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Abstract

Automatic video data analysis tools have become indis-
pensable components in today’s imaging applications. The
accuracy of automatic analysis methods relies on the qual-
ity of images or videos that are processed. It is therefore
essential to introduce objective metrics for predicting the
quality of images as evaluated by automatic analysis algo-
rithms. Object detection is the first and the most important
step in the process of automatic video analysis. This pa-
per proposes a new image quality model for predicting the
performance of object detection. A video data set is con-
structed that considers different factors related to quality
degradation in the imaging process, such as reduced im-
age resolution, noise, and blur. The performances of com-
monly used low-complexity object detection algorithms are
obtained for the data set. A no-reference regression model
based on a bagging ensemble of regression trees is built to
predict the accuracy of object detection using observable
features in an image. Experimental results show that the
proposed model provides more accurate predictions of im-
age quality for object detection than commonly known im-
age quality measures such as PSNR and SSIM.

1. Introduction

Wireless embedded camera sensors have become ubiq-
uitous components in various imaging applications, such
as public safety and security systems, smart building op-
erations, intelligent transportation, and remote health care.
Rather than merely presenting raw data collected by camera
sensors to the user, an application usually aims to automati-
cally discover and extract meaningful information from the
camera sensors and to achieve as much autonomy as possi-
ble in the physical system. Automatic video data analysis
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tools, which could detect, recognize, track objects of inter-
est, and understand their behaviors, have become indispens-
able components in todays imaging applications.

The performance of automatic analysis methods relies
on the quality of images that are processed. It is there-
fore essential to introduce objective metrics for predicting
the quality of images evaluated by automatic analysis algo-
rithms. In the field of image quality assessment (IQA), a
diverse range of image quality models, ranging from full-
reference to reduced-reference and no-reference ones, were
designed for predicting the perceptual quality evaluated by
human subjects [12, 18, 19].

The quality of a video sequence judged by an automatic
analysis algorithm, however, is not necessarily sensitive to
the same factors that drive human perceptions. For example,
the problem of evaluating motion imagery quality for track-
ing in airborne reconnaissance systems was studied in [8].
It was found that automated target detection algorithms are
less sensitive to spatial resolution than humans, but factors
such as jitter in the temporal domain, texture complexity,
edge sharpness, and level of noise have a strong effect on the
performance of target detection. In our recent work [11], we
found that unlike human beings who can easily extract and
focus on a moving object from a blurred background, the
performance of object detection algorithms can be affected
by the quality of the background. These results suggest that
new models are needed for evaluating the quality of images
from the perspective of automatic analysis algorithms.

In a wireless imaging system, automatic analysis could
be deployed using two strategies: in the central server on
compressed videos; or at the local cameras on uncom-
pressed videos as a preprocessing step. The impact of video
compression on the accuracy of analysis algorithms has
been studied in some recent works [17,21], which aim at
finding the optimal compression rates under a quality re-
quirement. Apart from the distortion introduced by com-
pression, the quality of an image or a video could be de-
graded during the data acquisition or sensing process, €.g.,
distortion caused by noise or motion blur, or reduced im-
age resolution due to storage or bandwidth constraints on
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Figure 1. Snapshots of video data set.

embedded cameras. These factors should also be taken into
consideration to evaluate the quality of an image.

Object detection is the first and the most important step
in the process of automatic analysis, because the detected
objects provide a focus of attention for the following tasks
such as tracking and recognition. In this paper, we propose
a blind regression model based on a bagging ensemble of
trees to predict the performance of object detection on an
image. The model utilizes local features in an image such
as edge and oriented gradient and global features including
image gradient and estimated object size, which could be
easily extracted from an image. The model is trained using a
large number of images with different scene characteristics
and four types of distortions including noise, Gaussian blur,
motion blur, and reduced spatial resolution. The accuracy
of the proposed model is evaluated on a separate test data
set and compared against commonly used IQA measures.

2. Related work

There are only a few studies on the problem of quality
evaluation for automatic analysis algorithms. Image qual-
ity assessment for face recognition applications was studied
in [1, 6, 15]. Five quality factors were evaluated, including
contrast, brightness, focus, sharpness, and illumination, and
a face image quality index combining the five factors was
proposed in [1]. In [15], natural scene statistics was used to
detect degradation of infrared images for face recognition.
In [6], the degradation in the performance of face detec-
tors were quantified considering different factors including
noise, blur, and compression.

