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ABSTRACT. In a previous article, we constructed an entire power series over
p-adic weight space (the ‘ghost series’) and conjectured, in the I'g(N)-regular
case, that this series encodes the slopes of overconvergent modular forms of any
p-adic weight. In this paper, we construct ‘abstract ghost series’ which can be
associated to various natural subspaces of overconvergent modular forms. This
abstraction allows us to generalize our conjecture to, for example, the case of
slopes of overconvergent modular forms with a fixed residual representation
that is locally reducible at p. Ample numerical evidence is given for this
new conjecture. Further, we prove that the slopes computed by any abstract
ghost series satisfy a distributional result at classical weights (consistent with
conjectures of Gouvéa) while the slopes form unions of arithmetic progressions
at all weights not in Z.

1. INTRODUCTION

In previous work ([3]) we formulated a conjecture, called the ghost conjecture,
on the slopes of overconvergent p-adic cuspforms. The form of the conjecture is
the following. For a fixed prime p and an integer N > 1, not divisible by p, we
explicitly define a power series G(w,t) in Z,[[w,t]] that we call the ‘ghost series’
and which we view as a series in ¢ with coefficients lying in the ring of functions
on a fixed component of the p-adic weight space. When p is To(N)-regular (as
defined by Buzzard in [6]), the ghost conjecture asserts that the Newton polygon
of the specialization of G to a weight x is the same as the Newton polygon of the
Up-operator acting on overconvergent p-adic cuspforms of level I'g(N) and weight .
Perhaps surprisingly, the construction of G is fairly simple and certainly elementary
to describe. It essentially depends only on the dimensions dj := dim S (T'g(N)) and
dpev = dim S (To(Np))P~ " of classical spaces of cuspforms as k varies. Thus the
construction is amenable to abstraction.

The purpose of this article is twofold. First, we seek to define an ‘abstract ghost
series’ depending just on dimension-like functions d and d"°V. Second, we aim to
re-specialize our abstraction in order to formulate a ghost conjecture we believe
valid for a fixed modular mod p Galois representation which is further assumed to
be reducible upon restriction to a decomposition group at p (the Galois-theoretic
interpretation of ‘T'o(N)-regular’).

This abstraction allows us to study consequences of the ghost conjecture in one
fell swoop. For instance, the data underlying the definition of an abstract ghost
series allows for a natural interpretation of ‘classical slopes.” In Section [3] we
prove that these classical slopes satisfy a distribution law that specializes to the
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‘Gouvéa distribution” when the ghost series is as in [3] or is attached to a fixed
mod p Galois representation p. We further explore the combinatorics of what
we called ‘global halos’ in [3] (generalizing Coleman’s conjectural ‘spectral halos’).
As intimated in previous work, the presence of halos is a structural feature of
the ghost series. We prove, in Section [ that the slopes of the halos form finite
unions of arithmetic progressions. The persistence of this behavior p-by-p is neither
completely surprising, nor does it follow from any of the partial results (e.g. [4, [11])
on the actual spectral halos.

The proofs of the results described in the previous paragraph provides proofs of
the unjustified statements found in [3]. We refer the reader to our previous article
for a more robust discussion about slopes of modular forms, historical notes, and
what is currently known about the ghost conjecture.

We end by emphasizing that just as our previous work seems to be a generaliza-
tion of a conjecture of Buzzard ([6]), the p-ghost conjecture discussed at the end of
this article likely generalizes the conjecture in Clay’s Ph.D. thesis ([7]).

The first half of the article (Sections [2[ through [4)) is comprised of studying the
abstract ghost series. In order to prove the results we are after, we assume a number
of reasonable axioms that will be clarified in Section 2] In Section[5] we verify that
these axioms are satisfied in the setting of [3] and in Section [6] we treat the case
of a fixed p. Finally, in Section [7] we state the p-ghost conjecture and give the
computational evidence we have compiled thus far.

Notations. Let p be a prime number and write g = pif pisodd and ¢ =4 if p = 2.
Set  =p—1if pisodd and § = 2 if p = 2, so J is the size of the torsion subgroup
of Z. We will also use v,(—) to denote a p-adic valuation (on the p-adic complex
numbers C,, say) normalized so v,(p) = 1. If P(t) = 3,5, a;t’ its a power series
over C,, its Newton polygon NP(P) is the lower convex hull of the set of points
(4,vp(a;)) in the standard xy-plane.
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2. ABSTRACT GHOST SERIES

The data needed for an abstract ghost series is two functions d,d"" : Z — Z
and an integer ky with 0 < ky < J. For notation, if n is an integer then set
kn = ko + nd and also define d, = 2d + d"*V. By the end of this section, we will

make three assumptions (G)), (LG), and (ND|) on d and d"*¥. (In Section {| we
introduce a fourth axiom (QL)) which implies (G) and (LGJ).) We first assume:

(G) nlgr;o d(n) = oo and nEIPoo d(n) +d**V(n) = —oo.
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The label indicates the word ‘growth.’

There are two standard examples we have in mind. We will repeatedly specialize
to these examples throughout, so we have visually separated out the commentary
as follows. Further discussion, and the proofs of any unproven assertions, can be
found in Sections [B] and [6l

T'o(N)-level. Let N > 1 be an integer and p a prime such that p{ N. If k > 4
and even, we set Dy = dim S (T'o(N)) and D;®" = dim S(To(Np))P~7V. As is
well-known, there are explicit combinatorial formulas for Dy and D" in terms of
k (with constants depending on N and p). Fix ko even. Then, define d(n) = Dy,
and d"*¥(n) = D" when k, > 4. If k, < 4 and even, we define d(n) and d"*"(n)
by evaluating the combinatorial formulas at k = k.. (These are thus not exactly
dimensions of spaces of cuspforms). It is clear that (GJ) is satisfied. The function d,
models the dimensions of forms of level I'g(Np). Note: We will be forced to assume
that pN > 3 eventually, only excluding (p, N) = (2,1) and (3,1).

p-component. Assume that N and p are as in the previous example. Further
assume that p is a semi-simple and continuous representation p : Gal(Q/Q) —
GL2(F,) such that the p-component Si(T'1(N))z of Si(I'1(NV)) is non-zero. We
will define d(n) = dim Sk, (T'1(N))5 and d"*¥(n) = dim Sk, (I'1(N) N To(p))s "
when k,, > 2 and even. In Section we explain how to naturally extend d and
d"®" to functions on all integers. Note: We will always assume that p > 5 in this
example, and we will also omit p that are cyclotomic twists of 1 @ w, w being the
mod p cyclotomic character.

We now seek to define the abstract ghost series
oo
(1) Gd’dnew’ko (w7t) = G(w,t) = Zgi(IU)tz
i=0

attached to the data d, d"®V, and kg. The variable w is a coordinate on the kg-th
component %4, of the p-adic weight space. Recall this means that %%, is the rigid
analytic space of continuous p-adic valued characters on Z,; whose action on the
torsion in Z; is raising to the ko-th power; each integer k,, defines a point k,, € %4,
given by the character z — zFn.

The space #4, is seen to be an open unit disc by fixing a topological generator 7
for 1+2pZ, and then providing #4, with the coordinate w, = k(y) —1 € {v,(w) >
0}, except in the case p = 2 and ko = 1. In that case, we define w,, = x(y)y~* — 1.
In every case, w,, depends on v only up to isometry. If p is odd, then v,(wi) > 1
for all integer weights k& € #},; the purpose of the normalization when p = 2 is that
va(wy) > 3 for all k, also.

Remark 2.1. We note that v,(wi —wj,) =1+ v,(2) + v,(k — k') when k, k' € #j,.

Now we (uniquely) define the coefficients g;(w) in by three conditions. First,
they are functions on %4, given by monic polynomials in w. Second, the zeroes of
gi(w) are exactly those wy,, such that

d(n) < i < d(n) + d™¥ (n).

Condition guarantees that each g;(w) has only finitely many zeroes.
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Finally, the multiplicity m;(k,) of wy, as a zero of g;(w) is given by

i—d(n) for d(n) <i < d(n) + dnL(”);
(2) ml(kn) = dnew(n) 9
d(n) +d*V(n) —i for d(n) + ——= <i<d(n)+d*V(n).

2

That is, at the first and last index 4 such that g;(wg,, ) = 0, wy,, is a zero of order
1; at the second and second to last index, it vanishes to order 2; and so on.

Definition 2.2. The_ghost series associated with d, d™%, and ko is the series
G(w,t) =327 gi(w)t" € Zy[w][[t]].

If x is a p-adic weight lying in #4, then we will write G, (t) = G(w,t) € Cp[[t]].
Being a p-adic power series in one variable, G, has a Newton polygon that we
denote by NP(G,,).

T'o(N)-level. The ghost series just defined is trivially almost the same as the p-adic
ghost series of tame level N defined in [3] Definition 2.1]. A difference only occurs
if ko = 2 and it has no effect on Newton polygons. Let us be more precise.
Consider kg = 2, d(n) = dim Sk, (I'0(N)) for k, > 4 and then extend to k, < 4
by explicit formulas (similarly for d**"). Then, dim S2(I'g(N)) = d(0) + 1 and
dim S3(Fo(Np))P~"°" = d"°V(0) — 1. When p # 2, it is straightforward to check
the second equality in:
d(l) = dlm S2+(p,1) (Fo(N))

= dlm SQ (F()(N)) + dll’n SQ(FQ (Np))pfnew

= d(0) + d"*"(0).
This shows that the ghost coefficient gq4(1) defined either as above or as in [3] is the
trivial function 1. So, the ‘ghost zero’ wy, = w2 plays no role in calculating the

slopes of the Newton polygons in either this article or our previous one. (We do
not address p = 2; the definition in [3], Section 5] is more complicated.)

The rest of this section is comprised of an analysis of the coefficients g; and our
further assumptions on d and d"°%. We now make our second assumption:

ND d, d+ d"®7, and d, are non-decreasing functions.
( P g

The label (ND)) refers to ‘non-decreasing’. To check (ND)), it is sufficient that d and
d™V are non-decreasing, but the condition as given is easier to check in practice.

