I4: Incremental Inference of Inductive Invariants for
Verification of Distributed Protocols

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin
Manos Kapritsos, Baris Kasikci, Karem A. Sakallah

University of Michigan

{mahaojun,amangoel,jeannin,manosk,barisk,karem}@umich.edu

Abstract

Designing and implementing distributed systems correctly
is a very challenging task. Recently, formal verification has
been successfully used to prove the correctness of distributed
systems. At the heart of formal verification lies a computer-
checked proof with an inductive invariant. Finding this in-
ductive invariant, however, is the most difficult part of the
proof. Alas, current proof techniques require inductive in-
variants to be found manually—and painstakingly—by the
developer.

In this paper, we present a new approach, Incremental In-
ference of Inductive Invariants (I4), to automatically generate
inductive invariants for distributed protocols. The essence of
our idea is simple: the inductive invariant of a finite instance
of the protocol can be used to infer a general inductive in-
variant for the infinite distributed protocol. In 14, we create
a finite instance of the protocol; use a model checking tool
to automatically derive the inductive invariant for this finite
instance; and generalize this invariant to an inductive invari-
ant for the infinite protocol. Our experiments show that 14
can prove the correctness of several distributed protocols
like Chord, 2PC and Transaction Chains with little to no
human effort.

1 Introduction

For more than 50 years, the systems community and industry
have been relying on testing to increase their confidence in
the correctness of software [5, 7, 25, 37, 49]. As the avail-
ability demands start to increase, however, testing can fall
short, since it is impractical to exhaustively test a program.
Consequently, testing is bound to occasionally miss a bug,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6873-5/19/10...$15.00
https://doi.org/10.1145/3341301.3359651

370

which may manifest during production, resulting in loss of
availability, revenue, and company reputation [14, 53, 54, 57].
This has led many researchers and companies to look for
alternative ways to develop software with strong correctness
guarantees.

Thankfully, the increasing need for availability has been
paralleled by an increase in the capabilities of formal verifica-
tion techniques. Over the last decade, a number of techniques
and tools have been built to formally verify the correctness
of complex systems software [9, 10, 30, 31, 38, 44, 45].

Unfortunately, existing approaches to formally verify-
ing complex systems have a major scalability bottleneck.
These techniques use interactive and automated theorem
provers [15, 42, 46, 47, 52] to dispatch a number of proof
obligations, thereby simplifying the proof. At the heart of
every proof, however, lies a critical process that existing
approaches do not automate: finding an inductive invariant.

An invariant of a state transition system is a predicate on
the states that holds for all states that are reachable from
the initial state(s); it is any set of states that includes all
reachable states. An invariant is inductive if it is closed under
the transition relation, i.e., the next state of every state in this
set is also a member of this set. Proving a safety property P—
i.e., showing that P always holds for any execution started
from the initial state(s)—amounts to showing either a) that
P is an inductive invariant, or b) that P is an invariant that
can be strengthened to become inductive.

Inductive invariants are tightly linked to the correctness of
distributed systems. Proving the correctness of such a system
is typically split into two parts: proving the correctness of
the distributed protocol by finding an inductive invariant;
and showing that the implementation follows the protocol,
which typically does not require inductive reasoning [30].

While there are simple centralized programs for which
inductive invariants are not required, we have found that all
but the most trivial distributed protocols require an inductive
invariant in order to prove a reasonable safety property. In
non-trivial verification cases, the required safety property P
is an invariant but not an inductive one, and completing the
verification proof entails the derivation of additional invari-
ants that are used to constrain P until it becomes inductive.
These additional invariants are viewed as strengthening as-
sertions that remove those parts of P that are not closed

https://doi.org/10.1145/3341301.3359651
https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

under the system’s transition relation. In most cases, find-
ing these assertions is the hardest part of the proof. Most
crucially, even for simple systems, these assertions can be
very complicated, and as system complexity increases, these
assertions—and the resulting inductive invariants—grow pro-
portionally more complex.

As a result, finding an inductive invariant for a distributed
protocol is usually the hardest part of the proof. During the
IronFleet project [30], the authors spent about one week
trying to identify the inductive invariant for a very simple
distributed protocol, where a number of nodes pass around
a token in a ring. After careful thought and long discussions,
they identified an invariant that included 5 separate clauses
which, when combined, were sufficient to support an induc-
tive proof [2]. It is perhaps not surprising then, that when
they attempted to find the inductive invariant of a real-world
system—i.e., the Paxos protocol [39]—the required effort was
on the order of months.

Proving the correctness of protocols has a lot of practical
value. Major companies are using formal verification to prove
their designs and protocols correct, even when their imple-
mentations are unverified. For example, Amazon uses TLA+
to verify the correctness of its system designs. Similarly, Mi-
crosoft uses the IronFleet methodology to verify some of its
protocols without going down to the implementation level.
Even when the implementation must be verified, IronFleet
showed that protocol-level verification is an integral part of
the process.

This paper introduces an automated way of finding induc-
tive invariants for distributed protocols, one that does not
rely on human intuition. The core insight that drives this
new approach is that the basic elements of these invariants
are independent of the size of the system, and that they can
therefore be inferred from small, finite instances. For ex-
ample, the inductive invariant of the token ring mentioned
above states that only the last node in a sequence of token
owners can hold the token. This must be true regardless of
the number of nodes on the ring. Similarly, the inductive
invariant of Paxos states that any two quorums of acceptors
must overlap in at least one node; this must hold for any
number of participating acceptors.

We leverage this insight to automate the process of identi-
fying inductive invariants for distributed systems. We pro-
pose a new proof technique and tool called Incremental In-
ference of Inductive Invariants (14). The key idea behind 14 is
to first identify the inductive invariant of a small instance of
the system and then to use that instance-specific invariant to
infer a generalized invariant that holds for all instances.

The key requirement for I4 is automatically identifying the
inductive invariant for a small instance of the system. To that
end, I4 uses decades of progress made by the model checking
community. Model checking is typically considered inade-
quate [4, 30, 56] for proving the correctness of real-world
distributed systems, as the state space it must explore grows

371

exponentially. While this state space explosion certainly hap-
pens in generic distributed systems, model checking is power-
ful enough to prove the correctness of small, finite instances.
In particular, the IC3 model checker [6] has shown that it
is possible, given a finite and moderately complex system
instance, to either compute an inductive invariant which
implies the desired safety property; or to produce a coun-
terexample if the system is not correct. I4 harvests this power
as a means to an end: not to prove the correctness of those
small instances, but to infer an inductive invariant that holds
for all instances.
Overall, we make the following contributions:

e We propose a new approach to the verification of dis-
tributed protocols. Instead of manually and painstak-
ingly identifying an inductive invariant, we can draw
inspiration from the inductive invariants of small, fi-
nite instances of these protocols.

e We propose I4, an algorithm that implements this new
approach by combining the power of model checking
and automated theorem provers. I4 creates a finite
instance of a distributed protocol and leverages model
checking to find an inductive invariant specific to that
instance. I4 then uses this invariant as a starting point
to identify a generalized inductive invariant that holds
for all instances of the protocol.

We evaluate the effectiveness of 14 and find that it can

prove the correctness of a number of interesting dis-

tributed protocols—e.g., Two-Phase Commit, Chord,

Transaction Chains—with little to no manual effort,

and without us providing any insight into the sub-

tleties of these protocols (in fact, we didn’t fully un-
derstand how some of these protocols work).

The rest of the paper is structured as follows. Section 2
shows a concrete example of how the inductive invariants
of small, finite instances can help us discover a generalized
inductive invariant that holds for all instances. Section 3
gives an overview of the I4 approach, while the next two
sections present the details of the two main components of
the approach: generating an inductive invariant for a finite
instance (Section 4) and generalizing that invariant to one
that holds for all instances (Section 5). Section 6 presents
our experiences applying I4 to real distributed protocols and
Section 7 discusses the limitations of our approach and some
open research problems. Section 8 discusses related work
and Section 9 concludes the paper.

