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ABSTRACT

Automatic video analysis tools are an indispensable component in imaging applications. Object 

detection, the first and the most important step for automatic video analysis, is implemented in many 

embedded cameras. The accuracy of object detection relies on the quality of images that are processed. 

This paper proposes a new image quality model for predicting the performance of object detection 

on embedded cameras. A video data set is constructed that considers different factors for quality 

degradation in the imaging process, such as reduced resolution, noise, and blur. The performances 

of commonly used low-complexity object detection algorithms are obtained for the data set. A no-

reference regression model based on a bagging ensemble of regression trees is built to predict the 

accuracy of object detection using observable features in an image. Experimental results show that 

the proposed model provides more accurate predictions of image quality for object detection than 

commonly known image quality measures.
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INTRODUCTION1

Wireless embedded camera sensors have become ubiquitous components in various imaging 

applications, such as public safety and security systems, smart building operations, intelligent 

transportation, and remote health care. Rather than merely presenting raw data collected by camera 

sensors to the user, an application usually aims to automatically discover and extract meaningful 

information from the camera sensors and to achieve as much autonomy as possible in the physical 

system. Automatic video data analysis tools, which could detect, recognize, track objects of interest, and 

understand their behaviors, have become indispensable components in today’s imaging applications.

The performance of automatic analysis methods relies on the quality of images that are processed. 

It is therefore essential to introduce objective metrics for predicting the quality of images evaluated 

by automatic analysis algorithms. In the field of image quality assessment (IQA), a diverse range 

of image quality models, ranging from full-reference to reduced-reference and no-reference ones, 

were designed for predicting the perceptual quality evaluated by human subjects (Ma et al., 2018, pp. 

1202-1213; Wang et al., 2018, pp. 1-14; Wang, Bovik, Sheikh, & Simoncelli, 2004, pp. 600-612).

The quality of a video sequence judged by an automatic analysis algorithm, however, is not 

necessarily sensitive to the same factors that drive human perceptions. The perceptual image quality 

assessments usually try to emulate known characteristics of the human visual system (HVS), such 

as the contrast sensitivity and the visual attention mechanisms. The contrast sensitivity mechanism 

means that the HVS is sensitive to the relative luminance change rather than the absolute luminance 

change (Wang et al., 2004, pp. 600-612). The visual attention mechanism is that only a local area in 

the image can be perceived with high resolution by the human observer at one time instance at typical 

viewing distances, due to the foveation feature of the HVS (Yang et al., 2016, pp. 3475-3488). On 

the other hand, automatic analysis methods run by machines can “perceive” the absolute luminance 

change precisely and have a better global “view”. For example, the problem of evaluating motion 

imagery quality for tracking in airborne reconnaissance systems was studied in Irvine and Wood’s 

research (2013, p. 87130Z). It was found that automated target detection algorithms are less sensitive 

to spatial resolution than humans, but factors such as jitter in the temporal domain, texture complexity, 

edge sharpness, and level of noise have a strong effect on the performance of target detection. In 

our recent work (Kong, Dai, & Zhang, 2016, pp. 3797-3801), we found that unlike human beings 

who can easily extract and focus on a moving object from a blurred background, the performance of 

object detection algorithms can be affected by the quality of the background. These results suggest 

that new models are needed for evaluating the quality of images from the perspective of automatic 

analysis algorithms.

In a wireless imaging system, automatic analysis could be deployed using two strategies: in the 

central server on compressed videos; or at the local cameras on uncompressed videos as a preprocessing 

step. The impact of video compression on the accuracy of analysis algorithms has been studied in 

some recent works (Tahboub, Reibman, & Delp, 2017, pp. 4192-4196; Zhong, & Reibman, 2018, pp. 

1-6), which aim at finding the optimal compression rates under a quality requirement. Apart from the 

distortion introduced by compression, the quality of an image or a video could be degraded during 

the data acquisition or sensing process, e.g., distortion caused by noise or motion blur, or reduced 

image resolution due to storage or bandwidth constraints on embedded cameras. These factors should 

also be taken into consideration to evaluate the quality of an image.

