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This research concerns the uncertainty analysis and quantification of the vibration system
utilizing the frequency response function (FRF) representation with statistical metamodel-
ing. Different from previous statistical metamodels that are built for individual frequency
points, in this research we take advantage of the inherent correlation of FRF values at dif-
ferent frequency points and resort to the multiple response Gaussian process (MRGP)
approach. To enable the analysis, vector fitting method is adopted to represent an FRF
using a reduced set of parameters with high accuracy. Owing to the efficiency and accuracy
of the statistical metamodel with a small set of parameters, Bayesian inference can then be
incorporated to realize model updating and uncertainty identification as new measurement/
evidence is acquired. The MRGP metamodel developed under this new framework can be
used effectively for two-way uncertainty propagation analysis, i.e., FRF prediction and
uncertainty identification. Case studies are conducted for illustration and verification.
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1 Introduction
The characterization of dynamic properties of structures is the

foundation for response analysis, system/fault identification, and
control, where frequency response functions (FRFs) are commonly
used to facilitate frequency-domain approaches. FRFs can be
acquired from simulations of numerical models such as finite
element models, or from testing/experiments on real structures.
Critical dynamic information including resonant frequencies,
damping ratios, and mode shapes can be further deduced from
FRFs [1]. FRFs are generally sensitive to variations of structural
properties and boundary conditions, which allows them widely
used in optimal design [2], fault diagnosis [3,4], and control synth-
esis [5,6]. The existence of uncertainties in structures is inevitable
due to tolerance in manufacturing, normal variations in material
and geometry properties, and in-service degradation, etc. [7].
Uncertainty effects need to be considered in structural design, and
also continuously monitored in service life. Uncertainty analysis
and quantification focus on studying the cause and consequence
of uncertain structural parameters. In the forward analysis, uncer-
tainties are typically introduced through assigning prior probabilis-
tic distributions of structural parameters. Monte Carlo simulation
can then be conducted to capture the performance/response varia-
tion through sampling in the parametric space. FRFs are often
used to reveal the uncertainty effects in the frequency domain.
The variation of an FRF can be analyzed through Monte Carlo sam-
pling with repeated simulations or experiments under uncertainty
parameters.
It is, however, practically infeasible to carry out physical exper-

iments with a large number of sampled uncertainty parameters. It is
also computationally costly and even prohibitive to perform a
repeated calculation of high-resolution FRFs through Monte

Carlo sampling, especially for large-scale structures with high
dimensionalities. There has been significant recent interest in devel-
oping methods that can efficiently characterize the variations in
FRFs. One type of approaches is modal based. Muscolino et al.
[8] used the modal analysis on the nominal model followed by per-
turbation analysis to predict FRF variation. Hinke et al. [9] carried
out component mode synthesis based order reduction to improve
the analysis efficiency, and FRF envelops under uncertainty effect
were obtained through perturbation. Yang et al. [10] adopted
polynomial chaos expansion method with order-reduced model
to analyze the frequency response variations. In these studies, a
nominal model was analyzed to obtain the baseline modal informa-
tion, e.g., mode shapes and natural frequencies, and then uncer-
tainty propagation computation was facilitated. It is worth noting
that in many cases the complete modal information is difficult to
acquire. Usually, a very limited number of measurement points
can be realized in experimental modal analysis. It is very hard to
obtain higher-order mode shapes accurately in both experimental
and numerical analyses.
Another type of approach is built upon the idea of improving the

efficiency of statistical sampling. For example, a small number of
FRF results sampled from the given uncertainty parameters are
obtained first. Then, a statistical metamodel is established based
on these results, so that any FRF in the uncertain parametric
space can be predicted directly from this metamodel without
using the original numerical model or performing new experiments.
This is similar to the supervised learning concept in machine learn-
ing. Gaussian process (GP) regression has been one class of popular
algorithms adopted in dynamic analysis to derive the metamodels
[11–13]. Xia and Tang [7] calculated the coarse FRF values at a
small number of frequency points and then developed GP metamo-
del to estimate the high-resolution FRF, which reduced the compu-
tational cost for a single run. Fricker et al. [14] and Diazdelao et al.
[15] both studied the prediction of FRFs under uncertainties by
building independent GP models at each frequency point individu-
ally. Although efficient in characterizing the variation of an FRF at
key frequency points, this kind of method become tedious when the
variation of the entire FRF is of interest. A very large number of
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frequency points are needed in high-resolution FRF representation,
and independent GP models will have to be established for all the
frequency points. Essentially, GP models developed independently
for different frequency points neglect the inherent correlation of
FRF values at different frequency points.
Recently, methods of developing metamodels based on multiple