2 A New Perspective

Verification of distributed systems has so far relied heavily on
human intellect: to prove the correctness of a distributed sys-
tem, one must first understand it well. One can then attempt
to write a formal proof of correctness, by demonstrating the
existence of an inductive invariant. Inductive invariants are

Algorithm 1 Lock Server

after init {
semaphore(Y) := true;
link(X, Y) := false;
}
action connect(c: client, s: server) = {
require semaphore(s);
link(c, s) := true;
semaphore(s) := false;
}
action disconnect(c: client, s: server) = {
require link(c, s);
link(c, s) := false;

semaphore(s) := true;

typically much more complex than the desired safety prop-
erty and finding them requires an intimate understanding of
the internal mechanics of the protocol.

In an attempt to facilitate this process, Padon et al. recently
developed Ivy [47]. Ivy takes as input a protocol description
and a safety property, and guides the user, through a series of
interactive steps and visual counterexamples-to-induction,
to discover an inductive invariant. Ivy still fundamentally
relies on human intellect for identifying such an inductive
invariant; but once that invariant is found, Ivy automatically
checks that it is indeed inductive.

In this paper, we propose a new approach for finding such
inductive invariants that does not rely on a deep understand-
ing of the system. The key insight of our approach is that the
behavior of most distributed protocols does not fundamen-
tally change as their size increases. This initial insight led us
to ask the question: is it possible to infer the inductive invari-
ant of a distributed protocol by observing a small instance of
the protocol?

Our experience so far indicates that the answer to this
question is typically “yes”. Distributed protocols exhibit a
high degree of regularity: what is true for a small instance of
four nodes is also true for a large instance of 1000 nodes. We
will demonstrate this regularity using a simple lock server
protocol [47, 56] with N servers and M clients.

Case study: lock server

Algorithm 1 shows the lock server protocol description, writ-
ten in Ivy. In this protocol, every server S maintains a lock
and the server’s state is a boolean semaphore(S) indicating
whether it currently holds its lock. Every client-server pair is
associated with a boolean link(C, S) which denotes whether
client C holds the lock of server S. Initially every server holds
its own lock and all client-server links are set to false.
There are two possible actions in this protocol. A client
may send a lock request to a server and acquire that server’s
lock if the server currently holds its lock. A client may also

372

release a lock, handing it back to the server. The safety prop-
erty of this protocol is simple: “no two clients can have a link
to (i.e., hold the lock of) the same server at the same time”:

VCl, Gy, S. lmk(Cl,S) A lmk(Cz,S) B (Cl = Cz)

Let us now consider the inductive invariants of small in-
stances of this protocol. Section 4 describes how we can
automatically generate these instances and their inductive
invariants. For now, we are only interested in what these
inductive invariants are.

The smallest non-trivial instance consists of one server
and two clients. The inductive invariant to prove the correct-
ness of that instance is:

—(semaphore(S0) A link(C0, S0)) A
—(semaphore(S0) A link(C1, S0)) A
=(link(CO0, S0) A link(C1, S0)) (Safety Property)

If we consider a larger instance with more clients—say

four—the inductive invariant becomes bigger, but remains
essentially the same:
—(semaphore(S0) A link(C0, S0))
—(semaphore(S0) A link(C1, S0))
—(semaphore(S0) A link(C2, S0))
—(semaphore(S0) A link(C3, S0))
Safety Property

> > > >

When we further consider instances with multiple servers,
the invariant again increases in size but not in complexity.
For example, the inductive invariant for an instance with
two servers and four clients is:
—(semaphore(S0) A link(C0, S0))
—(semaphore(S0) A link(C1, S0))
—(semaphore(S0) A link(C2, S0))
—(semaphore(S0) A link(C3, S0))
—(semaphore(S1) A link(CO0, S1))
—(semaphore(S1) A link(C1, S1))
—(semaphore(S1) A link(C2,S1))
—(semaphore(S1) A link(C3, S1))
Safety Property

> > > > > > > >

Given the above instances, it does not take much ingenuity
to manually come up with an inductive invariant that works
for all instances of this protocol:

VC, S.=(semaphore(S) A link(C, S))
Safety Property

A

Of course, this protocol is rather simple and its inductive
invariant is quite small. But the principle still applies to more
complicated protocols: we can use the inductive invariant
of a small instance to infer a generalized inductive invariant
that works for all instances of the protocol.

3 Overview of I4

The ultimate goal of 14 is simple: given a protocol descrip-
tion and a safety property, it tries to prove the correctness
of the protocol by identifying an inductive invariant that
implies the safety property. As we mentioned in Section 2,
the hardest part of any correctness proof is finding such an

| - Safety property violation
ncrease size J«
(© orease sze)

Initial size @ Concretize }

@ Create a
finite instance

@ Averroes
(AVR)

\A

Protocol.ivy

Correct

Invariant generation on a finite instance
(Section 4)

Invariant generalization
(Section 5)

Figure 1. Flow of I4. White boxes are fully automated, while gray boxes denote manual effort.

invariant. Once we have a candidate invariant for a finite
instance, we generalize it and use the Ivy tool [47] to check
whether it is inductive for an arbitrarily-sized instance.

Figure 1 shows an overview of the I4 flow. Given a protocol
description—written in Ivy—and an initial size, 14 first gener-
ates a finite instance of that protocol with a given initial size.
For example, given the lock server protocol of the previous
section and an initial size of (1, 2), 14 will generate a finite
instance of the protocol with one server and two clients. It
then uses the Averroes model checker [27] to either gener-
ate an inductive invariant that proves the correctness of the
protocol for that particular instance, or produce a counterex-
ample demonstrating how the protocol can be violated and
which can be used to debug the protocol [18, 24].

If the protocol is too complex, the model checker may fail
to produce an answer within a reasonable amount of time or
it may run out of memory. If this occurs, the finite encoding
is simplified—using a concretization technique—to further
constrain it and make it easier for the model checker to run
to completion. This step is currently done manually but is
easily automatable. Section 4 describes the above steps in
more detail (steps (D), 2), 3@ and (@) of Figure 1).

Once an inductive invariant has been identified, 14 gener-
alizes it to apply not only to the finite instance that produced
it, but also to all instances of the protocol. This process (steps
(5), (6) and (7)) is described in detail in Section 5.

4 Invariant generation on a finite instance

The core idea of I4 is to leverage advances in model-checking
techniques to generate an inductive invariant on a small
finite instance of the protocol, then generalize this invariant
to the full protocol. This section details the instantiation of
the protocol to a finite instance to allow for automated model
checking. Given a distributed protocol description in Ivy, 14
automatically creates a finite instance of the protocol in the
VMT format [1], an extension of the SMT-LIB format [3] to

373

represent state-transition systems. I4 then calls the Averroes
model-checking tool [27] to generate an inductive invariant
of this finite instance.

4.1 Leveraging the power of model checking

Model checking algorithms have had significant success on
verification problems with bounded domains. Unbounded
domains, however, continue to pose a serious challenge: an
unbounded number of objects creates an unbounded number
of interactions that are harder to reason about. As a result,
automated reasoning on unbounded domain protocols gener-
ally employs quantifiers and performs complex, expensive—
and often undecidable—quantifier-based reasoning. On the
other hand, model checking for finite-state transition sys-
tems can be done quantifier-free, is much more mature, and
has been successfully applied to many real-world finite sys-
tems [6, 13, 17, 26, 27, 41]. 14 leverages the strength and ma-
turity of model checking on a finite instance of the problem,
before generalizing the invariant to the general protocol.
One of the key simplifications offered by reasoning on
a finite instance is the ability to reason on quantifier-free
formulas. For example, the assertion Vg (zero < E) can be
translated in the finite domain where E € {ey, e1, 2, e3} as

(zero < ep) A (zero < e1) A (zero < e3) A (zero < e3).

This translation is always possible, even for complicated
assertions involving two or more alternating quantifiers. For
example, in the unbounded domain of nodes N, the assertion
Vxen Jyen $(X,Y), can be simply expanded and translated
to a finite 3-node domain {ng, ny, ny} as:

(s(no, no) V s(ng, n1) V s(ng, n2)) A
(s(n1,n9) V s(ny, ny) V s(ng, n)) A
(s(ng, ng) V s(ng, nq) V s(ng, ny))

In general, in a finite domain any formula in first-order logic
can be expanded into a quantifier-free formula, typically at

the price of a growth in the size of the formula. In general,
this does not scale but proves very useful for applying model
checking on small, finite instances.

