

Vignette 3
Ryan, a first grader we interviewed in 
our pilot study, knew about negative 
numbers and successfully solved  
problems like 3 – 5 = , –4 + 7 = , 
and  – 5 = –8 using counting strat-
egies that he extended below zero. 
Ryan was troubled, however, by  
5 +  = 3, asking, “How do you 
get to 3 if it’s plus? . . . If you add 
them, how do they get to 3?” Ryan 
explained why this problem was dif-
ficult, saying, “If you add something, 
how does it get to 3? If it’s 5 plus, 
then it’s [the sum is] always past 3.” 

Toward the close of the interview, 
we posed the problem –2 + 5 =  to 
Ryan. His answer was 3, which he 
obtained using a counting strategy, 
counting up 5 from –2. 

It was negative 2, negative 1 [puts up 
one finger], 0 [puts up second finger], 

1 [puts up third finger], 2 [puts up 
fourth finger], and then 3 [puts up 
fifth finger].

We then asked him to consider 
the problem 5 + –2 = . This was 
the first time we had posed a prob-
lem that involved adding a negative 
number as the second addend. He 
answered, 

Three, because it’s pretty much the 
same thing [points to –2 + 5]. Five 
plus negative 2 and negative 2 plus 5. 
If you add the same things, and you 
just say 5 first and [negative] 2 sec-
ond, it’s still the same thing. . . . You 
always add the same things together.

Ryan’s reasoning used the commu-
tative property of addition to reason 
about a possible meaning for adding 
a negative number. He assumed that 
all numbers, even negative numbers, 
obey the commutative property of ad-
dition; consequently, his answer had 
to be 3. For Ryan’s newly expanded 
number system to be consistent, his 
choice of 3 was the necessary answer. 
The use of the commutative property 
of addition was particularly useful for 
students who, prior to school-based 
instruction, conjectured that com-
mutativity did, in fact, extend to this 
new kind of number. This conjecture 
enabled Ryan and other students 

to develop a possible meaning for 
adding a negative number and to 
reconsider the counterintuitive notion 
that a sum can be smaller than either 
addend (Bishop et al. 2011; Bishop 
et al. 2014; and Karp, Bush, and 
Dougherty 2014).

FEATURES OF LOGICAL 
NECESSITY
When students in our study engaged 
with integer tasks, some were in the 
process of extending their number 
systems from whole numbers to 
include negative numbers. Identify-
ing and using underlying properties 
and structures was a powerful sense-
making strategy that supported 
students to make conjectures about 
which properties should remain true 
(e.g., does addition of integers result 
in a larger sum) and how integer 
arithmetic should operate in their 
newly expanded number systems. 
We describe this type of structural 
reasoning about number systems as 
logical necessity. As noted earlier, 
logical necessity is a type of struc-
tural reasoning wherein students use 
familiar mathematical principles and 
ideas (e.g., commutativity, inverses, 
and, sometimes, proof by contradic-
tion) to make logical inferences and 
deductions in their problem-solving 
approaches to integer arithmetic 
(Bishop et al. 2016).

Table 1 These examples show types of logical-necessity comparisons.

Type of Comparison Example

Comparisons in which the sign of the 
number was varied

6 – –2 =  and 6 – 2 = 
Students use the result of 6 – 2 to 
help them reason about 6 – –2.

Comparisons in which the operation 
was varied

–8 – 3 =  and –8 + 3 = 
Students use the result of -8 + 3 to 
help them reason about -8  – 3.

Comparisons in which other features, 
such as the order of addends, were 
varied

–2 + 5 =  and 5 + –2 = 
Students use the result of -2 + 5 to 
help them reason about 5 + –2.
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In each use of logical necessity that 
we identified in our study, students 
compared two related problems. Like 
Armando, some students held the 
numbers constant and varied the 
operation. At other times, students 
held the operation constant and varied 
other features. 