response Gaussian process (MRGP) have attracted attention
[16,17]. These methods give consideration to the correlation
among multiple outputs. Arendt et al. [16] pointed out that the
advantage of MRGP metamodel was that, when multiple responses
are mutually dependent on the same set of parameters, the informa-
tion obtained from them can be combined to better infer the true
response values corresponding to these parameters. Intuitively,
one may apply this MRGP framework to facilitate FRF variation
prediction. As noted by Arendt et al. [16], however, MRGP can
be employed only when the number of dependent response vari-
ables is small. The frequency points involved in high-resolution
FRF is very large especially for structures that are lightly damped
(in order to capture the peak responses). Therefore, in reality, the
direct application of MRGP to high-resolution FRF is still compu-
tationally infeasible.
Meanwhile, a fundamental feature of statistical metamodels

including those established based on GP or MRGP is that they all
provide likelihood estimation of their prediction. This leads to an
important, potential advantage to conduct the uncertainty quantifi-
cation and identification, i.e., the inverse analysis, by incorporating
the Bayesian inference framework. Bayesian inference is a statisti-
cal method in which the Bayes’ rule is utilized to update the prob-
ability estimation with a hypothesis as additional evidence is
obtained [18]. The hypothesis in our case refers to the prior proba-
bility of uncertainty parameters and the likelihood estimation
derived from Gaussian process [19,20]. Bayesian inference thus is
able to derive the posterior probability of uncertainty parameters.
Maximum likelihood estimation or optimization processes can be
carried out to determine the values with the greatest probability
[13,21,22], which essentially leads to the quantification of uncer-
tainty parameters. While the idea of integrating Bayesian inference
into FRF-based uncertainty analysis is appealing since the measure-
ment data of FRF can be obtained in a straightforward manner, the
actual implementation has not been widely seen. One challenging
issue here is how to parametrize the uncertainty parameters so the
inverse identification is computationally tractable. Obviously,
directly updating the original numerical model (e.g., the finite
element model) without any prior empirical knowledge of uncer-
tainties (e.g., type, location) may not be executable.
The objective of this research is to advance the state-of-the-art in

FRF-based uncertainty analysis and quantification by addressing the
aforementioned issues and challenges. Using a small number of
FRFs obtained in the uncertain parametric space as sampled knowl-
edge, we formulate an efficient MRGP-based approach to establish a
statistical metamodel that yields the functional relation between
uncertainty parameters and FRF results, which can facilitate varia-
tion analysis of FRF of structural systems with uncertainty. In the
MRGP model establishment, uncertainty parameters are considered
as the input. To make the MRGP formulation computationally trac-
table, we take advantage of the vector fitting method [23,24] to rep-
resent an FRF as a summation of rational fractions, which can
parameterize effectively the FRFwith a small number of parameters.
These parameters are used as the output of the MRGP model. Once
the MRGP model is built, the FRF under uncertainty parameters can
be predicted directly without carrying out simulations or experi-
ments. We further devise a Bayesian inference approach to realize
uncertainty identification. That is, when a new FRF is acquired, it
is used as new evidence to update the prior knowledge of uncertainty
parameters, e.g., their probability distributions. The posterior knowl-
edge can quantify which uncertainty parameters are most likely to
generate the new given FRF. This two-way uncertainty propagation
analysis, FRF prediction and uncertainty identification, is computa-
tionally efficient and accurate and takes full advantage of the corre-
lation of the FRF values at different frequency points. The rest of this

paper is organized as follows. Section 2 outlines the rational fraction
expansion of FRF for linear systems as well as the FRF parameteri-
zation process. The details of establishing MRGP metamodel and
the formulation of uncertainty quantification and identification by
Bayesian inference are presented in Sec. 3. Section 4 illustrates
the effectiveness and efficiency of the FRF-based uncertainty analy-
sis and quantification through case investigations. Concluding
remarks are given in Sec. 5.