Object detection is the first and the most important step in the process of automatic analysis, 

because the detected objects provide a focus of attention for the following tasks such as tracking 

and recognition. In this paper, we propose a blind regression model based on a bagging ensemble of 

trees to predict the performance of object detection on an image. The model utilizes local features 

in an image such as edge and oriented gradient and global features including image gradient and 

estimated object size, which could be easily extracted from an image. The model is trained using a 

large number of images with different scene characteristics and four types of distortions including 
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noise, Gaussian blur, motion blur, and reduced spatial resolution. The accuracy of the proposed model 

is evaluated through extensive experiments on a separate test data set and compared with commonly 

used full-reference and popular no-reference IQA measures. This article extends our recent conference 

publication (Kong, Ikusan, Dai, & Zhu, 2019, pp. 216-221) with more comprehensive experimental 

results and discussions.

RELATED wORK

There are only a few studies on the problem of quality evaluation for automatic analysis algorithms. 

Image quality assessment for face recognition applications was studied in researches by Abaza, 

Harrison, and Bourlai (2012, pp. 3103-3170); Gunasekar, Ghosh, and Bovik (2014, pp. 2119-2131); 

Pulecio, Benítez-Restrepo, and Bovik (2017, pp. 805-809), Five quality factors were evaluated, 

including contrast, brightness, focus, sharpness, and illumination, and a face image quality index 

combining the five factors was proposed in a research by Abaza et al. (2012, pp. 3103-3170). In Pulecio 

et al. (2017, pp. 805-809), natural scene statistics was used to detect degradation of infrared images 

for face recognition. In Gunasekar et al. (2014, pp.2119-2131), the degradation in the performance of 

face detectors were quantified considering different factors including noise, blur, and compression.

There are also a few studies on the quality for target detection, target tracking, and event detection 

for airborne reconnaissance applications. In Irvine and Nelson (2009, p. 73350L), the applicability of 

the National Imagery Interpretability Ratings Scale (NIIRS) to an automated target detection algorithm 

was examined, and it was found that NIIRS is not a good predictor of target detection performance. 

In reseaches by Irvine, Wood, Reed, and Lepanto (2013, pp. 1-9) and Irvine and Wood (2013, p. 

87130Z), the impacts of video frame rate and two spatial factors (noise and spatial resolution) on the 

tracker performance were investigated.

The aforementioned studies investigated the performance of automatic analysis on specific 

applications like face recognition and airborne reconnaissance. Our work advances the state of the 

art by addressing the challenge of building a more general quality prediction model for a wide range 

of object detection algorithms and diverse scene characteristics. Moreover, our model considers four 

common types of distortions during the imaging process.

DATA SET AND OBJECT DETECTION MEASURE

We have selected 10 high resolution original video sequences with different scene characteristics, 

illumination levels, and object scales. Among them, 5 videos are chosen from the Multiple Object 

Tracking (MOT) dataset (Milan, Leal-Taixé, Reid, Roth, & Schindler, 2016), and 5 videos are chosen 

from the Duke Multi-Target Multi-Camera Tracking (DM) dataset (Ristani, Solera, Zou, Cucchiara, 

& Tomasi, 2016, pp. 17-35). The resolutions of these videos are mostly 1920 × 1080 except for one 

Figure 1. Snapshots of video data set
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video with 640 × 480 resolution, and the average number of frames is 741. The snapshot of these 

videos is shown in Figure 1.