There are also a few studies on the quality for target de-
tection, target tracking, and event detection for airborne re-
connaissance applications. In [7], the applicability of the
National Imagery Interpretability Ratings Scale (NIIRS) to
an automated target detection algorithm was examined, and
it was found that NIIRS is not a good predictor of target
detection performance. In [8] and [9], the impacts of video
frame rate and two spatial factors (noise and spatial resolu-
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tion) on the tracker performance were investigated.

The aforementioned studies investigated the perfor-
mance of automatic analysis on specific applications like
face recognition and airborne reconnaissance. Our work
advances the state of the art by addressing the challenge
of building a more general quality prediction model for a
wide range of object detection algorithms and diverse scene
characteristics. Moreover, our model considers four com-
mon types of distortions during the imaging process.

3. Data set and object detection measure

We have selected 10 high resolution original video se-
quences with different scene characteristics, illumination
levels, and object scales. Among them, 5 videos are cho-
sen from the Multiple Object Tracking (MOT) dataset [13],
and 5 videos are chosen from the Duke Multi-Target Multi-
Camera Tracking (DM) dataset [16]. The resolutions of
these videos are mostly 1920x 1080 except for one video
with 640x480 resolution, and the average number of frames
is 741. The snapshot of these videos are shown in Fig. 1.

To understand how the performance of object detection
could be affected by image distortions, we have generated
different distorted video sequences based on the original
videos, where the distortion falls into four types: Gaussian
blur, motion blur, imaging noise, and reduced spatial reso-
lution. For each type of distortion, distortion levels are set
to low level and high level. The blurring effect of a video
is generated by 2D circularly symmetric Gaussian blur ker-
nels with standard deviations of 1.2 and 6.5 for low level
and high level, respectively. The motion blur is simulated
to approximate the linear motion of a camera by 5 and 20
pixels with an angle of 45 degrees for low and high levels,
respectively. White Gaussian noise is added to the origi-
nal images, where variances are set to be 0.001 and 0.022
for low and high levels, respectively. For reduced spatial
resolution, 1:2 and 1:4 down-sampling rates are applied in
both horizontal and vertical directions on the original im-
ages. For each original video sequence shown in Fig. 1, we



have generated a total number of 8 distorted videos, includ-
ing 2 videos from each type of distortion. This results in a
total number of 90 video sequences (including the original
ones) in our data set.

There are two categories of object detection algorithms
in the field of computer vision: one based on building mod-
els of backgrounds and the other based on building models
for objects. Algorithms based on background modeling re-
quire multiple frames to build a stable background, while
methods based on object modeling could generate detection
results on a single image. In this work, we aim at predicting
the quality of single images in a fast manner, such that the
wireless embedded imaging system could adjust its sensing
strategy based on the predicted quality and energy supply.
Therefore, we focus on the performance of low-complexity
object modeling methods. We use the following three repre-
sentative lightweight algorithms based on object modeling:

(1) Histograms of Oriented Gradients (HOG) [3];

(2) Discriminatively Part Models (DPM) [5];

(3) Locally Decorrelated Channel Features (LDCF) [14].

The evaluation measures for object detection could be
either sequence-based or image-based. Since our goal is to
predict the performance of object detection once an image
is taken, we evaluate the object detection accuracy of each
frame in a video. The Frame Detection Accuracy (FDA) is a
comprehensive metric that accounts for important measures
of system performance (such as number of objects detected,
missed objects, false positives, and localization error of de-
tected objects) in a single score [10]. For a given frame,
the optimal matching pairs is assigned firstly by computing
the spatial overlap between ground truth and detected ob-
jects. Then, the FDA measure calculates the spatial overlap
between the ground truth and system output objects as a ra-
tio of the spatial intersection between the two objects and
the spatial union of them. The sum of all of the overlaps
was normalized over the average number of ground truth
and detected objects. For one image, where there are Ng
ground-truth objects G and Np detected objects D, N,, is
the number of mapped object pairs, F'D A is defined as

NmGiﬂDi
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A detection system needs to take an image and return a
bounding box and a confidence for each detection. The pro-
vision of a confidence level allows results to be ranked such
that the trade-off between false positives and false negatives
can be evaluated, without defining arbitrary costs on each
type of classification error [4]. However, the original FDA
measure does not reflect the trade-off between false posi-
tives and false negatives. Thus, we introduce a revised FDA
measure, TFDA for short, which is the average of FDA
based on different thresholds (1") of detection confidence
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Figure 2. Detection sample.

levels (C). rF'DA is defined as,
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where Ny, is the number of mapped object pairs, Nz ;) is
the number of true positives when the threshold of detection
confidence is T'(j), and T'(j) € {C4, ..., Cj,...,Cn,, }.