A typical definition of a distributed protocol involves dif-
ferent elements ranging over domains. Domains are typi-
cally unbounded. Examples of domains include the domain of
nodes, clients, servers, epochs, rounds, transactions, etc. For
example, the lock server protocol we described in Section 2
includes two unbounded domains: Dge,per representing the
servers, and Djjep; representing the clients. Some domains
such as epochs, rounds or transactions may have a natural
ordering. This ordering can be modelled in Ivy by adding
axioms to the original protocol.

Creating a finite instance of a protocol consists of making
each domain size bounded by an explicit value. The explicit
bound enables the simplification of the expressions of the
protocol, that can now be expressed without quantifiers. This,
in turn, allows the finite protocol to be efficiently verified
using model checking algorithms.

4.2 Picking a size for the finite instance

A crucial aspect of creating a finite instance is picking the
right size for each domain of the finite instance. The instance
must be large enough to exhibit some pattern that can then
be generalized to the full protocol, but also small enough
so that the finite instance of the problem is tractable for
automatic model checking. Our current prototype relies on
the user to provide an initial size of the finite instance. 14
will create an instance of that size; but we may later realize
(see Section 5.2 for details) that this instance was too small.
In that case, we pick one of the variables in the instance,
increase its size by one, and repeat the process (step (8) in
Figure 1). This approach is akin to an iterative deepening
search algorithm, starting with a small size or depth and
growing it as needed.

The initial size of the problem is an educated guess based
on a response to the question: at least how many nodes, clients,
servers or epochs are needed to exercise interesting actions and
properties of the protocol? For example, if clients are sharing
a lock, at least two clients are needed to show possible vio-
lations (lock server protocol); if epochs are totally ordered,
at least three epochs are needed for transitivity of the order
to be interesting; if a special zero epoch is further needed,
at least four epochs are needed to exercise meaningful in-
teractions of zero and the order transitivity (distributed lock
protocol). In the lock server protocol, for example, we set the
initial size to one server and two clients, i.e., |Dserper| = 1
and |Dclient| =2

4.3 Translation from unbounded to finite domain

Once a size has been picked for each domain, 14 translates
the Ivy implementation to the desired finite VMT instance
(step (). The first step is to define an explicit set of the
right size for each domain. In the translation of the lock

374

server presented in Figure 2, we define Dgerper = {SO} and
D.jient = {C0,C1}. Relations are then expanded to a number
of boolean variables representing each possible instantiation.
In this example, the relation link : D¢jjent X Dserver — Bool
is expanded into two boolean variables 1ink_C0_S@ and
1link_C1_S0. Function definitions are similarly expanded: a
function f : D¢jient — Deiiens would be translated to two
variables f_C0,f_C1 € {C0,C1}, respectively representing
f(C0) and f(C1). Note that we only handle relations and
functions with finite (or finitized) domains and codomains.
From there on the translation is purely syntactic and straight-
forward (Figure 2). For instance, the property expression

Vcl’cz’s link(Cl, S) A link(CZ, S) - (Cl = Cz)

is translated into a conjunction of 4 instances with C; €
{Co,C1}, C; € {C0,C1} and S € {S@}. For example, one in-
stance where (C1, Cs, S) = (€0, C1, S@) becomes 1ink_C0_S@
A 1ink_C1_S0 = (Co = C1).

4.4 Overcoming the limitations of model checking

In some cases, the finite instance may still be intractable for
the model checker. In such cases, we manually concretize
the values of certain variables to make the problem easier to
solve, and to compute a more concise finite inductive invari-
ant. For example, a finite, totally ordered domain of epochs
Depoch = {E@,E1,E2,E3} can be concretized by explicitly
imposing the domain axiom (E@ < E1 < E2 < E3). This
reduces the search space and allows the model checker to
only consider states where epochs are following this specific
order. Other examples of useful concretizations include fix-
ing special elements as constants in the VMT instantiation,
for example fixing the smallest epoch zero to EQ, explicitly
specifying which node initially holds a lock, etc.

Note that concretizing the finite instance results in limit-
ing the scope of the finite inductive invariant we produce,
i.e., the finite inductive invariant is only valid for the given
concretized finite instance. But this does not hinder the in-
variant generalization presented in Section 5, as long as the
concretizing information is included in the invariant gener-
alization procedure.

There are, however, a few subtleties to pay attention to
when solving finite instances instead of the original prob-
lem. First, the finite instance cannot capture interactions
involving elements in a higher domain space. For example,
with |Dcjient| = 2, the finite instance cannot capture interac-
tions that involve at least 3 distinct clients. I4 handles this
by increasing the size of the finite instance when it fails to
generalize the invariant. Second, the finite instance may in-
troduce special clauses that are not present in the original,
unbounded protocol. For example, for the domain of epochs
with (E0 < E1 < E2 < E3), epoch E3 is inherently special in
the finite space since there does not exist any epoch larger
than E3. The finite inductive invariant may thus include spe-
cial clauses involving E3, which may no longer be useful for

type client ; Define types
(define-sort
(define-sort
(define-fun CO
(define-fun C1
(define-fun S0

type server

relation semaphore (X: server) ;

and their domains

9]
9]

client_ty'pe (9] (_ BitVec 2))
server_type () (_ BitVec 3))
client type (_ bv0 2))
client type (_ bvl 2))
server_type (_ bv0 3))

0

Define state elements

(declare-fun semaphore S0 () Bool)
relation link(X: client, (declare-fun link_CO_SO () Bool)
Y: server) (declare-fun link_Cl_SO () Bool)
after init ; Initial state formula
{ (define-fun .init () Bool (!
semaphore (YY) := true; (and (= semaphore S0 true)
link (X, Y) := false;,; (= link CO_SO false)
} (= link C1_SO false)) :init true))

export connect ;
export disconnect

Declare actions
(define-sort action_type ()

(define-fun connect

(define-fun disconnect

(_ BitVec 4))
() action_type (_ bv0 4))
() action_ty'pe (_ bvl 4))

(s server_ type)) Bool

action connect (c: client, ; Action connect
s: server) = (define-fun connect fun ((c client type)
{ (and (or (= ¢ CO0) (= ¢ Cl1l))

require semaphore (s); (= s S0)

link(c, s) := true; (= semaphore S0 true)

semaphore(s) := false; (= link CO_SO next (ite (and (= s 8S0) (= ¢ CO)) true 1link CO_S0))
} (= link_Cl_SO_next (ite (and (= s S0) (= c C1l)) true link_Cl_SO))

(= semaphore S0 next (ite (= s S0) false semaphore S0))))
action disconnect(c: client, ; Action disconnect -
s: server) = .

{ ; Transition relation

require link(ec, s); (declare-fun action () action_ type)

link(c, s) := false; (declare-fun connect c () client type)

semaphore(s) := true; (declare-fun connect s () server_ type)
} (declare-fun disconnect_c () client_type)

(declare-fun

(define-fun

(and
(=>

disconnect_s ()
.trans () Bool (!

(= action connect)

server_type)

(connect fun connect ¢ connect s))

(=> (= action disconnect) (disconn;ct_fun disc;nnect_c dIsconnect_s))

(=> (not (or

(= action connect)
(and (= link_CO_SO_next
(= 1ink_C1_SO next

(= action disconnect)))
link CO_SO0)
link C1 SO0)

(= semaphore_go_next sema;ho;e_SO)))) :trans true))

invariant forall Cl, C2: client,

S: server. ; Safety property
link(C1, S) & link(C2, S) -> (define-fun
Ccl =c2

.prop () Bool (!
(=> (and link CO_S0 link C1 SO0)

(= CO Cl)) :invar-property 0))

Figure 2. Translation of lock server in Ivy to a finite instance (1 server / 2 clients) in VMT. Note that our VMT representation
uses different vector sizes (1 for boolean, 2 for clients, 3 for servers) as an easy way to ensure that the model-checker does not

try to compare values of different types.

the unbounded case. We call such clauses instance-specific
clauses. Section 5 discusses how these are pruned during
invariant generalization. Note, finally, that concretization is
not a panacea. It is a manual and error-prone process and
should therefore be used only when necessary to overcome
the limitations of model-checking.

