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29 Abstract

30 Colocalization  single-molecule  methods  can  provide  a  wealth  of  information 

31 concerning the ordering and dynamics of biomolecule assembly. These have been used 

32 extensively  to  study  the  pathways  of  spliceosome  assembly  in  vitro.  Key  to  these 

33 experiments  is  the  measurement  of  binding  times—either  the  dwell  times  of  a  multi-

34 molecular interaction or times in between binding events. By analyzing hundreds of these 

35 times,  many  new  insights  into  the  kinetic  pathways  governing  spliceosome  assembly 

36 have been obtained. Collections of binding times are often plotted as histograms and can 

37 be fit to kinetic models using a variety of methods.  Here, we describe the use of maximum 

38 likelihood methods to fit dwell time distributions without binning. In addition, we discuss 

39 several aspects of analyzing these distributions with histograms and pitfalls that can be 

40 encountered  if  improperly  binned  histograms  are  used.    We  have  automated  several 

41 aspects of maximum likelihood fitting of dwell time distributions in the AGATHA software 

42 package.

43 Keywords

44 single-molecule, fluorescence, spliceosome, dynamics, software, fitting

45 Highlights

46  Single-molecule methods can measure discrete binding events between 

47 individual biomolecules

48  Maximum likelihood fitting of unbinned binding data can be used to determine 

49 kinetic parameters

50  AGATHA software automates many time-consuming steps in data fitting and 

51 histogram analysis
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52 1. Introduction

53 The spliceosome is an extremely complex and highly dynamic molecular machine 

54 found in eukaryotes [1].  It carries out precursor mRNA (pre-mRNA) splicing by concerted 

55 removal of intronic sequences and ligation of the flanking exons. The splicing process 

56 requires the coordinated action of five small nuclear ribonucleoprotein particles (snRNPs): 

57 U1,  U2,  U4,  U5  and  U6.  Each  snRNP  contains  a  uridine-rich  small  nuclear  RNA  (U 

58 snRNA) and several snRNP-specific proteins [2]. In addition to large-scale conformational 

59 rearrangements  of  the  snRNPs,  numerous  other  splicing  factors  assemble,  rearrange 

60 and/or  dissociate  from  the  spliceosome  during  each  step  of  splicing  [2-5].    Single-

61 molecule fluorescence microscopy methods such as single-molecule FRET (smFRET) 

62 and colocalization single-molecule spectroscopy (CoSMoS) have revealed the transient 

63 behaviors of the spliceosome that are often obscured by ensemble techniques. In fact, 

64 splicing was first discovered through single-molecule imaging of RNA/DNA hybrids using 

65 electron microscopy [6, 7]. Recent high resolution cryo-EM structures have revealed the 

66 overall structure, and detailed inner-workings of the several key states of the spliceosome 

67 [4-6]. The structural rearrangements observed in these different states have 

68 revolutionized our understanding of splicing mechanism as well as validated key single-

69 molecule results concerning juxtaposition of the sites of splicing chemistry prior to 5' splice 

70 site cleavage [8-11].

71 In addition to pre-mRNA splicing, CoSMoS and other colocalization approaches 

72 have been used to study many other multistep biochemical processes including 

73 transcription,  translation,  DNA  replication,  and  actin  filament  branching  [12-18].  In 

74 general,  colocalization  experiments  involve  observation  of  the  binding  and  release  of 
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75 fluorescent molecules from a surface-tethered substrate. Often this is enabled by the use 

76 of spectrally distinguishable fluorophores (e.g., Cy3 and Cy5), which can be individually 

77 excited and detected [15]. This has allowed multiple fluorescent species to be followed 

78 simultaneously, providing unique insights into biomolecular assembly and disassembly 

79 pathways.  Early  work  on  the  S.  cerevisiae  (yeast)  splicing  machinery  revealed  that 

80 spliceosomes  assemble  on  pre-mRNA  in  a  partially  ordered  pathway  with  multiple 

81 reversible  steps,  potentially  identifying  points  of  regulation  [19,  20].  Critically,  these 

82 experiments also revealed quantitative kinetic information about several discrete steps in 

83 splicing—something which was not possible using earlier approaches such as native gel 

84 electrophoresis of cellular splicing extracts.

85 In this article, we discuss and compare statistical methods that are used to obtain 

86 the  fit  parameters  associated  with  CoSMoS  data  of  spliceosome  assembly.  We  also 

87 introduce  the  A  GATHering  of  Analyses  (AGATHA)  software  package  that  we  have 

88 developed to facilitate maximum likelihood fitting of single-molecule data and its statistical 

89 analysis.  We illustrate the use of AGATHA in fitting data related to assembly of splicing 

90 factors on RNAs; however, these maximum likelihood methods are generally useful and 

91 can be used to analyze single molecule data originating from many different types of 

92 experiments beyond pre-mRNA splicing.

93 2. Example Data and Initial Analysis

94 2.1. RNA Binding Dynamics of a Yeast Splicing Factor

95 In order to demonstrate the methods used in statistical analysis of binding times 

96 obtained from single-molecule experiments, we will use two recently published data sets 

97 describing the binding of the yeast splicing factor branchpoint bridging protein (BBP) to 
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98 pre-mRNA substrates containing or lacking the branch site (BS) [21].  In these 

99 experiments, Larson et. al showed that the presence of a BS promotes longer binding of 

100 a fluorescently-tagged BBP molecule to a surface-immobilized RNA. CoSMoS 

101 experiments were performed using a custom built, micromirror TIRF microscope that in 

102 which the laser excitation beams enter and exit through the objective.  The workflow for 

103 constructing this microscope has already been published [22]. Pre-mRNAs, labeled with 

104 a red laser-excited Cy5 fluorophore, were first immobilized on a functionalized glass slide. 