The original FFDA measure in (1) can be regarded as
FDAr(min), which uses the minimum detection confi-
dence level C'(min) in mapped pairs as threshold such that
all mapped object pairs are true positives. A detection sam-
ple is shown in Fig. 2, which corresponds to a part of
the 5814, frame of high blur distorted DMcam01 video by
LDCEF detector. The ground truth is highlighted in solid
line, and three detected objects in dash line with confi-
dence levels 34.71, 128.2, and 43.5, respectively. When
the threshold T equals to the minimum confidence C(min),
i.e., T = 34.71, three detection results are all true positives,
which is the same with the original FDA definition; when
T = 43.5, only two detection results are regards as true
positive. On the other hand, the SSIM (0.51) and PSNR
(21.14 dB) values of this image actually are quite low and
poor, however, detection performance is pretty good, which
indicates that the popular image quality assessments can not
reflect the detection quality.

We have visualized the distribution of rFDA values for
the images in our data set. Fig. 3 compares the rFDAs ob-
tained from the original images and the images with high
and low distortions. Fig. 3 (a), (b), (c), and (d) correspond
to the results on down-sampled, blurred, motion blurred,
and noisy images, respectively. We can find that rFDAs
have different ranges of values when different levels of dis-
tortions are introduced for all the four types of distortions.

4. Blind model for prediction rFDA

In this section, we introduce 13 efficient local and global
features and a supervised learning algorithm to build a re-
gression model for rFDA.



ori
[lds2
[ds4

ori ori

[ ot 02 03 04 05

(FDA value

(©

03
(FDA value

(d)

Figure 3. Distribution of rFDA on images with
different types of distortions.

Boundary information in an image plays an impor-
tant role in object detection and pattern recognition since
boundaries represent the transition regions between ob-
jects and background where the image intensities vary
abruptly or have discontinuities. Gradient is a good in-
dicator for the variance of image intensities. For an im-
age f(x,y), the gradient of f at location (x,y) is defined
as the two dimensional column vector: [0f/dx, 8f/dy]",
where Of /0x = f(x +1,y) — f(x — 1,y), and 8f /Oy =
flz,y+1)— f(z,y — 1) using finite difference filters.
The magnitude and direction of this gradient at location
(z,y) are given by

mag(e) = \/(04/02)* + 0 /09, ©)
dir(z,y) = tan™" [g;?gﬂ . ()

The statistical properties of gradient could be used to de-
pict the characteristics of an image. We calculate 4 related
features: (1) meanGmag: the average of gradient magni-
tude; (2) stdGmag: the standard deviation of gradient mag-
nitude; (3) meanGdir: the average of gradient direction; (4)
stdGdir: the standard deviation of gradient direction.

The local oriented gradient can describe object appear-
ance and shape through counting occurrences of gradient
orientation in localized portions of an image based on the
HOG descriptor defined in [3]. The local window for one
HOG descriptor is set as 16x 16 pixels, and the average fre-
quency w,, and the frequency’s variation level w, of the
histogram’s bins, are defined to one window as follows:

Ny
win =) hi/ Ny, 5)
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where h; is the frequency of the i, bin in a local window,
and N, is the number of bins in a local window. Based
on two statistical values for one local window, 4 related
features are calculated: (5) hog_mm: the average of every
blocks’ w,,; (6) hog_ms: the standard deviation of every
blocks’ wy,; (7) hog_sm: the average of every blocks’ wys;
(8) hog_ss: the standard deviation of every blocks’ w;.

The boundary or edge, representing transition areas be-
tween objects and background, is obtained by Sobel oper-
ator through convolving the image with two 3x3 kernels in
the horizontal and vertical directions. The local informa-
tion of edge is collected based on a block of 16x 16 pixels,
4 related features are calculated: (9) edge_mm: the average
of every blocks’ average; (10) edge_ms: the standard devia-
tion of every blocks’ average; (11) edge_sm: the average of
every blocks’ standard deviation; (12) edge_ss: the standard
deviation of every blocks’ standard deviation.

If the size of an object is too small or too large in the
image, it is hard to detect the object from the background.
The last feature is designed as: (13) estimated object size,
which is calculated approximately using the method pro-
posed in [20]. First, a contour-based spatial prior is ex-
tracted based on the layout of edges in the given image
along a non-selective pathway. Then, local features such
as color, luminance, and texture, are extracted along the
selective pathway. Finally, Bayesian inference is used to
auto-weight and integrate the local cues to predict the exact
locations of objects.