4.5 Invariant generation on the finite instance

After creating a finite VMT instance, 14 passes it on to the

Averroes v2.0 tool [27] (AVR) to perform model checking.

375

If AVR finds that the finite instance does not uphold the
safety property, it produces a counterexample, which can
then be used to debug the protocol [18, 24]. If the safety
property holds, AVR generates an inductive invariant for
the finite instance; minimizes the invariant by removing
redundant clauses; and then passes it on to the next step to
be generalized.

5 Invariant generalization

Once AVR finds an inductive invariant for the finite instance,
I4 will use that inductive invariant as a starting point to
identify a generalized inductive invariant that works for all
instances of the protocol. While performing this general-
ization, however, we must guard against the following two
dangers:

e Too-small finite instance If the finite instance we
have chosen is too small, its inductive invariant may
not contain enough information to be generalizable
to all instances. Consider, for example, what would
happen if we started with an instance of the lock server
protocol that had only one server and one client. Since
the safety property of the protocol is trivially true in
this case, the safety property is actually an inductive
invariant for this particular instance. This means that
the inductive invariant from this particular instance
does not give us any information about the generalized
inductive invariant that holds for all instances. In this
case, the algorithm should eventually realize that this
finite instance is not helpful and move on to a larger
instance, eventually finding an instance that is large
enough to be generalizable.

e Instance-specific clauses As we discussed in Sec-
tion 4.4, even after we have identified an instance that
is large enough to contain all the information required
to put together a generalized inductive invariant, it
is possible that the inductive invariant of the finite
instance includes additional clauses that only hold for
that specific instance and are thus not easily general-
izable. Our generalization algorithm should therefore
identify and prune such clauses.

The rest of this section describes the steps that 14 takes to
identify this generalized inductive invariant (steps (5),(6) and
(@ in Figure 1).

5.1 Initial generalization

The first step is to generalize the finite invariant to instances
of arbitrary size in step (5) by universally quantifying the
strengthening assertions (clauses) produced by AVR. Con-
sider, for example, the clause P(N1), where P denotes an
arbitrary predicate and N1 is one of the nodes in the finite in-
stance of the protocol. In step (5), 14 generalizes this clause to
apply for all nodes; i.e., VN;. P(N;) (line 21 of Algorithm 2).
This is the simplest form of clause generalization, where the
clause applies universally to all nodes.

There are two cases, however, where clauses do not apply
universally and require a slightly more complex generaliza-
tion. The first case (lines 3-9 in Algorithm 2) is when a clause
involves different variables of the same type. In this case,
we weaken the universally quantified clause to only apply
to distinct elements of that type. For example, a clause such

376

Algorithm 2 Generalization

1: function GENERALIZATION(clause, relations)
2 weakenings « relations.conjunction()
3 for varl € clause do
4 for var2 € clause do
5: if varl # var2 & wvarl.type = var2.type then
6 weakenings.add(varl # var2)
7 end if
8 end for
9: end for
10: for const € concrete_consts do
11: for var € clause do
12: if var.type = const.type then
13: if var.value = const.value then
14: weakenings.add(var = const)
15: else
16: weakenings.add(var # const)
17: end if
18: end if
19: end for
20: end for
21: return Voar € clause. weakenings = clause

22: end function

as P(N1) A Q(N2) is generalized to VN1, Nz. (N7 # N;) =
P(N1) A Q(Na).

The second case (lines 2 and 10-20 in Algorithm 2) is
a result of the (optional) concretization procedure we de-
scribed in Section 4.4. During this procedure, we reduce the
search space of the model checking problem by assigning
concrete values to some of the state variables of the pro-
tocol. In our distributed lock protocol, for example, one of
the nodes—called first—is special in that it is the one ini-
tially holding the lock. During concretization, we can assign
NO = first, to limit the model checking problem to only
consider the case where N0 is that node. Any such concrete
assignments—in the form of generic relations or simple con-
stant assignments—must be taken into account when per-
forming generalization. For example, if we used N@ = first
as our concretization, we would generalize clause P(N@) to
VNy. (Np = first) = P(Ny). Similarly, we would gener-
alize clause P(N@) A Q(N1) as YNy, Ni. (Ny # Ni) A (N =
first) A (Ny # first) = P(Ny) A Q(N;). In addition to
such constant assignments, our concretization process may
include additional information about this finite instance, in
the form of generic relations defined in the original Ivy pro-
tocol. For example, our concretization can produce the clause
btw(No,N1,N2), denoting that node N1 is between nodes NO
and N2 in a ring topology. The conjunction of all such con-
cretizations is given as input to our generalization algorithm
and is applied as a weakening to all invariant clauses (lines
1,2,21 of Algorithm 2).

5.2 Invariant pruning

After all clauses are generalized, they are added to the origi-
nal protocol and are passed on to Ivy (step (6)), which checks
if they are sufficient to prove the correctness of the protocol.
Ivy will check if the conjunction of all clauses is inductive.
In particular, it tries to answer the following question (sepa-
rately for each clause A, including the safety property). Given
an arbitrary state s where the invariant holds, is there a valid
transition to a state s’ where A does not hold? There are
three possible outcomes:

1. The generalized clauses are inductive and Ivy success-
fully proves the correctness of the protocol.

2. Ivy fails to prove the safety property on s’. This hap-
pens if the finite instance that led to the generalized
clauses was too small to capture all behaviors of the
distributed protocol. In this case, we need to create
an instance with a larger size (e.g., more nodes) and
repeat the process (step (8)).

3. Ivy fails to prove one or more of the generalized clauses

on s’. There are two possible reasons for this failure.
First, it is possible that the finite instance we are con-
sidering is “large enough”—i.e., its inductive invari-
ant covers all interesting behaviors of the unbounded
protocol—but it additionally includes some instance-
specific clauses. These clauses do not generalize to all
instances and thus their universally quantified form is
too strong and will fail Ivy’s check. I4 removes these
clauses from the inductive invariant (step (7)) and re-
tries the Ivy verification.
The second reason why some assertion may not be in-
ductive is that the entire invariant (i.e., the conjunction
of the safety property and all strengthening clauses)
is not inductive. This can happen when the finite in-
stance is too small. Note that we do not have a way to
distinguish this case from the case above—where the
invariant was too strong, rather than too weak. We
will therefore start pruning clauses one by one, until
the invariant is too weak to support the safety prop-
erty (case (2) above), which will lead I4 to abandon the
attempt on this finite instance and repeat the process
with a larger one.

6 Evaluation

We evaluate the ability of I4 to infer inductive invariants by
testing it on seven distributed protocols: a lock server (Sec-
tion 6.1), a leader election algorithm (Section 6.2), a distributed
lock protocol (Section 6.3), a Chord ring [51] (Section 6.4),
a learning switch (Section 6.5), a database chain consistency
protocol (Section 6.6), and a two-phase commit protocol [28]
(Section 6.7). For the first six protocols, we verified the cor-
rectness of existing Ivy implementations using the safety
properties specified in [47]; we cover all examples originally

377

presented in [47], albeit with a much higher degree of au-
tomation. We implemented two-phase commit and specified
its safety property based on its original description [28]. Fi-
nally, Section 6.8 evaluates our I4 prototype in terms of how
long it takes to verify each protocol.

We also tried the 14 approach on Paxos, but we have not
found an inductive invariant. This is because the Averroes
model-checker runs out of memory even on small, finite
instances of the Paxos protocol. This is not too surprising,
since Averroes was originally designed for hardware model-
checking and not for distributed systems. We therefore do
not think that this is a fundamental roadblock and are cur-
rently exploring ways to leverage the inherent regularity of
distributed systems to facilitate the model-checker’s job.