To understand how the performance of object detection could be affected by image distortions, we 

have generated different distorted video sequences based on the original videos, where the distortion 

falls into four types: Gaussian blur, motion blur, imaging noise, and reduced spatial resolution. For each 

type of distortion, distortion levels are set to low level and high level, and the simulation parameters 

and setting are selected based on the experiments conducted in recent works (Ding et al., 2018, 

pp. 1002-1014; Ma et al., 2016, pp. 1004-1016). The blurring effect of a video is generated by 2D 

circularly symmetric Gaussian blur kernels with standard deviations of 1.2 and 6.5 for low level and 

high level, respectively. The motion blur is simulated to approximate the linear motion of a camera 

by 5 and 20 pixels with an angle of 45 degrees for low and high levels, respectively. White Gaussian 

noise is added to the original images, where variances are set to be 0.001 and 0.022 for low and high 

levels, respectively. For reduced spatial resolution, 1:2 and 1:4 down-sampling rates are applied in 

both horizontal and vertical directions on the original images. The related simulation parameters and 

setting are summarized in Table 1. Samples for the four types of distortion are shown in Figure 2, in 

which the original image frame is the 581
th
 frame of DMcam01 video. Figure 2 (a) shows the image 

with reduced spatial resolutions, which includes 3 resolutions overlaying in one image, corresponding 

to original, half, and quarter resolutions in both horizontal and vertical directions. Figure 2 (b) is 

a sample of blur to simulate out-of-focus blur, Figure 2 (c) is a sample of motion blur to simulate 

camera shake during exposure, and Figure 2 (d) is a sample of white noise to simulate imaging noise 

in low-light scenarios. For each original video sequence shown in Figure 1, we have generated a total 

number of 8 distorted videos, including 2 videos from each type of distortion. This results in a total 

number of 90 video sequences (including the original ones) in our data set.

There are two categories of object detection algorithms in the field of computer vision: one based 

on building models of backgrounds and the other based on building models for objects. Algorithms 

based on background modeling require multiple frames to build a stable background, while methods 

based on object modeling could generate detection results on a single image. In this work, we aim 

at predicting the quality of single images in a fast manner, such that the wireless embedded imaging 

system could adjust its sensing strategy based on the predicted quality and energy supply. Therefore, 

we focus on the performance of low-complexity object modeling methods. We use the following 

three representative lightweight algorithms based on object modeling:

1.  Histograms of Oriented Gradients (HOG) (Dalal & Triggs, 2005, pp. 886-893)

2.  Discriminatively Part Models (DPM) (Felzenszwalb, Girshick, McAllester, & Ramanan, 2010, 

pp. 1627-1645)

3.  Locally Decorrelated Channel Features (LDCF) (Nam, Dollár, & Han, 2014, pp. 424-432)

The evaluation measures for object detection could be either sequence-based or image-based. 

Since our goal is to predict the performance of object detection once an image is taken, we evaluate 

the object detection accuracy of each frame in a video. The Frame Detection Accuracy (FDA) is a 

comprehensive metric that accounts for important measures of system performance (such as number 

of objects detected, missed objects, false positives, and localization error of detected objects) in a 

single score (Kasturi et al., 2009, pp. 319-336). For a given frame, the optimal matching pairs is 

assigned firstly by computing the spatial overlap between ground truth and detected objects. Then, 

the FDA measure calculates the spatial overlap between the ground truth and system output objects 

as a ratio of the spatial intersection between the two objects and the spatial union of them. The sum 

of all of the overlaps was normalized over the average number of ground truth and detected objects. 

For one image, where there are N
G

 ground-truth objects G  and N
D

 detected objects D , N
m

 is 

the number of mapped object pairs, FDA  is defined as
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A detection system needs to take an image and return a bounding box and a confidence for each 

detection. The provision of a confidence level allows results to be ranked such that the trade-off 

between false positives and false negatives can be evaluated, without defining arbitrary costs on each 

type of classification error (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010, pp. 303-

338). However, the original FDA measure does not reflect the trade-off between false positives and 

false negatives. Thus, we introduce a revised FDA measure, rFDA for short, which is the average of 

FDA  based on different thresholds (T) of detection confidence levels (C). rFDA  is defined as,

Table 1. Distortion parameters

Distortion

Reduced spatial 

resolution
Gaussian blur Motion blur Imaging noise

Down-sampling 

resolution

2D circularly 

symmetric kernel 

(standard deviation)

Linear motion with an 

angle of 45 degrees 

(pixels)

White Gaussian noise 

(variance)

Low level 1:2 1.2 5 0.001

High level 1:4 6.5 20 0.022

Figure 2. Samples of different distortions
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where N
m

 is the number of mapped object pairs,  N
T
j

 is the number of true positives when the 

threshold of detection confidence T
j
 equals to C

j
, j N

m
∈ { }1, ...,� � , and C

j
 denotes the detection 

confidence level of the j-th mapped detected object.