2 Frequency Response Function of Vibration System
and Its Vector Fitting
In this section, we present the formulation of the rational fraction

expansion of FRF for linear vibration system, followed by a param-
etrization process for FRF. The parametrized FRF is the basis for
the subsequent uncertainty analysis and quantification.

2.1 Frequency Response Function and Rational Fraction
Expansion. We consider a linear vibration system with nf
degrees-of-freedom (DOFs)

Mẍ + Cẋ +Kx = f (1)

where M, C, and K denote, respectively, the mass, damping, and
stiffness matrices. Consider harmonic excitation f(t) = Feiωt

where F is a constant vector of force magnitude and ω is the sweep-
ing frequency. We have the vector-form FRF of the structure as

X = T(ω)F (2)

where T(ω) = (−ω2M + iωC +K)−1 is the transfer matrix of this
system. Each vector component in X is the FRF at the correspond-
ing DOF. The FRF can be obtained by directly calculating the trans-
fer function at sweeping frequency points. This however generally
leads to high computational cost, especially for high-resolution FRF
with a large number of frequency points.
Alternatively, X can be expressed as the summation of rational

fractions with modal information as

X =
∑2nf
k=1

φkφT
k

iω − λk

( )
F (3)

where λk and φk (k= 1, 2, .… 2nf) are the complex eigenvalues and
eigenvectors of the following second-order eigenvalue problem

(λ2kM + λkC +K)φk = 0 (4)

The above eigenvalue problem can be solved in the state space
[25,26]. The eigenvectors satisfy the weighted orthogonality condi-
tion and normalization condition [27], i.e.,

λjφT
j Mφk + λkφT

j Mφk + φT
j Cφk = 0, j ≠ k (5a)

2λkφT
kMφk + φT

kCφk = 1 (5b)

For a classical vibration system where the damping matrix C is
symmetric, both the eigenvalues and the eigenvectors exist in the
form of conjugate pairs as λk = �λk+nf and φk = �φk+nf (k= 1,… , nf).
Equation (3) can be rewritten as

X =
∑nf
k=1

Ek

iω − λk
+

�Ek

iω − �λk

( )[ ]
F (6)

where Ek = φkφT
k . Thus, each component Xi of X, i.e., the FRF of

each DOF, is expressed through rational fraction expansion as

Xi =
∑nf
k=1

αik
iω − λk

+
�αik

iω − �λk

( )
, i = 1, . . . , nf (7)
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where αik is the ith component in vector EkF. It can be readily
observed that all Xi share the identical set of denominators (i.e., iω
− λk and iω − �λk) but have different numerators (i.e., αik and �αik) in
the summation expression. Apparently, when the FRF is to be ana-
lyzed at a large number of frequency points, the rational fraction
expansion will be a more efficient option when compared with the
matrix inversion approach (i.e., finding the transfer matrix T(ω)
directly at different frequency points), because the modal informa-
tion only has to be extracted once, regardless of the number of fre-
quency points involved.

2.2 Parametrization of Frequency Response Function
Through Rational Approximation by Vector Fitting Method.
In terms of FRF analysis, the expression given by Eq. (6) or Eq.
(7) still has limitations. It is generally impractical to compute or
experimentally extract the complete modal information (i.e., the
complete sets of eigenvalues/natural frequencies and eigenvectors/
modes). In computational analysis, besides the issue of high compu-
tational cost involved in extracting higher-order eigenvalues/eigen-
vectors, the results solved at very high frequencies may not be
credible at all. In experimental analysis, usually modal information
can only be extracted within a limited frequency range, and since
the number of sensors is also limited the mode shape information
is incomplete. Equation (7), on the other hand, indicates that prac-
tically not all the terms in the summation expression have to be kept.
One should mainly focus on the terms with eigenvalues having
absolute values |λk| within or close to the frequency range of inter-
est. This inspires us to utilize the vector fitting method [23] to
develop a rational fraction expansion with a considerable smaller
number of summation terms to express the FRF. The vector
fitting method has been employed in the frequency-domain model-
ing of a variety of systems [28–30]. Here, we use this method to
develop a numerically efficient expression for the FRF of interest.
Let us consider FRFs at nc DOFs where nc can be the number of