We used the first three protocols (lock server, leader elec-
tion and distributed lock) to develop and refine the 14 ap-
proach. We were then able to apply the 14 approach with no
modification on the last four protocols (Chord ring, learning
switch, database chain consistency and two-phase commit),
and prove their safety property fully automatically—except
for the simple manually-added concretization in Chord, which
required a cursory inspection of about one minute—without
even fully understanding each protocol.

Table 1 presents some relevant parameters for each pro-
tocol and for its finite instantiation, such as the number of
domains and variables it uses, the size of the finite instance
and the complexity of the resulting invariant. Note that our
concretization phase—where needed—is relatively low-effort,
requiring at most one assignment in all cases.

6.1 Lock Server

Our first case study is a simple lock server, our running ex-
ample from Section 2. Since the safety property of the lock
server is trivially satisfied with only one client, we instanti-
ate this protocol with one server and two clients. 14 generates
the generalized inductive invariant for this protocol by go-
ing through its generalization (step (4) in Fig. 1), where it
places universal quantifiers before every strengthening as-
sertion. The generalized inductive invariant below passes
Ivy’s verification with no manual effort.

VS0, C0. =(semaphore(S0) A link(C0,S50)) A

Safety Property

6.2 Leader Election

Our second case study is a leader election protocol on a
ring [8, 47]. Given a ring of an unbounded number of nodes,
each with its own unique ID, the goal of the protocol is to
elect the node with the highest ID to be the leader. A node
can either (a) send its ID to the next node; or (b) forward a
message from the previous node, if the ID in the message
is larger than its own ID. When a node receives its own ID,
the protocol determines that no other ID is larger than the
node’s own ID, and this node becomes the leader.

1 ;
. Finite Concreti- SMT | Clauses in c auses in Pruning
Protocol Domains | Var minimized | . .
instance size zations calls | invariant . . iterations
invariant
lient = 2
Lock server 2 2 ceien 0 40 3 2 0
server =1
Leader electi de = 3
eader election 2 5 noae idn(N;) = ID; | 10527 61 19 0
in ring id=3
Distributed lock de = 2
istibuted fo¢ 2 5 noae zero=E, | 94713 629 241 2
protocol epoch = 4
Chord ri
oré ring 1 9 node = 4 org=N, | 286818 1141 94 2
maintenance
. . de = 3
Learning switch 2 6 node 0 4986 105 53 2
packet =1
Database chain transaction =3
L 4 13 | operation = 3 0 6552 154 31 2
replication
key = 1 node = 2
Two-Ph
worthase 1 7 node = 6 0 9619 88 46 0
Commit

Table 1. Various parameters for creating finite instances for our seven distributed protocols. Varis the number of state variables
and SMT calls is the number of SMT [3] calls required to find the inductive invariant of the finite instance.

This protocol uses two domains node and id, respectively
for nodes and IDs, and the ID of node N is idn(N). The
ring structure is modelled using a relation btw(N7, Nz, N3)
indicating whether node N; is between nodes N; and Ns,
and includes axioms to build a ring topology, where each
node can only communicate with its two neighbors [47].
The protocol also instantiates a total order le(ID;, ID;) to
compare any two IDs. A relation pending(ID, N) is used to
indicate that there is a message ID to node N pending in
the network. As the network may delay or duplicate any
message, the protocol never discards any sent message.

The safety property of leader election is defined as “there
cannot be two distinct leaders”:

VN1, N,. leader(N;) A leader(N;) = (N1 = N»)

Since a meaningful ring modeled with btw involves at
least three nodes, we generate the inductive invariant on a
three-node finite instance, with domain of nodes {N@,N1,N2}
and domain of IDs {ID®, ID1,ID2}. AVR finds an invariant
on this finite instance, but we are not able to generalize
it to the full protocol. We further find that if we increase
the size to four nodes, AVR runs out of memory without
finding an inductive invariant on the final instance. This
is where our concretization technique proves its usefulness:
by manually assigning concrete values to the three-node
protocol—i.e., by adding axioms idn(N@) = IDO, idn(N1) =
ID1 and idn(N2) = ID2—we facilitate AVR to find a finite-
instance invariant (shown in Table 2) that I4 can generalize to
the full protocol (shown in Table 3) and pass Ivy’s verification.
Since we make no assumption on the order of ID@, ID1 and

378

—(—pending_IDO_NO A leader_No)
—(—pending_ID1_N1 A leader_N1)
—(—pending_ID1_N2 A pending_ID1_N1)
—(—pending_ID1_N2 A btw_NO_N1_N2 A pending_ID1_N0)
—(le_ID@_ID1 A pending_ID0_N0)

~(le_IDO_ID1 A btw_NO_N1_N2 A pending_IDO_N2)
—(le_ID@_ID2 A pending_ID0_N@)

—(le_IDO_ID2 A btw_N1_N@_N2 A pending ID@_N1)
—(le_ID1_ID@ A pending_ID1_NT1)

—(le_ID1_IDO A btw_N1_NO_N2 A pending_ID1_N2)
—(le_ID1_ID2 A pending_ID1_N1)

—(le_ID1_ID2 A btw_N@_N1_N2 A pending_ID1_NO)
—(le_ID2_IDO A leader_N2)

—(le_ID2_ID@ A pending_ID2_N2)

—(le_ID2_IDO A btw_N@_N1_N2 A pending_ID2_N1)
—(le_ID2_ID1 A leader_N2)

—(le_ID2_ID1 A pending_ID2_N2)

—(le_ID2_ID1 A btw_N1_NO_N2 A pending_ID2_NO)
Safety Property

>>>>>>>>>>>>>>> > > >

Table 2. Instance of invariant of Leader Election.

ID2, those axioms have no impact on the generality of the
proof.

Note that, as part of concretization, a universally-quantified
conjunction of the concretization axiom

VN # Ny # Ny, IDg # ID; # ID5.
(ld?’l(N()) = ID()) A (ldn(Nl) = ID]) A (ldn(Nz) = IDZ)
is passed on to the generalization algorithm, which adds

it as a weakening to all clauses in the general invariant.
For example, the clause —(—pending_IDO_NO A leader_NOo)

(highlighed in Table 2) is generalized into (highlighted in
Table 3, slightly edited for readability):

VY Ny, IDy. (ldl’l(N()) ZID()) -
=(=pending(IDy, Ny) A leader(Ny))

14 applies a similar strategy to all clauses of the finite-instance
invariant and obtains the inductive invariant shown (sim-
plified for readability) in Table 3. This generalized inductive
invariant passes Ivy’s verification, thus proving the correct-
ness of the protocol.

6.3 Distributed lock

Our third case study is a distributed lock protocol [30, 47].
This protocol models an unbounded number of nodes that
transfer the ownership of a lock among themselves. Nodes
transfer locks by sending and receiving messages in an un-
reliable network that can drop or duplicate messages. The
ownership of a lock is associated with an ever increasing
epoch, to allow detection of stale messages.

If a node N holds the lock at epoch ep(N), N can pass
the lock to any node N’ in the system at epoch E > ep(N)
by sending it a transfer(E, N') message. When a node N’ at
epoch ep(N’) receives a transfer(E, N’) message with epoch
E > ep(N’), node N’ accepts the lock at epoch E, and sends
a message locked(E, N’) to denote that N’ holds the lock at
epoch E’, and update ep(N’) = E. Otherwise, if E’ < ep(N”),
N’ ignores this stale message. As the network may delay or
duplicate any message, the protocol never discards any sent
transfer message.

The safety property of the protocol is “no two distinct
nodes can hold the lock at the same time”:

VN1, Na, E. locked(E, Ny) A locked(E,N;) = (N7 = N3)

This protocol involves two sources of infinity: the number of
nodes and the number of epochs. Therefore a finite instance
of the protocol bounds not only the number of nodes, but
also the number of epochs. Unlike previous protocols, even
an instance with just two nodes is enough to generate an
unbounded number of messages by passing the lock between
them with ever-increasing epoch numbers. 14 is able to prove
the correctness of the protocol based on a finite instance with
just two nodes and four epochs.