Io(N)-level. (ND) is true when pN > 3. For instance, d and d,, are non-decreasing
as long as there exists a non-zero modular form of weight ¢ and level I'o(N).

p-component. We will verify (ND) as long as p > 5.

By , the set of integers n such that d(n) < 7 is non-empty and bounded
above. So, we define

HZ(g;) = sup{n € Z: d(n) < i}.
Similarly,
LZ(g;) = inf{n € Z: i < d(n) + d"*¥(n)}.
Note that both HZ(g;) and LZ(g;) are well-defined by (G). The notation HZ and

LZ refers to ‘highest zero’ and ‘lowest zero’. The notation is justified by the next
lemma (which requires our assumption (NDJ).
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Lemma 2.3. Ifi >0, then
{n € Z: gi(wy,) = 0} = {LZ(g:),LZ(g;) + 1,...,HZ(g:) }-

Proof. Under (NDJ), it is clear that {n € Z: i < d(n)+d(n)"V} = {LZ(g;), LZ(g;)+
1,...}. Similarly, {n € Z:d(n) < i} = {...,HZ(¢g;) — 1,HZ(g;)}. The lemma

follows immediately. O
4 +

Now we define A; = % and write A, = —~ where A;*L € Z,[w] are monic and
gi—1 i

co-prime.

Lemma 2.4.

(a) The zeroes of Af are simple.

(b) wg, is a zero of A} if and only if d(n) < i < d(n) 4+ £d"¥(n).

(¢) wg, is a zero of A if and only if d(n)+ 1d"¥(n)+1 < i < d(n)+d"*¥ (n).
Proof. The definition of the multiplicity pattern implies that the multiplicity

of wy,, as a root of g; is one more, one less, or equal to the multiplicity of wy, as a
root of g;—1. This proves part (a). The remaining two parts follow easily. (]

The notation HZ and LZ naturally generalizes as follows:

HZ(A}) = sup{n € Z : d(n) < i};

LZ(A}) = inf{n € Z :i < d(n) + d“‘“;(n) ’
HZ(AT) = supfn € Z : d(n) + Tl 11 < i);

LZ(A]) =inf{n € Z : i < d(n) +d"*"(n)}.

These quantities are well-defined by and (ND). If g(w) € Z,[w] is monic and
its roots are in v,(w) > 0, write A(g) = deg(g). We extend A to the quotient of
monic polynomials in the natural way.

Lemma 2.5. Ifi >0, then
(n€Z: Af(wy,) =0} = {LZ(AF), LZ(AF) +1,...,HZ(AF)},
and M(AE) = HZ(AF) — LZ(AE) + 1.

Proof. The first claim follows as in Lemma (note that (ND) implies that 1d,, =
d+1d"* is non-decreasing). The second claim then follows from Lemma (a). O

To ensure that the slopes on NP(G,,) appear with finite multiplicity for each &,
we now impose our third condition on d and d™°V:

(LG) d(n) ~ An and d"*¥(n) ~ Bn (A, B >0).

Here and below, if F'(n) and G(n) are two functions defined on integers n >> 0 we
use possibly non-standard notation and say F'(n) ~ G(n) if Fi(n) = G(n) + O(1).
The label (LG) refers to ‘linear growth’.

I'o(N)-level. (LG) is satisfied with A = Zo(N) and B = 5(p — 1)po(N) where
o (V) is the index of I'g(NN) inside SLa(Z). Note that B = (p — 1) A.

p-component. (LG|) holds with values A, B > 0 such that B = (p — 1)A, so the
relationship between A and B is the same as in the other example.
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The asymptotic behaviors of the quantities above is as follows.

Lemma 2.6. We have:
1
(a) HZ(A) ~ = -i;

A
2
)~ )~ i
() LUND) < BUST) = g
(c) LZ(A;) ~ @ 2
A+ ~N — )
(@) X&) ~ Gr )
_ B .
() MAD~ GasmaTr s "
B2
Ay) ~
WA~ Fas Byear ) !
Proof. The first three parts are immediate from the definitions and (LG). The
second three parts follow from the first three and Lemma [2.5 (]

Proposition 2.7. For each & € #4,(C,), Gi(t) € Cpl[t]] is an entire series. In
particular, each slope of NP(G,) appears with finite multiplicity.

Proof. Tt suffices to check that liminf; A\(A;) = oo ([Bl Lemma 2.4]) and that is
immediate from part (f) of Lemma O

3. DISTRIBUTIONS OF SLOPES

We assume the notations of the previous section. In particular, let G be the
ghost series attached to the data d, d"*V and ko where d and d"°V satisfy ,

(ND), and (LG)). Especially, we write A and B for the constants in (LGJ)). Recall
that k, = ko + nd and Gy, (t) = G(wg,,, ).

3.1. Statement of results. Write s1(k,) < sa(k,) < --- for the ordered list of
slopes of NP(G,,). The following theorem gives an asymptotic description of the
i-th slope s;(k,). We will begin to write ¢ = p for p odd and ¢ =4 if p = 2.

Theorem 3.1.
(a) If i < d(n), then
_ 4 B :
(b) If d(n) < i <d(n)+d"¥(n), then
. f— p . 32 .
si(kn) = -1 2A(A+ D) kn + O(logn).
(c) If i > d(n) + d"°¥(n), then for every e >0
2
Sz(kn) _ q B i+ O(i1/2+6)-

T p—1 A(A+B)(2A+ B)

Part (b) of Theorem [3.1| deals with the slopes over the range where g;(wy,, ) = 0,
so it provides an asymptotic for the slope of the very long line we are forcing to
appear in each NP(Gy, ). The only difference between parts (a) and (c) is the error
terms.
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We can also state two corollaries giving asymptotic formulas for the highest ‘old
slope’ and highest ‘classical slope.’

Corollary 3.2. We have

P B?
Sd(n)(kn) = p—1° (A+B)2A+B) - kn, + O(logn).

and )
__pr B
Sdp(n)(kn) - (p — 1)2 A(A + B)

Proof. Note that d(n) ~ Ak, /6 and dp(n) ~ (2A+ B)k, /6. The result then follows
from Theorem and the amusing identity ¢/d = p/(p — 1). O

Ky 4+ O(n'/2F9).

Either example. In either example, B = (p — 1)A. Part (b) of Theorem [3.1
reduces to si(kn) = Skn + O(logn) which is consistent with the p-adic slope of a
p-new cuspform being ]“2;2 The second part of Corollary says

Sdp(n)(kn) = kn +O(nl/2+s)’

which is consistent with the highest U,-slope of a classical modular form in weight
k being bounded by k — 1. The first asymptotic in Corollary says that

ky
Sam) (kn) = —— + O(logn).

atm (kn) = =7 + O(logn)
This is consistent with investigations of Gouvéa ([9]). Buzzard has suggested that
perhaps we even have si(,)(kn) < £2=1 in I'o(V)-regular situations ([6, Question

= pHI
4.9)).

We now wish to normalize the ghost slopes in order to study their distribution.
To this end, we divide by the (asymptotically) highest ‘classical slope’ sg, () (kn)-
That is, define the i-th normalized slope

~1
. p B?
(k) = s (k) - . -k
st =itk (G2 iy )
and then consider the set xj, = {5;(kn): 1 <i<dy(n)} C [0,00). Let uéi) be
the probability measure on [0, c0) uniformly supported on xy, . (See [13], Sections
1.1-1.2] for the notion of weak convergence and its relationship to equidistribution.)

Corollary 3.3. As n — oo, the measures ,u,(fl) weakly converge to a probability

measure p?) on [0, 1] which is supported on

07‘4 ullly ATB 1
"2A+ B 2 2A+B’ |

We have u(”)({%}) = ﬁ and the remainder is uniformly distributed (for the
Lebesgue measure).

Proof. By Theorem for d*¥(n) < i < d(n)+d*™(n), 5;(k,) = 3 +O(logn/n).

This explains {%} getting mass d;L(T(S) ~ ﬁ in the limit.
P

Similarly, by Corollary Sq(n)(kn) = ﬁ + O(logn/n). So Theorem
further implies that the §;(k,) for 1 < ¢ < d(n) become uniformly distributed
between 0 and ﬁ as n — oo. The last case of d(n) + d™V(n) < i < dp(n)
follows similarly. [
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Either example. In either example B = (p — 1)A, so the distribution p® is

supported on
1 1 P
0,—— |Uqg=pU|——,1
[’p+1} {2} {pﬂ’ ]
P

with {%} getting mass p%} and the remaining connected intervals having equidis-
1

tributed mass 2T This is consistent with the references given above. We note

that no one has made large scale calculations p-by-p.

To prove Theorem rather than working directly with the slopes s;(k,), we
consider the A-slopes of Gy, defined now.

Definition 3.4. Let P(t) = 14> ,5qait’ € Cylft]]. If ai—1,a; # 0, we define the
i-th A-slope of P to be the slope of the line segment connecting (i — 1,v,(a;—1)) to
(t,vp(a;)). Explicitly, the i-th A-slope equals vp(a;) — vp(a;—1).

Our strategy to prove Theorem [3.1]is to prove the analogous statement about the
A-slopes of G, and then deduce the theorem. There are various technical points
in the argument, so let us sketch the argument first. We will use the notations A;,
A¥, ete. from Section

First, the i-th A-slope of Gy, equals

vp(Ai(wy,)) = vp(AF (wy,)) = vp(A] (wk,))-
By Lemma the Al:-t are very simple to describe:
AF (wy,) = (wk, —wy,) (W, —wr, ) -+ - (wy, — wg,)

where a = LZ(AF) and b = HZ(AE). When this product is non-zero, we estimate
its valuation as follows: each term contributes at least 1, every p-th term contributes
at least 2, every p?-th term contributes at least 3, and so on. Thus, for p > 2, we
have a rough estimate

AAT)

AT
L MED) o= =LA,
P p p—1
and 80 vp(A;(wg,)) ~ 2= A(A;) (Lemma [3.6] below makes this heuristic precise.)

p—1
Using the asymptotic we established in part (f) of Lemma we deduce
p B?

p—1 AA+B)2A+B) "

which is the A-slope version of the first part of Theorem [3.1]

Handling the slopes in the range d(n) < i < d(n)+d"*¥(n) requires more work as
gi(wg, ) = 0 for such i. We show, instead, that when n is large enough the Newton
polygon in weight k,, has a straight line from index d(n) to index d(n) + d"*¥(n).
To estimate the slope of this line (‘the semi-stable line’) we remove the zero or pole
of A; at wg, and apply the above analysis to the resulting functions.