105 Whole  cell  extract  containing  BBP  protein  labeled  with  a  green-laser  excited  Dy549 

106 fluorophore was then added. This experimental set-up for two color CoSMoS is 

107 schematically illustrated in Figure 1A. Individual fluorophores were visualized as discrete 

108 spots of intensity, allowing the locations of the RNA and splicing factors to be determined.  

109 Images  were  then  recorded  from  the  camera  over  time,  creating  movies  of  “red” 

110 immobilized  RNAs  and  “green”  dynamic  BBP  proteins.  Detailed  descriptions  of  the 

111 experimental set-up and data collection can be found elsewhere [19, 21-26].

112 2.2. Obtaining a List of Dwell Times from Movies of Single Molecules

113 In  the  above  experiments  with  BBP,  the  fluorescence  signal  from  the  surface 

114 tethered pre-mRNAs was then used to define Areas Of Interest (AOIs). AOIs were then 

115 mapped  from  the  >635  nm  field  of  view  (FOV)  corresponding  to  the  “red”  pre-mRNA 

116 locations to the <635 nm FOV in which the “green” BBP was imaged [25]. This was then 

117 followed by pixel intensity integration over each AOI, which produced a BBP fluorescence 

118 intensity trajectory at each pre-mRNA location (Figure 1B). In this example, the peaks in 

119 fluorescence  intensity were identified  by changes  in signal  that  exceeded a threshold 

120 value of 3.2 , where  represents the baseline noise of the fluorescence trajectory.  In 𝜎𝑠 𝜎𝑠
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121 effect,  the  association/dissociation  of  BBP  on  an  individual  RNA  corresponds  to  the 

122 appearance/disappearance  of  fluorescence  peaks  from  the  AOI.  The  details  about 

123 mapping and spot discrimination methods that can be used to obtain the fluorescence 

124 intensity trajectories has been previously described [25]. 

125 Often a single AOI will show multiple binding events (cf. Figure 1B), and each 

126 binding event is characterized by its own binding or dwell time. The dwell times observed 

127 will depend on the biochemical properties of the system studied. For example, inspection 

128 of individual fluorescence trajectories of BBP binding to a pre-mRNA containing a BS 

129 reveals both short and long events (Figure 1B).  However, when a pre-mRNA lacks a 

130 BS, fluorescence trajectories of BBP binding reveal primarily short events (Figure 1C).  

131 This is expected since BBP should most strongly associate with RNAs containing the 5'-

132 UACUAAC-3' BS sequence [27]. 

133 2.3. Plotting the Single-Molecule Data as a Distribution of Dwell Times 

134 A single CoSMoS experiment can yield hundreds of dwell times derived from many 

135 different binding events occurring on many different molecules. It is often beneficial to first 

136 plot the dwell time distribution as a probability density (PD) histogram.  In this method, 

137 dwell times are first binned, and the population in each bin ( is then divided by the 𝑁𝑏𝑖𝑛) 

138 product of the bin width  and total number of events [ . The  (𝑤) 𝑁𝑡𝑜𝑡; 𝑃𝐷 = 𝑁𝑏𝑖𝑛 (𝑤 × 𝑁𝑡𝑜𝑡)]

139 probability density histograms of dwell times for BBP on RNAs with or without a BS are 

140 compared in Figure 1D. The dwell time distribution for BBP binding on RNA that lacks a 

141 BS (dark green) is narrower (shifted towards shorter dwell times) than that obtained from 

142 BBP binding to RNA containing a BS (light green). This arises due to the scarcity of long-
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143 lived binding events in the absence of the BS. The simplest binding mechanism of BBP 

144 on pre-mRNA (R) without a BS can be described as a single-step process: 

𝑅 + 𝐵𝐵𝑃 ⇌𝑅.𝐵𝐵𝑃 (1)

145 In contrast, the broader distribution of BBP dwell times on the wild-type RNA could be 

146 due to the presence of two or more populations of BBP-RNA complexes. 

147 A  more  quantitative  and  theoretical  analysis  of  the  dwell  time  distributions  can 

148 provide additional information about kinetic features of the BBP-RNA complexes. The 

149 probability density function (PDF) for the lifetime in an individual state can be described 

150 as an exponential distribution [28]. For mechanisms with multiple states, the probability 

151 density function is the sum of the exponential distributions [28]. A general expression for 

152 PDF with  states can be written as:𝑘

𝑃𝐷𝐹(𝑡) =

𝑘

∑
𝑖 = 1

𝑎𝑖

𝜏𝑖
𝑒

‒
𝑡
𝜏𝑖       for  𝑡 > 0

(2)

153  where , and , are the time constant and relative amplitude of the  state respectively, 𝜏𝑖 𝑎𝑖 𝑖𝑡ℎ

154 such  that   satisfies  the  constraint It  is  of  significant  interest  to  know  the 𝑎𝑖 ∑𝑎𝑖 = 1.  

155 characteristic time constants, , for each complex as they provide information about the 𝜏𝑖

156 interconversion of the complexes and their relative kinetic stabilities. The values of these 

157 time constants can be extracted by fitting an appropriate equation to the measured data 

158 as discussed below. 

