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Abstract

Colocalization single-molecule methods can provide a wealth of information
concerning the ordering and dynamics of biomolecule assembly. These have been used
extensively to study the pathways of spliceosome assembly in vitro. Key to these
experiments is the measurement of binding times—either the dwell times of a multi-
molecular interaction or times in between binding events. By analyzing hundreds of these
times, many new insights into the kinetic pathways governing spliceosome assembly
have been obtained. Collections of binding times are often plotted as histograms and can
be fit to kinetic models using a variety of methods. Here, we describe the use of maximum
likelihood methods to fit dwell time distributions without binning. In addition, we discuss
several aspects of analyzing these distributions with histograms and pitfalls that can be
encountered if improperly binned histograms are used. We have automated several
aspects of maximum likelihood fitting of dwell time distributions in the AGATHA software
package.
Keywords

single-molecule, fluorescence, spliceosome, dynamics, software, fitting

Highlights
e Single-molecule methods can measure discrete binding events between
individual biomolecules
e Maximum likelihood fitting of unbinned binding data can be used to determine
kinetic parameters
* AGATHA software automates many time-consuming steps in data fitting and
histogram analysis



52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

1. Introduction

The spliceosome is an extremely complex and highly dynamic molecular machine
found in eukaryotes [1]. It carries out precursor mRNA (pre-mRNA) splicing by concerted
removal of intronic sequences and ligation of the flanking exons. The splicing process
requires the coordinated action of five small nuclear ribonucleoprotein particles (snRNPs):
U1, U2, U4, U5 and U6. Each snRNP contains a uridine-rich small nuclear RNA (U
snRNA) and several snRNP-specific proteins [2]. In addition to large-scale conformational
rearrangements of the snRNPs, numerous other splicing factors assemble, rearrange
and/or dissociate from the spliceosome during each step of splicing [2-5]. Single-
molecule fluorescence microscopy methods such as single-molecule FRET (smFRET)
and colocalization single-molecule spectroscopy (CoSMoS) have revealed the transient
behaviors of the spliceosome that are often obscured by ensemble techniques. In fact,
splicing was first discovered through single-molecule imaging of RNA/DNA hybrids using
electron microscopy [6, 7]. Recent high resolution cryo-EM structures have revealed the
overall structure, and detailed inner-workings of the several key states of the spliceosome
[4-6]. The structural rearrangements observed in these different states have
revolutionized our understanding of splicing mechanism as well as validated key single-
molecule results concerning juxtaposition of the sites of splicing chemistry prior to 5' splice
site cleavage [8-11].

In addition to pre-mRNA splicing, CoSMoS and other colocalization approaches
have been used to study many other multistep biochemical processes including
transcription, translation, DNA replication, and actin filament branching [12-18]. In

general, colocalization experiments involve observation of the binding and release of
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fluorescent molecules from a surface-tethered substrate. Often this is enabled by the use
of spectrally distinguishable fluorophores (e.g., Cy3 and Cy5), which can be individually
excited and detected [15]. This has allowed multiple fluorescent species to be followed
simultaneously, providing unique insights into biomolecular assembly and disassembly
pathways. Early work on the S. cerevisiae (yeast) splicing machinery revealed that
spliceosomes assemble on pre-mRNA in a partially ordered pathway with multiple
reversible steps, potentially identifying points of regulation [19, 20]. Critically, these
experiments also revealed quantitative kinetic information about several discrete steps in
splicing—something which was not possible using earlier approaches such as native gel
electrophoresis of cellular splicing extracts.

In this article, we discuss and compare statistical methods that are used to obtain
the fit parameters associated with CoSMoS data of spliceosome assembly. We also
introduce the A GATHering of Analyses (AGATHA) software package that we have
developed to facilitate maximum likelihood fitting of single-molecule data and its statistical
analysis. We illustrate the use of AGATHA in fitting data related to assembly of splicing
factors on RNAs; however, these maximum likelihood methods are generally useful and
can be used to analyze single molecule data originating from many different types of
experiments beyond pre-mRNA splicing.

2. Example Data and Initial Analysis
2.1. RNA Binding Dynamics of a Yeast Splicing Factor

In order to demonstrate the methods used in statistical analysis of binding times

obtained from single-molecule experiments, we will use two recently published data sets

describing the binding of the yeast splicing factor branchpoint bridging protein (BBP) to



98 pre-mRNA substrates containing or lacking the branch site (BS) [21]. In these

99 experiments, Larson et. al showed that the presence of a BS promotes longer binding of
100 a fluorescently-tagged BBP molecule to a surface-immobilized RNA. CoSMoS
101  experiments were performed using a custom built, micromirror TIRF microscope that in
102  which the laser excitation beams enter and exit through the objective. The workflow for
103  constructing this microscope has already been published [22]. Pre-mRNAs, labeled with
104 ared laser-excited Cy5 fluorophore, were first immobilized on a functionalized glass slide.
105 Whole cell extract containing BBP protein labeled with a green-laser excited Dy549
106 fluorophore was then added. This experimental set-up for two color CoSMoS is
107  schematically illustrated in Figure 1A. Individual fluorophores were visualized as discrete
108  spots of intensity, allowing the locations of the RNA and splicing factors to be determined.
109 Images were then recorded from the camera over time, creating movies of “red”
110 immobilized RNAs and “green” dynamic BBP proteins. Detailed descriptions of the
111 experimental set-up and data collection can be found elsewhere [19, 21-26].
112 2.2. Obtaining a List of Dwell Times from Movies of Single Molecules
113 In the above experiments with BBP, the fluorescence signal from the surface
114  tethered pre-mRNAs was then used to define Areas Of Interest (AOls). AOls were then
115 mapped from the >635 nm field of view (FOV) corresponding to the “red” pre-mRNA
116 locations to the <635 nm FOV in which the “green” BBP was imaged [25]. This was then
117  followed by pixel intensity integration over each AOI, which produced a BBP fluorescence
118 intensity trajectory at each pre-mRNA location (Figure 1B). In this example, the peaks in
119  fluorescence intensity were identified by changes in signal that exceeded a threshold

120 value of 3.20,, where o, represents the baseline noise of the fluorescence trajectory. In
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effect, the association/dissociation of BBP on an individual RNA corresponds to the
appearance/disappearance of fluorescence peaks from the AOI. The details about
mapping and spot discrimination methods that can be used to obtain the fluorescence
intensity trajectories has been previously described [25].