Once we have asymptotic control over all of the A-slopes, it is relatively straight-
forward to gain asymptotic control over the actual slopes.

vp(AF (wr,)) = MAT)

vp(Ai(wy,)) =

3.2. An estimate on A-slopes. We begin with the following elementary estimate.
We write log,, for the logarithm base p. (Note: log,, is not a p-adic logarithm.)
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Lemma 3.5. Suppose that X > 0 is an integer and y € Z such that either y > 0 or
y<l—A
-1

—Mlog,(N1=1< ) vy(y+i) < %ﬂLmaX{Ung(\yl)J, log,, (ly+A—=1])]}-

p—1 i=0

Proof. For a lower bound, note that

S e = ((7F171)) 2o

For an upper bound, set e := maxg<;<x—1Vp(y +¢) and choose a such that 0 < a <
A —1 with v,(y+a) =e. Then v,(y +a+j) =vp(j) for —a <j <A —1-—aq, and
thus

A1
va(y +1) =vp(al) +e+v, (A —1—a)!)
=0

— et u(A=1)) =, ((A - 1)) <e+uy((A—1)).

The lemma then follows from the classical bounds on valuations of factorials

n n
— — 1 —-1< N< ——
T Mg, (n)] 1 < wyfnl) < o

and the bound e < max{|log,(|y|)], [log,(|ly + A —1|)]}. O
If A > 0 is an integer and b € Z, we now define a polynomial
Pya(w) = (w = wp, ) (w — wi,_y) -+ (W = Wiy )-
modeling Af.

Lemma 3.6. Forn € Z such that Py x(wy, ) # 0, we have
A
Up(Py A (wr,)) = Z% + O(log A, log |n — b|).

Proof. We assume p > 2 (the case of p = 2 is similar). Note that k, — k; =
(n—j)(p—1) and so Remark and the oddness of p implies
Up(wkn - wkj) =1+ Up(kn - kj) =1+ 'Up(n - 7).

In turn, this gives the equalities

b b
vp(Por(wr,)) = Y wplwk, —wi) =X+ D> vp(n—j).
j=b—A+1 j=b—XA+1
Finally, Lemma applies to y = n — b — A + 1 and the same X\ as here (since
P, »(wg, ) # 0) and the result follows. O

The poles and zeros of A; are simple (Lemma [2.4)) and if A;(wy,) is well-defined
and non-zero then v,(A;(wy)) is the i-th A-slope of Gy. To give uniform estimates,
we define
(w — wg, ) Ai(W)|w=w,, if A; has a pole at wy,;

Ai(w) |
w— wg, |w:wkn
A (wg,,) otherwise.

AT (wg,) = if A; has a zero at wy,;
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Proposition 3.7. We have
(A () = i /+ Ollog n. log.)
v “(w = . -1 ogn,logi).
pAS k)= T A(A+ B)2A + B) B 08
Proof. Tt suffices to prove the result separately for pairs (i, k,,) ranging over a finite
number of disjoint domains. With this in mind, we focus only on the pairs (i, k)
such that wy, is a zero of Aj', leaving the rest for the reader. Lemma implies

that n = O(i) when A} (wy,) = 0. So, we need to show that

q B®
A* — .
For notation, write b = HZ(AF) and recall ¥ = M\(AF). By Lemma

A:"(w) = quf’)\/(w) N (w - 'lUkn) . Pn_L)\// ('u))

-1+ O(log ).

where M + X = A\ — 1. So, by the definition of A} we have
Up (A: (wkn)) =Up (Pb:r,)\/ (wkn)> +Up (Pn—l,)\”(wkn)) —Up (Pb;,)\; (wkn)> .

Since A and b are both O(i) (Lemma and n = O(i), so Lemma [3.6 implies
that

(1) 0p(A (wn,)) = LN+ X = A7)+ Oflog) = =2 = 47) + Ollog)

We finally use the asymptotic for A;” — \;°

B2
A=A~ i
5) i TN T AAT BY2A+ B)
given by Lemma Then, follows from combining and . t

3.3. Handling the semi-stable line. Since g;(wg,) = 0 if d(n) < i < d(n) +
d™*¥ (n), we know that the slopes s;(k;,) for i in this range are equal. Here, we show
that for n large enough, d(n) and d**%(n) are indices of (consecutive) breakpoints
on NP (G, ) and that the slope of the connecting line is as claimed in Theorem

We begin with a lemma that separates out A-slopes in the ‘oldform’ and ‘new-
form’ ranges.

Lemma 3.8. For each € > 0, there exists an n. such that for all n > n. we have:
p B? .
A; . <
(a) vp( Z(wkn)) < ((p _ 1)2 (A + B)(2A + B) +€) k’I’L ZfZ — d(n)) G/ﬂd
P B? )
. . . > new .
(b) vp(Ai(w,)) > ((p 12 AQATB) €> kn for all i > d(n) + d™¥(n)

Proof. Both parts follow from Proposition For instance, if i < d(n), then
A (wg, ) = Aj(wy,). So, Proposition implies that v, (A;(wg,)) grows no faster
than

q B?
p—1 A(A+B)2A+ B)

As in the proof of Corollary we have d(n)q ~ %kn and the result follows. [

The next lemma describes the slope of the line connecting (,v,(g;(wg,))) for
i = d(n) to the point with ¢ = d(n) + d**V(n). To ease notation, we write y; (k)
for vy (gi(w,,)).

-d(n) + O(logn).
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Lemma 3.9. We have

- _ 2
(6) Jl) e (Zlivkvrzzl) Yy () = » _pl)z ' 2A(f+ B) -k + O(logn).
Proof. First, we apply Proposition to deduce
d(n) d(n) q BQ .
D) sann) = X vyl ) =3 S ey Olloen
q B?

-d(n)? + O(nlogn).

“p—1 24(A+ B)(2A+ B)
Among the ¢ with d(n) < i < d(n) + d"*V(n), wg, is a zero of A; exactly as many
times as it is a pole (by construction), and so

d(n)+d™V (n) d(n)+d""V (n)
I 2 @)= TJ[ Arws)
i=d(n)+1 i=d(n)+1
Arguing as we did for 7 Proposition gives
q B? new
(8) Ya(n)+dnew(ny(kn) = (d(n)+d"" (n))*+0(nlogn).

" p—1 24(A+ B)(2A + B)
Write SS for the left-hand side of (6). Then, if we combine (7)) and (8)), and then
divide by d"*¥(n) = O(n), we see

= ¢ B2 new
55 = p—1 2A(A+ B)(2A + B) (2d(n) + d"*"(n)) 4+ O(logn)
p B?
(p—1)2 2A(A+ B) kn + O(logn)
This proves the lemma. O

Proposition 3.10. For n > 0, i = d(n) and i = d(n) + d"*¥(n) are indices of
(consecutive) breakpoints on NP(Gy,) and the slope of the line connecting these
breakpoints is

p B?
-1 2A(A+B)
Proof. Since A, B > 0 we have that
B2 B2 B2
(A1 B)2A+ B) “2A(A+ B) - AQA+B)’
So, the result follows from Lemmas [3.8] and [3.9] combined with the following formal
lemma about Newton polygons (whose proof is left to the reader). O

- kn, 4+ O(logn).

Lemma 3.11. Consider a collection P = {(i,y;) : i > 0} such that y; € R>qU{oo}
and y; = oo if and only if N1 < i < Na for some Ni,No > 0. If i < J, set
A= y;:fl , and set A := A;_q ;. Assume that there are constants v; such that:
(a) If i < Ny then A; < 715
(b) If No < i then A; > 7o; and
(¢) M < Any,n, <72
Then, N1 and Ny are (consecutive) indices of break points of NP(P).

Now we can complete the proof of Theorem
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3.4. Proof of Theorem Part (b) of the theorem follows from Proposition
which also allows us to assume in the sequel that n is chosen large enough
that i = d(n) and i = d(n) + d**V(n) are breakpoints on the Newton polygon
NP(Gg,,)-

It remains to handle cases (a) and (c) of the theorem. We first claim that
consecutive breakpoints in the range covered by these parts of the theorem are not
too far apart. More precisely, for ¢ < d(n) or ¢ > d(n) + d"*V(n), let N := N(i,n)
denote the smallest index j > i of a breakpoint of the Newton polygon of Gy, , and
let M := M (i,n) denote the largest such index j with j < ¢. Note that M < N
and either both are less than d(n) or both are larger than d(n) + d"*¥(n).

Claim.

(I) N(i,n) — M(i,n) = O(logn) if i < d(n).

(IT) For each € > 0, N(i,n) — M(i,n) = O(i*/?*%) if i > d(n) 4 d**%(n).
In particular, N(i,n) and M(i,n) are i + O(logn) or i + O(i'/?7¢) depending on
the range of i’s. (This follows because ¢ lies between M (i,n) and N(i,n).)

Assuming this claim for the moment, the proof of the theorem follows quickly.
Indeed, the line connecting (M, yar) to (N, yn) has slope s;(k,,) and by construction
of the Newton polygon,

9) 0p (A (wr,) < 5i(kn) < vp(Anrs (wp,)):
Next, by Proposition |3.7) we know that
Up(Anrg1(wy,)) = D - M(i,n) + O(log M(i,n),logn)
and
vp(An(wg,)) = D - N(i,n) + O(log N (i, n),log n)
with D = 4. WEWHB)' Finally, our (as of yet unproven) claim implies that

p—1
the asymptotics become (the same)

o )
Di+ O(l'og n) 1fz < d(n);
O(>i'/?+e) if i > d(n) + d"¥(n).
The theorem now follows from @D

Returning to the unproven claim, we first handle the case where ¢ < d(n). Then
we know that there is some constant C' such that for i, n large enough

(10) [vp(Anr+1(wg,)) — D - M(i,n)] < Cmax{log M(i,n),logn}.