sensors employed in the experiment. Under frequency-sweeping
excitation, the FRFs at these DOFs are obtained simultaneously at
discrete frequency points. The vector fitting method indicates that
this set of FRFs can be fitted as [31]

Xi ≈
∑np/2
k=1

γik
iω − μk

+
�γik

iω − �μk

( )
, i = 1, . . . , nc, ωL ≤ ω ≤ ωR

(8)

where np, which must be an even number here, is the number of
poles used for vector fitting, and ωL and ωR are the lower and
upper bounds of the frequency range of concern. np may be selected
empirically to fit specific accuracy requirement, and a practical
choice is np= 2n0+ 4, in which n0 is the number of natural frequen-
cies within the concerned frequency range. γik and μk in Eq. (8) are
coefficients derived based on the pole allocation process. To illus-
trate the pole allocation process, let us first consider the case
where nc= 1 and thus only 1DOF is involved in FRF measurement,
resulting in the FRF X1. We assume an unknown rational fraction
function with random initial poles μ̃k as

θ(ω) =
∑np
k=1

γ̃1k
iω − μ̃k

( )
+ 1 (9)

We then use the same poles to express the result of θ(ω)X1(ω) as

θ(ω)X1(ω) =
∑np
k=1

γ̂1k
iω − μ̃k

( )
+ d̃ (10)

where d̃ represents an unknown zero-order constant term. Combin-
ing Eqs. (9) and (10), we have

∑np
k=1

γ̃1k
iω − μ̃k

( )
+ 1

[ ]
X1(ω) =

∑np
k=1

γ̂1k
iω − μ̃k

( )
+ d̃ (11)

or

∑np
k=1

γ̃1kX1(ω)
iω − μ̃k

( )
−
∑np
k=1

γ̂1k
iω − μ̃k

( )
− d̃ = −X1(ω) (12)

In Eqs. (9)–(12), γ̃1k , γ̂1k , and d̃ are all unknown variables to be
solved later. An FRF X1 contains results from multiple discrete fre-
quency points, and at each frequency point ωi we have∑np

k=1

γ̃1kX1(ωi)
iω − μ̃k

( )
−
∑np
k=1

γ̂1k
iω − μ̃k

( )
− d̃ = −X1(ωi) (13)

Clearly, Eq. (13) is linear with respect to all the unknown vari-
ables. These unknown variables can be solved via the least square
method by combining the equations from all frequency points.
We then have

X1(ω) =

∑np
k=1

γ̂1k
iω − μ̃k

( )
+ d̃

∑np
k=1

γ̃1k
iω − μ̃k

( )
+ 1

=

∏np
k=1

(iω − ẑ1k)
(iω − μ̃k)∏np

k=1
(iω − z̃1k)
(iω − μ̃k)

=
∏np

k=1

(iω − ẑ1k)
(iω − z̃1k)

(14)

where z̃1k and ẑ1k are the zeros of θ(ω) and θ(ω)X1(ω), respectively.
Equation (14) indicates that the zeros z̃1k solved from θ(ω) are actu-
ally the poles of X1(ω) after elimination. In practice, several itera-
tions will be performed to repeat the process above (using newly
solved poles to replace the current ones) to yield convergent
poles μk and then to determine γ1k by simplifying Eq. (14) into sum-
mation form. Owing to the nature of FRF, μk and γ1k solved will also
exist in the form of conjugate pairs, similar to that shown in Eq. (7).
The pole allocation processes for multiple FRFs {Xi}(i= 1,… ,

nc) are essentially similar, and all Xi(ω) will share the same poles
as they come from the same underlying mechanical system. As
will be shown later in the case study, when the number of poles
is properly determined, the fitted FRF curves match the original
data very well.
This fitting process itself only requires the FRF results obtained

either numerically or experimentally, thereby avoiding the difficulty
associated with obtaining the complete modal information for
expansion. Both nc and np/2 are much smaller than nf, the number
of DOFs of the original system. Fundamentally, the set of nc
FRFs is parameterized into np× (nc+ 1) real parameters, i.e.,

