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Abstract

Automatic video data analysis tools have become indis-

pensable components in today’s imaging applications. The

accuracy of automatic analysis methods relies on the qual-

ity of images or videos that are processed. It is therefore

essential to introduce objective metrics for predicting the

quality of images as evaluated by automatic analysis algo-

rithms. Object detection is the first and the most important

step in the process of automatic video analysis. This pa-

per proposes a new image quality model for predicting the

performance of object detection. A video data set is con-

structed that considers different factors related to quality

degradation in the imaging process, such as reduced im-

age resolution, noise, and blur. The performances of com-

monly used low-complexity object detection algorithms are

obtained for the data set. A no-reference regression model

based on a bagging ensemble of regression trees is built to

predict the accuracy of object detection using observable

features in an image. Experimental results show that the

proposed model provides more accurate predictions of im-

age quality for object detection than commonly known im-

age quality measures such as PSNR and SSIM.

1. Introduction

Wireless embedded camera sensors have become ubiq-

uitous components in various imaging applications, such

as public safety and security systems, smart building op-

erations, intelligent transportation, and remote health care.

Rather than merely presenting raw data collected by camera

sensors to the user, an application usually aims to automati-

cally discover and extract meaningful information from the

camera sensors and to achieve as much autonomy as possi-

ble in the physical system. Automatic video data analysis
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tools, which could detect, recognize, track objects of inter-

est, and understand their behaviors, have become indispens-

able components in todays imaging applications.

The performance of automatic analysis methods relies

on the quality of images that are processed. It is there-

fore essential to introduce objective metrics for predicting

the quality of images evaluated by automatic analysis algo-

rithms. In the field of image quality assessment (IQA), a

diverse range of image quality models, ranging from full-

reference to reduced-reference and no-reference ones, were

designed for predicting the perceptual quality evaluated by

human subjects [12, 18, 19].

The quality of a video sequence judged by an automatic

analysis algorithm, however, is not necessarily sensitive to

the same factors that drive human perceptions. For example,

the problem of evaluating motion imagery quality for track-

ing in airborne reconnaissance systems was studied in [8].

It was found that automated target detection algorithms are

less sensitive to spatial resolution than humans, but factors

such as jitter in the temporal domain, texture complexity,

edge sharpness, and level of noise have a strong effect on the

performance of target detection. In our recent work [11], we

found that unlike human beings who can easily extract and

focus on a moving object from a blurred background, the

performance of object detection algorithms can be affected

by the quality of the background. These results suggest that

new models are needed for evaluating the quality of images

from the perspective of automatic analysis algorithms.

In a wireless imaging system, automatic analysis could

be deployed using two strategies: in the central server on

compressed videos; or at the local cameras on uncom-

pressed videos as a preprocessing step. The impact of video

compression on the accuracy of analysis algorithms has

been studied in some recent works [17, 21], which aim at

finding the optimal compression rates under a quality re-

quirement. Apart from the distortion introduced by com-

pression, the quality of an image or a video could be de-

graded during the data acquisition or sensing process, e.g.,

distortion caused by noise or motion blur, or reduced im-

age resolution due to storage or bandwidth constraints on
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(a) MOT15-02 (b) MOT17-02 (c) MOT17-04 (d) MOT17-10 (e) MOT17-13

(f) DMcam01 (g) DMcam02 (h) DMcam04 (i) DMcam06 (j) DMcam08

Figure 1. Snapshots of video data set.

embedded cameras. These factors should also be taken into

consideration to evaluate the quality of an image.

Object detection is the first and the most important step

in the process of automatic analysis, because the detected

objects provide a focus of attention for the following tasks

such as tracking and recognition. In this paper, we propose

a blind regression model based on a bagging ensemble of

trees to predict the performance of object detection on an

image. The model utilizes local features in an image such

as edge and oriented gradient and global features including

image gradient and estimated object size, which could be

easily extracted from an image. The model is trained using a

large number of images with different scene characteristics

and four types of distortions including noise, Gaussian blur,

motion blur, and reduced spatial resolution. The accuracy

of the proposed model is evaluated on a separate test data

set and compared against commonly used IQA measures.

2. Related work

There are only a few studies on the problem of quality

evaluation for automatic analysis algorithms. Image qual-

ity assessment for face recognition applications was studied

in [1, 6, 15]. Five quality factors were evaluated, including

contrast, brightness, focus, sharpness, and illumination, and

a face image quality index combining the five factors was

proposed in [1]. In [15], natural scene statistics was used to

detect degradation of infrared images for face recognition.

In [6], the degradation in the performance of face detec-

tors were quantified considering different factors including

noise, blur, and compression.