Often a single AOI will show multiple binding events (cf. Figure 1B), and each
binding event is characterized by its own binding or dwell time. The dwell times observed
will depend on the biochemical properties of the system studied. For example, inspection
of individual fluorescence trajectories of BBP binding to a pre-mRNA containing a BS
reveals both short and long events (Figure 1B). However, when a pre-mRNA lacks a
BS, fluorescence trajectories of BBP binding reveal primarily short events (Figure 1C).
This is expected since BBP should most strongly associate with RNAs containing the 5'-
UACUAAC-3' BS sequence [27].

2.3. Plotting the Single-Molecule Data as a Distribution of Dwell Times

A single CoSMoS experiment can yield hundreds of dwell times derived from many
different binding events occurring on many different molecules. It is often beneficial to first
plot the dwell time distribution as a probability density (PD) histogram. In this method,
dwell times are first binned, and the population in each bin ( Ny;,) is then divided by the
product of the bin width (w) and total number of events [ N; PD = Nbin/(w X Nyop)]. The
probability density histograms of dwell times for BBP on RNAs with or without a BS are
compared in Figure 1D. The dwell time distribution for BBP binding on RNA that lacks a
BS (dark green) is narrower (shifted towards shorter dwell times) than that obtained from

BBP binding to RNA containing a BS (light green). This arises due to the scarcity of long-



143  lived binding events in the absence of the BS. The simplest binding mechanism of BBP
144 on pre-mRNA (R) without a BS can be described as a single-step process:

R + BBP =R.BBP (1)

145 In contrast, the broader distribution of BBP dwell times on the wild-type RNA could be
146  due to the presence of two or more populations of BBP-RNA complexes.
147 A more quantitative and theoretical analysis of the dwell time distributions can
148  provide additional information about kinetic features of the BBP-RNA complexes. The
149  probability density function (PDF) for the lifetime in an individual state can be described
150 as an exponential distribution [28]. For mechanisms with multiple states, the probability
151  density function is the sum of the exponential distributions [28]. A general expression for
152  PDF with k states can be written as:

‘o L 2)

PDF(t) = Zr—ie " fort>0
i=1

153  where 7, and g;, are the time constant and relative amplitude of thei*" state respectively,
154  such that q; satisfies the constraint Ya; = 1. It is of significant interest to know the

155  characteristic time constants, 1;, for each complex as they provide information about the

156 interconversion of the complexes and their relative kinetic stabilities. The values of these
157 time constants can be extracted by fitting an appropriate equation to the measured data
158  as discussed below.

159 3. Methods for Fitting Distributions of Dwell Times

160  3.1. Obtaining the Fit Parameters and Associated Errors

161 The method of least squares is frequently used to estimate the best fit parameters.

162  Although this approach is straightforward and powerful, it can have its pitfalls if not used
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carefully [29-32]. This is particularly apparent when used to fit data which are not normally
distributed. An alternative approach is the Maximum Likelihood (ML) estimation [33, 34].
For a sufficiently large dataset, different methods should ideally yield the same estimates
for the fit parameters. However, in practice, the extracted fit parameters can often depend
on the chosen method. This will be illustrated in Section 3.3 by comparing the fit results
obtained from two independent methods. For simplicity, we will focus the discussion
below on fitting and error estimates of kinetic parameters using the ML approach since it
is likely less familiar to most biochemists.

Using Equation (2), the probability density for observing the first data point,  t,

reads as

kg O (3)
PDF(tl)zz:;fe i
L

i=1

As the measurement of one dwell time is independent of any other dwell time observation
within an experiment, the probability density for observing all then measured data points,

t1,ty,...and,t, can be written as a product of the individual probability densities. This total

probability density defines the likelihood function (Lik(z;a;)):

k a t}] (4)
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In other words, the likelihood function characterizes the probability to observe a particular

set of dwell time values obtained from an experiment. Maximizing the function, Lik(z;a;),
with respect to the parametersr;, and a; will make the observed data most probable.
Hence, the values of 1, and a; that yield a global maximum of Lik(z;a;), are the best fit
parameters of the PDF to the experimentally observed distribution.

It is important to note that the experimental conditions set limits on the measured
dwell times ¢), t,, <t <t,, such that nothing shorter tharnt,, can be measured in an
experiment of duration t,. The parameter t,, is often limited by the camera frame rate.
These constraints on the dwell times calls for a conditional PDF instead of Equation (2),

which can be defined as

_t (5)
a (e t
PDF(t) = n . K . ,Where a = 1.
)
Similarly, one could obtain the conditional PDF for bi-exponential distribution,
tn 2% tn te 1 1 t t (6)

PDF(t) =

- T - T e
al(e T-e Tl)+a2(e 2 _e TZ)] (Tle Tl+;2e Tz),

with a+ay = 1.
To obtain the best fit of Equation (5) to the dwell time distribution of BBP on RNA
without a BS (Figure 1D), we maximize the logarithmic likelihood function:

| s . 7)
L(?) = In (Lik(?)) = - n.ln [e e ’]—n.ln @+ (-D.

Optimizing the product of the probabilities (Equation 4) is often computationally inefficient

since this product can yield a very small number. With increasing number of data points,

10
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this product can run out of precision very quickly due to the floating-point arithmetic used
by computers. Therefore, it is better to maximize the log of the likelihood function as it
converts the product of the individual probability densities to summation and preserves
the fitting results.

