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ABSTRACT

Automatic video analysis tools are an indispensable component in imaging applications. Object
detection, the first and the most important step for automatic video analysis, is implemented in many
embedded cameras. The accuracy of object detection relies on the quality of images that are processed.
This paper proposes a new image quality model for predicting the performance of object detection
on embedded cameras. A video data set is constructed that considers different factors for quality
degradation in the imaging process, such as reduced resolution, noise, and blur. The performances
of commonly used low-complexity object detection algorithms are obtained for the data set. A no-
reference regression model based on a bagging ensemble of regression trees is built to predict the
accuracy of object detection using observable features in an image. Experimental results show that
the proposed model provides more accurate predictions of image quality for object detection than
commonly known image quality measures.
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INTRODUCTION!

Wireless embedded camera sensors have become ubiquitous components in various imaging
applications, such as public safety and security systems, smart building operations, intelligent
transportation, and remote health care. Rather than merely presenting raw data collected by camera
sensors to the user, an application usually aims to automatically discover and extract meaningful
information from the camera sensors and to achieve as much autonomy as possible in the physical
system. Automatic video data analysis tools, which could detect, recognize, track objects of interest, and
understand their behaviors, have become indispensable components in today’s imaging applications.

The performance of automatic analysis methods relies on the quality of images that are processed.
It is therefore essential to introduce objective metrics for predicting the quality of images evaluated
by automatic analysis algorithms. In the field of image quality assessment (IQA), a diverse range
of image quality models, ranging from full-reference to reduced-reference and no-reference ones,
were designed for predicting the perceptual quality evaluated by human subjects (Ma et al., 2018, pp.
1202-1213; Wang et al., 2018, pp. 1-14; Wang, Bovik, Sheikh, & Simoncelli, 2004, pp. 600-612).

The quality of a video sequence judged by an automatic analysis algorithm, however, is not
necessarily sensitive to the same factors that drive human perceptions. The perceptual image quality
assessments usually try to emulate known characteristics of the human visual system (HVS), such
as the contrast sensitivity and the visual attention mechanisms. The contrast sensitivity mechanism
means that the HVS is sensitive to the relative luminance change rather than the absolute luminance
change (Wang et al., 2004, pp. 600-612). The visual attention mechanism is that only a local area in
the image can be perceived with high resolution by the human observer at one time instance at typical
viewing distances, due to the foveation feature of the HVS (Yang et al., 2016, pp. 3475-3488). On
the other hand, automatic analysis methods run by machines can “perceive” the absolute luminance
change precisely and have a better global “view”. For example, the problem of evaluating motion
imagery quality for tracking in airborne reconnaissance systems was studied in Irvine and Wood’s
research (2013, p. 87130Z). It was found that automated target detection algorithms are less sensitive
to spatial resolution than humans, but factors such as jitter in the temporal domain, texture complexity,
edge sharpness, and level of noise have a strong effect on the performance of target detection. In
our recent work (Kong, Dai, & Zhang, 2016, pp. 3797-3801), we found that unlike human beings
who can easily extract and focus on a moving object from a blurred background, the performance of
object detection algorithms can be affected by the quality of the background. These results suggest
that new models are needed for evaluating the quality of images from the perspective of automatic
analysis algorithms.

In a wireless imaging system, automatic analysis could be deployed using two strategies: in the
central server on compressed videos; or at the local cameras on uncompressed videos as a preprocessing
step. The impact of video compression on the accuracy of analysis algorithms has been studied in
some recent works (Tahboub, Reibman, & Delp, 2017, pp. 4192-4196; Zhong, & Reibman, 2018, pp.
1-6), which aim at finding the optimal compression rates under a quality requirement. Apart from the
distortion introduced by compression, the quality of an image or a video could be degraded during
the data acquisition or sensing process, e.g., distortion caused by noise or motion blur, or reduced
image resolution due to storage or bandwidth constraints on embedded cameras. These factors should
also be taken into consideration to evaluate the quality of an image.