There are also a few studies on the quality for target de-

tection, target tracking, and event detection for airborne re-

connaissance applications. In [7], the applicability of the

National Imagery Interpretability Ratings Scale (NIIRS) to

an automated target detection algorithm was examined, and

it was found that NIIRS is not a good predictor of target

detection performance. In [8] and [9], the impacts of video

frame rate and two spatial factors (noise and spatial resolu-

tion) on the tracker performance were investigated.

The aforementioned studies investigated the perfor-

mance of automatic analysis on specific applications like

face recognition and airborne reconnaissance. Our work

advances the state of the art by addressing the challenge

of building a more general quality prediction model for a

wide range of object detection algorithms and diverse scene

characteristics. Moreover, our model considers four com-

mon types of distortions during the imaging process.

3. Data set and object detection measure

We have selected 10 high resolution original video se-

quences with different scene characteristics, illumination

levels, and object scales. Among them, 5 videos are cho-

sen from the Multiple Object Tracking (MOT) dataset [13],

and 5 videos are chosen from the Duke Multi-Target Multi-

Camera Tracking (DM) dataset [16]. The resolutions of

these videos are mostly 1920×1080 except for one video

with 640×480 resolution, and the average number of frames

is 741. The snapshot of these videos are shown in Fig. 1.

To understand how the performance of object detection

could be affected by image distortions, we have generated

different distorted video sequences based on the original

videos, where the distortion falls into four types: Gaussian

blur, motion blur, imaging noise, and reduced spatial reso-

lution. For each type of distortion, distortion levels are set

to low level and high level. The blurring effect of a video

is generated by 2D circularly symmetric Gaussian blur ker-

nels with standard deviations of 1.2 and 6.5 for low level

and high level, respectively. The motion blur is simulated

to approximate the linear motion of a camera by 5 and 20

pixels with an angle of 45 degrees for low and high levels,

respectively. White Gaussian noise is added to the origi-

nal images, where variances are set to be 0.001 and 0.022

for low and high levels, respectively. For reduced spatial

resolution, 1:2 and 1:4 down-sampling rates are applied in

both horizontal and vertical directions on the original im-

ages. For each original video sequence shown in Fig. 1, we
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have generated a total number of 8 distorted videos, includ-

ing 2 videos from each type of distortion. This results in a

total number of 90 video sequences (including the original

ones) in our data set.

There are two categories of object detection algorithms

in the field of computer vision: one based on building mod-

els of backgrounds and the other based on building models

for objects. Algorithms based on background modeling re-

quire multiple frames to build a stable background, while

methods based on object modeling could generate detection

results on a single image. In this work, we aim at predicting

the quality of single images in a fast manner, such that the

wireless embedded imaging system could adjust its sensing

strategy based on the predicted quality and energy supply.

Therefore, we focus on the performance of low-complexity

object modeling methods. We use the following three repre-

sentative lightweight algorithms based on object modeling:

(1) Histograms of Oriented Gradients (HOG) [3];

(2) Discriminatively Part Models (DPM) [5];

(3) Locally Decorrelated Channel Features (LDCF) [14].

The evaluation measures for object detection could be

either sequence-based or image-based. Since our goal is to

predict the performance of object detection once an image

is taken, we evaluate the object detection accuracy of each

frame in a video. The Frame Detection Accuracy (FDA) is a

comprehensive metric that accounts for important measures

of system performance (such as number of objects detected,

missed objects, false positives, and localization error of de-

tected objects) in a single score [10]. For a given frame,

the optimal matching pairs is assigned firstly by computing

the spatial overlap between ground truth and detected ob-

jects. Then, the FDA measure calculates the spatial overlap

between the ground truth and system output objects as a ra-

tio of the spatial intersection between the two objects and

the spatial union of them. The sum of all of the overlaps

was normalized over the average number of ground truth

and detected objects. For one image, where there are NG

ground-truth objects G and ND detected objects D, Nm is

the number of mapped object pairs, FDA is defined as

FDA =

Nm
∑

i=1

Gi ∩Di

Gi ∪Di

(NG +ND)/2
. (1)

A detection system needs to take an image and return a

bounding box and a confidence for each detection. The pro-

vision of a confidence level allows results to be ranked such

that the trade-off between false positives and false negatives

can be evaluated, without defining arbitrary costs on each

type of classification error [4]. However, the original FDA

measure does not reflect the trade-off between false posi-

tives and false negatives. Thus, we introduce a revised FDA

measure, rFDA for short, which is the average of FDA
based on different thresholds (T ) of detection confidence

Figure 2. Detection sample.
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where Nm is the number of mapped object pairs, NT (j) is

the number of true positives when the threshold of detection

confidence is T (j), and T (j) ∈ {C1, ..., Cj , ..., CNm
}.