Figure 2A shows the plot between L(7) vs tin which L(7) gets a maximum value of -
909.6 at 1,4, = 8.6 s. This 1,4, value is the ML estimate for the fit parameter 7 for BBP
on RNA without BS. In other words, this parameter indicates that BBP has a characteristic
dwell time of 8.6 s when associating with RNAs lacking a BS sequence.

Similarly, one could obtain the ML estimates for a4, 71, ap and 7, of the double
exponential PDF [Equation (6)], which is useful for describing the dwell time data set of
BBP on WT RNA. In this case, the more complicated equation is necessary to correctly
fit the appearance of both long and short dwell times in the data set when BBP binds
RNAs containing a BS sequence. A contour plot of the logarithmic likelihood functior,
71,T3) [corresponding to the double exponential PDF, Equation (6)], is plotted as a function
of 7, and 1, by holding a; constant (Figure 2B). L(t{,7;) obtains a maximum value of -
1639.5 at 7y = 12.9 s and 7,=119.3 s with the ML estimate for a; = 0.74.

Apart from estimating the optimized fit parameters, it is equally important to
quantify the errors associated with the fit parameters. There are many possible ways to
estimate the errors: a standard approach to assess the standard deviations
corresponding to the parameters estimates is by finding the diagonal elements of the

covariance matrix of Lik(6;) with respect to fit variables, 6;s [35]. Here, the covariance

matrix can be written as C(9) = 1(8) " !, where

11
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9%Lik(6) (8)
16,0~ (5530,
imax,ejmux
O imax » @nd 0,4, are the ML estimates for6,, and 0, respectively. For a single exponential

distribution, it is straightforward from Equations (5) and (8) to obtain an analytical

expression for standard deviation, ¢ = rmax/\/ﬁ , where t,,,, is the ML estimate ofz. With
a total of 288 binding events/dwell times, and t,,,,, = 8.6 s (data corresponding to Figure

2A) the standard deviation turns out to be ~0.5 s. It is more difficult to obtain the analytical
expressions for the standard deviations associated with all parameters of higher order
exponential distributions. As a result, one can approach these problems using numerical
analysis.

Another way of estimating the error in fit parameters is by finding likelihood
intervals. The likelihood intervals (i.e., the ranges for the fit parameters) are the values
most probable within certain neighborhoods around the maxima [29]. For example,
consider the line, L(z,4.)-m plotted against the likelihood curve. The points of
intersection of these curves, 7;,,, and 74, Will provide a good estimate for the uncertainty

in 7,4 (Figure 2A). The error estimate, in this particular case, depends solely on the

value of m. The likelihood intervals for m = 0.5, and m =2 correspond to one and two
standard deviation limits respectively [35]. For higher order exponential distributions, a
similar procedure can be employed by estimating the error on one parameter while

keeping the other parameters constant. Likelihood intervals estimates fora;, t; and t, are

shown in Table 1 for a distribution containing two exponential terms. Likelihood intervals
estimates are relatively easy to obtain for a single exponential fit but can become

laborious with increasing numbers of variables.

12
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In many cases, the statistical method of bootstrapping is advantageous over the
aforementioned methods in estimating the errors of the fit parameters [36]. Bootstrapping
is a resampling method in which a new data set is generated from the observed data by
random sampling, with the new and original data sets being of the same size. Ideally, this
resampling method preserves the actual distribution of the parameters present in the
observed data set. An example of the bootstrap analysis is illustrated in Figure 2C, where
1000 data sets were simulated from the dwell times for BBP on RNA without a BS. The
ML estimates for t were obtained for all 1000 data sets. The distribution of ML estimates
for T was analyzed by plotting a probability density histogram and then fitting to a
Gaussian distribution. The Gaussian fit yields a mean value of8.6 s and standard
deviation of 0.7 s for 7, which are comparable to the ML estimate and 0.5-unit likelihood
intervals (Figure 2A). In a similar fashion, one could obtain the uncertainty in the
estimates for a large number of parameters in a fit. A direct comparison of the error
estimates for fit parameters obtained from the likelihood intervals, and the bootstrap
analysis can be found in Table 1.

3.2. Determining the Goodness of the Fit

Although ML is a powerful technique, care should be taken in assessing the
goodness of the fit to the unbinned data. This can be done by using statistical tests such
as the likelihood ratio or Akaike Information Criterion (AIC) for model selection based on
the likelihoods [37, 38]. For example, a log likelihood ratio test can identify if the dwell
time distribution for BBP association with WT RNA is better described by single or double
exponential PDFs. The MATLAB function Iratiotest efficiently implements this procedure

and, in this example, results in rejection of the model based on a single exponential PDF.

13



260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

For fitting of data sets with unknown kinetic features, it is often advisable to begin fitting
to a single exponential PDF. The log likelihood ratio test or AIC can then be used to test
if the simplest model is sufficient or if more complicated PDFs are needed to model the
data. Figure 2D shows good agreements between the data and the fit curves for BBP
dwell times on RNAs with and without a BS.

Critically, it is important to consider the histogram binning since one could easily
bias the fit if the histogram is not binned properly. For example, we created a histogram
with six bins of equal width (100 s each) for the dwell time data set of BBP binding to WT
RNA along with the curve obtained using a ML fit of the unbinned data (Figure 3A). It is
evident that the ML fit curve (red) deviates significantly from the equally binned histogram
as well as the curve obtained from least squares fitting of the bin centers (blue line and
black points). To correct this, one can construct an unequally binned histogram with
narrow bin widths for shorter intervals. We have plotted the same ML curve along with
unequally binned histograms of the same data set in Figures 3B and C. The agreement
between the ML fit and the histogram gets better with increasing number of unequal bins.
3.3. Comparison Between Maximum Likelihood and Least Square Fitting

The data plotted in Figure 3 also illustrate a potential pitfall of least squares fitting
of dwell time distributions. In this case, the least squares fits were obtained using the
curve fitting application of MATLAB (Table 2). With least squares fitting, it is possible to
obtain ill-defined fit parameters with large standard deviations despite having reasonable
R? or adjusted R? values. In this case, the least squares fitting is improved by increasing
the number of bins and by using variable bin sizes. If the bin number is large, the least

squares predictions for the parameters approach those obtained by ML estimates

14
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(compare parameters in Table 1 vs. Table 2). However, the least squares method results
in broader confidence intervals as compared to the ML error estimates.