Object detection is the first and the most important step in the process of automatic analysis,
because the detected objects provide a focus of attention for the following tasks such as tracking
and recognition. In this paper, we propose a blind regression model based on a bagging ensemble of
trees to predict the performance of object detection on an image. The model utilizes local features
in an image such as edge and oriented gradient and global features including image gradient and
estimated object size, which could be easily extracted from an image. The model is trained using a
large number of images with different scene characteristics and four types of distortions including
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noise, Gaussian blur, motion blur, and reduced spatial resolution. The accuracy of the proposed model
is evaluated through extensive experiments on a separate test data set and compared with commonly
used full-reference and popular no-reference IQA measures. This article extends our recent conference
publication (Kong, Ikusan, Dai, & Zhu, 2019, pp. 216-221) with more comprehensive experimental
results and discussions.

RELATED WORK

There are only a few studies on the problem of quality evaluation for automatic analysis algorithms.
Image quality assessment for face recognition applications was studied in researches by Abaza,
Harrison, and Bourlai (2012, pp. 3103-3170); Gunasekar, Ghosh, and Bovik (2014, pp. 2119-2131);
Pulecio, Benitez-Restrepo, and Bovik (2017, pp. 805-809), Five quality factors were evaluated,
including contrast, brightness, focus, sharpness, and illumination, and a face image quality index
combining the five factors was proposed in a research by Abaza et al. (2012, pp. 3103-3170). In Pulecio
et al. (2017, pp. 805-809), natural scene statistics was used to detect degradation of infrared images
for face recognition. In Gunasekar et al. (2014, pp.2119-2131), the degradation in the performance of
face detectors were quantified considering different factors including noise, blur, and compression.

There are also a few studies on the quality for target detection, target tracking, and event detection
for airborne reconnaissance applications. In Irvine and Nelson (2009, p. 73350L), the applicability of
the National Imagery Interpretability Ratings Scale (NIIRS) to an automated target detection algorithm
was examined, and it was found that NIIRS is not a good predictor of target detection performance.
In reseaches by Irvine, Wood, Reed, and Lepanto (2013, pp. 1-9) and Irvine and Wood (2013, p.
87130Z), the impacts of video frame rate and two spatial factors (noise and spatial resolution) on the
tracker performance were investigated.

The aforementioned studies investigated the performance of automatic analysis on specific
applications like face recognition and airborne reconnaissance. Our work advances the state of the
art by addressing the challenge of building a more general quality prediction model for a wide range
of object detection algorithms and diverse scene characteristics. Moreover, our model considers four
common types of distortions during the imaging process.

DATA SET AND OBJECT DETECTION MEASURE

We have selected 10 high resolution original video sequences with different scene characteristics,
illumination levels, and object scales. Among them, 5 videos are chosen from the Multiple Object
Tracking (MOT) dataset (Milan, Leal-Taixé, Reid, Roth, & Schindler, 2016), and 5 videos are chosen
from the Duke Multi-Target Multi-Camera Tracking (DM) dataset (Ristani, Solera, Zou, Cucchiara,
& Tomasi, 2016, pp. 17-35). The resolutions of these videos are mostly 1920 x 1080 except for one

Figure 1. Snapshots of video data set
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video with 640 x 480 resolution, and the average number of frames is 741. The snapshot of these
videos is shown in Figure 1.