As M(i,n) and i are less than d(n) ~ An, we may replace C' and assume the
bound on the right-hand side of is C'log n. Similarly, we also have (for C large
enough)

[up(An (wr,)) = D - N(i,n)| < Clogn.

By (), we have v,(Apr11(wy,)) = vp(An(wk,)) and so straightforward algebra
(add and subtract terms) implies that

D -N(i,n)—D-M(i,n) < 2Clogn.

This proves part (I) of the claim.
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Now we handle claim (II), where i > d(n) + d"*V(n). We write y;(k,) =
vp(gi(wg,)). Since n = O(7) in this case, we can use the same logic as in the
proof of Lemma [3.9] and the asymptotic in Proposition to see

: D2 D2
yi(kn) =Y _ Dj + O(logi) = - i + O(logi!) = - -i% 4+ O(ilog 1)
j=1
where the last equality uses Stirling’s approximation. In particular, all of the

Newton points of (¢, y;(ky)) lie between the graphs of the two functions y = %2x2 +
Czlogz for some C > 0. Lemma below then implies that

N(i,n) — M(i,n) = O(i*/**),

(Apply the lemma to N = N(i,n) and M = M(i,n) and use finally that M < i.)
This completes the proof of claim (II), and thus the proof overall.

Lemma 3.12. Let a,b > 0 and consider the region R comprised of the points on
or between the graphs of y = ax? £ bxlogxz. Let M < N and assume that y, are
chosen so that the line segment connecting (M, ynr) and (N,yn) is contained in R.
Then for each € > 0, there is a constant C' > 0 depending only on a and b such that

N — M < CMY/?te,

Proof. We briefly explain the proof of this (complicated) calculus exercise. Write
u(x) = az? + brlogx and £(z) = ax?® — bwlog(z). Given M > 1, let £y be the
unique line segment with endpoint (M, ¢(M)), which lies tangent to the graph of
y = u(z) and whose other endpoint lies on the graph of y = £(x).

u(x) = ax + bxlogx

(t, u(t)) ((x) = ax — brlogx

Q7. (M)

FIGURE 1.

The horizontal length of a line segment is (by definition) the difference of the
z-coordinates of its endpoints. We note that %), is special because it has the
largest horizontal distance among line segments completely contained in R and
passing through a point of the form (M, yys), and so it is enough to assume that
(N,yn) = (N, £(N)). Write (¢, u(t)) for the point on the graph y = w(z) which is
tangent to £ps. (See Figure ) With this notation, it is enough to confirm that

(a) t = M + O(M*'?*¢) for any & > 0, and
(b) N =t+ O(t'/?*¢) for any € > 0.
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To show (a) we may show the stronger assertion that t < M +MY?*¢ when M > 0.
Equivalently, by the choice of %, it is enough to show

u(M + MVY3+) — g(M)
M1/2+6

for M > 0. (Here, as usual, v’ is the derivative of u.) But as M — oo, we have

w' (M + MY?49) m 2a(M + MY/?*)

(11) u' (M 4+ MY?+e) >

whereas

u(M + MY?+e) — (M)

M1/2+e
(Here, f(M) =~ g(M) means that f(M)/g(M) — 1 as M — oco.) This proves
for M > 0 as claimed. Likewise, to show (b) it is enough to prove that
Ot +t1/2F) —u(t)
I

u ( ) < t1/2+e

~ 2aM + aM/?te,

when ¢ > 0. This is proven in a completely analogous manner. O

4. ARITHMETIC PROGRESSIONS

4.1. Statement of results. In this section, under a new hypothesis on the func-
tions d and d™V (see (QL| below), we will show that the slopes of NP(G,) form
a union of arithmetic progression, up to finitely many exceptions, for any x with
Wy & Zyp.

Definition 4.1. A function d : Z — Z is quasi-linear if there exists positive integers
Py, Qq > 0 such that d(n + Pg) = d(n) + Qq for all n. We call P; the period and
Qq the defect (of d).

We note the following obvious facts we will use throughout. First, if d is quasi-
linear then then d(n) ~ (Qq/P4)n. Second, the sum of two quasi-linear functions
is quasi-linear. Third, if d and d’ are quasi-linear with the same period and defect
and d(n) = d'(n) for n > 0, then d = d’. Fourth, if d(n) is a function defined for
n > 0 and d(n+ P;) = d(n)+ Qg over its domain, then it can be uniquely extended
to a quasi-linear function.

Now we make our new assumption on the functions d and d"%:

(QL) d and d"°V are quasi-linear.

By the previous paragraph, (QL) implies (LG]) and it implies that d + d"*V and
d, are quasi-linear. We now fix periods P, and defects @), for x each of d, d"°V,
d+d"V, and d,.

T'o(N)-level. We verify (QL) with periods and defects given by

12 Spo(N)

P; = Pynew = m7 Qd = m and anew = (p— 1)Qd-

(This gives the constants A, B in the condition that we previously claimed.)
We will also show that we can take
12
ged(12,6)
Pagarew =99 ifp=3> and - Qatarew = {

3 if p=2

ifp>3
PQa ifp>3

IU’O(N) ifp=2,3,
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as well as
: =L+ Dpo(N) .
1 ifp>3 (P
Pd,, = { P and de = 12 itp>3
p =23 (p— 1 po(N) p=2,3.

p-component. We will verify and that the periods of d and d"®V can be
taken to be Py = Pgnew = p+ 1. The defects will satisfy (p — 1)Qq = Qgnew. (And,
Qa is effectively computable). For d,, we will have period Py, = 1 and Qa, = Qu.
(This gives the constants A, B in the condition that we previously claimed.)

We need some notation for the main theorem of this section. First, if w, ¢ Zy,
we set

a, = sup vy(w, —w') € (0,00).
w'€Zyp

If v, (w,) € Z, then a, is simply v,(w,). But, for example, if w, = p + p*/2, then
oy, = 3/2. Second, let

1 if pis odd,
Vo =
3 ifp=2.
So, the integers k € #4, all lie in v, (wy) > vo. Finally, define
Q = lem(Qa, Qu,, Qatanew),
and for each integer r > 0, write
Q@ if p is odd,
(12) Qr=4Q if p=2and r < v,
2772Q if p=2and r > vy.
Note that @, = Q if r = 0, regardless of p.

Theorem 4.2. Assume k € Wy, and w,, ¢ Z,. Set r = |ay]. Then, the slopes
of NP(Gy) form a finite union of Q.-many arithmetic progressions with common
difference

Py 4P;,  Pyignew -
Q'<—p+ | ok + p—1)p" "0,
Qa  Qua,  Qaydnew " UZU: ( )
=vo
up to finitely many exceptional slopes contained within the first Q,-many slopes.

Remark 4.3. If Qg, is chosen to be even then Theorem is true with Q =
lem(Qa, Qa, /2, Qatanew) instead (see Remark. This happens to be the case in
the I'g(IV)-level example, for instance, and gives an optimal version of the result.

Remark 4.4. The conclusion of Theoremis also true if w,, € Z,, but vy(w,) < vo
(Corollary [4.10]). This is more general only if p = 2.

We now unravel the complicated constants in Theorem for our examples.

T'o(N)-level. Taking Remark into account, the number of progressions pre-
dicted in Theorem 2] when r = 0 is

{p(p — 1P+ 1po(N)

if 2
24 p>a2,
po(N) if p =2,

Q:
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while the common difference of these progressions is

_ 2
Q.<Ri_4pdp+~’3d+dm)_{(p ™ itp>o,

2
Qd de Qd+d“ew 1 if p= 2.

Thus, Theorem matches what was claimed in [3] Theorem 4.2]. A small calcu-
lation shows that the number of progressions and common difference is completely
consistent with what follows from [4, Section 3].

p-component. The quantity @Q is equal to pQqa,. Thus the common difference
given in Theorem 4.2l when 7 = 0 is equal to

w0 (G gt ) -

This is twice the corresponding value in the I'g(IN)-level example. Numerically
though it appears that if we combine the p-slopes with the p ® w<p71)/2—slopes, the
arithmetic progressions mesh nicely and cause this common difference to be cut in
half.

Remark 4.5. As explained in [3 Section 4], the ghost series satisfies a halo property.
Namely if v,(ws) < vg, then v,(w, — ws,) = vp(wy) for all n and so the scaling
—L__NP(G,) is independent of x. More precisely, write G(t) € F,[[w]][[t]] for the

vp (W) -
mod p reduction of G(w,t). Then we can compute NP(G) with respect to the w-
adic valuation on F,[[w]], and it is clear that the common value of ﬁ NP(G,)

is equal to NP(G). So, Theorem [4.2| implies that the slopes of NP(G) form a union
of arithmetic progressions up to finitely many exceptional slopes. (Actually we will
show this result first in the text below. See Corollary [4.10])

The remainder of this section is devoted to the proof of Theorem Our
strategy (like in Section is to first verify a corresponding statement for A-slopes.
Then, we deduce the theorem by the following general lemma on Newton polygons.

Lemma 4.6. Consider a collection P = {(i,y;) : © > 0} such that y; € Rxo.
If the A-slopes of P form a union of C arithmetic progressions with the same
common difference, then the same holds for the slopes of NP(P) up to finitely many
exceptional slopes contained within the first C slopes.