The original FDA  measure in can be regarded as FDA
T min( )

, which uses the minimum detection 

confidence level C min( )  in mapped pairs as threshold such that all mapped object pairs are true 

positives. A detection sample is shown in Figure 3, which corresponds to a part of the 581
th
 frame 

of high blur distorted DMcam01 video by LDCF detector. The ground truth is highlighted in solid 

line, and three detected objects in dash line with confidence levels 34.71, 128.2, and 43.5, respectively. 

When the threshold T  equals to the minimum confidence C min( ) , i.e., T = 34 71. , three detection 

results are all true positives, which is the same with the original FDA definition; when T = 43 5. , 

only two detection results are regards as true positive. On the other hand, the SSIM (0.51) and PSNR 

(21.14 dB) values of this image actually are quite low and poor, however, detection performance is 

pretty good, which indicates that the popular image quality assessments can not reflect the detection 

quality.

In order to validate the proposed rFDA measure, we compare the correlation of FDA and rFDA 

with Average Miss Rate (AMR), which is the most popular metric used in the object detection 

area. The AMR of an image sequence (Dollar, Wojek, Schiele, and Perona, 2012, pp. 743-761) can 

be determined as follows: first, a detected object and a ground truth form a match if they overlap 

sufficiently, which is evaluated by the ratio of the intersection between two objects and the union of 

them, and a threshold ratio of 0.5 is commonly used; then, the miss rates against false positives per 

image (FPPI)is plotted (using log-log plots) by varying the threshold on detection confidence; finally, 

the log-average miss rate is used to summarize the detector performance by averaging miss rate at 

nine FPPI rates evenly spaced in log-space in the range of 0.01 to 1. Since AMR is calculated based 

on the entire image sequence, we measure the detection performance for the whole sequence using 

Sequence Frame Detection Accuracy (SFDA) introduced by Kasturi et al. (2009, p. 325). SFDA is an 

Figure 3. Detection sample
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average of the FDA measured over all frames in sequence. The average is normalized to the number of 

frames in the sequence where at least a ground truth or a detected object exists. SFDA is formulated as

SFDA
FDA t

N ORN

t

N

t

N

G

t

D

t

frames

frames

=
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=

∑

∑
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where N
G

t  and N
D

t  denote the number of ground-truth objects and the number of detected 

objects in frame t , respectively, N
frames

 is the number of frames in the sequence, and FDA t( )  is the 

FDA value for the single frame t .

We compare the usages of the original FDA measure and the proposed rFDA measure in the 

computation of sequence-level FDA, i.e., SFDA and SrFDA. The correlation coefficients of SFDA 

with AMR and the ones of SrFDA with AMR for three different detectors are summarised on Table 

2. We can find that there are obvious improvements comparing SrFDA’s correlation with SFDA’s for 

all the three detectors. Specifically, gains are 0.0426, 0.0936, and 0.0365 for DPM, HOG, and LDCF 

detectors, respectively. The average of correlation coefficients between SrFDA and AMR for the 

three detectors reaches 0.9095, and the average gain is 0.0576, which indicates that SrFDA is more 

consistent with AMR. It indicates that rFDA can depict the performance of object detection and it 

is a better metric for single image detection performance. In addition, the variations of each frame’s 

FDA and rFDA in the image sequences are inspected based on standard deviation, and the results are 

summarized in Table 2. We can notice that the variations of rFDA are always smaller than the ones 

of FDA for the three different detectors, which indicates that rFDA can reduce arbitrary fluctuations 

and maintain more stable measurements.