The original FDA measure in (1) can be regarded as

FDAT (min), which uses the minimum detection confi-

dence level C(min) in mapped pairs as threshold such that

all mapped object pairs are true positives. A detection sam-

ple is shown in Fig. 2, which corresponds to a part of

the 581th frame of high blur distorted DMcam01 video by

LDCF detector. The ground truth is highlighted in solid

line, and three detected objects in dash line with confi-

dence levels 34.71, 128.2, and 43.5, respectively. When

the threshold T equals to the minimum confidence C(min),
i.e., T = 34.71, three detection results are all true positives,

which is the same with the original FDA definition; when

T = 43.5, only two detection results are regards as true

positive. On the other hand, the SSIM (0.51) and PSNR

(21.14 dB) values of this image actually are quite low and

poor, however, detection performance is pretty good, which

indicates that the popular image quality assessments can not

reflect the detection quality.

We have visualized the distribution of rFDA values for

the images in our data set. Fig. 3 compares the rFDAs ob-

tained from the original images and the images with high

and low distortions. Fig. 3 (a), (b), (c), and (d) correspond

to the results on down-sampled, blurred, motion blurred,

and noisy images, respectively. We can find that rFDAs

have different ranges of values when different levels of dis-

tortions are introduced for all the four types of distortions.

4. Blind model for prediction rFDA

In this section, we introduce 13 efficient local and global

features and a supervised learning algorithm to build a re-

gression model for rFDA.
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(a) (b)

(c) (d)

Figure 3. Distribution of rFDA on images with

different types of distortions.

Boundary information in an image plays an impor-

tant role in object detection and pattern recognition since

boundaries represent the transition regions between ob-

jects and background where the image intensities vary

abruptly or have discontinuities. Gradient is a good in-

dicator for the variance of image intensities. For an im-

age f(x, y), the gradient of f at location (x, y) is defined

as the two dimensional column vector: [∂f/∂x, ∂f/∂y]
T

,

where ∂f/∂x = f(x+ 1, y)− f(x− 1, y), and ∂f/∂y =
f(x, y + 1)− f(x, y − 1) using finite difference filters.

The magnitude and direction of this gradient at location

(x, y) are given by

mag(x) =

√

(∂f/∂x)
2
+ (∂f/∂y)

2
, (3)

dir(x, y) = tan−1

[

∂f/∂y

∂f/∂x

]

. (4)

The statistical properties of gradient could be used to de-

pict the characteristics of an image. We calculate 4 related

features: (1) meanGmag: the average of gradient magni-

tude; (2) stdGmag: the standard deviation of gradient mag-

nitude; (3) meanGdir: the average of gradient direction; (4)

stdGdir: the standard deviation of gradient direction.

The local oriented gradient can describe object appear-

ance and shape through counting occurrences of gradient

orientation in localized portions of an image based on the

HOG descriptor defined in [3]. The local window for one

HOG descriptor is set as 16×16 pixels, and the average fre-

quency wm and the frequency’s variation level ws of the

histogram’s bins, are defined to one window as follows:

wm =
∑Nb

i=1
hi/Nb, (5)

ws =

√

∑Nb

i=1
(hi − wm)2/(Nb − 1), (6)

where hi is the frequency of the ith bin in a local window,

and Nb is the number of bins in a local window. Based

on two statistical values for one local window, 4 related

features are calculated: (5) hog mm: the average of every

blocks’ wm; (6) hog ms: the standard deviation of every

blocks’ wm; (7) hog sm: the average of every blocks’ ws;

(8) hog ss: the standard deviation of every blocks’ ws.

The boundary or edge, representing transition areas be-

tween objects and background, is obtained by Sobel oper-

ator through convolving the image with two 3x3 kernels in

the horizontal and vertical directions. The local informa-

tion of edge is collected based on a block of 16×16 pixels,

4 related features are calculated: (9) edge mm: the average

of every blocks’ average; (10) edge ms: the standard devia-

tion of every blocks’ average; (11) edge sm: the average of

every blocks’ standard deviation; (12) edge ss: the standard

deviation of every blocks’ standard deviation.

If the size of an object is too small or too large in the

image, it is hard to detect the object from the background.

The last feature is designed as: (13) estimated object size,

which is calculated approximately using the method pro-

posed in [20]. First, a contour-based spatial prior is ex-

tracted based on the layout of edges in the given image

along a non-selective pathway. Then, local features such

as color, luminance, and texture, are extracted along the

selective pathway. Finally, Bayesian inference is used to

auto-weight and integrate the local cues to predict the exact

locations of objects.

We use the bootstrap aggregating, or bagging, ensem-

ble of trees to train a regression model to predict detection

performance based on the extracted 13 features on a single

image [2]. Every decision tree in the bagging ensemble is

grown on an independently drawn bootstrap replica of in-

put observations. The ensemble tree prediction is formed

by taking the average over base learners. The tuning pa-

rameters of ensemble trees include the number of trees and

minimum leaf size to control the tree depth.