Proof. This follows immediately from observing that if x > C' is the index of a
breakpoint of NP(P), then « — C' is also the index of a breakpoint of NP(P). O

4.2. Changes in M-invariants. Now we begin to use the assumption (QL]).

Lemma 4.7. We have
(a) HZ(AS ) = HZ(A}) + Pa;
(b) LZ(AY, 5, ) = LZ(AT) + 2Py, ;

i+Qay,
(c) HZ(A;Q%) =HZ(A;) + 2Py, ;
(d) LZ(AL g, sew) = LZ(AT) + Paggrew.

Proof. For part (a), (QL) implies that n — n + P, gives a bijection
{n :dn)<i} —{n : dn) <i+ Qa}.

Thus the supremums of these two sets differ by P,;, proving the claim. The rest of
the parts are similar. (I
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Before the next proposition, recall that A\ = A(AF) and A\; = M(A;) = A\ — A7
Proposition 4.8. Set Q* = lem(Q4, Qq,), Q7 = lem(Qu,, Qatanev) and Q =
lem(Q*, Q™). Then,

(a) )‘1+Q+ _/\j_—F%Jr p, -9 2Pd

() Nyg- =N + &5 2Pdp I

(©) Aivq = A+ Q- (G = Tk + G

Proof. Parts (a) and (b) follow immediately from Lemma[4.7]and Lemma[2.5] Part
(c) follows from (a) and (b). O
Remark 4.9. Suppose that Qg, is even. Then parts (b) and (c) of Lemma
can be replaced by the stronger statements that LZ(AZ_Q /2) = LZ(A]) + Py,
and HZ(A7, /2) = HZ(A; ) + Py,. In turn, Proposition remains true with
Q" =lem(Qq, de /2) and Q™ = lem(Qq, /2, Q4 anew). These changes do not alter
the proof of Theorem [.2] below, so this justifies Remark

Corollary 4.10. Theorem [{.9 is true if vy(w.) < vo (even if wy € Zy).

Py e

Pmo£ By Remark it is enough to prove the analogous statement about NP(G)
(for G described in that remark). But Proposition c¢) implies that the A-slopes
of NP(G), which are the \;, form Q-many arithmetic progressions of common dif-

ference Q - (L2 _ M M) So the corollary follows from Lemma O

Qa Qayp Qad-tanew

4.3. Proof of Theorem To give the proof of Thcorem 2| (beyond Corollary
4.10)) we will use the proposmon above and the next three lemmas.

Lemma 4.11. Suppose that xg € Oc, — Z,. Then, for any choice of x € Zy, such
that vy(zo — x) = SUPy ez, vp(xo — y) we have

vp(zo — 2') = min(vy(zo — ), vp(x — 2'))
for all 2’ € Z,,.

Proof. Let s = vp(zg — ), t = vp(x — 2’), and u = vy (xg — 2’). By the choice of z,
u<s. If u<s, then t = u < s by the ultrametric (in)equality, so u = min(s, ¢). If
u = s, then the ultrametric inequality implies t > u = s, so u = min(s, ¢) again. O

Lemma 4.12. Suppose that k1, ..., ky is an ordered list of integers which form an
arithmetic progression of length M and difference co-prime to p. Then, if p¢ | M
and D = M /p®, we have

(a) #{ki: vp(ki) > e} =D, and
(b) f0<v<e the”#{kz' vp(ki) = v} = Do(p°~") = D(p — 1)p*~*~ 1.

Proof. This is left to the reader. O
Now fix k € W}, such that w, ¢ Z,,. Then, we define a,, = sup,cz vp(ws —w).

Lemma 4.13. If v,(ws) > v, then there exists an integer k™ € Wy, such that
Up (Wi — Wit ) = Qe

Proof. This follows from the density of the wy, in pZ, if pisodd or 8Zy if p=2. O
And now we complete the proof of Theorem
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Proof of Theorem [[.3 Recall that r = |a,]. By Corollary we may assume
that v,(wy) > vo. In particular, » > 1 if p is odd and r > 3 if p = 2. Define e =r
for p odd and e = r—2 for p = 2, and then @, = p¢Q regardless of p (@, as in )
By Lemma we also fix an integer kT € ¥}, such that a,, = v,(w,; — wy+).
Then, from Lemma we have that

(13) vp(wn — Wg,, ) = min(a, Up<wkn — Wy+))

for all integers n.

We are going to apply Lemma so our goal is to compare the (i + @, )-th A-
slope with the i-th A-slope in weight k. That is, we must compare v,(A;4q, (wx))
with v,(A;(w,)). To ease notation, define D* and D to be those constants in
Proposition .8 which satisfy

Mig=A"+D* and N\ig=X+D

(so D = DT —D~). We observe that A\ o, = = A +p°DF, and so Aﬁ@ has p*D*
more zeroes than Ai Thus we can write Az+Q a* - b* with a* b* € Z,[w]

products of linear factors with a* vanishing at largest /\i -many zeros of AﬁQT and
b* vanishing at the remaining p® D*-many.

Now let h be one of the polynomials h € {ai, b, Ali} The roots of h are all of
the form wy, for a consecutive list of integers n (by the construction of a* and b*

in particular). It also follows from that
(14) vp(h(wy)) = ax - #{kn: h(wk,) = 0 and vy (wg, — wi+) > r+ 1}

—|—Zv #{kn: h(wy,) =0 and vy (wy, — wi+) = v}.

Claim. vp(a*(wy)) = U;o(A?E (we))

To prove the claim, first note that by construction a®* and Aii have the same
number of zeroes and both sets of zeroes form an arithmetic progression with the
same common difference. Second, Lemmaimplies that HZ(a™) = HZ(Ai_Q )=
HZ(AF) mod p. Tt follows (remember Remark [2.1)) that the ordered lists of wy,,
for which a*(wy, ) = 0 and AF(wy,) = 0 are congruent to each other (as ordered
lists) modulo p™ ™! (regardless of p). So the claim follows by direct examination of
the right-hand side of (14).

The claim being shown, we have that

A o, (we)
Up (W) = v, (b* (wy)).

For clarity, let us assume that p > 2 now. Then, b has p” D¥-many zeros wy,,, and
the k,, lie in an arithmetic progression of difference co-prime to p. In particular,
the same is true for the p” D*-many k, — k. Since p is odd we deduce from
and Lemma [£.12] that

b)) = D* (an OIS 1)p”> |
v=0
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The v = 0 part of this sum is clearly zero, and since D = DT — D™, we see that

Aitq, (wy) - r—y
Up (At(wK)> =D (a,{—&—;v(p— p ) .
Applying Lemma [4.6 finishes the proof when p > 2.

If p = 2 one must be slightly more careful in the previous paragraph. The
sequence k, — k1 is an arithmetic progression of length 2°D* = 2"=2D* but
the common difference is p = 2. However, the elements in the sequence are all
even, so one can apply Lemma to the sequence @ instead. Using that
vo(wy, —wy+) = 2+vo(k, — k™), it is straightforward to check that from that

vy (b (w,.)) = DF (aﬁ + iv : 2”‘”) .
v=3

The final result follows in the same manner as before. O

5. EXAMPLE: CUSPFORMS OF LEVEL I'(V)

Let ' = I'o(N) and T'y = T'o(Np) for p + N. In this section, we verify that
‘dimensions’ of spaces of cuspforms of level I and Iy satisfy the axioms and
(QL]), with explicit constants.

To begin recall ([14], Section 6.1]) that for k£ > 2 and even, we have

(15)  dim Sp(T) = (= Dio(N) (FJ - E) to,2(N)

12 4 4
(] st 22

and

00 sty = U (4]0 (0 ()

-5 (e (o

Here we use standard notations: £19(NV) is the index of I'g(V) in SLa(Z), co(N)
is the number of cusps on Xo(IV), 10,2(IV) is the number of order two elliptic points
on Xo(N), po,3(N) is the number of order three elliptic points on Xo(N), and (%)
is the Kronecker symbol.

For k € Z, write Dy, for the right-hand side of and DV for the right-hand
side of . Fix an even kg such that 2 < kg <p+ 1, set k, = kg + n(p — 1) and
finally set

d(n) = Dy, and d"%(n)= Dp°".

We will verify now that (QL[) and (ND)) hold, provided that pN > 3.

5.0.1. The condition (QL]).

Proposition 5.1. The functions d and d"*V are quasi-linear. Moreover,

12 S10(N)

P, = Pnew — d — —
¢ d ged(12,0) and - Qa ged(12,0)

and  Qgrew = (p — 1)Qq
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for any p. We have the following periods and defects for d + d"°¥ and d,,:

Py ifp>3; ,
‘ f P pQa  Yp>3;
Pipgnew =<2 ifp=3; and Qutdrev = ‘
3 pr:2 :U’O(N) pr:273;
whereas
Py = 1 ’ifp > 3; and Qd _ p(P*11)2(P+1)‘uO(N) ifp > 3;
Tl =23, " (p—Duo(N) ifp=2,3.

Proof. From and we see Dy 12 = Dy + po(N) and DS, = Dpev + (p —
1)po(N). This implies d and d"*V are quasi-linear and explains the values of P,
Qd, Pinew, and Qgnew (for any p). Since d and d®®V are quasi-linear, it is clear that
d + d™°V is quasi-linear as well. Moreover, we can take Py jnew = Pj = Pgnew and
Qdatdaney = Qg + Qgnew = pQqy. For p = 2,3 one can do better and the claimed
values in those cases follow from direct examination of and .

Finally we consider d, = 2d + d"°V. The quasi-linearity of d,, is clear, but we
can optimize the periods and defects beyond just realizing d,, through its definition
as a sum. For this, note that for n > 0 (or n > 1 if kg = 2), the value of dp(n) is
the same as the right-hand side of at k = k,, and replacing N by Np (because
that is how dimensions of spaces of cuspforms work). Since d,(n) is quasi-linear,
this holds for all n actually.