To understand how the performance of object detection could be affected by image distortions, we
have generated different distorted video sequences based on the original videos, where the distortion
falls into four types: Gaussian blur, motion blur, imaging noise, and reduced spatial resolution. For each
type of distortion, distortion levels are set to low level and high level, and the simulation parameters
and setting are selected based on the experiments conducted in recent works (Ding et al., 2018,
pp. 1002-1014; Ma et al., 2016, pp. 1004-1016). The blurring effect of a video is generated by 2D
circularly symmetric Gaussian blur kernels with standard deviations of 1.2 and 6.5 for low level and
high level, respectively. The motion blur is simulated to approximate the linear motion of a camera
by 5 and 20 pixels with an angle of 45 degrees for low and high levels, respectively. White Gaussian
noise is added to the original images, where variances are set to be 0.001 and 0.022 for low and high
levels, respectively. For reduced spatial resolution, 1:2 and 1:4 down-sampling rates are applied in
both horizontal and vertical directions on the original images. The related simulation parameters and
setting are summarized in Table 1. Samples for the four types of distortion are shown in Figure 2, in
which the original image frame is the 581 frame of DMcamO1 video. Figure 2 (a) shows the image
with reduced spatial resolutions, which includes 3 resolutions overlaying in one image, corresponding
to original, half, and quarter resolutions in both horizontal and vertical directions. Figure 2 (b) is
a sample of blur to simulate out-of-focus blur, Figure 2 (c¢) is a sample of motion blur to simulate
camera shake during exposure, and Figure 2 (d) is a sample of white noise to simulate imaging noise
in low-light scenarios. For each original video sequence shown in Figure 1, we have generated a total
number of 8 distorted videos, including 2 videos from each type of distortion. This results in a total
number of 90 video sequences (including the original ones) in our data set.

There are two categories of object detection algorithms in the field of computer vision: one based
on building models of backgrounds and the other based on building models for objects. Algorithms
based on background modeling require multiple frames to build a stable background, while methods
based on object modeling could generate detection results on a single image. In this work, we aim
at predicting the quality of single images in a fast manner, such that the wireless embedded imaging
system could adjust its sensing strategy based on the predicted quality and energy supply. Therefore,
we focus on the performance of low-complexity object modeling methods. We use the following
three representative lightweight algorithms based on object modeling:

—_—

Histograms of Oriented Gradients (HOG) (Dalal & Triggs, 2005, pp. 886-893)

2. Discriminatively Part Models (DPM) (Felzenszwalb, Girshick, McAllester, & Ramanan, 2010,
pp- 1627-1645)

3. Locally Decorrelated Channel Features (LDCF) (Nam, Dollar, & Han, 2014, pp. 424-432)

The evaluation measures for object detection could be either sequence-based or image-based.
Since our goal is to predict the performance of object detection once an image is taken, we evaluate
the object detection accuracy of each frame in a video. The Frame Detection Accuracy (FDA) is a
comprehensive metric that accounts for important measures of system performance (such as number
of objects detected, missed objects, false positives, and localization error of detected objects) in a
single score (Kasturi et al., 2009, pp. 319-336). For a given frame, the optimal matching pairs is
assigned firstly by computing the spatial overlap between ground truth and detected objects. Then,
the FDA measure calculates the spatial overlap between the ground truth and system output objects
as a ratio of the spatial intersection between the two objects and the spatial union of them. The sum
of all of the overlaps was normalized over the average number of ground truth and detected objects.

For one image, where there are N, ground-truth objects G and N, detected objects D, N is
the number of mapped object pairs, F'DA is defined as
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Table 1. Distortion parameters

Reduce.d spatial Gaussian blur Motion blur Imaging noise
resolution
Distortion : : : :
Down-sampling 2D clrcul‘arly Linear motion with an White Gaussian noise
resolution symmetric kernel angle of 45 degrees (variance)
(standard deviation) (pixels)
Low level 1:2 1.2 5 0.001
High level 1:4 6.5 20 0.022

Figure 2. Samples of different distortions
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A detection system needs to take an image and return a bounding box and a confidence for each
detection. The provision of a confidence level allows results to be ranked such that the trade-off
between false positives and false negatives can be evaluated, without defining arbitrary costs on each
type of classification error (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010, pp. 303-
338). However, the original FDA measure does not reflect the trade-off between false positives and
false negatives. Thus, we introduce a revised FDA measure, rFDA for short, which is the average of
FDA based on different thresholds (7) of detection confidence levels (C). rFDA is defined as,
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Figure 3. Detection sample
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where N is the number of mapped object pairs, N,

is the number of true positives when the

threshold of detection confidence T] equals to C’]., je {1, ...,Nm}, and C’]. denotes the detection
confidence level of the j-th mapped detected object.