During our experiments, we found that AVR runs out
of memory due to the large search space. To simplify the
problem, we manually concretize the special epoch zero to
E0 (as discussed in Section 4.4), facilitating AVR’s task.

Given the inductive invariant for this finite instance, 14
still needs two iterations of invariant pruning to get rid of
instance-specific clauses, after which it produces an induc-
tive invariant which passes Ivy’s verification.

6.4 Chord Ring

Our next case study is a Chord Ring [51], a popular dis-
tributed hash table approach in peer-to-peer systems. In the

379

Chord protocol, nodes are organized in a ring, and each node
stores part of the hash table. Additionally, nodes may join or
leave the ring at any time, prompting a re-arranging of the
ring. The safety property of interest is that the ring remains
connected under certain assumptions about failures.

We use the Chord protocol description in Ivy [47], which
models the protocol in Ivy with each node maintaining two
pointers: one to its successor and one to its successor’s suc-
cessor. Those two pointers are implemented as two relations
over the nodes, s1(Ny, N;) when N, is N;’s successor, and
s2(N1, N3) when Nj is Ni’s successor’s successor. Even if
some nodes fail, the safety property remains true as long as
every live node still has a pointer to at least one other live
node. The failure of a node is modelled as a normal transition.
A test transition is used to check whether a given node can
access another given node, and sets an error flag to true if
that is not the case. The safety property is simply expressed
as the error flag never being true.

Part of the protocol was first proved by Zave [58], includ-
ing an informal, intuitive proof as well as a formal proof in
Alloy [35]. The protocol was later implemented in Ivy [47],
formally proving (with manual effort) the primary safety
property. We adopted a slightly modified version of the Ivy
implementation, and were able to prove the same safety
property based on a finite instance with 4 nodes, and by
concretizing a special node, org = Np.

6.5 Learning Switch

Learning switches maintain a table that maps MAC addresses
to ports where the incoming frames will be forwarded. When
a frame is received, a learning switch will check to see if
the source MAC address is already in the table, and if not, it
will insert a (Source MAC Address, Port Number) entry into
the table. The switch will then check the destination MAC
address of the incoming frame in the table. If there is an
entry mapping the destination MAC address to port number,
the switch will forward the frame to that port. Otherwise,
the switch will send the packet to all its ports except the
port where the frame was received from (otherwise known
as flooding).

We use the existing implementation of the learning switch
protocol in Ivy, by simply updating it to the latest Ivy syntax,
and feeding it to I4. The safety property states that there does
not exist any forwarding cycles, where an incoming frame
would be forwarded to the same port that it arrived from. We
instantiated this protocol with 4 nodes and 2 packets since
forwarding cycles can possibly form in such a small setup.

Given the inductive invariant for the finite instance with
4 nodes and 2 packets, I4 can infer the general inductive
invariant and pass Ivy’s verification with no manual effort.
Later, we found that even 3 nodes with only a single packet is
sufficient for I4 to infer the generalizable inductive invariant
for this protocol.

V Ny, IDy. (idn(Ny) = IDy) = —(—(pending(IDy, Ny)) A leader(Np)) A
VNo, Ni, No, ID;. (idn(Ny) = ID1) A (No # Ny) A (N # Na) A (N; # N3)
= —(=(pending(ID1, Nz)) A btw(Ny, N1, N2) A pending(ID1, Ny)) A
VNy, N1, IDy, ID;. (idn(Ny) = IDy) A (idn(Ny) = ID;) A (IDy # ID;) = —(le(IDo,ID;) A pending(IDo, Ny)) A
V Ny, N1, Ny, IDy, ID;. (ldn(N()) = ID()) A (zdn(Nl) = IDl) A (ID() * ID]) A (N() * Nl) A (N() * Nz) A (N] * Ng)
S —|(le(ID0,ID1) A btW(N(), N, Ng) /\pending(IDo, Ng)) A
Safety Property
Table 3. Generalized invariant of Leader Election (slightly edited for readability).
6.6 Database Chain Consistency Protocol F M G | total
Database chain consistency is the last protocol we evaluated Lock server 002| 00) 08| 08
from the protocol suite found in the Ivy paper. This protocol Leader election in ring 40| 01] 20] ol
provides traditional database safety guarantees of atomic- Distributed lock protocol 30.6 | 53.3 | 755 | 159.5
ity, serializability, and isolation for distributed databases. In Chord ring maintenance 386.1 | 218.5 | 24.3 | 628.9
this distributed setting, a chain transaction is split into sub- Learning switch 2.9 08| 69| 107
transactions that operate sequentially on data that is sharded Database chain replication 4.2 23| 621 126
across multiple nodes. In order for the chain transaction to Two-Phase Commit 26| 01] 16| 43

commiit, each subtransaction should also commit. If any sub-
transaction aborts, then the entire chain transaction is also
aborted.

Using 14, we successfully verified the safety properties
defined by the Ivy authors. We started with an instance of 4
transactions, 5 operations, 2 keys and 2 nodes. That initial
instance was large enough to be generalizable. We later found
that even a smaller instance with 3 transactions, 3 operations,
1 key and 2 nodes is generalizable.

6.7 Two-Phase Commit

We implemented two-phase commit in Ivy. We proved that
our implementation satisfies the traditional Atomic Commit
safety properties: (a) all processes that reach a decision reach
the same one, (b) the Commit decision can only be reached if
all processes vote Yes, and (c) if there are no failures and all
processes vote Yes, then the decision must be Commit. We
started with an initial size of 4 nodes, and kept increasing
the instance size by one. We finally proved the correctness
of the protocol with 6 nodes.

6.8 Runtime Breakdown of 14’s Verification

Table 4 and Figure 3 show the runtime of various phases
of the 14 algorithm. For clarity, we omit the time it takes to
generate the finite instances, as it was negligible and almost
identical among all protocols (~0.3 seconds). In most cases,
I4 can prove the correctness of these protocols within a few
tens of seconds, with the worst case being that one has to
wait for 10.5 minutes.

7 Limitations and future directions

This paper takes the first step in a new direction—proving the
correctness of distributed protocols based on the inductive
invariants of small, finite instances. Our experience apply-
ing this approach to real protocols is thus far encouraging:

380

Table 4. Runtime results (in seconds). F is the time required
to find the finite inductive invariant; M is the time is takes
to minimize the finite inductive invariant; and G is the time
to generalize the clauses and perform invariant pruning.

|
-

inding B Minimizing N Generalization/pruning

N\

%%

7
%

ZZZZA
7%

10%

W////A

Q
xR

Lock server Leader election Distributed lock ~ Chord ring Learning switch Database chain 2 Phase Commit
protocol maintenance consistency

Figure 3. Runtime break down for each of the seven proto-
cols we verified using I4.

we have been able to prove the correctness of a number of
interesting protocols, with little to no manual effort. For all
its successes heretofore, we believe that there are several
more steps to be taken in this research direction. We list
below a number of limitations of our current approach and
prototype in the hope that they will serve as inspiration for
future research.

¢ Choosing an instance size When instantiating a pro-
tocol, we need to use an instance that is large enough
to exhibit all the interesting properties of an arbitrarily-
sized instance. Currently, we incrementally increase
the size of the instance to guarantee we will eventually

consider an instance that is large enough. In our ex-
periments, we manually select an initial size to speed
this process up.

¢ Existential quantifiers Our generalization algorithm
adds universal quantifiers to generalize finite induc-
tive invariants. We currently do not support inductive
invariants that include existential quantifiers. Our ex-
perience so far suggests that existential quantifiers are
not very common, but supporting them would increase
the generality of our approach. For example, we were
careful to write the two-phase commit protocol so that
it would not use any existential quantifiers, but doing
so required human intervention, which we try to avoid
as much as possible.

e Verifying implementations 14 focuses on verifying
distributed protocols, rather than implementations.
Automating the proof of a full distributed implemen-
tation is much harder, as it usually requires reasoning
about undecidable fragments of logic, which are noto-
riously hard to verify automatically. Also, our current
prototype does not support some of Ivy’s features, such
as objects, translation to concrete imperative code, ar-
bitrary assumptions, etc.

e Optimizing model checking for distributed sys-
tems We are currently relying on existing, unmodified
model checkers to find the inductive invariants of fi-
nite instances. While these tools have come a long way
in recent years, they may still not scale even for small
instances of some complex protocols. Our concretiza-
tion technique helps mitigate this problem to a certain
degree, but we believe this is only the first step in a line
of optimizations that will customize model checking
algorithms to deal with the particular requirements of
distributed systems. Specifically, the high-level struc-
ture of a protocol can be used by the model checker
to identify compact strengthening assertions that, in
some sense, respect that structure and exhibit its in-
herent regularity.