Additionally, least square fits can be highly sensitive to user inputs for upper and
lower bounds for the fit coefficients as well as sample size. To see the effect of the latter,
we simulated data sets of different sizes with a; = 0.75,74 =10.0 s, and 7, = 100.0 s. As
sample size increases, ML estimates gets very close to the input parameters with
narrower confidence intervals (Table 3). However, increasing the number of bins with
these large data sets does result in overestimated values ot, in least squares fits (Table
3). This can be attributed to the fact that the least squares method is very sensitive to
outliers, assumes the variables to be independent, and the error to be normal. In cases
where error terms are not normal, the confidence intervals of the least square estimates
are not reliable [24-26]. In our simulation, maximum likelihood outperforms the least
squares method for typical “single molecule”-sized data sets of 100-1000 data points.

4. Use of AGATHA Software for ML Fitting

Here, we introduce "AGATHA" (A GATHering of Analyses), a MATLAB-based
software package that provides tools for the analysis of the dwell times obtained from
CoSMoS experiments (https://github.com/hoskinslab/AGATHA). AGATHA includes a
number of subprograms including those for ML analysis (Plotting Histogram), identifying
patterns of signal appearance (Sequential Arrival, Simultaneous Arrival, and Short
Counter), photobleaching analysis (Counting Photobleaching Steps), and data
visualization (Two Color Plot). These programs are accessed via the AGATHA GUI
(Figure 4). The Sequential Arrival and Simultaneous Arrival programs are useful for

deducing pathways of signal appearance and disappearance in three color CoSMoS

15
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experiments (i.e., determining pathways of biomolecular assembly or disassembly [15]).
These programs classify binding events into various categories depending upon times of
signal appearance or disappearance. The Counting Photobleaching Steps program
counts the number of bleaching steps present in a fluorescence intensity trace by fitting
the data to a step function. This is useful for counting the number of fluorophores
(biomolecules) present in a molecular assembly. Instruction manuals for each of these
programs are found in their respective GUls. Here, we restrict ourselves to the Plotting
Histogram program as the others are beyond the scope of this article. We also note that
Woody et. al have independently developed a similar program, MEMLET (MATLAB
Enabled Maximum Likelihood Estimate Tools), that utilizes the ML approach to fit data by
providing a variety of general or user defined PDFs [34].
4.1. Plotting Histograms

The Plotting Histogram program (PH) facilitates plotting of dwell time data using
various methods for bin size selection as well as ML fitting of the unbinned data. PH
calculates the appropriate number of bins from the chosen method (described below) and
also can remove empty bins by combining neighboring bins. Along with the histogram, it
displays the error in the counting statistics of each bin center by calculating the binomial
distribution variance, a,%,, as, o, =+nP(1 - P), where n is the total number of the data
points, and P is the probability of the binding event [39]. Finally, it returns the fit
parameters and associated standard deviations by using ML and bootstrap analysis.
AGATHA simplifies ML data analysis by requiring the user to supply the relevant inputs

to entry widgets in the PH GUI (Figure 5, numbers 1-7). Fitting results are also displayed
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in widgets once the program has been run (Figure 5, numbers 8 and 9). Below we
describe data entry and use of each of the widgets in the PH GUI.

4.2. Instructions for Using the Plotting Histogram Program

1-Mode: In this widget, the user either instructs the software to automatically calculate the
number of bins plotted in a histogram (Automatic) or the user can manually input the bin

edges in increasing order (Manual).

2- Histogram: When Automatic is selected in widget 1, the user then selects one or more

of the listed methods for calculating the number of bins in the histogram.

Sturges: According to the Sturges rule, the number of the bins for a histogram are

estimated based on the range of the given data. This calculates the number of

bins, m,as m = (1 + log,(n)), where n is the total number of data points [28, 40].

It will perform poorly if the number of data points is less than 30 and the points are
not normally distributed [41]. As dwell times often follow an exponential distribution
(similar to Figure 3A), this method may fail to show an appropriate trend in the

data.

Freedman-Diaconis: This method is less sensitive to outliers in a given data, and
might be more suitable for data with heavy-tailed distributions [42]. It uses a bin

width, h, as h = )1/3, where X is the dwell time data, n is number of data

1QRXY (n

points, and IQR is the interquartile range of X.

Scott: This method works better if the data is mostly normally distributed. However,

this rule is appropriate for other distributions as well. It calculates bin width, h, as
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/ 1/ , Where gy is the standard deviation of the data set X, and n is
3.5%0x (n) '3

number of data points [43].

Middle: This method make use of all three methods mentioned above, then

choses the middle (median) value for bin numbers.

Optimal: An optimization principle is used to minimize the expected least squares
loss function between the histogram and an unknown underlying density function
[43]. The optimal bin width, h*, is obtained as a minimizer of the formula,
(2M -V)/n?, where M and V are mean and variance of the data points across bins
with a width h. Optimal number of bins, m, are calculated as, m = (max (X) — min
(X))/h*, where max (X)and min (X)are the maximum and minimum value of the
given data set X. In our experience, this method is frequently used for plotting

dwell time distributions obtained from CoSMoS experiments.
All: This selects all of the above methods and runs them independently.

3- Events: In this widget, the user specifies whether or not the dwell time data is reported

in units of time or camera frames.

4-Time Units and Intervals: The time units (seconds or milliseconds) are selected within
this widget as well as the interval type from the drop-down menu. AGATHA uses input
interval files generated by the GLIMPSE and IMSCROLL programs (available at

https://github.com/gelles-brandeis/CoSMoS_Analysis) [25]. In these programs the dwell

times are classified as different types of intervals, each assigned an integer value
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between -3 and +3. Details about event classification have been previously described [25]
and depend on whether or not the binding the event has been observed in its entirety as
well as whether or not binding events or times between binding events are being

analyzed.