The correlation between the different object detectors are also investigated, as shown in Table 

3. The correlation coefficients are all above 0.83, and the average of them reaches 0.8501. Although 

the operating principles of the three detectors are different, the correlation results indicate that their 

detection performances are consistent. Therefore, we target at predicting the average performance of 

the three detectors in the proposed quality model.

We have visualized the distribution of rFDA values for the images in our data set. Figure 4 

compares the rFDAs obtained from the original images and the images with high and low distortions. 

Figure 4 (a), (b), (c), and (d) correspond to the results on down-sampled, blurred, motion blurred, and 

noisy images, respectively. The “ori” label denotes the rFDAs of the original images, the “ds2” and 

“ds4” labels denote the ones of 1:2 and 1:4 down-sampling version, and the pairs of “lb” and “hb”, 

“lm” and“hm”, “ln” and“hn” denote the ones of low level and high level for blur, motion blur, and 

noise, respectively. We can find that rFDAs have different ranges of values when different levels of 

distortions are introduced for all the four types of distortions.

Table 2. Comparison of rFDA and FDA in correlation and variation

Detector DPM HOG LDCF Average ∆

Correlation coefficients
SFDA

0.9326 0.7134 0.9097 0.8519 -

SrFDA 0.9752 0.8070 0.9462 0.9095 0.0576

Variation 

(standard deviation)
FDA

0.2393 0.1506 0.2873 0.2257 -

rFDA 0.1731 0.1020 0.1898 0.1550 -0.0707



International Journal of Multimedia Data Engineering and Management
Volume 10 • Issue 1 • January-March 2019

29

BLIND MODEL FOR PREDICTION OF RFDA

In this section, we introduce 13 efficient local and global features and a supervised learning algorithm 

to build a regression model for rFDA.

Boundary information in an image plays an important role in object detection and pattern 

recognition since boundaries represent the transition regions between objects and background where 

the image intensities vary abruptly or have discontinuities. Gradient is a good indicator for the variance 

of image intensities. For an image f x y,( ) , the gradient of f  at location x y,( )  is defined as the two 

d imens iona l  co lumn  vec to r :  
∂
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One sample of image gradient is shown in Figure 5. The original image in Figure 5 (a) is a 

portion of the 581
th
 frame of DMcam01 video, and Figure 5(b) and (c) show the corresponding image 

gradient directions and magnitudes, respectively. We can observe that the image gradient direction 

and magnitude can depict the boundary of objects precisely. Thus, the statistical properties of gradient 

could be used to depict the characteristics of an image. We calculate 4 related features: (1) meanGmag: 

the average of gradient magnitude; (2) stdGmag: the standard deviation of gradient magnitude; (3) 

meanGdir: the average of gradient direction; (4) stdGdir: the standard deviation of gradient direction.

Figure 4. Distribution of rFDA on images with different types of distortions

Table 3. The consistency between different detectors

DPM vs. HOG DPM vs. LDCF HOG vs. LDCF Average

0.8641 0.8471 0.8390 0.8501
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The local oriented gradient can describe object appearance and shape through counting 

occurrences of gradient orientation in localized portions of an image based on the HOG descriptor 

defined in a work of Dalal and Triggs (2005, pp. 886-893). The local window for one HOG descriptor 

is set as 16 × 16 pixels, and the number of orientation bins for one HOG descriptor is set as 9. For 

each local window, a histogram of gradients, with each gradient quantized by its angle and weighed 

by its magnitude, is calculated. The gradient of color images is computed separately for each color 

channel and the one with maximum magnitude is selected. For each histogram with 9 orientation 

bins,4 different normalizations using adjacent histograms are employed, which results in a 

36-dimensional feature vector. One sample of HOG descriptor is shown in Figure 5 (d), where the 

location of the local window is marked with a white square in Figure 5 (a). We can observe that the 

trend/shape is indeed repeated 4 times for every 9 bins due to 4 different normalizations. The average 

frequency w
m

 and the frequency’s variation level w
s

 of the histogram’s bins, are defined to one 

window as follows:

w h N
m

i

N

i b

b

=
=

∑
1

/ ,  (6)

w h w N
s

i

N

i m b

b
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�

�
1

2 1( ) / ,  (7)

where h
i
is the frequency of the i

th
bin in a local window, and N

b
is the number of bins in a local 

window. Based on two statistical values for one local window, 4 related features are calculated: (5) 

hog_mm: the average of every blocks’ w
m

; (6) hog_ms: the standard deviation of every blocks’ 

w
m

; (7) hog_sm: the average of every blocks’ w
s

; (8) hog_ss: the standard deviation of every 

blocks’ w
s

. 