159 3. Methods for Fitting Distributions of Dwell Times

160 3.1. Obtaining the Fit Parameters and Associated Errors 

161 The method of least squares is frequently used to estimate the best fit parameters. 

162 Although this approach is straightforward and powerful, it can have its pitfalls if not used 
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163 carefully [29-32].  This is particularly apparent when used to fit data which are not normally 

164 distributed. An alternative approach is the Maximum Likelihood (ML) estimation [33, 34]. 

165 For a sufficiently large dataset, different methods should ideally yield the same estimates 

166 for the fit parameters. However, in practice, the extracted fit parameters can often depend 

167 on the chosen method. This will be illustrated in Section 3.3 by comparing the fit results 

168 obtained  from  two  independent  methods.  For  simplicity,  we  will  focus  the  discussion 

169 below on fitting and error estimates of kinetic parameters using the ML approach since it 

170 is likely less familiar to most biochemists.

171  Using Equation (2), the probability density for observing the first data point, , 𝑡1

172 reads as

173

174 As the measurement of one dwell time is independent of any other dwell time observation 

175 within an experiment, the probability density for observing all the  measured data points, 𝑛

176  can be written as a product of the individual probability densities. This total 𝑡1,𝑡2,…𝑎𝑛𝑑,𝑡𝑛

177 probability density defines the likelihood function ( ):𝐿𝑖𝑘(𝜏𝑖,𝑎𝑖)

𝐿𝑖𝑘(𝜏𝑖,𝑎𝑖) =

𝑛

∏
𝑗 = 1

[
𝑘

∑
𝑖 = 1

𝑎𝑖

𝜏𝑖
𝑒

‒
𝑡𝑗

𝜏𝑖] (4)

𝑃𝐷𝐹(𝑡1) =

𝑘

∑
𝑖 = 1

𝑎𝑖

𝜏𝑖
𝑒

‒
𝑡1

𝜏𝑖

(3)
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178 In other words, the likelihood function characterizes the probability to observe a particular 

179 set of dwell time values obtained from an experiment. Maximizing the function, , 𝐿𝑖𝑘(𝜏𝑖,𝑎𝑖)

180 with  respect  to  the  parameters   will  make  the  observed  data  most  probable.  𝜏𝑖, and 𝑎𝑖

181 Hence, the values of  that yield a global maximum of , are the best fit 𝜏𝑖, and 𝑎𝑖 𝐿𝑖𝑘(𝜏𝑖,𝑎𝑖)

182 parameters of the PDF to the experimentally observed distribution. 

183 It is important to note that the experimental conditions set limits on the measured 

184 dwell  times  ( ), ,  such  that  nothing  shorter  than   can  be  measured  in  an 𝑡 𝑡𝑚 ≤ 𝑡 ≤ 𝑡𝑥 𝑡𝑚

185 experiment of duration . The parameter  is often limited by the camera frame rate. 𝑡𝑥 𝑡𝑚

186 These constraints on the dwell times calls for a conditional PDF instead of Equation (2), 

187 which can be defined as

𝑃𝐷𝐹(𝑡) =
𝑎

(𝑒
‒

𝑡𝑚

𝜏 ‒ 𝑒
‒

𝑡𝑥

𝜏 )
(𝑒

‒
𝑡
𝜏

𝜏 ), 𝑤ℎ𝑒𝑟𝑒 𝑎 = 1.

(5)

188 Similarly, one could obtain the conditional PDF for bi-exponential distribution,

,𝑃𝐷𝐹(𝑡) = [𝑎1(𝑒
‒

𝑡𝑚
𝜏1 ‒ 𝑒

‒
𝑡𝑥
𝜏1) + 𝑎2(𝑒

‒
𝑡𝑚
𝜏2 ‒ 𝑒

‒
𝑡𝑥
𝜏2)]

‒ 1

(𝑎1

𝜏1
𝑒

‒
𝑡

𝜏1 +
𝑎2

𝜏2
𝑒

‒
𝑡

𝜏2)
(6)

189 with . 𝑎1 + 𝑎2 = 1

190 To obtain the best fit of Equation (5) to the dwell time distribution of BBP on RNA 

191 without a BS (Figure 1D), we maximize the logarithmic likelihood function:

 .𝑳(𝜏) = 𝑙𝑛 (𝐿𝑖𝑘(𝜏)) = ‒ 𝑛.𝑙𝑛 [𝑒
‒

𝑡𝑚
𝜏 ‒ 𝑒

‒
𝑡𝑥
𝜏 ] ‒ 𝑛.ln (𝜏) + ∑𝑛

𝑗 = 1( ‒
𝑡𝑗

𝜏)
(7)

192 Optimizing the product of the probabilities (Equation 4) is often computationally inefficient 

193 since this product can yield a very small number. With increasing number of data points, 
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194 this product can run out of precision very quickly due to the floating-point arithmetic used 

195 by computers. Therefore, it is better to maximize the log of the likelihood function as it 

196 converts the product of the individual probability densities to summation and preserves 

197 the fitting results.

198 Figure 2A shows the plot between  vs  in which gets a maximum value of -𝑳(𝜏) 𝜏 𝑳(𝜏) 

199 909.6 at . This  value is the ML estimate for the fit parameter  for BBP 𝜏𝑚𝑎𝑥 = 8.6 𝑠 𝜏𝑚𝑎𝑥 𝜏

200 on RNA without BS. In other words, this parameter indicates that BBP has a characteristic 

201 dwell time of 8.6 s when associating with RNAs lacking a BS sequence.