5-Function: PH is equipped with single, double and triple exponential probability
distributions for fitting the measured data. These functions as labelled as Expfallone_mxl,
Expfalltwo_mxI, and Expfallthree_mxI, respectively. PH currently includes equations for

processing up to third order PDFs but can be expanded to higher distributions if needed.

6- Input PH Parameters: The user should enter the experimentally-constrained times Tx
(length of the experiment) and Tm (minimum time that can be resolved by the experiment)
along with a number for Nboot (number of datasets to be simulated for bootstrap analysis
which is the same as the number of iterations of bootstrap analysis). For example,
Nboot=1000 was used for Figure 2C. For single exponential distributions, the user should
enter an initial estimate for Tau [ t in Equation (5)]. For bi-exponential PDFs, the user

gives initial guesses for Tau1, Tau2, and ap. The input value ap is converted to a, =
1/(1 + ap?) before maximizing the log likelihood in order to constraina; between 0 and 1.
Similarly, for tri-exponential distribution fit parameters are extended to Tau1, Tau2, Tau3,
ap1 and ap2, and theay, a,, and a; are deduced using equationsa; = 1/(1 + ap1?),a , =
(1-a1)/(1 + ap2?), and a; + a, + a3 = 1. If the initial guesses are far off, the program

may crash and fail to find a solution. In which case, new values can be chosen and the

analysis rerun.
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7-Update: Clicking the update button will ask the user to select the intervals file to be

analyzed and to create an output folder for the results.

8-Output Fitting: The ML estimates for the fit parameters are returned here.

9-Output Bootstrap data: The mean and standard deviation of the fit parameter values
are displayed after bootstrap analysis. The histograms before and after the fitting will be
saved in the same directory with the same name as the input interval file. The program
also saves the bootstrap results for all the fitting parameters.
5. Conclusion

Programs such as AGATHA and MEMLET facilitate ML fitting of complex single
molecule data with additional capabilities and options not present in many other software
packages such as the MATLAB DF tool. MATLAB’s DF tool application only provides a
single exponential function for fitting and cannot fit probability density distributions for
multiple exponential or user-defined PDFs. Both AGATHA and MEMLET are capable of
fitting data with multi-exponential PDFs and provide estimates and errors for fitting
parameters using ML and bootstrapping techniques. Additionally, MEMLET directly
provides likelihood ratio model testing, allows the user to input any PDF, and can take
text or MATLAB variable files as input. On the other hand, AGATHA is supplemented with
various tools for histogram binning and error calculation. Current versions of AGATHA
require input in IMSCROLL format [21]; however, these types of files can be easily
constructed from any data set.

In conclusion, ML fitting of unbinned dwell or binding time data is often preferable

compared to least squares fitting of binned data sets, which can be skewed based on
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how the histogram has been constructed. Implementation of ML methods in MATLAB
can be laborious. Fortunately, this is greatly simplified by the AGATHA software.
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FIGURE LEGENDS:
Figure 1. Analysis of single-molecule binding dynamics of BBP on RNA substrates. (A)
Cartoon schematic of the CoSMoS experiment described by Larson and Hoskins [21] in
which green-labeled BBP binds to and dissociates from a surface-immobilized, red-
labeled RNA substrate either containing (wild-type, WT) or lacking the BS sequence. (B)
Single-molecule fluorescence intensity versus time plot showing multiple BBP binding
events on a single WT RNA molecule. One of such binding event is magnified to highlight
a single BBP dwell time. (C) Single-molecule fluorescence intensity versus time plot
showing multiple BBP binding events on a single RNA molecule lacking the BS sequence.
(D) Comparison between the probability density histograms of dwell times for BBP on

either the WT RNA or the substrate lacking the BS.
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Figure 2. Fitting and statistical analysis of BBP dwell time histograms. (A) The log
likelihood function, L(7), for BBP binding times on RNAs without a BS is plotted as a

function of parameter 7. The 7 low and high values, where the L(t,,4, ) -0.5 line intersects

the L(7) curve, are the 0.5 unit intervals: 8.1 s and 9.1 s. Similarly, the 2 unit limits are 7.6

s and 9.6 s. (B) Contour plot of the log likelihood function,L( 71,7,) versus t; and 7, for a;
= 0.74.L( T 1,7, ) corresponds to the double exponential PDF with dwell times of BBP on

WT RNA. (C) Probability density histogram of the ML estimates of t that are obtained
from 1000 random samples (Nboot=1000) of the dwell time dataset for BBP on RNA
lacking a BS via bootstrapping. The histogram was fit with a Gaussian distribution to
obtain a mean value, u=8.6s, and the standard deviation,c =0.7s. (D) Probability
density histograms of the dwell times for BBP are fit with either a single (RNA without BS,
black) or double exponential (WT RNA, red) PDFs. Fit parameters and their respective

error estimates for both data sets are given in Table 1.

Figure 3. Bin size-dependent comparison between ML and least squares fits of dwell time
distributions. The probability density histograms for the dwell times of BBP on WT RNA

with (A) 6, equally-sized bin widths, (B) 6, variably-sized bind widths, and (C) 9, variably
sized bin widths. Lines represent the fits to the bin centers (black points) using least
squares methods (blue) or fits of the unbinned data using ML methods (red). For both
methods, the fit parameters and their corresponding confidence intervals are given in

Tables 1 and 2.
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Figure 4. Screenshot of the startup screen for AGATHA software, a collection of
programs designed to expedite analysis of dwell times and fluorescence intensity

trajectories obtained from CoSMoS experiments.

Figure 5. Screenshot of the Plotting Histogram GUI. Red numbers indicate widgets which
require user input, and blue numbers indicate locations of the fitted parameters output. In
addition, this program also outputs various histograms which are saved in a user-

specified folder.