 The work of Michaela, Armando, 
and Ryan illustrate the three kinds of 
comparisons that students made when 
using logical necessity. They involved 
comparisons in which—

1.  the sign of the number was 
varied (e.g., Michaela’s  
comparison of 6 + –3 to  
6 + 3);

2.  the operation was varied  
(e.g., Armando’s comparison  
of –8 – 3 to –8 + 3 or, more  
accurately, –3 + 6); and 

3.  other features, such as the  
order of the addends, were  
varied  (e.g., Ryan’s comparison  
of –2 + 5 to 5 + –2 and invoking 
the commutative property). 

See table 1 for an example of each 
type of comparison. 

Logical necessity involves both 
choosing an appropriate contrasting 
case and an ability to identify the logi-
cal consequence of changing a particu-
lar problem feature (e.g., the operation). 
The use of comparisons reminds us of 
Fosnot and Dolk’s (2001) work with 
number strings. Number strings are 
a deliberately structured sequence of 
related problems (e.g., 6 × 4, 6 × 40,  
60 × 40) that highlight specific rela-
tionships (e.g., the associative property; 
factorization; and, in this example, 
multiplying by powers of ten) used 
to promote number sense. Similarly, 
the comparisons students used in our 
work—contrasting problems that high-
lighted key structural relationships—
promoted logical necessity. 

Additionally, the use of logical ne-
cessity can occur when students are ei-
ther justifying an already known answer, 
procedure, or rule, or conjecturing how 
an operation on integers might behave 
on the basis of previous knowledge. 
Michaela, the seventh-grader whose 
strategy was shared at the beginning of 
this article and again in vignette 2, had 
completed school-based integer instruc-
tion. Thus, she used logical necessity to 
justify a claim or result she already knew 
to be true. In contrast, Armando, the 
fourth grader highlighted in vignette 
1, did not know how to operate with 
negative numbers but instead made a 
reasoned decision about how operations 
might function in an expanded number 
system. His use of logical necessity was 
conjectural in nature.

TEACHER MOVES TO 
ENCOURAGE THE USE OF 
LOGICAL NECESSITY
About 10 percent of the students we 
interviewed invoked logical necessity 
(similar to ways illustrated in the three 
vignettes above) at some point during 
the interview. We believe that teach-
ers can encourage the use of logical 

Table 2 Integer tasks encourage structural reasoning.

Goal Integer Tasks* Feature Compared and Key  
Understandings Leveraged

a. Make sense of 
or justify adding 
and subtracting 
a positive 
integer when the 
starting value is a 
negative number.

–8 + 3 and –8 – 3
–5 + 5 and –5 – 5

Vary operation
Leverage inverse operations 
and knowledge of zero  
(in second pairing)

b. Make sense of 
or justify add-
ing a negative 
number

7 + 5 and 7 + –5
–5 + 1 and –5 + –1
5 + 1 and –5 + –1

Vary sign of number
Leverage negative/additive 
inverses
(In the third pairing, the signs 
of both addends are varied.)

–3 + 6 and 6 + –3
–9 + 5 and 5 + –9

Vary order of addends
Leverage commutative property

c. Make sense 
of or justify 
subtracting a 
negative number

–5 – 3 and -5 – –3
6 – 2 and 6 – –2
10 – 4 and -10 – –4

Vary sign of number
Leverage negative/additive 
inverses
(In the third pairing, the signs 
of the minuend and subtrahend 
are varied.)

–5 + –3 and –5 – –3
–7 + –9 and –7 – –9

Vary operation
Leverage inverse operations

–5 – –5 and –5 – –1 
–7 – –7 and –7 – –8

Vary subtrahend
Leverage knowledge of zero 
(These pairings are useful 
if students can productively 
engage with –5 – –5 and/or  
–7 – –7. If not, consider posing 
5 – 5 before –5 – –5.)

* The problem pairs in table 2 could also be rewritten as True/False state-
ments (e.g., True/False –8 + 3 = –8 – 3).
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necessity at much higher rates to not 
only support students’ abilities to 
solve these problems correctly but also 
expand their abilities to look for and 
make use of structure. In the sections 
below, we share two teaching moves 
to enhance students’ use of logical 
necessity: strategically selecting pairs 
of problems for students to solve and 
posing specific questions after stu-
dents solve the problem pairs. 