mi

The original FDA measure in can be regarded as FDA, (min) which uses the minimum detection

confidence level C (mm) in mapped pairs as threshold such that all mapped object pairs are true

positives. A detection sample is shown in Figure 3, which corresponds to a part of the 581 frame
of high blur distorted DMcamO1 video by LDCF detector. The ground truth is highlighted in solid
line, and three detected objects in dash line with confidence levels 34.71, 128.2, and 43.5, respectively.

When the threshold 7' equals to the minimum confidence C' (mm) ,ie., T = 34.71, three detection

results are all true positives, which is the same with the original FDA definition; when 7' = 43.5,
only two detection results are regards as true positive. On the other hand, the SSIM (0.51) and PSNR
(21.14 dB) values of this image actually are quite low and poor, however, detection performance is
pretty good, which indicates that the popular image quality assessments can not reflect the detection
quality.

In order to validate the proposed rFDA measure, we compare the correlation of FDA and rFDA
with Average Miss Rate (AMR), which is the most popular metric used in the object detection
area. The AMR of an image sequence (Dollar, Wojek, Schiele, and Perona, 2012, pp. 743-761) can
be determined as follows: first, a detected object and a ground truth form a match if they overlap
sufficiently, which is evaluated by the ratio of the intersection between two objects and the union of
them, and a threshold ratio of 0.5 is commonly used; then, the miss rates against false positives per
image (FPPI)is plotted (using log-log plots) by varying the threshold on detection confidence; finally,
the log-average miss rate is used to summarize the detector performance by averaging miss rate at
nine FPPI rates evenly spaced in log-space in the range of 0.01 to 1. Since AMR is calculated based
on the entire image sequence, we measure the detection performance for the whole sequence using
Sequence Frame Detection Accuracy (SFDA) introduced by Kasturi et al. (2009, p. 325). SFDA is an
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average of the FDA measured over all frames in sequence. The average is normalized to the number of
frames in the sequence where at least a ground truth or a detected object exists. SFDA is formulated as

ZNW,WEI ( N(t'; ORN 27) |

t=1

SFDA =

3

where N/, and N, denote the number of ground-truth objects and the number of detected

objects in frame ¢ , respectively, NV is the number of frames in the sequence, and FDA (t) is the

frames
FDA value for the single frame ¢.

We compare the usages of the original FDA measure and the proposed rFDA measure in the
computation of sequence-level FDA, i.e., SFDA and SrFDA. The correlation coefficients of SFDA
with AMR and the ones of STFDA with AMR for three different detectors are summarised on Table
2. We can find that there are obvious improvements comparing STFDA’s correlation with SFDA’s for
all the three detectors. Specifically, gains are 0.0426, 0.0936, and 0.0365 for DPM, HOG, and LDCF
detectors, respectively. The average of correlation coefficients between StTFDA and AMR for the
three detectors reaches 0.9095, and the average gain is 0.0576, which indicates that STFDA is more
consistent with AMR. It indicates that rFDA can depict the performance of object detection and it
is a better metric for single image detection performance. In addition, the variations of each frame’s
FDA and rFDA in the image sequences are inspected based on standard deviation, and the results are
summarized in Table 2. We can notice that the variations of rFDA are always smaller than the ones
of FDA for the three different detectors, which indicates that rtFDA can reduce arbitrary fluctuations
and maintain more stable measurements.

The correlation between the different object detectors are also investigated, as shown in Table
3. The correlation coefficients are all above 0.83, and the average of them reaches 0.8501. Although
the operating principles of the three detectors are different, the correlation results indicate that their
detection performances are consistent. Therefore, we target at predicting the average performance of
the three detectors in the proposed quality model.