202 Similarly, one could obtain the ML estimates for , , and  of the double 𝑎1 𝜏1 𝑎2, 𝜏2

203 exponential PDF [Equation (6)], which is useful for describing the dwell time data set of 

204 BBP on WT RNA.  In this case, the more complicated equation is necessary to correctly 

205 fit the appearance of both long and short dwell times in the data set when BBP binds 

206 RNAs containing a BS sequence.    A contour plot of the logarithmic likelihood function, 𝐿(

207 ,  [corresponding to the double exponential PDF, Equation (6)], is plotted as a function 𝜏1 𝜏2)

208 of  and  by holding  constant (Figure 2B). ,  obtains a maximum value of -𝜏1 𝜏2 𝑎1 𝐿(𝜏1 𝜏2)

209 1639.5 at  12.9 s and =119.3 s with the ML estimate for  = 0.74. 𝜏1 = 𝜏2 𝑎1 

210 Apart  from  estimating  the  optimized  fit  parameters,  it  is  equally  important  to 

211 quantify the errors associated with the fit parameters. There are many possible ways to 

212 estimate the errors: a standard approach to assess the standard deviations 

213 corresponding to the parameters estimates is by finding the diagonal elements of the 

214 covariance matrix of  with respect to fit variables,  [35]. Here, the covariance 𝐿𝑖𝑘(𝜃𝑖) 𝜃𝑖𝑠

215 matrix can be written as , where 𝐶(𝜃) = 𝐼(𝜃) ‒ 1
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𝐼(𝜃𝑖 ,𝜃𝑗 ) =‒ (∂2𝐿𝑖𝑘(𝜃)
∂𝜃𝑖∂𝜃𝑗 )

𝜃𝑖𝑚𝑎𝑥,𝜃𝑗𝑚𝑎𝑥

(8)

216 and  are the ML estimates for  respectively. For a single exponential  𝜃𝑖𝑚𝑎𝑥 ,  𝜃𝑗𝑚𝑎𝑥 𝜃𝑖, 𝑎𝑛𝑑 𝜃𝑗

217 distribution,  it  is  straightforward  from  Equations  (5)  and  (8)  to  obtain  an  analytical 

218 expression for standard deviation,  , where  is the ML estimate of . With  𝜎 ≈ 𝜏𝑚𝑎𝑥/ 𝑛 𝜏𝑚𝑎𝑥 𝜏

219 a total of 288 binding events/dwell times, and  s (data corresponding to Figure 𝜏𝑚𝑎𝑥 = 8.6

220 2A) the standard deviation turns out to be ~0.5 s. It is more difficult to obtain the analytical 

221 expressions for the standard deviations associated with all parameters of higher order 

222 exponential distributions.  As a result, one can approach these problems using numerical 

223 analysis.

224 Another  way  of  estimating  the  error  in  fit  parameters  is  by  finding  likelihood 

225 intervals. The likelihood intervals (i.e., the ranges for the fit parameters) are the values 

226 most  probable  within  certain  neighborhoods  around  the  maxima  [29].  For  example, 

227 consider  the  line,   plotted  against  the  likelihood  curve.    The  points  of 𝐿(𝜏𝑚𝑎𝑥) ‒ 𝑚

228 intersection of these curves,  and , will provide a good estimate for the uncertainty 𝜏𝑙𝑜𝑤  𝜏ℎ𝑖𝑔ℎ

229 in  (Figure 2A). The error estimate, in this particular case, depends solely on the 𝜏𝑚𝑎𝑥

230 value of .  The likelihood intervals for  = 0.5, and  =2 correspond to one and two 𝑚 𝑚 𝑚

231 standard deviation limits respectively [35]. For higher order exponential distributions, a 

232 similar  procedure  can  be  employed  by  estimating  the  error  on  one  parameter  while 

233 keeping the other parameters constant. Likelihood intervals estimates for and  are 𝑎1, 𝜏1  𝜏2

234 shown in Table 1 for a distribution containing two exponential terms. Likelihood intervals 

235 estimates  are  relatively  easy  to  obtain  for  a  single  exponential  fit  but  can  become 

236 laborious with increasing numbers of variables.
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237 In many cases, the statistical method of bootstrapping is advantageous over the 

238 aforementioned methods in estimating the errors of the fit parameters  [36]. Bootstrapping 

239 is a resampling method in which a new data set is generated from the observed data by 

240 random sampling, with the new and original data sets being of the same size. Ideally, this 

241 resampling  method  preserves  the  actual  distribution  of  the  parameters  present  in  the 

242 observed data set. An example of the bootstrap analysis is illustrated in Figure 2C, where 

243 1000 data sets were simulated from the dwell times for BBP on RNA without a BS. The 

244 ML estimates for  were obtained for all 1000 data sets. The distribution of ML estimates 𝜏

245 for   was  analyzed  by  plotting  a  probability  density  histogram  and  then  fitting  to  a 𝜏

246 Gaussian  distribution.  The  Gaussian  fit  yields  a  mean  value  of   s  and  standard 8.6

247 deviation of  s for , which are comparable to the ML estimate and 0.5-unit likelihood 0.7 𝜏

248 intervals  (Figure  2A).  In  a  similar  fashion,  one  could  obtain  the  uncertainty  in  the 

249 estimates  for  a  large  number  of  parameters  in  a  fit.  A  direct  comparison  of  the  error 

250 estimates  for  fit  parameters  obtained  from  the  likelihood  intervals,  and  the  bootstrap 

251 analysis can be found in Table 1.