REFERENCES

[1] T.W. Nilsen, The spliceosome: the most complex macromolecular machine in the
cell?, Bioessays 25(12) (2003) 1147-1149.

[2] M.C. Wahl, C.L. Will, R. Lihrmann, The spliceosome: design principles of a dynamic
RNP machine, Cell 136(4) (2009) 701-718.

[3] W. Chen, M.J. Moore, The spliceosome: disorder and dynamics defined, Current
Opinion in Structural Biology 24 (2014) 141-149.

[4] S.M. Fica, K. Nagai, Cryo-electron microscopy shapshots of the spliceosome:
structural insights into a dynamic ribonucleoprotein machine, Nature Structural &
Molecular Miology 24(10) (2017) 791.

[5] Y. Shi, Mechanistic insights into precursor messenger RNA splicing by the
spliceosome, Nature Reviews Molecular Cell Biology 18(11) (2017) 655.

[6] S.M. Berget, C. Moore, P.A. Sharp, Spliced segments at the 5terminus of adenovirus

2 late mRNA, Proceedings of the National Academy of Sciences 74(8) (1977) 3171-3175.

23



481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

[71 L.T. Chow, R.E. Gelinas, T.R. Broker, R.J. Roberts, An amazing sequence
arrangement at the 5’ ends of adenovirus 2 messenger RNA, Cell 12(1) (1977) 1-8.

[8] R. Rauhut, P. Fabrizio, O. Dybkov, K. Hartmuth, V. Pena, A. Chari, V. Kumar, C.-T.
Lee, H. Urlaub, B. Kastner, Molecular architecture of the Saccharomyces cerevisiae
activated spliceosome, Science (2016) aag1906.

[9] R. Krishnan, M.R. Blanco, M.L. Kahlscheuer, J. Abelson, C. Guthrie, N.G. Walter,
Biased Brownian ratcheting leads to pre-mRNA remodeling and capture prior to first-step
splicing, Nature Structural & Molecular Miology 20(12) (2013) 1450.

[10] C. Yan, R. Wan, R. Bai, G. Huang, Y. Shi, Structure of a yeast activated spliceosome
at 3.5 A resolution, Science 353(6302) (2016) 904-911.

[11] D.J. Crawford, A.A. Hoskins, L.J. Friedman, J. Gelles, M.J. Moore, Single-molecule
colocalization FRET evidence that spliceosome activation precedes stable approach of

5’ splice site and branch site, Proceedings of the National Academy of Sciences (2013)
201219305.

[12] S. Ticau, L.J. Friedman, N.A. lvica, J. Gelles, S.P. Bell, Single-molecule studies of
origin licensing reveal mechanisms ensuring bidirectional helicase loading, Cell 161(3)
(2015) 513-525.

[13] L.J. Friedman, J. Gelles, Mechanism of transcription initiation at an activator-
dependent promoter defined by single-molecule observation, Cell 148(4) (2012) 679-689.
[14] B.A. Smith, S.B. Padrick, L.K. Doolittle, K. Daugherty-Clarke, I.R. Corréa Jr, M.-Q.
Xu, B.L. Goode, M.K. Rosen, J. Gelles, Three-color single molecule imaging shows
WASP detachment from Arp2/3 complex triggers actin filament branch formation, Elife 2

(2013).

24



504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

[15] J.D. Larson, M.L. Rodgers, A.A. Hoskins, Visualizing cellular machines with
colocalization single molecule microscopy, Chemical Society Reviews 43(4) (2014) 1189-
1200.

[16] S. Uemura, C.E. Aitken, J. Korlach, B.A. Flusberg, S.W. Turner, J.D. Puglisi, Real-
time tRNA transit on single translating ribosomes at codon resolution, Nature 464(7291)
(2010) 1012.

[17] C.E. Aitken, J.D. Puglisi, Following the intersubunit conformation of the ribosome
during translation in real time, Nature Structural & Molecular Biology 17(7) (2010) 793.
[18] G. Zhao, E.S. Gleave, M.H. Lamers, Single-molecule studies contrast ordered DNA
replication with stochastic translesion synthesis, eLife 6 (2017) e32177.

[19] A.A. Hoskins, L.J. Friedman, S.S. Gallagher, D.J. Crawford, E.G. Anderson, R.
Wombacher, N. Ramirez, V.W. Cornish, J. Gelles, M.J. Moore, Ordered and dynamic
assembly of single spliceosomes, Science 331(6022) (2011) 1289-1295.

[20] I. Shcherbakova, A.A. Hoskins, L.J. Friedman, V. Serebrov, |.R. Corréa Jr, M.-Q. Xu,
J. Gelles, M.J. Moore, Alternative spliceosome assembly pathways revealed by single-
molecule fluorescence microscopy, Cell Reports 5(1) (2013) 151-165.

[21] J.D. Larson, A.A. Hoskins, Dynamics and consequences of spliceosome E complex
formation, eLife 6 (2017) e27592.

[22] J. Larson, M. Kirk, E.A. Drier, W. O'brien, J.F. MacKay, L.J. Friedman, A.A. Hoskins,
Design and construction of a multiwavelength, micromirror total internal reflectance
fluorescence microscope, Nature Protocols 9(10) (2014) 2317.

[23] E.G. Anderson, A.A. Hoskins, Single molecule approaches for studying spliceosome

assembly and catalysis, Spliceosomal Pre-mRNA Splicing, Springer2014, pp. 217-241.

25



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

[24] S. Hansen, M. Rodgers, A. Hoskins, Fluorescent Labeling of Proteins in Whole Cell
Extracts for Single-Molecule Imaging, Methods in Enzymology, Elsevier2016, pp. 83-104.
[25] L.J. Friedman, J. Gelles, Multi-wavelength single-molecule fluorescence analysis of
transcription mechanisms, Methods 86 (2015) 27-36.

[26] L.J. Friedman, J. Chung, J. Gelles, Viewing dynamic assembly of molecular
complexes by multi-wavelength single-molecule fluorescence, Biophysical Journal 91(3)
(2006) 1023-1031.