The boundary or edge, representing transition areas between objects and background, is obtained 

by Sobel operator through convolving the image with two 3×3 kernels in the horizontal and vertical 

directions. The convolution masks for horizontal and vertical directions are shown in Figure 6.The local 

Figure 5. Sample of image gradient and HOG descriptor
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information of edge is collected based on a block of 16 × 16 pixels, 4 related features are calculated: 

(9) edge_mm: the average of every blocks’ average; (10) edge_ms: the standard deviation of every 

blocks’ average; (11) edge_sm: the average of every blocks’ standard deviation; (12) edge_ss: the 

standard deviation of every blocks’ standard deviation.

If the size of an object is too small or too large in the image, it is hard to detect the object from 

the background. The last feature is designed as: (13) estimated object size, which is calculated 

approximately using the method proposed by Yang, Li, Li, and Li (2016, pp. 3475-3488). First, a 

contour-based spatial prior is extracted based on the layout of edges in the given scene along a fast 

non-selective pathway, which provides a rough, task-irrelevant, and robust estimation of the locations 

where the potential objects are present. The contour-represented layout in the non-selective pathway is 

used as the initial guidance to estimate the locations and sizes of objects and the relative importance 

of low-level local cues. Then, local features such as color, luminance, and texture, are extracted in 

parallel along the selective pathway. Finally, Bayesian inference is used to auto-weight and integrate 

the local cues guided by contour-based spatial prior and to predict the exact locations of objects. The 

objects are further enhanced via iterative processing to refine the prior guidance as the final prediction.

We use the bootstrap aggregating, or bagging, ensemble of trees to train a regression model to 

predict detection performance based on the extracted 13 features on a single image (Breiman, 2001, 

pp. 5-32). Every decision tree in the bagging ensemble is grown on an independently drawn bootstrap 

replica of input observations. The ensemble tree prediction is formed by taking the average over base 

learners. The tuning parameters of ensemble trees include the number of trees and minimum leaf 

size to control the tree depth.

PERFORMANCE EVALUATION

To evaluate the performance of the proposed model, we divide the entire data set into a training set 

and testing set, which are described in Table 4. The total number of images in our data set is 66672. 

The images from 8 raw videos and their distorted versions are used for training (75.03%), and the 

images from the remaining 2 raw videos and their distorted versions are used for testing. Through 

5-fold cross validation during the training procedure, 30 base learners and a minimum leaf size of 8 

are used to build the ensemble of trees.

Figure 6. Sobel masks
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First, the regression performance of the proposed model is investigated. Figure 7 (a) shows the 

scatter figure of the actual response VS. the predicted response. There are a huge number of 

observations (16650 images) in the testing data set, and one point is selected from every 50 observations 

to generate a clear figure. The perfect regression results should be all on the diagonal line, and most 

of the predictions in our proposed model are near or on the diagonal line, which indicates that the 

regression of proposed model can depict the image quality for object detection quite well. Figure 7 

(b) illustrates the distributions of the actual response and the predicted response in four distortion 

categories, down-sampling in the spatial domain (ds), blur (bl), motion blur (mb), and imaging noise 

(ns), in which the actual responses (act) are in red color and the predicted responses (pre) are in blue 

color with wider boxes. We can find that the 25
th

 and 75
th

 quartiles and the medians of the predicted 

responses are all close to the actual responses in the distribution of four distortion categories, indicating 

that the proposed model can accurately predict image quality for object detection for different types 

of distortions.