Strategically Selecting Pairs of 
Problems
Initially, we did not expect students 
to reason about integer arithmetic 
by using logical necessity. Likewise, 
classroom teachers may not expect 
that these kinds of seemingly simple 
integer tasks can engender this type of 
rich reasoning or that their students 
will produce these kinds of strategies 
or justifications. Consequently, we 
encourage teachers to incorporate in 
their integer instruction pairs of tasks 
that invite students to reason more 
formally about underlying structural 
aspects of mathematical systems. 

For example, problems such as –3 + 
6 and –3 – 6 may help students grap-
ple with which way to count when 
adding to or subtracting from a nega-
tive number (see type (a) comparisons 
in table 2). This sequencing may lead 
to conversations about comparing and 
ordering negative numbers and mak-
ing explicit the meanings of adding 
and subtracting positive numbers. In 
table 2, we present tasks that lever-
age different comparisons in service 
of particular goals related to integer 
instruction. We envision teachers 
posing the first task in the given pair 
(e.g., 7 + 5 in type (b) comparisons) 
and then using the second task (7 + 
–5 in type (b) comparisons) to build 
on what students already know about 
a more familiar task to successfully 
engage with (or justify the result of ) 
the second task. Similar to the pair 
that evoked Michaela’s strategy, the 

Table 3 Types of probing questions to support structural reasoning

Supporting 
Questions

Examples

Questions that 
support justification 
or an alternative 
explanation

I noticed that when you solved this problem (6 – –2 = ), 
you changed it to 6 + 2 = . I understand how you 
solved 6 + 2, but do you have a way of thinking about 
what it means to subtract negative 2 from 6 in the original 
problem?

If you were explaining to a younger student why you can 
change the problem like that, what would you say?

Questions that 
support an 
orientation to 
notice similarities 
and differences in 
problem pairs

Can someone tell me how these two problems are similar 
and how they are different?

Is there a way that this difference might help you consider 
how to solve the second problem? How?

Questions that 
support an explicit 
rationale or claim 
for students’ 
reasoning

You mentioned 6 + 3 = 9 in your response. How does 
knowing that 6 plus 3 equals 9 help you think about  
6 + –3 = ?

Questions that  
support clarity or 
verification in  
response to the  
specifics of a  
student’s strategy

If, when solving 6 – –2, a student explains that a “negative 
is like the opposite,” a teacher could ask, “What do you 
mean by opposite? The opposite of what?”

You initially answered 5 (to the problem –3 –  = 2), and 
then you changed your answer. How did you decide the 
answer wasn’t 5?

I need you to explain that one more time please.

Questions that 
problematize 
contradictions in 
reasoning (as  
an attempt to 
promote cognitive 
dissonance)

If a student incorrectly answers –5 for –8 – 3 = , 
explaining that she counted 3 places from –8 to reach –5, 
the teacher can respond, “I noticed that when you solved 
–6 + 3 that you added (with emphasis) 3, and you said 
–5, –4, –3. And this problem, [–8 – 3] is minus (with 
emphasis]).

type (b) pairings support students to 
use negation or additive inverses. In 
the example of comparing 7 + 5 to 7 
+ –5, students can leverage the fact that 
the opposite of 5 is –5, and, because of 
this inverse relationship, the result of 
operating with a negative number is the 
opposite of operating with a positive 
number. Thus, if one moves 5 units to 
the right on the number line to add 

5 to 7, one must do the opposite and 
move 5 units to the left on the number 
line to add –5 to 7. 