We use the bootstrap aggregating, or bagging, ensem-
ble of trees to train a regression model to predict detection
performance based on the extracted 13 features on a single
image [2]. Every decision tree in the bagging ensemble is
grown on an independently drawn bootstrap replica of in-
put observations. The ensemble tree prediction is formed
by taking the average over base learners. The tuning pa-
rameters of ensemble trees include the number of trees and
minimum leaf size to control the tree depth.

(hi — wim)?/(Np — 1),

5. Performance evaluation

Category video name image number | percentage
MOT17-02, MOT17-10,
Training set | MOT15-02, DMcamO1, DMcam02, 50022 75.03%
MOT17-13, DMcam04, DMcam08
Testing set MOT17-04, DMcam06 16650 24.97%

Table 1. Learning setting

To evaluate the performance of the proposed model, we
divide the entire data set into a training set and testing set,
which are described in Table 1. The total number of images



Predicted response

0.15 0.2 025 03 035
Actual response (rFDA)
(a) Actual response VS. predicted response

Q :

0.4

rFDA value

I

]
'
'
: 1
[ 1
1 - |
| '
L i
ds
act

ki

mb
pre

mb
act

ds bl
pre pre

(b) Distribution comparison in distortion category

ns
act

ns

act pre

Figure 4. Regression performance.

in our data set is 66672. The images from 8 raw videos
and their distorted versions are used for training (75.03%),
and the images from the remaining 2 raw videos and their
distorted versions are used for testing. During training, 5-
fold cross validation, 30 base learners, and a minimum leaf
size of 8 are used to build the ensemble of trees.

First, the regression performance of the proposed model
is investigated. Fig. 4 (a) shows the scatter figure of the
actual response VS. the predicted response. There are a
huge number of observations (16650 images) in the test-
ing data set, and one point is selected from every 50 ob-
servations to generate a clear figure. The perfect regres-
sion results should be all on the diagonal line, and most of
the predictions in our proposed model are near or on the
diagonal line, which indicates that the regression of pro-
posed model can depict the image quality for object detec-
tion quite well. Fig. 4 (b) illustrates the distributions of the
actual response and the predicted response in four distortion
categories, down-sampling in the spatial domain (ds), blur
(bl), motion blur (mb), and imaging noise (ns), in which the
actual responses (act) are in red color and the predicted re-
sponses (pre) are in blue color with wider boxes. We can
find that the 25;, and 754, quartiles and the medians of the
predicted responses are all close to the actual responses in
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R2
0.8147

MAE
0.0324

RMSE
0.0428

adj R?
0.8146

MSE
0.0018

Metrics
Values

Table 2. Regression metrics

the distribution of four distortion categories, indicating that
the proposed model can accurately predict image quality for
object detection for different types of distortions.

The regression performance of proposed model on the
testing data set is measured in terms of Root Mean Square
Error(RMSE), R?, adj R2, Mean Squared Error (MSE), and
Mean Absolute Error (MAE), as shown in Table 2. Among
these metrics, smaller values of RMSE, MSE and MAE in-
dicate better performance. R2, or coefficient of determi-
nation, is always smaller than 1 and usually larger than 0.
Adjusted R?, short for adj R?, adjusts R? for the number
of explanatory terms (features) in a model relative to the
number of observations. R? and adj R? values close to 1 in-
dicates good regression performance. From Table 2, we can
find that the values of RMSE, MSE and MAE are all quite
close to 0, and both R? and adj R? reaches 0.814, which in-
dicates that the proposed model fits data well and that only
a few features can explain the observations.

The performance of the proposed model is also com-
pared with popular IQAs. Although the proposed model is
a blind, or no-reference, image quality estimator for object
detection, two full-reference IQAs, i.e. PSNR and SSIM,
are compared in terms of the Linear Correlation Coefficient
(LCC), the Spearman Rank Order Correlation Coefficient
(SROCC), and the Kendall Rank Correlation Coefficient
(KRCCQ). Because full-reference PSNR and SSIM measures
could not evaluate the quality of down sampling versions
and original video sequences, results from these images are
excluded in this comparison. The correlation results are
shown in Table 3. The correlation coefficients of LCC and
SROCC for the proposed model reach above 0.90, while
the ones for SSIM and PSNR are all below 0.50; the cor-
relation coefficients of KRCC for the proposed model also
reach above 0.70, which is more than twice over the ones for
SSIM and PSNR. The results show that the proposed model
is a good predictor for the image quality for object detec-
tion, and SSIM and PSNR can not be good indicators for
the image quality for object detection. The conclusion also
can be drawn from Fig. 5, in which scatter figures between
PSNR, SSIM and rFDA values are plotted. From Fig. 5,
we can find that there is no significant relationship between
either PSNR or SSIM and rFDA values. The reason is that
SSIM and PSNR are designed for the perceptual quality but
not for the quality evaluated by object detection algorithms.
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Algorithms | LCC | KRCC | SROCC
SSIM 04711 | 0.3049 | 0.4619
PSNR 0.4905 | 0.3191 | 0.4824