[27] J.A. Berglund, K. Chua, N. Abovich, R. Reed, M. Rosbash, The splicing factor BBP
interacts specifically with the pre-mRNA branchpoint sequence UACUAAC, Cell 89(5)
(1997) 781-787.

[28] D. Colquhoun, A.G. Hawkes, The Principles of Stochastic Interpretation of lon
Channel Mechanisms, in: B. Sakmann, E. Neher (Eds.), Single Channel Recording,
Plenum Press, New York, 1995, pp. 397-482.

[29] K. Pearson, On the systematic fitting of curves to observations and measurements,
Biometrika 1(3) (1902) 265-303.

[30] I.J. Myung, Tutorial on maximum likelihood estimation, Journal of Mathematical
Psychology, 47 (2003) 90-100.

[31] U. Genschel, W.Q. Meeker, A comparison of maximum likelihood and median-rank
regression for Weibull estimation, Quality Engineering 22(4) (2010) 236-255.

[32] D. Gaeuman, C.R. Holt, K. Bunte, Maximum likelihood parameter estimation for fitting
bedload rating curves, Water Resources Research 51(1) (2015) 281-301.

[33] M.A. Ra Fisher, On the mathematical foundations of theoretical statistics, Phil. Trans.

R. Soc. Lond. A 222(594-604) (1922) 309-368.

26



550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

[34] M.S. Woody, J.H. Lewis, M.J. Greenberg, Y.E. Goldman, E.M. Ostap, MEMLET: An
easy-to-use tool for data fitting and model comparison using maximum-likelihood
estimation, Biophysical Journal 111(2) (2016) 273-282.

[35] D. Colquhoun, F.J. Sigworth, Fitting and Statistical Analysis of Single-
Channel Records, in: B. Sakmann, E. Never (Eds.), Single Channel Recording, Plenum
Press, New York, 1995, pp. 483-588.

[36] B. Efron, The jackknife, the bootstrap, and other resampling plans, Siam1982.

[37] S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, The Annals of Mathematical Statistics 9(1) (1938) 60-62.

[38] H. Akaike, A new look at the statistical model identification, IEEE Transactions on
Automatic Control 19(6) (1974) 716-723.

[39] H.D. Young, Statistical Treatment of Experimental Data, McGraw Hill Book
Company, Inc., New York, NY (1962).

[40] H.A. Sturges, The choice of a class interval, Journal of the American Statistical
Association 21(153) (1926) 65-66.

[41] R.J. Hyndman, The problem with sturges rule for constructing histograms, (1995).

[42] D. Freedman, P. Diaconis, On the histogram as a density estimator: L 2 theory,
Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 57(4) (1981) 453-476.
[43] D.W. Scott, On optimal and data-based histograms, Biometrika 66(3) (1979) 605-

610.

27



A B = 600
< Bound State
o)
BS g 400
Q
Wild-type RNA —|—- £ 200
5'SS 3'SS g
2 0
o
i 800— g T T
RNA without BS i 2000
5'SS 3'SS — :
D b oo e o o oo ————
S/ 600
> I 1
= I 1
g '
15 4001
£
/> @ 3
c 200f
(/ 8
O
0
o
S o J
L
_200 1 1 | 1 1 1 | 1
0 200 400 600 800 1000 1200 1400 1600 1800
Time (s)
C 800 T T T T T T T T D 0_08 T T T
— RNA without BS === RNA without BS
. 0.07 — WT RNA i
2
600 . o
s n 0.06 b
=) >
‘® = i
5 400_ i g 0.05
z [0
% Q 0.04 1
>
o =
% 200+ S 0.03 T
O ©
€N o
1] o 0.02 7
5 9 o
18 0.01 E
200 viv Wy

1 1 1 1 1 1 1 1 000
0 200 400 600 800 1000 1200 1400 1600 1800 0 10 20 30 40 50 100 150
Time (s) Dwell Time (s)



@)

Probability Density (s-1)

-908
-910
-912
-914
-916
918}
920!
5
06l —~ T Bootstrap data ]
] [ /' —-— Guassian Fit
[ \ Fit paramters
0.5¢ \\ n=8.6s g
[ \ g=0.7s |
[ \ ]
04 ' 1 ‘\ -
F p—-o=7.9s/ \ ]
[ / \p+0=9.3s ]
0.3_‘ / \ ]
/T \\
'} ' '
0.2} Il Y ]
[ 7/ \
[ /’ : \
0.1rp-20=7.25 \M+20=10.0's
e : N
0 . I . I | Ll ' ol T ol ]
7 7.5 8 8.5 9 95 10 105 11
T(s)

B 200

T2 (8)

w

Probability Density (s1)

180 .
160 *f‘f: 8
140¢ 10
120} L(T4 fz)max i
100 { .
80 _ L 1 L 1 L ]
8 10 12 14 16 18 20
T1(8)
104& # RNA without BS
S -+ -+ Single Expoenti
’i 4 WTRNA
—— Double Expoen
102}
B
£\
N
103t T §\
~
: ¥
B ~
'_ ~
104} \f -
: - i
. ~
~
0 100 200 300 400 500

Dwell Time (s)



>
—
3

Probability Density (s-1)

o

Probability Density (s-1)

(@

Probability Density (s-1)

103
104
10-5

10
102]
103;
104:
105]
1061

10-1 ¢

10-3 |
104 |
105

106

102}

102}

-= L east Square Fit
== Maximum Likelihood Fit
L\ i
\ N,
N
AN
\ -
- ~ %‘ -
L
=
~N
o
- \ - .\ -
f\ ) by
~. o
kL ~. __.:." ~
| 1 1 1 1 L ~ \ 43
0 100 200 300 400 500 600
Dwell Time (s)
-= Least Square Fit
—— Maximum Likelihood Fit
3 \\ 3
\ '
L ok - 4
it tadH
- ~. ~— -
| e 'i'-.. - i
. ~
A
~. =~
~. - ~ - -
“~.
- ~ - E
i‘. -
0 100 200 300 400 500 600
Dwell Time (s)
B/ == Least Square Fit
\ == Maximum Likelihood Fit
&
L '\--...__ .
~§:;:§ -
~—
i
- - \' - \ 3
ol
T~. ~
~. ~
-~ %
-" -
L ~. J
L -
0 100 200 300 400 500 600