To derive the periods and defects of d, is now straightforward. In fact, after
replacing N by Np one checks, case-by-case, that the right-hand side of is
invariant under k — k+p—1if p > 3 and k — k+2p if p = 2,3; the values of Qg,
are easy to determine as well. For instance, if p = 5 mod 12, then p3(Np) =0

k

whereas | % | — 221 depends only on k mod p — 1. O

5.0.2. The condition (NDJ.
Proposition 5.2. If pN > 3, then d and d, are non-decreasing.

Proof. If p > 3, let f denote the weight p — 1 Eisenstein series of level 1. If p = 2 or
3, then NV > 1 by assumption, so let f denote a weight 2 Eisenstein series of level
N. In either case, multiplication by f yields an injection

Sp(I") = Spys(T)

for T either T or I'g. Thus, d(n + 1) > d(n) and dy(n + 1) > d,(n) for k, > 4.
Since d and d,, are quasi-linear (Proposition, the inequalities hold for all n. O

The Eisenstein trick in Proposition does not apply to check that d + d"*%
is non-decreasing because multiplication by an Eisenstein series has no reason to
preserve spaces of newforms. But, we have a different argument.

Proposition 5.3. The function d + d™*V is non-decreasing.
Proof. Since d + d"*V = d,, — d, it suffices to see that
(17) dp(n+1) —dy(n) > d(n+1) —d(n).

First suppose that p > 3 and let Q4 and Qq, be as in Proposition [5.1} Then, the
left-hand side of is dp(n+1) —d,(n) = Qq, whereas it follows from Proposition
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that Qq > d(n + 1) — d(n). Thus we want to show
-1)(p+1 N ? -1 N
(p—D(p+ Duo(N) Q> Qu= (p = Dpo(N)
12 ged(12,p — 1)
This is clearly true if p > 3, so we are finished in this case.

For p = 2,3, one argues even more explicitly. Specifically, by and (16), we
have

sho(N) = (1552 ) = [5) = ) pos(N) if p=2
D +Dnew — (Dy, + D) = 3”0( 3 3 3 » )
(Dreca t DI2) = (Dt D {éuo(N)—(L’“I"’J—LZJ—é)uo,z(N) itp=3
> $uo(N) — 3p03(N) if p=2;
| 3#0(N) — Sp02(N) ifp=3
Then, one ends by noting that po(N) > po.2(N), po,3(V) O

6. EXAMPLE: p-COMPONENTS

Write Gq for the absolute Galois group Gal(Q/Q). Fix a decomposition group
D at p, and let I C D be its inertia subgroup. We will use p : Gq — GLa(F,)
to denote a continuous, odd, and semi-simple representation. We also write w for
the mod p cyclotomic character. Throughout Section [f] we also make the following
assumption:

(No E2) 72 (1dw)®@w  (for any j).

That is, p is not a cyclotomic twist of the Galois representation associated with the
‘ Eo-eigensystem.’

Unlike the previous section, we let I' = T'; (N) and T'g = T'1 (N)NTo(p) for p N.
The spaces Si(I') and Si(I'g)?~"°" have Z-linear bases and we write Si(I',Z))
and Si(To,Z,)? ™" for the scalar extension of the corresponding Z-modules to
Z,. These are finite free Z,-modules. Write T for the commutative Z,-algebra
generated by formal symbols T, as £ runs over primes £ 1 Np. The algebra T acts
by Hecke operators on many spaces, such as Si(I',Z,). Further, each p defines a
canonical maximal ideal m; C T. Thus we may define Si(I',Z,); = Sk(I', Zp)m,
and Si(I")5 = Sk(I', Z,)5[1/p] (and similarly for new spaces).

Now assume that p is modular of level N, choose k(p) to be the least integer k
where Sj(T"); is non-zero. Set kg > 2 to be the least integer ky = k(p) mod p — 1
and finally set k, = ko + n(p — 1). We define d(n) = dim Sy, (I'); and d"*¥(n) =
dim Sy, ()2~ "™ for n > 0.

We will show below that these functions are quasi-linear on their domains and
thus we can extend d and d"% canonically to all n. After doing that, we will check
the axiom is satisfied. In all cases we will make the periods of quasi-linearity
explicit; when p is irreducible but reducible upon restriction to D, we will do the
same for the defects of quasi-linearity (see Section .

In order to carry out the analysis, we need to use modular symbols. This is the
topic of the next subsection.

6.1. Recollection of modular symbols. Throughout this subsection we use g to
denote a non-negative integer. Let R = Z,, F,, or Q, and consider Sym?(R?) as
homogenous polynomials of degree ¢ in variables X and Y, equipped with a right
action of v € GLa(R)

Pl (X,Y) = P(dX — c¢Y,aY — bX).
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Any subgroup of SLy(Z) naturally maps to GLa(R), so Sym?(R?) is endowed with
the structure of right I"-module with IV = T" or I'y. Thus we can consider the finite
R-modules given by the cohomology H:(T',Sym?(R?)) (i = 1,2). We note two
things: H} (I, Sym?(R?)) is torsion-free and either cohomology is equipped with
an R-linear action of the Z,-algebra T, so one can localize at the ideal mj as above.

We recall that Sym?(F3) is completely reducible under the action of I'y. Namely,
write B C GLo(F,) for the Borel subgroup of upper-triangular matrices. Then, if
we set F_1 = (0) and for 0 < j < g we define F; = F;_; + Fng’ij then it
is straightforward to check that (0) C Fy € Fi C --- C Sym?(F3) is a B-stable
filtration by F,-vector spaces whose consecutive quotients are one-dimensional. The
action of B on the j-th quotient is

Fj/Fj—1 = Fy(a’d*™7)

where Fp,(a°d") means the B-representation sending (8 2) € B to a°d". We
note that this implies that the subquotients H¢(Tg, F;/F;_1) of the cohomology
H!(To,Sym?(F2)) are also Hecke-stable.

Lemma 6.1. H2(T'o,F,(a®d")) = (0) unless s=rmodp—1. If s=rmodp—1
then

HZ (Lo, Fy(a*d")) = HZ (Lo, Fy((ad)")) = Fy,
with the action of Ty through €7 + (7.

Proof. Let M = Fp(a*d"). By Poincaré duality, H2(Tg, M) ~ Hy(To, M) is the
largest quotient of F,(a®d") on which Iy acts trivially. This proves the vanishing
claim and it proves that Ho(T'o,Fp((ad)")) = F,((ad)") as a Hecke module. If e is
a basis of Fp((ad)”) then we have

-1
Tg(e) = e|(g 1) +Ze|(1 2) = (fr +€1+’”)e.
b=0

O

This completes the proof.

Now recall we assume p satisfies (No E2]).

Lemma 6.2. IfI" =T orTy and M = Sym?(Z) or Sym?(F3), then HZ(I", M )5 =
(0).

Proof. As in the previous lemma, it suffices to show that Ho(I', M) = (0). Since
there is a natural quotient map Ho(To, M) — Ho(T', M), Hy is right exact and the
Hy’s are both finite over Z,, it suffices to let I = Ty and M = Sym?(F?3).

In that specific case, Lemma and the assumption (No E2)) imply together
that Ho(I'o, Fj/Fj—1)5 = (0) for all j. By the right-exactness of Ho(I'o,—) and
descending induction on 0 < j < g, we deduce Hy(I'g, M/F;_1)5 = (0) as well.
Taking j = 0 proves our claim. ([l
Proposition 6.3. If IV =T or Ty, then

rank H}(T”, Symg(Zi))ﬁ = dim H}(T’, Sym? (Fi))?'
Proof. In general there is a canonical exact sequence
0 — Hy(I",Sym?(Z})) ®z, Fp — H, (I",Sym?(F})) — HZ(I", Sym?(Z3)).
The proposition then follows by localizing at p and applying Lemma |6.2 (]
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We now recall a result of Ash and Stevens ([I]) to study the ranks in Proposition
For g > 0 we let I, = Indg0 (Fp(a?)). This only depends on g mod p — 1.

Theorem 6.4 (Ash—Stevens).
(a) If 0 < g < p then there is a natural short exact sequence

0 — He (T, Sym?(F})); — He (T, 1))y — H, (Sym”™ "9 (F}))pe0-0 — 0.
(b) If g > p, then there is a natural short exact sequence
0 — HY(T,Sym?™ PTV(F2)) 50,1 — HL(T, Sym?(F})); — HL (T, I,)7 — 0.

Proof. This theorem follows from [I, Theorem 3.4(a,c)], except our normalizations
are slightly different (both in the action and in that we use cohomology with com-
pact supports). But as in [I, Lemma 3.2], we can construct canonical short exact
sequences of GLy(F),)-modules

0 — Sym?(F2) = I, — Sym” " 9(F2) @ F,(det?) — 0 (0<g<p),
and
0 — Sym?~ "+ (F2) @ F,(det) % Sym?(F2) — I, — 0 (g > p).

The results (a) and (b) now follow from the long exact sequence in H’ and the
vanishing of the relevant H>’s by Lemma O

Fort € Z/(p — 1)Z and g > 0 we now define
D(g,p,t) = dim H} (T, Sym? (F})) 5. -
Theorem [6.4(b) has the following immediate consequence.