The regression performance of proposed model on the testing data set is measured in terms of 

Root Mean Square Error (RMSE), R2 , adjR2 . Mean Squared Error (MSE), and Mean Absolute 

Error (MAE), as shown in Table 5. Among these metrics, smaller values of RMSE, MSE and MAE 

indicate better performance. R2 , or coefficient of determination, is always smaller than 1 and usually 

larger than 0. Adjusted R2 , short for adjR2 , adjusts R2  for the number of explanatory terms (features) 

in a model relative to the number of observations. R2  and adjR2  values close to 1 indicates good 

regression performance. From Table 5, we can find that the overall performance in terms of RMSE, 

MSE and MAE is all quite close to 0, and both R2  and adjR2  reaches 0.814, which indicates that 

the proposed model fits data well and that only a few features can explain the observations. The 

performances of specific distortion categories are also inspected and summarized in Table 5. For the 

down-sampling and the blur categories, the values of RMSE, MSE, and MAE are all less than the 

Table 4. Learning setting

Category Video name Image Number Percentage

Training set MOT17-02, MOT17-10, MOT15-02, DMcam01, 

DMcam02, MOT17-13, DMcam04, DMcam08

50022 75.03%

Testing set MOT17-04, DMcam06 16650 24.97%

Figure 7. Regression performance
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ones of overall performance, and the values of R2 and adjR2are similar or even larger than the ones 

of overall performance. For the motion blur category, the values of RMSE, MSE, and MAE are all 

smaller than the the ones of overall performance except for slightly lower values of R2 and adjR2. For 

the noise category, the values of RMSE, MSE, and MAE is close to the ones of overall performance, 

and the values of R2 and adjR2 are higher than the ones in the motion blur category. Generally speaking, 

the proposed model can handle different distortion categories and achieve a decent overall performance.

The performance of the proposed model is also compared with commonly used full-reference 

IQAs. Although the proposed model is a blind, or no-reference, image quality estimator for object 

detection, two full-reference IQAs, i.e. PSNR and SSIM, are compared in terms of the Linear 

Correlation Coefficient (LCC), the Spearman Rank Order Correlation Coefficient (SROCC), and the 

Kendall Rank Correlation Coefficient (KRCC). Because full-reference PSNR and SSIM measures 

could not evaluate the quality of down sampling versions and original video sequences, results from 

these images are excluded in this comparison. The correlation results are shown in Table 6. The 

correlation coefficients of LCC and SROCC for the proposed model reach above 0.90, while the ones 

for SSIM and PSNR are all below 0.50; the correlation coefficients of KRCC for the proposed model 

also reach above 0.70, which is more than twice over the ones for SSIM and PSNR. The results show 

that the proposed model is a good predictor for the image quality for object detection, and SSIM and 

PSNR cannot be good indicators for the image quality for object detection. The conclusion also can 

be drawn from Figure 8, in which scatter figures between PSNR, SSIM and rFDA values are plotted. 

From Figure 8, we can find that there is no significant relationship between either PSNR or SSIM 

and rFDA values. The reason is that SSIM and PSNR are designed for the perceptual quality but not 

for the quality evaluated by object detection algorithms.

Then, comparison is conducted between the proposed model and two popular no-reference IQAs, 

BRISQUE and BLIINDS-II, in terms of the LCC, the SROCC, and the KRCC. BRISQUE (Mittal, 

Krishna, and Bovik, 2012, pp. 4695-4708) is a distortion-generic no-reference IQA model, which 

exploits scene statistics of locally normalized luminance coefficients in spatial domain to quantify 

possible losses of “naturalness” in the image. BLIINDS-II (Saad, Bovik, and Charrier, 2012, pp. 