8 Related Work

In this section, we discuss existing approaches in distributed
system verification, finding inductive invariants and auto-
mated verification.

8.1 Verification of Distributed Systems

Formal verification is gaining popularity in the systems com-
munity as an alternative to testing. Its significance is partic-
ularly pronounced in distributed systems, which are notori-
ously subtle and complex. Lamport’s TLA+ [40] has mostly
been used to prove the correctness of abstract protocols,
as it is not really designed for actual implementations. The
first practical verified implementations of distributed sys-
tems came with IronFleet [30] and Verdi [56]. IronFleet uses

381

a combination of refinement and reduction [43] to facili-
tate the verification of distributed systems. Verdi, on the
other hand, uses a series of system transformers. It starts by
proving the correctness of the system under a very strong
model and uses the transformers to prove refinement to in-
creasingly weaker models. Both Verdi and IronFleet rely on
significant manual effort to identify the inductive invariants
of the system—and thus prove its correctness.

A recent work proposed pretend synchrony [55], an ap-
proach that aims to simplify the reasoning behind distributed
protocols. The idea behind pretend synchrony is that one
can transform an asynchronous distributed protocol into an
equivalent synchronous protocol, thus making it easier to
reason about. Ideas like this can be used in conjunction with
I4: by simplifying the problem, we may be able to increase
the scalability of the underlying model checking and thus
automate the proof of more complex protocols.

Pnueli et al. [48] proposed that verifying a parameterized
distributed system consisting of n identical interacting pro-
cesses can be accomplished by verifying a relatively small
finite instantiation. The basic idea is that a system of n > ng
processes can be verified by checking an instance with just ng
processes, where ny is linear in the number of local state vari-
ables of a single process. This idea is the inspiration behind
I4. 14, however, is fundamentally different from the approach
of Pnueli et al. First, this approach does not actually find any
inductive invariants. They merely show that proving the cor-
rectness of a system with ng processes is sufficient to prove
its correctness for any n > ny. Moreover, this only works
when each process has finite state (ny depends linearly on the
state size of each process, so it would be infinite otherwise).
As such, this approach doesn’t apply to today’s distributed
systems, whose state space is unbounded. This is exactly the
innovation of I4: finitizing the problem and generalizing the
result to infinite-state protocols. The approach of Pnueli et al.
relies solely on model checking, precisely because it assumes
that the only source of infinity is the number of nodes in the
system.

8.2 Inductive Invariants

To overcome the challenge of finding an inductive invariant,
previous work has taken a number of approaches for both
finite- and infinite-state programs. A number of works have
focused on identifying loop invariants. Proof planning [33]
uses failed proof attempts to find loop invariants, while Flana-
gan and Qadeer [21] use a technique called predicate abstrac-
tion. Furia and Meyer [22] use heuristics from postconditions
to synthesize loop invariants. Daikon [19] was proposed
in 2000 to learn possible program invariants, followed by
Houdini [20] which learns conjunctive inductive invariants.
IC3 [6] and PDR [17] can automatically find inductive in-
variants for finite state machines, and were later extended
to certain systems with infinite-domain variables [12, 32].
For list-manipulating programs, Property-Directed Shape

Analysis [34] and UPDR [36] have shown effective results,
though the approach doesn’t guarantee termination. Greben-
shchikov et al. [29] show that a Horn clause is the most
common pattern in program verification, and the ICE learn-
ing model [16, 23] uses this result to synthesize invariants.
Although some of these techniques can deal with a finite
number of variables with infinite domains (e.g., strings or in-
finite integers), they cannot effectively deal with distributed
systems, whose state typically contains an unbounded num-
ber of variables (e.g., an unbounded set of sent messages,
and unbounded copies of a state variable in different nodes).

Ivy [47] uses a different way to reduce that effort by facili-
tating the hardest part about proving correctness properties
for distributed systems. To achieve that, Ivy restricts the
implementation enough to ensure that it includes no un-
decidable propositions. Verification in Ivy is a manual and
interactive process, where the developer iteratively refines
the invariant using the counterexamples provided by Ivy,
until an inductive invariant is identified.

8.3 Automated Verification

Bedrock [11] is a framework for automatically generating
proofs for first-class code pointers. Bedrock uses mostly-
automated discharge of verification conditions inspired by
separation logic. Using a computational approach coupled
with functional programming, Bedrock avoids quantifiers
almost entirely, and achieves mostly-automated verification.

Yggdrasil [50] and Hyperkernel [45] are two recent ap-
proaches that aim to minimize the human effort required
to perform formal verification. Yggdrasil [50] presents a for-
mally verified file system using the notion of crash refinement.
It automatically verifies that, even in the presence of non-
deterministic events like crashes and reordering, a correct
implementation will still produce the same disk state as its
specification. Yggdrasil uses a finite domain to guarantee de-
cidable SMT queries. Hyperkernel [45] is a formally verified
OS kernel. Similar to Yggdrasil, Hyperkernel also finitizes
kernel interfaces to keep SMT queries decidable. 14 has a
similar goal—push-button verification—but for distributed
systems. The key difference is that distributed systems have
infinite domains, which lead to undecidable SMT queries. To
sidestep this problem, I4 uses a unique combination of finite
protocol instances (via model checking) and decidable SMT
queries in the infinite domain (via Ivy).

9 Conclusion

This paper presents 14, a new approach for verifying the
correctness of distributed protocols, with little to no manual
effort and without relying on human intuition. I4 is based on
a simple intuition: an inductive invariant of a small, finite
instance can be used to infer a generalized inductive invari-
ant that holds for all instances of the protocol. 14 leverages

382

the power of model checking to automatically find an induc-
tive invariant for a small instance of the protocol and then
generalizes that invariant to instances of arbitrary size. Our
evaluation shows that I4 is successful in automatically prov-
ing the correctness of a number of interesting distributed
protocols, even ones whose subtleties and internal workings
were unknown to us.

Acknowledgments

We would like to thank our shepherd, Deian Stefan, and the
anonymous SOSP reviewers for their detailed reviews and
insightful feedback. This project was funded in part by the
National Science Foundation under award CSR-1814507.

References

[1] Verification Modulo Theories. http://www.vmt-lib.org.

[2] Personal communication with authors, 2019.

[3] C.Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theo-

ries Library (SMT-LIB). www.SMT-LIB.org, 2016.
[4] W. J. Bolosky, J. R. Douceur, and J. Howell. The farsite project: A
retrospective. SIGOPS Oper. Syst. Rev., 41(2):17-26, Apr. 2007.

[5] R.S.Boyer, B. Elspas, and K. N. Levitt. SELECT - a formal system for

testing and debugging programs by symbolic execution. In Intl. Conf.

on Reliable Software, 1975.

A. R Bradley. Sat-based model checking without unrolling. In In-

ternational Workshop on Verification, Model Checking, and Abstract

Interpretation, pages 70-87. Springer, 2011.

C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In

USENIX Conference on Operating Systems Design and Implementation,

2008.

E. Chang and R. Roberts. An improved algorithm for decentralized

extrema-finding in circular configurations of processes. Communica-

tions of the ACM, 22(5):281-283, 1979.

H. Chen, T. Chajed, A. Konradi, S. Wang, A. ileri, A. Chlipala, M. F.

Kaashoek, and N. Zeldovich. Verifying a high-performance crash-

safe file system using a tree specification. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP *17, pages 270-286,

New York, NY, USA, 2017. ACM.