Corollary 6.5. Assume that g > p®> — 1. Then, for each t,

p—2

D(g7p7 t) = D(g - (p2 - 1)7?7 t) =+ Zdichl(rylg—Qi)ﬁ(@w‘*i-
i=0

Proof. Tt follows by induction on j and Theorem (b) that if 1 < j < p—1, then

J—1
D(g7ﬁa t) - D(g - .](p + 1)5ﬁ7 t— ]) = Zdichl(FaIg—%)ﬁ@wf*i-
i=0
Taking j = p — 1 gives the claim. O

By Corollary g+ D(g,p,t) is quasi-linear with period p? — 1 and an explicit
defect (for fixed p, t). We now aim to show the same for

Dy(g,p,t) = dim H, (T, Sym? (F})) st
In fact, the periods of D, and D will be different, but their defects will be the same.
Proposition 6.6. If g > 0, then

g
dim H} (T, Sym?(F2))5 = > _ dim H}(T'o, Fp(a® ™)) 505
j=0
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Proof. If 0 < j < g, then there is a natural exact sequence
0— H}(To, Fj/Fj_1)5 = H}(Co,Sym?(F2)/F;_1)5 — H} (Lo, Sym?(F})/F;)5 — 0
(exactness on the right follows from Lemma [6.1)). We deduce by induction that

g
dim H} (T, Sym?(F2))5 = > _ dim H} (Lo, Fj/Fj_1)7.
§=0
The proposition then follows from observing that
Fj/Fj—1 = Fp(a?d?7) = Fp(a¥9(ad)?™7),
and so _
H:(Vo, Fj/Fj-1)p = H; (Lo, Fyp(a” 7)) 5o
This completes the proof. [
Corollary 6.7. If g >p—1, then

p—2

Dp(gvﬁ7 t) = Dp(g - (p - 1)7?7 t) + Zdlm '[.—Ic1 (F7 Ig*Qi)ﬁ@)wt_i
=0

Proof. We note first that Shapiro’s lemma implies H}(T',I,) ~ H}(To, Fp(a%)) for
any g. Thus Proposition [6.6] implies that

g
Dp(gap7t) _Dp(g_ (p_ 1)7ﬁ7t) = Z dichl(Fvlﬁl—g)ﬁ@w“rj*H'
Jj=g—(p—1)+1
Now this sum differs from the sum we want just by a change of indexing. O

6.2. p-component of cuspforms. We turn now towards studying dimensions of
spaces of p-components of cuspforms. For k > 2, IV =T or I'g, and p fixed we
write & (I'")5 for the p-component of the space of Eisenstein series of weight k. By
the classification of Eisenstein series, and because p satisfies , the function
k — dim &,(I")5 depends only on k mod 2, and 2dim &, (I'); = dim &E,(Ty)5. We
note that these spaces vanish if p is irreducible.

Lemma 6.8. IfIV =T or 'y, and k > 2 is an integer, then
dim &, ()5 + 2dim Sy (I')5 = dim H}(I", Sym*>(F?2)).

Proof. First note that H!(I”, Symkfz(Zf,))ﬁ c H{(T, SymkiQ(Qg)p is an isomor-
phism after inverting p. By Eichler—Shimura (see [2, Proposition 2.5]) we deduce
that

dim & (T")7 + 2dim Sy, (I")5 = rank H, (I, Sym"?(Z2))5.
The result as stated now follows from Proposition [6.3} O

Now we turn to the data needed for an abstract ghost series. We will make a
slight switch in notation and write 7 for a continuous, odd, and semi-simple Galois
representation modulo p that is modular of level N. That is, S (T')= is non-zero for
some k. The previous results will be applied to twists p = 7 ® w? into our setup.

In this direction, if ¢t € Z/(p — 1)Z and k is an integer such that k = k(F) +
2t mod p — 1, we define

S(k,t) = dlm Sk(F)F(@wt;
S(k, )" = dim Sy, (To)P"".

TRW?t
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(The condition on k is necessary to get non-zero values.) Further, write ko, for the
least integer 2 < k < p + 1 such that ko ; = k(7) + 2t mod p — 1. Then, for n > 0
define ks = kot + n(p — 1). Finally, the data we will use for an abstract ghost
series will be

dt(’l’l) = S(kn’t,t),
dy" (n) = SV (kn . t).
We note that these functions are defined only on n > 0. In the next subsections,
we show that they are quasi-linear, so that we can extend them fully to n € Z.
Our method for that requires defining d, ;(n) = dim Sk, ,(I'o)rget, which satisfies

dp+ = 2dy +d?°V on its domain. After that, we check the condition (ND)) is satisfied
as well.

6.2.1. The condition (QL).

Proposition 6.9.

(a) The function d; is quasi-linear on n > 0, with period Py, =p+ 1;

(b) The function d,; is quasi-linear on n > 0, with period Py, , = 1;

c) The defects Qq, and Qg , of quasi-linearity for d; and d,: are equal.
t p,t P,

Proof. We prove all three statements at the same time. Recall the notation D and
D, from the end of Section
By Lemma [6.8] we have

di(n) = = (D(kn, — 2,7,t) —dim &, (T)rgwt ) ,

NN

and

1

dp’t('n,) = 5 (Dp(kn - 27T, t) — dim gkn (FO)T(X)th) .

The dimensions of the Eisenstein series only depend on k, mod 2, so they are
independent of n (since p is odd). Thus the claims (a) through (c) follow from
Corollary and Corollary (The defects of quasi-linearity can be seen to be
positive using Theorem a); see the proof of Corollary ) ([l

Remark 6.10. The defect Qq, is always effectively computable. In Section[6.3|below,
we will study Qq, when 7 is globally irreducible, but reducible upon restriction to
a decomposition group at p.

Corollary 6.11. di°V is quasi-linear. In particular, so is d; + d?V. The periods
and defects may be taken to be

Papew =p+ 1 P, rapew =p + 15

Qarew = (p — 1)Qua,; Qud,+drev = pQa, -
Proof. We note that d}*" = d, ;—2d; is a sum of quasi-linear functions, hence quasi-
linear. Moreover, it can be taken to have period Pgrew = Py, = p+1, in which case

its defect is Qarew = (p — 1)Qq,. By the same logic, d; + dj°" is quasi-linear with
the claimed periods and defects. (I

We reiterate that having now checked all the functions above are quasi-linear,
we extend their defintions to all n € Z.
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6.2.2. The condition (ND)).
Proposition 6.12. d; is non-decreasing.

Proof. This is a more robust version of the proof of Proposition Specifically, if
k > 2, then

dim Sk(F) = dimpp Sk(F, Fp)
where Si(I', F}) is the space of mod p modular forms. Then, since p > 3, multipli-
cation by the Eisenstein series E,_; yields a Hecke-equivariant injection

Sk (F, Fp)ﬁ — Sk+p_1(F, Fp)ﬁ
Thus dim Syyp—1(I")5 > dim Si(T')5 if £ > 2 and hence d¢(n+1) > di(n) for n > 0.
Since di(n) is quasi-linear in n, it follows that d¢(n + 1) > d¢(n) in general. O

Proposition 6.13. Both d,: and d; + d}°V are non-decreasing.

Proof. By Proposition we have d, ;(n+ 1) = dp ¢(n) + Qq, ,. This implies that
dp,: is non-decreasing. Further, d; + d}*V = d,, ; — d;, so to prove that d; + d;°" is
non-decreasing we must verify that

dp7t(n + 1) — dpﬂg('fl) Z dt(n + 1) — dt(n)

The left hand side of this inequality equals Qq, ,. Since d; is non-decreasing (Propo-

sition |6.12)), the right hand side is at most Qg,. Since Qq, = Qq, , (Proposition
again) we are done. O

6.3. The Buzzard regular case. Consider the following ‘Buzzard regular’ con-
dition on a p:

(BR) P|p is reducible.

Our goal here is to make the defects of quasi-linearity somewhat explicit under

(BR)). Following the notation of the previous section, we write p = ¥ ® w?, with
t € Z/(p—1)Z. We further impose the following condition: 7 is irreducible, and

k(F)—1
(D)

Since each twist 7 ® w’ is irreducible, the weight part of Serre’s conjecture (|§])
implies we do not need to distinguish between the weights k(F®w') and the explicit
recipe for k(T ® wt) given in [12].
Lemma 6.14.

(a) If 7 is non-split at p, then k(F@w!) <p+1 < t=0.

(b) If 7 is split at p, then k(T@w!) <p+1 < t=0 ort=p— k(7).
Proof. If p = T ® w' then Serre states in [I2, Section 2.7] that k(p) < p + 1 if

and only if p has a one-dimensional quotient on which inertia acts trivially. The
equivalences we gave are apparent then. O

Recall that S(k,t) = dim Sg(T')7gwt. Lemma and Serre’s conjecture allows
us to determine S(k,t) for k < p+ 1.

Proposition 6.15. Assume that k < p+ 1. Then, the following conclusions hold.
(a) If T is non-split at p and k(T) # 2, then
Skst) 20 <= (kyt) = (k(),0).
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(b) If T is non-split at p and k(F) = 2, then
S(k,t) #0 <= (k,t) =(2,0) or (p+1,0).
(c) If T is split at p and k(T) # 2, then
S(k7t) 7é 0 —= (k7t) = (k(?),O) or (p+ 1- k(?),p - k‘(F))
(d) If T is split at p and k(T) = 2, then
S(k,t) #0 < (k,t) =(2,0) or (p—1,p—2) or (p+1,0).
Proof. Assume S(k,t) # 0 with & < p+1. Since S(k,t) # 0 implies that k£ > k(T ®
wh), Lemma implies that ¢ = 0 in the non-split case and ¢ = 0 or t = p—k(7) in
the split case. Further, since det(T @ w')|; = w® where a = k(7) — 1+ 2t mod p — 1,
we must have that k = k(7) + 2t (mod p — 1). This explains the possible values of
(k,t) in each case.
We now catalog references for the converses. The fact that S(k(7),0) # 0 is a
tautology. The fact that S(p + 1,0) # 0 when k(7) = 2 follows from the proof of
Proposition (multiplication by E,_1). Finally, the fact that S(p+1—k(7),p—

k(7)) # 0 in the case T is split follows from the existence of companion forms
([aap). O

We know that d; is quasi-linear with period p + 1, but now we want to see its
exact defect. To ease notation, set

_— {s<k<r>,o> if k(7) # p+ 1
S(2,0) otherwise;
ma = S(p+1,0);
m3=S(p+1—k(F),p—k(T)).
Remark 6.16. When k(7) = p+1 (which only happens in the case of a ‘trés ramifié¢’

extension) we have my = 5(2,0) = 0. We prefer to write it as S(2,0) for the proof
of the next statement.

Corollary 6.17. d; is quasi-linear with Py, =p+1 and

2my if T is non-split and k(F) Z 2 mod p — 1;
Q. = mi + meo if T is non-split and k(7) = 2 mod p — 1;
b 2my + 2ms3 if 7 is split and k(F) #Z 2 mod p — 1;

my +mao +2ms3  if T is split and k(F) =2 mod p — 1.