3339-3352) is a blind IQA algorithm using a Bayesian inference approach on extracted features that 

are based on a natural scene statistics model of discrete cosine transformation coefficients. All images 

in the testing set are included in this comparison thanks to the no-reference property of these two 

IQAs. Since both algorithms regard the quality score (QS) 100 as the worst quality, QS 0 as the best 

quality, we convert the QS using QS
new

=1-QS/100 and compare QS
new

 from the two algorithms with 

the predictions of rFDA from our proposed algorithm. The correlation results are presented in Table 

7. For the proposed model, compared with the results obtained from the reduced testing set (shown 

in Table 6), the correlation coefficients on this complete testing set are slightly higher. This indicates 

that the proposed model can also achieve good performance on the original videos and the down-

Table 5. Regression metrics

Metrics RMSE R2 adjR2 MSE MAE

Overall performance 0.0428 0.8147 0.8146 0.0018 0.0324

Different 

distortion 

category 

performance

Down-sampling 0.0415 0.8116 0.8110 0.0017 0.0339

Blur 0.0334 0.8321 0.8316 0.0011 0.0250

Motion blur 0.0400 0.6208 0.6196 0.0016 0.0293

Noise 0.0589 0.7204 0.7196 0.0035 0.0479



International Journal of Multimedia Data Engineering and Management
Volume 10 • Issue 1 • January-March 2019

34

sampled versions. The correlation coefficients of BRISQUE and BLIINDS-II are quite low, among 

them, the maximum value is 0.1020 and the minimum value (-0.0105) is even negative. The scatter 

figures between BRISQUE, BLIINDS-II and rFDA values are shown in Figure 9, in which a certain 

level of perceptual quality indicated by BRISQUE or BLIINDS-II could correspond to a diverse range 

of rFDA values. These results indicate that the proposed model is a good image quality estimator of 

object detection for various kinds of distortion; however, BRISQUE and BLIINDS-II are limited in 

predicting image quality for object detection since they are intended for predicting perceptual quality.

Finally, in order to validate the generalization capability of the proposed model, 5 different 

combinations of 2 videos in the testing set are randomly selected from 10 videos with the left 8 videos 

as the training set, and the regression metrics and no-reference correlation coefficients for these 5 

random selections of testing sets are shown in Table 8. From Table 8, we can find that the averages 

of the regression metrics and the correlation coefficients are all close to the results of the previous 

experiments shown in Table 5 and Table 7, and the standard deviation of the performances of the 5 

random selections is also small. These results indicate that the proposed model has the generalization 

capability for different videos.

CONCLUSION

In this paper, we have proposed a no-reference image quality model based on a wide range of object 

detection algorithms that can be executed on embedded cameras. The proposed model could predict 

image quality for object detection by considering different types of quality degradation in the imaging 

process, including reduced resolution, noise, and blur. The proposed model is built based on a diverse 

range of scene characteristics. Utilizing easily extracted local and global features, the model achieves 

Figure 8. Full-reference IQAs performance

Table 6. Full-reference correlation coefficients

Algorithms LCC KRCC SROCC

SSIM 0.4711 0.3049 0.4619

PSNR 0.4905 0.3191 0.4824

Proposed 0.9130 0.7261 0.9050
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more accurate predictions of image quality for object detection than common full-reference image 

quality measures, such as PSNR and SSIM, and popular no-reference IQAs.

In the future, we will propose a quality adjustment framework to optimize the quality of images 

for object detection during the image sensing process. Based on the proposed quality model, the 

framework will predict the performance of object detection on a sensed image. If the quality of 

the image is not satisfactory, pre-processing methods for removing noise or blur will be applied to 

enhance its quality. The proposed framework will benefit a wide range of imaging applications that 

rely on automatic analysis components.

Figure 9. No-reference IQAs performance

Table 7. No-reference correlation coefficients

Algorithms LCC KRCC SROCC

BRISQUE -0.0105 0.0140 0.0701

BLIINDS-II 0.0498 0.0781 0.1020

Proposed 0.9161 0.7278 0.9094

Table 8. Regression metrics and correlation coefficients for 5 random selections of testing set

Metrics RMSE R2 adjR2
MSE MAE LCC KRCC SROCC

Average 0.0455 0.7915 0.7894 0.0021 0.0358 0.8946 0.6933 0.8831

Standard deviation 0.0023 0.0190 0.0212 0.0002 0.0025 0.0132 0.0204 0.0136
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