252 3.2. Determining the Goodness of the Fit

253 Although  ML  is  a  powerful  technique,  care  should  be  taken  in  assessing  the 

254 goodness of the fit to the unbinned data. This can be done by using statistical tests such 

255 as the likelihood ratio or Akaike Information Criterion (AIC) for model selection based on 

256 the likelihoods [37, 38].  For example, a log likelihood ratio test can identify if the dwell 

257 time distribution for BBP association with WT RNA is better described by single or double 

258 exponential PDFs.  The MATLAB function Iratiotest efficiently implements this procedure 

259 and, in this example, results in rejection of the model based on a single exponential PDF. 
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260 For fitting of data sets with unknown kinetic features, it is often advisable to begin fitting 

261 to a single exponential PDF. The log likelihood ratio test or AIC can then be used to test 

262 if the simplest model is sufficient or if more complicated PDFs are needed to model the 

263 data. Figure 2D shows good agreements between the data and the fit curves for BBP 

264 dwell times on RNAs with and without a BS.

265 Critically, it is important to consider the histogram binning since one could easily 

266 bias the fit if the histogram is not binned properly. For example, we created a histogram 

267 with six bins of equal width (100 s each) for the dwell time data set of BBP binding to WT 

268 RNA along with the curve obtained using a ML fit of the unbinned data (Figure 3A). It is 

269 evident that the ML fit curve (red) deviates significantly from the equally binned histogram 

270 as well as the curve obtained from least squares fitting of the bin centers (blue line and 

271 black  points).  To  correct  this,  one  can  construct  an  unequally  binned  histogram  with 

272 narrow bin widths for shorter intervals.  We have plotted the same ML curve along with 

273 unequally binned histograms of the same data set in Figures 3B and C. The agreement 

274 between the ML fit and the histogram gets better with increasing number of unequal bins. 

275 3.3. Comparison Between Maximum Likelihood and Least Square Fitting 

276 The data plotted in Figure 3 also illustrate a potential pitfall of least squares fitting 

277 of dwell time distributions. In this case, the least squares fits were obtained using the 

278 curve fitting application of MATLAB (Table 2). With least squares fitting, it is possible to 

279 obtain ill-defined fit parameters with large standard deviations despite having reasonable 

280  or adjusted  values. In this case, the least squares fitting is improved by increasing 𝑅2 𝑅2

281 the number of bins and by using variable bin sizes. If the bin number is large, the least 

282 squares  predictions  for  the  parameters  approach  those  obtained  by  ML  estimates 
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283 (compare parameters in Table 1 vs. Table 2). However, the least squares method results 

284 in broader confidence intervals as compared to the ML error estimates. 

285 Additionally, least square fits can be highly sensitive to user inputs for upper and 

286 lower bounds for the fit coefficients as well as sample size. To see the effect of the latter, 

287 we simulated data sets of different sizes with , , and . As  𝑎1 = 0.75  𝜏1 = 10.0 𝑠 𝜏2 = 100.0 𝑠

288 sample  size  increases,  ML  estimates  gets  very  close  to  the  input  parameters  with 

289 narrower confidence intervals (Table 3). However, increasing the number of bins with 

290 these large data sets does result in overestimated values of   in least squares fits (Table 𝜏2

291 3). This can be attributed to the fact that the least squares method is very sensitive to 

292 outliers, assumes the variables to be independent, and the error to be normal. In cases 

293 where error terms are not normal, the confidence intervals of the least square estimates 

294 are  not  reliable  [24-26].  In  our  simulation,  maximum  likelihood  outperforms  the  least 

295 squares method for typical “single molecule”-sized data sets of 100-1000 data points.  

296 4. Use of AGATHA Software for ML Fitting

297 Here,  we  introduce  "AGATHA"  (A  GATHering  of  Analyses),  a  MATLAB-based 

298 software package that provides tools for the analysis of the dwell times obtained from 

299 CoSMoS  experiments  (https://github.com/hoskinslab/AGATHA).  AGATHA  includes  a 

300 number of subprograms including those for ML analysis (Plotting Histogram), identifying 

301 patterns  of  signal  appearance  (Sequential  Arrival,  Simultaneous  Arrival,  and  Short 

302 Counter), photobleaching analysis (Counting Photobleaching Steps), and data 

303 visualization  (Two  Color  Plot).  These  programs  are  accessed  via  the  AGATHA  GUI 

304 (Figure  4).    The  Sequential  Arrival  and  Simultaneous  Arrival  programs  are  useful  for 

305 deducing  pathways  of  signal  appearance  and  disappearance  in  three  color  CoSMoS 
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306 experiments (i.e., determining pathways of biomolecular assembly or disassembly [15]). 

307 These programs classify binding events into various categories depending upon times of 

308 signal  appearance  or  disappearance.  The  Counting  Photobleaching  Steps  program 

309 counts the number of bleaching steps present in a fluorescence intensity trace by fitting 

310 the  data  to  a  step  function.  This  is  useful  for  counting  the  number  of  fluorophores 

311 (biomolecules) present in a molecular assembly.  Instruction manuals for each of these 

312 programs are found in their respective GUIs. Here, we restrict ourselves to the Plotting 

313 Histogram program as the others are beyond the scope of this article. We also note that 

314 Woody  et.  al  have  independently  developed  a  similar  program,  MEMLET  (MATLAB 

315 Enabled Maximum Likelihood Estimate Tools), that utilizes the ML approach to fit data by 

316 providing a variety of general or user defined  PDFs [34].