Proposed | 0.9130 | 0.7261 | 0.9050

Table 3. Correlation coefficients

6. Conclusion

In this paper, we have proposed a blind image quality
model for a wide range of object detection algorithms and
diverse scene characteristics. Utilizing easily extracted lo-
cal and global features, the model achieves more accurate
predictions of image quality for object detection than com-
mon image quality measures such as PSNR and SSIM.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

A. Abaza, M. A. Harrison, and T. Bourlai. Quality met-
rics for practical face recognition. In Pattern Recogni-
tion (ICPR), 2012 21st International Conference on, pages
3103-3107. IEEE, 2012.

L. Breiman. Random forests. Machine learning, 45(1):5—
32,2001.

N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886—893. IEEE, 2005.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International journal of computer vision, 88(2):303—
338, 2010.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan. Object detection with discriminatively trained
part-based models. [EEE transactions on pattern analysis
and machine intelligence, 32(9):1627-1645, 2010.

S. Gunasekar, J. Ghosh, and A. C. Bovik. Face detection
on distorted images augmented by perceptual quality-aware
features. IEEE transactions on information forensics and
security, 9(12):2119-2131, 2014.

J. M. Irvine and E. Nelson. Image quality and performance
modeling for automated target detection. In Automatic Tar-
get Recognition XIX, volume 7335, page 73350L. Interna-
tional Society for Optics and Photonics, 2009.

221

(8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

J. M. Irvine and R. J. Wood. Real-time video image qual-
ity estimation supports enhanced tracker performance. In
Airborne Intelligence, Surveillance, Reconnaissance (ISR)
Systems and Applications X, volume 8713, page 87130Z. In-
ternational Society for Optics and Photonics, 2013.

J. M. Irvine, R. J. Wood, D. Reed, and J. Lepanto. Video
image quality analysis for enhancing tracker performance.
In Applied Imagery Pattern Recognition Workshop (AIPR):
Sensing for Control and Augmentation, 2013 IEEE, pages
1-9. IEEE, 2013.

R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar,
J. Garofolo, R. Bowers, M. Boonstra, V. Korzhova, and
J. Zhang. Framework for performance evaluation of face,
text, and vehicle detection and tracking in video: Data, met-
rics, and protocol. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(2):319-336, 2009.

L. Kong, R. Dai, and Y. Zhang. A new quality model for ob-
ject detection using compressed videos. In Image Process-
ing (ICIP), 2016 IEEE International Conference on, pages
3797-3801. IEEE, 2016.

K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang, and W. Zuo.
End-to-end blind image quality assessment using deep neu-
ral networks. [EEE Transactions on Image Processing,
27(3):1202-1213, 2018.

A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler.
Motl6: A benchmark for multi-object tracking. arXiv
preprint arXiv:1603.00831, 2016.

W. Nam, P. Dollér, and J. H. Han. Local decorrelation for
improved pedestrian detection. In Advances in Neural Infor-
mation Processing Systems, pages 424432, 2014.

C. G. R. Pulecio, H. D. Benitez-Restrepo, and A. C. Bovik.
Image quality assessment to enhance infrared face recogni-
tion. In Image Processing (ICIP), 2017 IEEE International
Conference on, pages 805-809. IEEE, 2017.

E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi.
Performance measures and a data set for multi-target, multi-
camera tracking. In European Conference on Computer
Vision workshop on Benchmarking Multi-Target Tracking,
2016.

K. Tahboub, A. R. Reibman, and E. J. Delp. Accuracy pre-
diction for pedestrian detection. In Image Processing (ICIP),
2017 IEEE International Conference on, pages 4192-4196.
IEEE, 2017.

S. Wang, K. Gu, X. Zhang, W. Lin, S. Ma, and W. Gao.
Reduced-reference quality assessment of screen content im-
ages. IEEE Transactions on Circuits and Systems for Video
Technology, 28(1):1-14, 2018.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. Image Processing, IEEE Transactions on,
13(4):600-612, 2004.

K.-F. Yang, H. Li, C.-Y. Li, and Y.-J. Li. A unified
framework for salient structure detection by contour-guided
visual search. IEEE Transactions on Image Processing,
25(8):3475-3488, 2016.

C. Zhong and A. R. Reibman. Prediction system for activ-
ity recognition with compressed video. Electronic Imaging,
2018(2):1-6, 2018.