These tasks can support classroom 
discussions about underlying math-
ematical structures, including funda-
mental properties and their importance 
as well as equivalent transformations. 
However, students may need sup-
port in making the structural aspects 
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of their reasoning explicit, for which 
appropriate and timely use of probing 
questions becomes important. We call 
special attention to type (c) problems 
in table 2 wherein students grapple 
with subtracting a negative number. In 
our study, an average of only 56 percent 
of the seventh-grade students correctly 
answered the five items that involved 
subtracting a negative number. This 
low percentage speaks to a need to 
support students’ understanding of 
these types of problems. Although one 
common approach is to have students 
memorize the sign rules (subtract-
ing a negative is equivalent to adding 
a positive), we found that students 
often misapplied the rule and invoked 
it at inappropriate times. Supporting 
students’ use of logical necessity gives 
teachers opportunities to have students 
reason, rather than simply compute in 
relation to these problem types. 

Posing Probing Questions after 
Students Solve Pairs of Problems
During our interviews, the inter-
viewer sometimes posed questions 
that supported student thinking or 
made explicit the underlying argument 
related to the use of logical necessity. 
We believe that teachers can use these 
questions to productively support their 
students’ use of logical necessity. In 
general, these questions push students 
for justification or alternative models/
explanations for integer arithmetic. For 
example, if students use procedures 
or rules to transform problems that 
involve adding or subtracting negative 
numbers, such as –5 – –3 =  and 6 + 
–3 = , teachers can pose the follow-
ing questions (similar to those posed 
by the interviewers): 

• “Why can you change the problem 
like that [i.e., a change from –5 – –3 
to –5 + 3]?” or 

• “Does changing the signs always give 
a correct result? Why do you think 
so?”

 Additionally, teachers can press 
students to generate explanations for 
their solutions for the original open 
number sentence. For example, teach-
ers can ask, 

• “I noticed that when you solved this 
problem [e.g., 6 – –2 = ], you 
changed it to 6 + 2 = . I under-
stand how you solved 6 + 2, but do 
you have a way of thinking about 
what it means to subtract negative 2 
from 6?” 

We describe these kinds of questions 
as ways to support justification or an 
alternative explanation (see table 3, 
row 1). 

A second category of supporting 
questions consists of those that help 
students notice differences in problem 
pairs and the attribute being compared, 
such as, “Can someone tell me how 
these two problems are similar and 
how they are different?” A third cat-
egory of probing questions includes re-
sponses that support students to make 
rationales, claims, arguments, and con-
nections more explicit. This category 
of follow-up questions includes the 
following types of responses: 

• “You mentioned 6 + 3 = 9 in your 
response. How does knowing that  
6 plus 3 is 9 help you think about 6 
+ –3?” and 

• “So, what is your reason for moving 
to the right?” 

A fourth category includes specific 
questions about a student’s response. 
Some questions and statements can be 
used to clarify or verify the teacher’s 
understanding of the student’s strategy. 
Examples include these:

•  “I need you to explain that one 
more time please.”

•  “How did you decide the answer 
wasn’t 5?”

•  “What do you mean by opposite? 

The opposite of what?” 
•  “It sounds as though you were 

comparing this problem to a differ-
ent problem. Were you?” 

The final category of probing ques-
tions includes prompts that problema-
tize contradictions in student reason-
ing to provoke cognitive dissonance. 
Some follow-ups in this category 
might involve posing a new problem 
that is based on the teacher’s conjec-
ture about how a child was reason-
ing. For example, in response to the 
interaction shared in the last row of 
table 3, the teacher might pose the 
problem –8 + 3 =  rather than refer 
to a previously solved problem, to 
highlight the contradiction.

In closing, we have found that 
purposeful problem combinations 
and the use of probing questions can 
encourage students to engage with 
mathematical structure. We suspect 
that the act of making comparisons 
between carefully chosen, contrast-
ing cases is not restricted to integer 
tasks but is a more general feature 
of instruction and curriculum design 
that will support students to look 
for, recognize, and use mathemati-
cal structure across the K–grade 12 
curriculum. We encourage teach-
ers and mathematics educators to 
think about structure more broadly 
as including the use of fundamen-
tal properties in conjunction with 
conjecturing and deduction to reason 
about extensions to the number 
system—both within the context 
of integer instruction and in other 
mathematical topics.
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