H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zel-

dovich. Using crash hoare logic for certifying the fscq file system. In

Proceedings of the 25th Symposium on Operating Systems Principles,

SOSP ’15, pages 18-37, New York, NY, USA, 2015. ACM.

A. Chlipala. Mostly-automated verification of low-level programs

in computational separation logic. In Proceedings of the 32nd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI "11, pages 234-245, New York, NY, USA, 2011. ACM.

A. Cimatti and A. Griggio. Software model checking via ic3. In

International Conference on Computer Aided Verification, pages 277-

293. Springer, 2012.

A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Ic3 modulo theories

via implicit predicate abstraction. In International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, pages

46-61. Springer, 2014.

[14] CVE-2016-5195. Dirty cow vulnerability. https://dirtycow.ninja/, 2017.

[15] C. development team. The coq proof assistant reference manual.
http://coq.inria.fr/distrib/current/refman/.

[16] D.D’Souza, P. Ezudheen, P. Garg, P. Madhusudan, and D. Neider. Horn-
ice learning for synthesizing invariants and contracts. arXiv preprint
arXiv:1712.09418, 2017.

6

—

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

http://www.vmt-lib.org
https://dirtycow.ninja/

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

[33

—

(34]

(35]

N. Een, A. Mishchenko, and R. Brayton. Efficient implementation
of property directed reachability. In Proceedings of the International
Conference on Formal Methods in Computer-Aided Design, pages 125—
134. FMCAD Inc, 2011.

J. Engblom. A review of reverse debugging. In Proceedings of the 2012
System, Software, SoC and Silicon Debug Conference, pages 1-6. IEEE,
2012.

M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In Proceedings of the 22nd
international conference on Software engineering, pages 449-458. ACM,
2000.

C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
esc/java. In International Symposium of Formal Methods Europe, pages
500-517. Springer, 2001.

C. Flanagan and S. Qadeer. Predicate abstraction for software verifica-
tion. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL *02, pages 191-202, New
York, NY, USA, 2002. ACM.

C. A. Furia and B. Meyer. Inferring loop invariants using postcon-
ditions. In Fields of logic and computation, pages 277-300. Springer,
2010.

P. Garg, C. Loding, P. Madhusudan, and D. Neider. Ice: A robust
framework for learning invariants. In International Conference on
Computer Aided Verification, pages 69-87. Springer, 2014.

J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E. J. Schwartz.
Executable counterexamples in software model checking. In Working
Conference on Verified Software: Theories, Tools, and Experiments, pages
17-37. Springer, 2018.

P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 05, pages
213-223, New York, NY, USA, 2005. ACM.

A. Goel and K. Sakallah. Empirical evaluation of ic3-based model
checking techniques on verilog rtl designs. In Proceedings of the Con-
ference on Design, Automation and Test in Europe. EDA Consortium,
2019.

A. Goel and K. Sakallah. Model checking of verilog rtl using ic3
with syntax-guided abstraction. In NASA Formal Methods Symposium.
Springer, 2019.

J. N. Gray. Notes on data base operating systems. In Operating Systems,
pages 393-481. Springer, 1978.

S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Syn-
thesizing software verifiers from proof rules. ACM SIGPLAN Notices,
47(6):405-416, 2012.

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill. Ironfleet: proving practical distributed
systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 1-17. ACM, 2015.

C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad apps: End-to-end security via automated full-
system verification. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI'14, pages 165-181,
Berkeley, CA, USA, 2014. USENIX Association.

K. Hoder and N. Bjgrner. Generalized property directed reachability.
In International Conference on Theory and Applications of Satisfiability
Testing, pages 157-171. Springer, 2012.

A. Ireland and J. Stark. On the automatic discovery of loop invariants.
In NASA Conference Publication, pages 137-152. Citeseer, 1997.

S. Itzhaky, N. Bjerner, T. Reps, M. Sagiv, and A. Thakur. Property-
directed shape analysis. In International Conference on Computer Aided
Verification, pages 35-51. Springer, 2014.

D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 11(2):256—
290, 2002.

383

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. Karbyshev, N. Bjgrner, S. Itzhaky, N. Rinetzky, and S. Shoham.
Property-directed inference of universal invariants or proving their
absence. Journal of the ACM (JACM), 64(1):7, 2017.

J. C. King. Symbolic execution and program testing. Communications
of the ACM, 1976.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel4: Formal verification of an os kernel. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP *09, pages 207-220, New York, NY, USA, 2009. ACM.
L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133-169, May 1998.

L. Lamport. Specifying systems: the TLA+ language and tools for hard-
ware and software engineers. Addison-Wesley Longman Publishing
Co., Inc., 2002.

S. Lee and K. A. Sakallah. Unbounded Scalable Verification Based on
Approximate Property-Directed Reachability and Datapath Abstrac-
tion. In Computer-Aided Verification (CAV), volume LNCS 8559, pages
849-865, Vienna, Austria, July 2014. Springer.

K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In Proceedings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages
348-370, Berlin, Heidelberg, 2010. Springer-Verlag.

R. J. Lipton. Reduction: A method of proving properties of parallel
programs. Commun. ACM, 18(12):717-721, Dec. 1975.

Microsoft Research. Everest project. https://www.microsoft.com/en-
us/research/project/project-everest-verified-secure-
implementations-https-ecosystem/, 2016.

L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Tor-
lak, and X. Wang. Hyperkernel: Push-button verification of an os
kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 252-269, New York, NY, USA, 2017. ACM.
T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof As-
sistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.

O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham. Ivy:
safety verification by interactive generalization. ACM SIGPLAN Notices,
51(6):614-630, 2016.

A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification
with invisible invariants. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 82-97.
Springer, 2001.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In 5th joint meeting of the European Software Engineering Con-
ference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’05), pages 263-272, 2005.

H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button
verification of file systems via crash refinement. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI'16, pages 1-16, Berkeley, CA, USA, 2016. USENIX
Association.

1. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Transactions on Network-
ing (TON), 11(1):17-32, 2003.

N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang. Se-
cure distributed programming with value-dependent types. In M. M. T.
Chakravarty, Z. Hu, and O. Danvy, editors, Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, pages
266-278. ACM, 2011.

A. S. Team. Amazon S3 availability event: July 20, 2008.
http://status.aws.amazon.com/s3-20080720.html, 2008.

The Associated Press. General Electric acknowledges Northeastern
blackout bug. http://www.securityfocus.com/news/8032, 2004.

2015.
[57] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Concurrency attacks.

In The Fourth USENIX Workshop on Hot Topics in Parallelism, 2012.
[58] P.Zave. Reasoning about identifier spaces: How to make chord correct.
IEEE Transactions on Software Engineering, 43(12):1144-1156, 2017.

[55] K. von Gleissenthall, R. G. Kici, A. Bakst, D. Stefan, and R. Jhala. Pre-
tend synchrony: synchronous verification of asynchronous distributed
programs. PACMPL, 3(POPL):59:1-59:30, 2019.

[56] J.R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. Anderson. Verdi: a framework for implementing and formally
verifying distributed systems. ACM SIGPLAN Notices, 50(6):357-368,

384

	Abstract
	1 Introduction
	2 A New Perspective
	3 Overview of I4
	4 Invariant generation on a finite instance
	4.1 Leveraging the power of model checking
	4.2 Picking a size for the finite instance
	4.3 Translation from unbounded to finite domain
	4.4 Overcoming the limitations of model checking
	4.5 Invariant generation on the finite instance

	5 Invariant generalization
	5.1 Initial generalization
	5.2 Invariant pruning

	6 Evaluation
	6.1 Lock Server
	6.2 Leader Election
	6.3 Distributed lock
	6.4 Chord Ring
	6.5 Learning Switch
	6.6 Database Chain Consistency
	6.7 Two-Phase Commit
	6.8 Runtime Breakdown of I4's Verification

	7 Limitations and future directions
	8 Related Work
	8.1 Verification of Distributed Systems
	8.2 Inductive Invariants
	8.3 Automated Verification

	9 Conclusion
	References