5. Performance evaluation

Category video name image number percentage

MOT17-02, MOT17-10,

Training set MOT15-02, DMcam01, DMcam02, 50022 75.03%

MOT17-13, DMcam04, DMcam08

Testing set MOT17-04, DMcam06 16650 24.97%

Table 1. Learning setting

To evaluate the performance of the proposed model, we

divide the entire data set into a training set and testing set,

which are described in Table 1. The total number of images
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(a) Actual response VS. predicted response

(b) Distribution comparison in distortion category

Figure 4. Regression performance.

in our data set is 66672. The images from 8 raw videos

and their distorted versions are used for training (75.03%),

and the images from the remaining 2 raw videos and their

distorted versions are used for testing. During training, 5-

fold cross validation, 30 base learners, and a minimum leaf

size of 8 are used to build the ensemble of trees.

First, the regression performance of the proposed model

is investigated. Fig. 4 (a) shows the scatter figure of the

actual response VS. the predicted response. There are a

huge number of observations (16650 images) in the test-

ing data set, and one point is selected from every 50 ob-

servations to generate a clear figure. The perfect regres-

sion results should be all on the diagonal line, and most of

the predictions in our proposed model are near or on the

diagonal line, which indicates that the regression of pro-

posed model can depict the image quality for object detec-

tion quite well. Fig. 4 (b) illustrates the distributions of the

actual response and the predicted response in four distortion

categories, down-sampling in the spatial domain (ds), blur

(bl), motion blur (mb), and imaging noise (ns), in which the

actual responses (act) are in red color and the predicted re-

sponses (pre) are in blue color with wider boxes. We can

find that the 25th and 75th quartiles and the medians of the

predicted responses are all close to the actual responses in

Metrics RMSE R2 adjR2 MSE MAE

Values 0.0428 0.8147 0.8146 0.0018 0.0324

Table 2. Regression metrics

the distribution of four distortion categories, indicating that

the proposed model can accurately predict image quality for

object detection for different types of distortions.

The regression performance of proposed model on the

testing data set is measured in terms of Root Mean Square

Error(RMSE), R2, adjR2, Mean Squared Error (MSE), and

Mean Absolute Error (MAE), as shown in Table 2. Among

these metrics, smaller values of RMSE, MSE and MAE in-

dicate better performance. R2, or coefficient of determi-

nation, is always smaller than 1 and usually larger than 0.

Adjusted R2, short for adjR2, adjusts R2 for the number

of explanatory terms (features) in a model relative to the

number of observations. R2 and adjR2 values close to 1 in-

dicates good regression performance. From Table 2, we can

find that the values of RMSE, MSE and MAE are all quite

close to 0, and both R2 and adjR2 reaches 0.814, which in-

dicates that the proposed model fits data well and that only

a few features can explain the observations.

The performance of the proposed model is also com-

pared with popular IQAs. Although the proposed model is

a blind, or no-reference, image quality estimator for object

detection, two full-reference IQAs, i.e. PSNR and SSIM,

are compared in terms of the Linear Correlation Coefficient

(LCC), the Spearman Rank Order Correlation Coefficient

(SROCC), and the Kendall Rank Correlation Coefficient

(KRCC). Because full-reference PSNR and SSIM measures

could not evaluate the quality of down sampling versions

and original video sequences, results from these images are

excluded in this comparison. The correlation results are

shown in Table 3. The correlation coefficients of LCC and

SROCC for the proposed model reach above 0.90, while

the ones for SSIM and PSNR are all below 0.50; the cor-

relation coefficients of KRCC for the proposed model also

reach above 0.70, which is more than twice over the ones for

SSIM and PSNR. The results show that the proposed model

is a good predictor for the image quality for object detec-

tion, and SSIM and PSNR can not be good indicators for

the image quality for object detection. The conclusion also

can be drawn from Fig. 5, in which scatter figures between

PSNR, SSIM and rFDA values are plotted. From Fig. 5,

we can find that there is no significant relationship between

either PSNR or SSIM and rFDA values. The reason is that

SSIM and PSNR are designed for the perceptual quality but

not for the quality evaluated by object detection algorithms.
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(a) rFDA VS. PSNR (b) rFDA VS. SSIM

Figure 5. IQAs performance.

Algorithms LCC KRCC SROCC

SSIM 0.4711 0.3049 0.4619

PSNR 0.4905 0.3191 0.4824

Proposed 0.9130 0.7261 0.9050

Table 3. Correlation coefficients

6. Conclusion

In this paper, we have proposed a blind image quality

model for a wide range of object detection algorithms and

diverse scene characteristics. Utilizing easily extracted lo-

cal and global features, the model achieves more accurate

predictions of image quality for object detection than com-

mon image quality measures such as PSNR and SSIM.
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