We have visualized the distribution of rFDA values for the images in our data set. Figure 4
compares the rTFDAs obtained from the original images and the images with high and low distortions.
Figure 4 (a), (b), (c), and (d) correspond to the results on down-sampled, blurred, motion blurred, and
noisy images, respectively. The “ori” label denotes the rFDAs of the original images, the “ds2” and
“ds4” labels denote the ones of 1:2 and 1:4 down-sampling version, and the pairs of “Ib” and “hb”,
“Im” and*“hm”, “In” and“hn” denote the ones of low level and high level for blur, motion blur, and
noise, respectively. We can find that rFDAs have different ranges of values when different levels of
distortions are introduced for all the four types of distortions.

Table 2. Comparison of rFDA and FDA in correlation and variation

Detector DPM HOG LDCF Average A
Correlation coefficients SFDA 0.9326 0.7134 0.9097 0.8519 -
SrFDA | 09752 0.8070 0.9462 0.9095 0.0576
Variation FDA 0.2393 0.1506 0.2873 0.2257 -
(standard deviation)
rFDA 0.1731 0.1020 0.1898 0.1550 -0.0707
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Table 3. The consistency between different detectors

DPM vs. HOG DPM vs. LDCF HOG vs. LDCF Average
0.8641 0.8471 0.8390 0.8501

BLIND MODEL FOR PREDICTION OF RFDA

In this section, we introduce 13 efficient local and global features and a supervised learning algorithm
to build a regression model for rFDA.

Boundary information in an image plays an important role in object detection and pattern
recognition since boundaries represent the transition regions between objects and background where
the image intensities vary abruptly or have discontinuities. Gradient is a good indicator for the variance

of image intensities. For an image f (x, y) , the gradient of f at location (x, y) is defined as the two

T
. . of of of
dimensional column vector: |—,—| ,where — = flz+Ly|]—flx—Ly), and
oz Oy Ox f( y) f( y)
of e . . L .
50 = f(:z:,y +1) — f(:z:,y— 1) using finite difference filters. The magnitude and direction of this
Y

gradient at location <:L’, y) are given by

“

®

dir (J;,y) = tan

One sample of image gradient is shown in Figure 5. The original image in Figure 5 (a) is a
portion of the 581, frame of DMcam01 video, and Figure 5(b) and (c) show the corresponding image
gradient directions and magnitudes, respectively. We can observe that the image gradient direction
and magnitude can depict the boundary of objects precisely. Thus, the statistical properties of gradient
could be used to depict the characteristics of an image. We calculate 4 related features: (1) meanGmag:
the average of gradient magnitude; (2) stdGmag: the standard deviation of gradient magnitude; (3)
meanGdir: the average of gradient direction; (4) stdGdir: the standard deviation of gradient direction.

Figure 4. Distribution of rFDA on images with different types of distortions
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Figure 5. Sample of image gradient and HOG descriptor

(a) (b) () (d)

The local oriented gradient can describe object appearance and shape through counting
occurrences of gradient orientation in localized portions of an image based on the HOG descriptor
defined in a work of Dalal and Triggs (2005, pp. 886-893). The local window for one HOG descriptor
is set as 16 X 16 pixels, and the number of orientation bins for one HOG descriptor is set as 9. For
each local window, a histogram of gradients, with each gradient quantized by its angle and weighed
by its magnitude, is calculated. The gradient of color images is computed separately for each color
channel and the one with maximum magnitude is selected. For each histogram with 9 orientation
bins,4 different normalizations using adjacent histograms are employed, which results in a
36-dimensional feature vector. One sample of HOG descriptor is shown in Figure 5 (d), where the
location of the local window is marked with a white square in Figure 5 (a). We can observe that the
trend/shape is indeed repeated 4 times for every 9 bins due to 4 different normalizations. The average
frequency W, and the frequency’s variation level W, of the histogram’s bins, are defined to one
window as follows:

Nb
w, =N /N, ©)
i=1
Nb
W = Z(hi_wm)2/(Nb_1)a 7

i=1

where hl. is the frequency of the 7, bin in a local window, and N 5 18 the number of bins in a local
window. Based on two statistical values for one local window, 4 related features are calculated: (5)
hog_mm: the average of every blocks’” W, ; (6) hog_ms: the standard deviation of every blocks’

w,, s (7) hog_sm: the average of every blocks® W ; (8) hog_ss: the standard deviation of every
blocks™ w, .

The boundary or edge, representing transition areas between objects and background, is obtained
by Sobel operator through convolving the image with two 3X3 kernels in the horizontal and vertical
directions. The convolution masks for horizontal and vertical directions are shown in Figure 6.The local
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Figure 6. Sobel masks
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(a) Horizontal mask (b) Vertical mask

information of edge is collected based on a block of 16 X 16 pixels, 4 related features are calculated:
(9) edge_mm: the average of every blocks’ average; (10) edge_ms: the standard deviation of every
blocks’ average; (11) edge_sm: the average of every blocks’ standard deviation; (12) edge_ss: the
standard deviation of every blocks’ standard deviation.

If the size of an object is too small or too large in the image, it is hard to detect the object from
the background. The last feature is designed as: (13) estimated object size, which is calculated
approximately using the method proposed by Yang, Li, Li, and Li (2016, pp. 3475-3488). First, a
contour-based spatial prior is extracted based on the layout of edges in the given scene along a fast
non-selective pathway, which provides a rough, task-irrelevant, and robust estimation of the locations
where the potential objects are present. The contour-represented layout in the non-selective pathway is
used as the initial guidance to estimate the locations and sizes of objects and the relative importance
of low-level local cues. Then, local features such as color, luminance, and texture, are extracted in
parallel along the selective pathway. Finally, Bayesian inference is used to auto-weight and integrate
the local cues guided by contour-based spatial prior and to predict the exact locations of objects. The
objects are further enhanced via iterative processing to refine the prior guidance as the final prediction.

We use the bootstrap aggregating, or bagging, ensemble of trees to train a regression model to
predict detection performance based on the extracted 13 features on a single image (Breiman, 2001,
pp- 5-32). Every decision tree in the bagging ensemble is grown on an independently drawn bootstrap
replica of input observations. The ensemble tree prediction is formed by taking the average over base
learners. The tuning parameters of ensemble trees include the number of trees and minimum leaf
size to control the tree depth.

PERFORMANCE EVALUATION

To evaluate the performance of the proposed model, we divide the entire data set into a training set
and testing set, which are described in Table 4. The total number of images in our data set is 66672.
The images from 8 raw videos and their distorted versions are used for training (75.03%), and the
images from the remaining 2 raw videos and their distorted versions are used for testing. Through
5-fold cross validation during the training procedure, 30 base learners and a minimum leaf size of 8
are used to build the ensemble of trees.
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Table 4. Learning setting

Category Video name Image Number Percentage

Training set MOT17-02, MOT17-10, MOT15-02, DMcamO1, 50022 75.03%
DMcam02, MOT17-13, DMcam04, DMcam08

Testing set MOT17-04, DMcam06 16650 24.97%

First, the regression performance of the proposed model is investigated. Figure 7 (a) shows the
scatter figure of the actual response VS. the predicted response. There are a huge number of
observations (16650 images) in the testing data set, and one point is selected from every 50 observations
to generate a clear figure. The perfect regression results should be all on the diagonal line, and most
of the predictions in our proposed model are near or on the diagonal line, which indicates that the
regression of proposed model can depict the image quality for object detection quite well. Figure 7
(b) illustrates the distributions of the actual response and the predicted response in four distortion
categories, down-sampling in the spatial domain (ds), blur (bl), motion blur (mb), and imaging noise
(ns), in which the actual responses (act) are in red color and the predicted responses (pre) are in blue
color with wider boxes. We can find that the 25, and 75, quartiles and the medians of the predicted
responses are all close to the actual responses in the distribution of four distortion categories, indicating
that the proposed model can accurately predict image quality for object detection for different types
of distortions.