317 4.1. Plotting Histograms 

318 The Plotting Histogram program (PH) facilitates plotting of dwell time data using 

319 various methods for bin size selection as well as ML fitting of the unbinned data. PH 

320 calculates the appropriate number of bins from the chosen method (described below) and 

321 also can remove empty bins by combining neighboring bins. Along with the histogram, it 

322 displays the error in the counting statistics of each bin center by calculating the binomial 

323 distribution variance, , as, , where  is the total number of the data 𝜎 2
𝑏𝑖𝑛 𝜎𝑏𝑖𝑛 = 𝑛𝑃(1 ‒ 𝑃) 𝑛

324 points,  and   is  the  probability  of  the  binding  event  [39].  Finally,  it  returns  the  fit 𝑃

325 parameters  and  associated  standard  deviations  by  using  ML  and  bootstrap  analysis. 

326 AGATHA simplifies ML data analysis by requiring the user to supply the relevant inputs 

327 to entry widgets in the PH GUI (Figure 5, numbers 1-7). Fitting results are also displayed 
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328 in  widgets  once  the  program  has  been  run  (Figure  5,  numbers  8  and  9).    Below  we 

329 describe data entry and use of each of the widgets in the PH GUI.

330 4.2. Instructions for Using the Plotting Histogram Program

331 1-Mode: In this widget, the user either instructs the software to automatically calculate the 

332 number of bins plotted in a histogram (Automatic) or the user can manually input the bin 

333 edges in increasing order (Manual). 

334

335 2- Histogram: When Automatic is selected in widget 1, the user then selects one or more 

336 of the listed methods for calculating the number of bins in the histogram. 

337 Sturges: According to the Sturges rule, the number of the bins for a histogram are 

338 estimated based on the range of the given data. This calculates the number of 

339 bins, as , where  is the total number of data points [28, 40].  𝑚, 𝑚 = (1 + 𝑙𝑜𝑔2(𝑛)) 𝑛

340 It will perform poorly if the number of data points is less than 30 and the points are 

341 not normally distributed [41]. As dwell times often follow an exponential distribution 

342 (similar to Figure 3A), this method may fail to show an appropriate trend in the 

343 data. 

344 Freedman-Diaconis:  This method is less sensitive to outliers in a given data, and 

345 might be more suitable for data with heavy-tailed distributions [42].  It uses a bin 

346 width, , as , where  is the dwell time data,  is number of data ℎ ℎ = 𝐼𝑄𝑅(𝑋) (𝑛)
1

3 𝑋 𝑛

347 points, and  is the interquartile range of .𝐼𝑄𝑅 𝑋

348 Scott: This method works better if the data is mostly normally distributed. However, 

349 this rule is appropriate for other distributions as well. It calculates bin width, , as ℎ
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350 , where  is the standard deviation of the data set , and  is ℎ = 3.5 ∗ 𝜎𝑋 (𝑛)
1

3 𝜎𝑋 𝑋 𝑛

351 number of data points [43].

352 Middle: This  method  make  use  of  all  three  methods  mentioned  above,  then 

353 choses the middle (median) value for bin numbers.

354 Optimal: An optimization principle is used to minimize the expected least squares 

355 loss function between the histogram and an unknown underlying density function 

356 [43].  The  optimal  bin  width, ,  is  obtained  as  a  minimizer  of  the  formula,ℎ ∗

357 , where  and  are mean and variance of the data points across bins (2𝑀 ‒ 𝑉) ℎ2 𝑀 𝑉

358 with a width . Optimal number of bins, , are calculated as, ℎ 𝑚 𝑚 = (max (𝑋) ‒ min 

359 , where and are the maximum and minimum value of the (𝑋))/ℎ ∗ max (𝑋) min (𝑋)

360 given data set .  In our experience, this method is frequently used for plotting 𝑋

361 dwell time distributions obtained from CoSMoS experiments.

362 All: This selects all of the above methods and runs them independently. 

363 3- Events: In this widget, the user specifies whether or not the dwell time data is reported 

364 in units of time or camera frames.

365

366 4-Time Units and Intervals: The time units (seconds or milliseconds) are selected within 

367 this widget as well as the interval type from the drop-down menu.  AGATHA uses input 

368 interval files generated by the GLIMPSE and IMSCROLL programs (available at 

369 https://github.com/gelles-brandeis/CoSMoS_Analysis) [25].  In these programs the dwell 

370 times  are  classified  as  different  types  of  intervals,  each  assigned  an  integer  value 
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371 between -3 and +3. Details about event classification have been previously described [25] 

372 and depend on whether or not the binding the event has been observed in its entirety as 

373 well  as  whether  or  not  binding  events  or  times  between  binding  events  are  being 

374 analyzed.

375

376 5-Function: PH is equipped with single, double and triple exponential probability 

377 distributions for fitting the measured data. These functions as labelled as Expfallone_mxl, 

378 Expfalltwo_mxl, and Expfallthree_mxl, respectively. PH currently includes equations for 

379 processing up to third order PDFs but can be expanded to higher distributions if needed.