Dwell Time (s)



[4 AGATHA

3 AGATHA
\\W]} UNIVERSITY OF WISCONSIN-MADISON

7

Plotting Histogram (Data Fitting) Sequential Arrival
Two Color Plot Simultaneous Arrival
Counting Photobleaching Steps Short Counter

User Manual



File

Mode
(@) Automatic (O Manual

Method(Histogram)
[ ] Sturges [ | Freedman-Diaconis
[]Scott [ ] Middle value of (St,Fd,Sc)
[] optimal [ ] Al
Output fitting

Tau al

Tau1 a2

Tau2 a3

Taud

GUI_PLOTTING_HISTOGRAM

Events

Time unit

[_|Time Duration [_|Frame Duration 4 Millisecond

Input Parameter
Tx m
Tau2 Tau3
Output bootstrap data
Tau Tau1
Mean Mean
Std Std

Update

Nboot Tau
ap ap1
Static Text
Tau2 Tau3
Mean Mean
Std Std

@ HOSkinS Lab | University of Wisconsin-Madison

%] -3
Tau1
ap2
a2
Mean
Std
User Manual

- OEE

Intervals

Function
Expfallone_mx| w

]



and double exponential fits

Table 1. Comparison between the likelihood intervals and the bootstrap confidence intervals for single

RNA PDF Parameter ML Likelihood Intervals Bootstrap Confidence Intervals
Function estimate m=0.5 m=2 Mean o 20
68% 95% 68% 95%
Without BS Single T(s) 8.6 8.1 9.1 7.6 9.6 8.6 7.9 9.2 7.2 10.0
-0.5 0.5 -0.9 1.1 -0.7 0.7 -1.4 1.4
aq 0.74 0.70 0.77 0.67 0.79 0.74 0.69 0.78 0.65 0.82
-0.03 0.03 -0.06 0.06 -0.04 0.04 -0.08 0.08
WT RNA Double 71(5) 12.9 11.6 14.2 10.3 15.5
11.9 13.9 10.9 15.2 12.9 13 13 26 26
1.0 1.0 -20 23
T,(5) 119.4 104.4 137.4 87.8 154.0
107.2 133.9 96.5 151.1 120.9 165 16.5 -33.1 33.1
-12.2  14.6 -22.9 31.6




Table 1. Analysis of the double exponential fit to the dwell time distribution for BBP on WT RNA using
nonlinear least squares fitting of histogram bin centers.

No.of  BinSize Parameter Non Linear Confidence Intervals R/ Corresponding
Bins Least Square 68% 95% Adj R Figure
Fit
ag 0.91 -1.32 3.14 -5.06 6.88
6 Equal 7(s) 38.5 -29.2 106.1 -142.6 219.5 0.9465/
0.9108 3A
116.1 -2399 2631 -6617 6849
T2(s)
aq 0.82 0.74 0.91 0.59 1.06
6 Variable T1(s) 15.4 13.5 17.2 104 20.3 0.9996/ 3B
0.9994
104.9 22.1 188.0 -116.7 326.5
T2(s)
a; 0.70 0.65 0.75 0.59 0.81
3C
9 Variable
7y(s) 124 11.6 13.2 10.6 14.2 0.9992/
0.9989
107.4 69.3 145.5 214 1935
T2(s)




Table 3. Dependence of fitting methods on sample size using simulated data with a double exponential

PDF.
: Number of - Maximum Likelihood Nonlinear 2/A A
Data points Bins Bin Size Parameter Results* Least Squares Results* R¥Adj R
a1=0.75 0.74 (0.74 0.74) 0.72 (0.72 0.72)
100000** 1000 Equal 0.9997/
(1s/bin) 71=10's 10.9 (10.9 10.9) 10.2 (10.1 10.2) 0.9997
=100 s 101.8 (100.3 103.1)  123.4(120.6 126.1)
a1=0.75 0.75 (0.73 0.76) 0.73(0.69 0.72)
10000** 1000 Equal 0.9975/
(1s/bin) 7=10s 10.9 (10.5 11.3) 10.2 (10.1 10.2) 0.9975
=100 s 102.7 (107.5 97.1) 122.0 (114.7 130.1)
@=0.75 0.75 (0.73 0.76) 0.76 (0.74 0.79)
10000* 15 Variable 0.9999/
7=10s 10.9 (10.5 11.3) 10.8 (10.5 11.1) 0.9999
=100 s 102.7 (107.5 97.1) 116.0 (80.5 151.5)
a1=0.75 0.76 (0.72 0.80) 0.73(0.67 0.81)
1000 100 Variable 0.9951/
7=10s 9.5(8.3 10.7) 10.4 (10.1 12.8) 0.9950
72=100 s 102.7 (85.7 119.7) 124.8 (88.3 161.4)
a1=0.75 0.76 (0.72 0.80) 0.76 (0.72 0.80)
1000 10 Variable 0.9999/
B=10s 9.5(8.3 10.7) 11.08 (10.6 11.6) 0.9998
72=100 s 102.7 (85.7 119.7) 114.4 (60.9 167.9)
a1=0.75 0.79 (0.59 0.99) 0.68 (0.72 1.00)
100 10 Variable 0.9988/
71=10s 8.9 (3.3 14.5) 6.9 (9.8 14.1) 0.9982
=100 s 90.7 (17.2 193.2) 50.0 (-3.9 103.9)

*Intervals for each fitting method are shown in parentheses.

**Maximum likelihood fitting results obtained using MEMLET software [34]. MEMLET is more efficient at processing large
data sets (>10000 data points) than AGATHA software.
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