The regression performance of proposed model on the testing data set is measured in terms of
Root Mean Square Error (RMSE), R, adjR’. Mean Squared Error (MSE), and Mean Absolute
Error (MAE), as shown in Table 5. Among these metrics, smaller values of RMSE, MSE and MAE

indicate better performance. R’ , or coefficient of determination, is always smaller than 1 and usually
larger than 0. Adjusted R’ short for adjR’, adjusts R* for the number of explanatory terms (features)

in a model relative to the number of observations. R* and adjR’ values close to 1 indicates good
regression performance. From Table 5, we can find that the overall performance in terms of RMSE,
MSE and MAE is all quite close to 0, and both R? and ade2 reaches 0.814, which indicates that
the proposed model fits data well and that only a few features can explain the observations. The
performances of specific distortion categories are also inspected and summarized in Table 5. For the
down-sampling and the blur categories, the values of RMSE, MSE, and MAE are all less than the

Figure 7. Regression performance
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Table 5. Regression metrics

Metrics RMSE 2 o2 MSE MAE
R adjR
Overall performance 0.0428 0.8147 0.8146 0.0018 0.0324
Different Down-sampling 0.0415 0.8116 0.8110 0.0017 0.0339
distortion
category Blur 0.0334 0.8321 0.8316 0.0011 0.0250
performance
Motion blur 0.0400 0.6208 0.6196 0.0016 0.0293
Noise 0.0589 0.7204 0.7196 0.0035 0.0479

ones of overall performance, and the values of R? and adjR?are similar or even larger than the ones
of overall performance. For the motion blur category, the values of RMSE, MSE, and MAE are all
smaller than the the ones of overall performance except for slightly lower values of R* and adjR?. For
the noise category, the values of RMSE, MSE, and MAE is close to the ones of overall performance,
and the values of R? and adjR? are higher than the ones in the motion blur category. Generally speaking,
the proposed model can handle different distortion categories and achieve a decent overall performance.

The performance of the proposed model is also compared with commonly used full-reference
IQAs. Although the proposed model is a blind, or no-reference, image quality estimator for object
detection, two full-reference IQAs, i.e. PSNR and SSIM, are compared in terms of the Linear
Correlation Coefficient (LCC), the Spearman Rank Order Correlation Coefficient (SROCC), and the
Kendall Rank Correlation Coefficient (KRCC). Because full-reference PSNR and SSIM measures
could not evaluate the quality of down sampling versions and original video sequences, results from
these images are excluded in this comparison. The correlation results are shown in Table 6. The
correlation coefficients of LCC and SROCC for the proposed model reach above 0.90, while the ones
for SSIM and PSNR are all below 0.50; the correlation coefficients of KRCC for the proposed model
also reach above 0.70, which is more than twice over the ones for SSIM and PSNR. The results show
that the proposed model is a good predictor for the image quality for object detection, and SSIM and
PSNR cannot be good indicators for the image quality for object detection. The conclusion also can
be drawn from Figure 8, in which scatter figures between PSNR, SSIM and rFDA values are plotted.
From Figure 8, we can find that there is no significant relationship between either PSNR or SSIM
and rFDA values. The reason is that SSIM and PSNR are designed for the perceptual quality but not
for the quality evaluated by object detection algorithms.