380

381 6- Input PH Parameters: The user should enter the experimentally-constrained times Tx 

382 (length of the experiment) and Tm (minimum time that can be resolved by the experiment) 

383 along with a number for Nboot (number of datasets to be simulated for bootstrap analysis 

384 which  is  the  same  as  the  number  of  iterations  of  bootstrap  analysis).  For  example, 

385 Nboot=1000 was used for Figure 2C. For single exponential distributions, the user should 

386 enter an initial estimate for Tau [  in Equation (5)]. For bi-exponential PDFs, the user τ

387 gives initial guesses for Tau1, Tau2, and ap. The input value ap is converted to 𝑎1 =

388  before maximizing the log likelihood in order to constrain between 0 and 1. 1 (1 + 𝑎𝑝2) 𝑎1 

389 Similarly, for tri-exponential distribution fit parameters are extended to Tau1, Tau2, Tau3, 

390 ap1 and ap2, and the , , and  are deduced using equations , 𝑎1 𝑎2 𝑎3 𝑎1 = 1 (1 + 𝑎𝑝12) 𝑎 2 =

391 , and .  If the initial guesses are far off, the program (1 ‒ 𝑎1) (1 + 𝑎𝑝22) 𝑎1 + 𝑎2 + 𝑎3 = 1

392 may crash and fail to find a solution. In which case, new values can be chosen and the 

393 analysis rerun.
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394 7-Update: Clicking the update button will ask the user to select the intervals file to be 

395 analyzed and to create an output folder for the results. 

396 8-Output Fitting: The ML estimates for the fit parameters are returned here.

397 9-Output Bootstrap data: The mean and standard deviation of the fit parameter values 

398 are displayed after bootstrap analysis. The histograms before and after the fitting will be 

399 saved in the same directory with the same name as the input interval file. The program 

400 also saves the bootstrap results for all the fitting parameters.

401 5. Conclusion

402 Programs such as AGATHA and MEMLET facilitate ML fitting of complex single 

403 molecule data with additional capabilities and options not present in many other software 

404 packages such as the MATLAB DF tool. MATLAB’s DF tool application only provides a 

405 single exponential function for fitting and cannot fit probability density distributions for 

406 multiple exponential or user-defined PDFs. Both AGATHA and MEMLET are capable of 

407 fitting  data  with  multi-exponential  PDFs  and  provide  estimates  and  errors  for  fitting 

408 parameters  using  ML  and  bootstrapping  techniques.  Additionally,  MEMLET  directly 

409 provides likelihood ratio model testing, allows the user to input any PDF, and can take 

410 text or MATLAB variable files as input. On the other hand, AGATHA is supplemented with 

411 various tools for histogram binning and error calculation. Current versions of AGATHA 

412 require  input  in  IMSCROLL  format  [21];  however,  these  types  of  files  can  be  easily 

413 constructed from any data set. 

414 In conclusion, ML fitting of unbinned dwell or binding time data is often preferable 

415 compared to least squares fitting of binned data sets, which can be skewed based on 
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416 how the histogram has been constructed.  Implementation of ML methods in MATLAB 

417 can be laborious. Fortunately, this is greatly simplified by the AGATHA software. 
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428 FIGURE LEGENDS:

429 Figure 1. Analysis of single-molecule binding dynamics of BBP on RNA substrates. (A) 

430 Cartoon schematic of the CoSMoS experiment described by Larson and Hoskins [21] in 

431 which  green-labeled  BBP  binds  to  and  dissociates  from  a  surface-immobilized,  red-

432 labeled RNA substrate either containing (wild-type, WT) or lacking the BS sequence.  (B) 

433 Single-molecule  fluorescence  intensity  versus  time  plot  showing  multiple  BBP  binding 

434 events on a single WT RNA molecule. One of such binding event is magnified to highlight 

435 a  single  BBP  dwell  time.  (C)  Single-molecule  fluorescence  intensity  versus  time  plot 

436 showing multiple BBP binding events on a single RNA molecule lacking the BS sequence. 

437 (D) Comparison between the probability density histograms of dwell times for BBP on 

438 either the WT RNA or the substrate lacking the BS.
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439 Figure  2.  Fitting  and  statistical  analysis  of  BBP  dwell  time  histograms.  (A)  The  log 

440 likelihood function,  for BBP binding times on RNAs without a BS is plotted as a 𝐿(𝜏),

441 function of parameter . The  low and high values, where the  -0.5 line intersects 𝜏 𝜏 𝐿(𝜏𝑚𝑎𝑥 )

442 the L  curve, are the 0.5 unit intervals: 8.1 s and 9.1 s. Similarly, the 2 unit limits are 7.6 (𝜏)

443 s and 9.6 s. (B) Contour plot of the log likelihood function,  versus  and  for  𝐿( 𝜏1,𝜏2) 𝜏1 𝜏2 𝑎1

444 .  ) corresponds to the double exponential PDF with dwell times of BBP on = 0.74 𝐿( 𝜏 1,𝜏2

445 WT RNA. (C) Probability density histogram of the ML estimates of  that are obtained 𝜏

446 from  1000  random  samples  (Nboot=1000)  of  the  dwell  time  dataset  for  BBP  on  RNA 

447 lacking  a  BS  via  bootstrapping.  The  histogram  was  fit  with  a  Gaussian  distribution  to 

448 obtain  a  mean  value,   and  the  standard  deviation, .  (D)  Probability 𝜇 = 8.6 𝑠, 𝜎 = 0.7 𝑠

449 density histograms of the dwell times for BBP are fit with either a single (RNA without BS, 

450 black) or double exponential (WT RNA, red) PDFs. Fit parameters and their respective 

451 error estimates for both data sets are given in Table 1. 

452 Figure 3. Bin size-dependent comparison between ML and least squares fits of dwell time 

453 distributions. The probability density histograms for the dwell times of BBP on WT RNA 

454 with (A) 6, equally-sized bin widths, (B) 6, variably-sized bind widths, and (C) 9, variably 

455 sized  bin  widths.  Lines  represent  the  fits  to  the  bin  centers  (black  points)  using  least 

456 squares methods (blue) or fits of the unbinned data using ML methods (red). For both 

457 methods, the fit parameters and their corresponding confidence intervals are given in 

458 Tables 1 and 2.
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459 Figure  4.  Screenshot  of  the  startup  screen  for  AGATHA  software,  a  collection  of 

460 programs  designed  to  expedite  analysis  of  dwell  times  and  fluorescence  intensity 

461 trajectories obtained from CoSMoS experiments.