Proof. If g € Z then we define a(g) to be the unique integer satisfying a(g) =
gmodp—1and 2 < g < p+ 1. Since 7 is irreducible, Lemma and Theorem
[6.4(a) combine to show that

1
3 dim H} (T, Iy)7gwt = S(a(g+2),t) + S(p+3 — g +2),t — g)

for any integer g and any t € Z/(p — 1)Z. Returning to the expression for Qg,
implicit in the proof of Proposition [6.9] and the statement of Corollary [6.5] we
deduce an explicit formula

p—2
(19)  Qa, =Y S(a(k(F) +25).5) + S(p+ 3 — alk(F) + 2j), —k(F) — j +2).
=0
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To compute Qg, we can now proceed case-by-case using Proposition [6.15] because
the values in involve weights at most p + 1.

When 7 is non-split with k(7) # 2 (mod p — 1), the first term being summed
above only contributes when 7 = 0 while the second term only contributes if j =
2 — k(7) (mod p — 1). In each case, the contribution is m; and thus we can take
Qad, = 2my.

Suppose that 7 is non-split with k(7) = 2 (mod p — 1). Note that a(k(T)) =
a(2) = p+ 1. So, the first term contributes mg = S(p + 1,0) while the second
contributes my = S(2,0). Thus we can take Q4, = m1 + ma.

The remaining two cases are handled similarly. We leave them for the reader. [

Remark 6.18. It is also important to have a base case for the function d, , i.e. we
need to calculate dj, ;(0). This can readily be done using Proposition combined
with the proof of Corollary When 7 is non-split and k(7) #Z 2 (mod p — 1),
one has that

2my  ift < ko —2;

dim S Lo)rguwt =
ko,t( 0> ®uwt {0 otherwise.

For other 7, the possible values of Si,, appear to be 0, 2my, 2ma, or 2m; + 2ms.
But we do not see a tidy way to express this short of a bunch of inequalities. (It is
trivial to program the answer on a computer though.)

7. A GHOST CONJECTURE FOR BUZZARD REGULAR p’S

We now formulate a p-version of the ghost conjecture.

7.1. Statement of the conjecture. Let p > 5 denote a prime and, as before, let
p: Gq — GLy(F,) denote a continuous, odd, and semi-simple Galois representa-
tion that satisfies the condition .

Let ko denote the unique integer such that 0 < kg < p — 1 and det(p) = who—L.
Let N denote an integer which is prime-to-p and p is modular of level N. Define d
and d™V as in our running p-component examples where d(n) = dim Sy, (T'1(N))
and d"V(n) = dim Sy, (To)2~ """ (here Ip = T'1(N) NTo(p) as before). Let G =
Gp,n denote the ghost series attached to kg, d, and d"®" which we will refer to as
the p-ghost series. For k a weight in #4,(C,), let G5(k) denote the specialization
of G to weight k.

Let ST(T) denote the space of overconvergent cuspforms of weight x and tame
level T'1(N), and let Sf(T'g)7 be the p-isotypic subspace. Let P5(x) denote the
characteristic power series of U, on S} (I'g)5. Before stating the conjecture, we
recall that the ‘Buzzard regular’ condition is a synonym for p being locally
reducible at p.

Conjecture 7.1. If 5 satisfies (BR), then NP(P5(k)) = NP(Gp(k)) for all k €
Wiy (Cp)-

Before discussing evidence, let us address the condition (No E2)). Under (No E2)),
Proposition [6.9)implies that the ghost series can be explicitly constructed after only

a finite computation (which becomes shorter after Section . This allows us to
make the numerical tests that follow.

On the other hand, we currently cannot efficiently determine the slopes of the
abstract ghost series for p = 1 @ w (or its cyclotomic twists). Out of prudence, we

|



SLOPES OF MODULAR FORMS AND THE GHOST CONJECTURE, II 29

have omitted making a conjecture in this case, although we know of no reason for
Conjecture to fail in this case.

Further, we note that even if we remove the hypothesis, it is not a priori
clear that Conjecture for all locally reducible p implies the ghost conjecture of
[B]. Indeed, let G; for i = 1,2 denote abstract ghost series defined by functions d;
and d}°V. It is not generally true that the abstract ghost series defined by d;+ds and
d®V + d5°V has slopes equal to the union of the slopes of G; and G2. Nonetheless,
we believe that such a statement will hold for p-ghost series defined on the same
component of weight space (and could be proven with a little combinatorial care).
With such a statement in hand, then the full ghost conjecture does indeed follow
from the p-ghost conjecture.

7.2. Numerical evidence. Along with the theoretical evidence following from the
theorems in Sections [3] and [4] we also made extensive numerical tests of Conjecture
The analysis in Section suggests that we consider five different ‘behaviors’
for a fixed residual representation 7 with small Serre weight as in :

(A) 7 is non-split at p and 2 < k(f) <p+1;

(B) 7 is non-split at p and k(7) =

(C) 7 is non-split at p and k(F) = p + 1;

(D) 7 is split at p and 2 < k:(?) <p+ 1,

(E) 7 is split at p and k(7) =

We will then consider Conjecture for each twist p = 7 ® w!. Below are forms f
whose corresponding r := ry account, respectively, for each of the above fives cases.

(a) p=13, N=1, and f = A.

)y p=T, N =11, and f corresponds to the elliptic curve Xo(11).

) p=11, N=1,and f = A.

) p =23, N =1, and f = A.

e)p="7T N = 27 and f corresponds to the CM elliptic curve [16, Elliptic
Curve 27.al].

We also considered two examples arising where p is not T'o(N)-regular, but 7 still
satisfies (BR)). Both of these examples correspond to case above: T is non-split
locally at p with Serre weight strictly between 2 and p — 1.

(f) p=59, N=1,and f = A.

(g) p=19, N =3, and f is the unique form of weight 6 and level I'y(3).
We further considered some odd weight examples. The first two examples corre-
spond to case while in the third example 7 corresponds to case @: split at p
with Serre weight 3.

(h) p=23, N =3, and f is the weight 11 form corresponding to [16, Newform
3.11.2.a). This form is defined over Q(y/—5) and we view it as a form over
Qo3 under the embedding of Q(v/—5) into Q5 which has ax(f) = 4 mod 23.
(i) The same as in example (h) except we choose the embedding which has
as(f) =19 mod 23.
(G) p=11, N =7, and f is the unique weight 3 cuspform which corresponds
to [16, Newform 7.3.6.a).
Even though the p-dimension formulas from Section[6.2]assumed p > 3, we nonethe-
less applied these same formulas to a few examples with p = 3. Both of these
examples have 7 non-split at p (cases and respectively).

(b
(c
(d
(


http://www.lmfdb.org/EllipticCurve/Q/27.a1
http://www.lmfdb.org/EllipticCurve/Q/27.a1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3/11/2/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3/11/2/a/
http://www.lmfdb.com/ModularForm/GL2/Q/holomorphic/7/3/6/a/
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(k) p=3, N =11, and f is the unique weight 2 cuspform which corresponds
to Xo(ll)
() p=3, N =7, and f is the unique weight 4 cuspform. See [I6, Newform
7.4.1.a).
Lastly, we considered an example with 7 globally reducible.
(m) p=17, N =2, and f = Eg so that 7 = w’ @ 1.
Now that we have our fixed ¥ we can state our numerical evidence. If d > 0 is
an integer, write G%d for the truncation of G5 in degree at most d. Via computer
computations performed in Sage ([I5]) and Magma ([5]) we verified the following:

Fact 7.2. Let 7 =Ty denote the mod p Galois representation corresponding to any
of the examples (@) - @ above and let Mz denote the corresponding constant in
the table below. Then for each 2 < k < Mz and k = k(7) + 2t mod p — 1, we have
(20) NP (char(U,| S (To)rewr ) = NP(GSL . (k)

where d = dim Sk (T'o)rgwt -

(@) | ()| (c) | (4 | (]| (F) | (9) | (W) | (|G |K]|DH]m
Mz | 1000 | 200 [ 1000 | 1000 | 126 | 1000 | 450 | 400 | 400 | 200 | 200 | 250 | 380

We note that while it looks like weights up to 1000 are tested in example (a), say,
half of them are the wrong parity and we are actually testing p — 1 = 12 different
conjectures. So each case of Conjecture was tested in (a) for approximately
500/12 = 41 different weights.

We also note that while the right-hand side of is easy to compute, the
left-hand side becomes very difficult to compute as k grows. Indeed, for a fixed k
around Mz, computing the slopes on the left-hand side of could take over a
day of CPU time whereas computing the corresponding ghost slopes takes only a
few seconds.

We close with two more observations.

Remark 7.3.

(a) In examples (h) and (i), the associated 7’s are globally distinct, but locally
isomorphic at p. Moreover, each T occurs with multiplicity one in its Serre
weight. These facts force the associated ghost series in these two cases to
be identical. In particular, Conjecture predicts that the slopes in these
two cases are identical, and the data we collected above was in complete
agreement with these observations.

(b) We also performed numerical experimentations of the w-adic ghost slopes
(see Remark and we noticed that in the generic case all of the w-
adic slopes were distinct. By generic, we mean 7 is irreducible, locally
reducible non-split at p, 2 < k(7) < p — 1, and dim Sy (I')7 = 1. These
computations were carried out for all p < 40 and all generic values of k(7).
We strongly suspect that this patterns holds in general as we not only
observed that the slopes were distinct but could write down explicit formulas
for the consecutive differences of the w-adic slopes in terms of p and k(7)
which were visibly non-zero when 2 < k(7) < p — 1.

We note that this observation combined with Conjecture implies that
the p-eigencurve is smooth in the spectral halo region, and, moreover, is just
an infinite union of annuli. One should compare this prediction with [IT],


http://www.lmfdb.com/ModularForm/GL2/Q/holomorphic/7/4/1/a/
http://www.lmfdb.com/ModularForm/GL2/Q/holomorphic/7/4/1/a/
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Conjecture 1.2] where it is conjectured that the eigencurve is an infinite
union of finite flat coverings of weight space.
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