Then, comparison is conducted between the proposed model and two popular no-reference IQAs,
BRISQUE and BLIINDS-II, in terms of the LCC, the SROCC, and the KRCC. BRISQUE (Mittal,
Krishna, and Bovik, 2012, pp. 4695-4708) is a distortion-generic no-reference IQA model, which
exploits scene statistics of locally normalized luminance coefficients in spatial domain to quantify
possible losses of “naturalness” in the image. BLIINDS-II (Saad, Bovik, and Charrier, 2012, pp.
3339-3352) is a blind IQA algorithm using a Bayesian inference approach on extracted features that
are based on a natural scene statistics model of discrete cosine transformation coefficients. All images
in the testing set are included in this comparison thanks to the no-reference property of these two
IQAs. Since both algorithms regard the quality score (QS) 100 as the worst quality, QS 0 as the best
quality, we convert the QS using QS =1-QS/100 and compare QS from the two algorithms with
the predictions of rFDA from our proposed algorithm. The correlation results are presented in Table
7. For the proposed model, compared with the results obtained from the reduced testing set (shown
in Table 6), the correlation coefficients on this complete testing set are slightly higher. This indicates
that the proposed model can also achieve good performance on the original videos and the down-
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Figure 8. Full-reference IQAs performance
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Table 6. Full-reference correlation coefficients
Algorithms LCC KRCC SROCC
SSIM 04711 0.3049 0.4619
PSNR 0.4905 0.3191 0.4824
Proposed 0.9130 0.7261 0.9050

sampled versions. The correlation coefficients of BRISQUE and BLIINDS-II are quite low, among
them, the maximum value is 0.1020 and the minimum value (-0.0105) is even negative. The scatter
figures between BRISQUE, BLIINDS-II and rFDA values are shown in Figure 9, in which a certain
level of perceptual quality indicated by BRISQUE or BLIINDS-II could correspond to a diverse range
of rFDA values. These results indicate that the proposed model is a good image quality estimator of
object detection for various kinds of distortion; however, BRISQUE and BLIINDS-II are limited in
predicting image quality for object detection since they are intended for predicting perceptual quality.

Finally, in order to validate the generalization capability of the proposed model, 5 different
combinations of 2 videos in the testing set are randomly selected from 10 videos with the left 8 videos
as the training set, and the regression metrics and no-reference correlation coefficients for these 5
random selections of testing sets are shown in Table 8. From Table 8, we can find that the averages
of the regression metrics and the correlation coefficients are all close to the results of the previous
experiments shown in Table 5 and Table 7, and the standard deviation of the performances of the 5
random selections is also small. These results indicate that the proposed model has the generalization
capability for different videos.

CONCLUSION

In this paper, we have proposed a no-reference image quality model based on a wide range of object
detection algorithms that can be executed on embedded cameras. The proposed model could predict
image quality for object detection by considering different types of quality degradation in the imaging
process, including reduced resolution, noise, and blur. The proposed model is built based on a diverse
range of scene characteristics. Utilizing easily extracted local and global features, the model achieves
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Table 7. No-reference correlation coefficients
Algorithms LCC KRCC SROCC
BRISQUE -0.0105 0.0140 0.0701
BLIINDS-II 0.0498 0.0781 0.1020
Proposed 0.9161 0.7278 0.9094
Table 8. Regression metrics and correlation coefficients for 5 random selections of testing set
Metrics RMSE R2 adj R2 MSE MAE LCC KRCC SROCC
Average 0.0455 0.7915 0.7894 0.0021 0.0358 0.8946 0.6933 0.8831
Standard deviation 0.0023 0.0190 0.0212 0.0002 0.0025 0.0132 0.0204 0.0136

more accurate predictions of image quality for object detection than common full-reference image
quality measures, such as PSNR and SSIM, and popular no-reference IQAs.

In the future, we will propose a quality adjustment framework to optimize the quality of images
for object detection during the image sensing process. Based on the proposed quality model, the
framework will predict the performance of object detection on a sensed image. If the quality of
the image is not satisfactory, pre-processing methods for removing noise or blur will be applied to
enhance its quality. The proposed framework will benefit a wide range of imaging applications that

rely on automatic analysis components.
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