462 Figure 5. Screenshot of the Plotting Histogram GUI. Red numbers indicate widgets which 

463 require user input, and blue numbers indicate locations of the fitted parameters output. In 

464 addition,  this  program  also  outputs  various  histograms  which  are  saved  in  a  user-

465 specified folder.

466
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Table 1. Comparison between the likelihood intervals and the bootstrap confidence intervals for single
 and double exponential fits

RNA PDF
Function

Parameter ML 
estimate

Likelihood Intervals

m=0.5 m=2
68% 95%

Bootstrap        
Mean

Confidence Intervals

𝜎 2𝜎
68% 95%

Without BS Single  (s)𝜏 8.6        8.1  9.1
     -0.5  0.5

     7.6   9.6
   -0.9  1.1

  8.6 7.9  9.2
-0.7   0.7

7.2  10.0
-1.4  1.4

WT RNA Double

𝑎1

𝜏1(𝑠)

𝜏2(𝑠)

0.74

12.9

119.4

     0.70  0.77
    -0.03  0.03

 0.67  0.79 
   -0.06  0.06

11.9  13.9
       1.0    1.0

     10.9  15.2
    -2.0     2.3

   107.2  133.9  
    -12.2     14.6

 96.5  151.1
  -22.9    31.6

0.74

12.9

  120.9

    0.69  0.78
   -0.04  0.04

  0.65  0.82
-0.08  0.08

    11.6  14.2
        -1.3   1.3

10.3  15.5
 -2.6    2.6

    104.4  137.4
  -16.5    16.5

 87.8  154.0
     -33.1    33.1



Table 1. Analysis of the double exponential fit to the dwell time distribution for BBP on WT RNA using 
nonlinear least squares fitting of histogram bin centers. 

No. of 
Bins

Bin Size Parameter Non Linear
Least Square 

Fit

Confidence Intervals
68% 95%

R2/
    Adj R2

Corresponding
Figure

6 Equal

𝑎1

(s)   𝜏1

(s)𝜏2

0.91

38.5

116.1

-1.32    3.14 -5.06   6.88

-29.2  106.1  -142.6   219.5

-2399      2631 -6617    6849

0.9465/
0.9108 3A

 6 Variable

𝑎1

(s)   𝜏1

(s)𝜏2

0.82

15.4

104.9

0.74   0.91 0.59    1.06

13.5   17.2 10.4     20.3

22.1   188.0 -116.7   326.5

0.9996/ 
0.9994

3B

 9 Variable

𝑎1

(s)   𝜏1

(s)𝜏2

0.70

12.4

107.4

0.65  0.75   0.59     0.81

11.6   13.2 10.6       14.2

69.3   145.5   21.4      193.5

0.9992/ 
0.9989

3C



Table 3. Dependence of fitting methods on sample size using simulated data with a double exponential 
PDF.

Data points
Number of

Bins
Bin Size Parameter

Maximum Likelihood
Results*

Nonlinear
Least Squares Results*

R2/Adj R2

100000** 1000 Equal
(1s/bin)

=0.75𝑎1

=10 s 𝜏1

=100 s𝜏2

0.74 (0.74  0.74)

10.9 (10.9  10.9)

101.8 (100.3  103.1)

0.72 (0.72  0.72)

10.2 (10.1  10.2)

123.4 (120.6  126.1)

0.9997/
0.9997

10000** 1000 Equal
(1s/bin)

=0.75𝑎1

=10 s  𝜏1

=100 s𝜏2

0.75 (0.73  0.76)

10.9 (10.5  11.3)

102.7 (107.5  97.1)

0.73 (0.69  0.72)

10.2 (10.1  10.2)

122.0 (114.7  130.1)

0.9975/
0.9975

10000* 15 Variable
=0.75𝑎1

=10 s  𝜏1

=100 s𝜏2

0.75  (0.73  0.76)

10.9 (10.5  11.3)

102.7 (107.5  97.1)

0.76 (0.74  0.79)

10.8 (10.5  11.1)

116.0 (80.5 151.5)

0.9999/
0.9999

1000 100 Variable
=0.75𝑎1

=10 s   𝜏1

=100 s𝜏2

0.76 (0.72  0.80)

9.5 (8.3  10.7)

102.7 (85.7  119.7)

0.73 (0.67  0.81)

10.4 (10.1  12.8)

124.8 (88.3  161.4)

0.9951/
0.9950

1000 10 Variable
=0.75𝑎1

=10 s   𝜏1

=100 s𝜏2

0.76 (0.72  0.80)

9.5 (8.3  10.7)

102.7 (85.7  119.7)

0.76 (0.72  0.80)

11.08 (10.6  11.6)

114.4 (60.9  167.9)

0.9999/
0.9998

100 10 Variable
=0.75𝑎1

=10 s  𝜏1

=100 s𝜏2

0.79 (0.59  0.99)

8.9 (3.3  14.5)

90.7 (17.2  193.2)

0.68 (0.72  1.00)

6.9 (9.8  14.1)

50.0 (-3.9  103.9)

0.9988/
0.9982

*Intervals for each fitting method are shown in parentheses.

**Maximum likelihood fitting results obtained using MEMLET software [34]. MEMLET is more efficient at processing large 
data sets (>10000 data points) than AGATHA software.  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