{Xi}(i = 1, . . . , nc) � y = [α1, α2, . . . , αnp/2] (15)

where

αk = [real(μk), imag(μk), real(γ1k), imag(γ2k), . . . , real(γnck),

imag(γnck)], k = 1, . . . , np/2 (16)

In either computational analysis or experimental analysis, in
order to capture important information such as resonant peaks,
the frequency resolution has to be very high, leading to a very
large number of frequency points involved. This vector fitting
method can significantly reduce the parameters required to describe
an FRF. Meanwhile, Eq. (8) for FRF after fitting is a C-infinity func-
tion, which helps to interpolate the FRF value at any other fre-
quency point that is not included in the original FRF data.

3 Uncertainty Analysis and Quantification of
Frequency Response Function
Here in this section, we discuss uncertainty analysis and quanti-

fication of the frequency response function. We start from the for-
mulation of a statistical metamodel that can efficiently predict the
variation of frequency response function parametrized through the
vector fitting method. We then present a Bayesian inference
approach to update the uncertainty parameter distribution and
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predict the uncertainty parameters when new results/measurements
are acquired.

3.1 Multiple Response Gaussian Process Modeling of
Frequency Response Function. Gaussian process regression has
seen increased usage in developing metamodels that can rapidly
predict output under given input through emulation. In this research,
we resort to a MRGP modeling approach to perform uncertainty
analysis of FRFs. Here, instead of predicting variation of FRF at
individual frequency point, we directly analyze the variation of
the FRF as a function. That is, the metamodel output is the set
of parameters employed to describe the corresponding FRF
(Eq. (15)). Assume the original mechanical system contain nu
uncertainty parameters that are the input variables of the MRGP
metamodel. Also assume FRFs are evaluated at nc DOFs, and np
poles are used in vector fitting to parametrize the FRFs, leading
to an nq (nq= np × (nc+ 1)) dimensional output (Eq. (15)). ns
sampled uncertainty inputs and their corresponding parameterized
FRFs outputs are used to form the MRGP model. The prior for
the MRGP model is [16,32,33]

y(p) ∼ GP[h(p)B, ΣR(p, p′)] (17)

where p = [p1, p2, . . . , pnu] is the input row vector representing nu
uncertainty parameters, and y(p) denotes the multiple responses
under given input, which in the FRF analysis case is a row vector
shown in Eq. (15) as y(p) = [α1, α2, . . . , αnp/2] = [y1, y2, . . . , ynq],
i.e., the parameters of FRF after vector fitting.
The prior mean function comprises a row vector of specified

regression functions h(p) and a matrix of unknown regression coef-
ficients B. In this research, we use h(p) = [1, p1, . . . , pnu] to capture
the linear characteristic under small uncertainties. Correspondingly,
we define B = [β1, . . . , βnq], in which βi = [βi,1, . . . , βi,1+nu]

T is the
unknown regression coefficient vector for the ith element of
output vector y(p). The prior covariance function is the product
of an unknown nonspatial nq× nq covariance matrix Σ and a
spatial ns × ns correlation matrix R. Σij in Σ represents the covari-
ance between the ith and the jth outputs. Rmn inR represents the cor-
relation between the mth and nth input sets of uncertainty
parameters, determined by a Gaussian correlation function as

Rmn = R(pm, pn) = exp −
∑nu
k=1

κk( pm,k − pn,k)
2

{ }
(18)

where κ = [κ1, . . . , κnu ] is the vector of roughness parameters that
represent the correlation between two inputs/uncertainty parame-
ters. Thus, the arbitrary covariance between any two output
results can be written as

Cov[yi(pm), yj(pn)] = ΣijRmn (19)

We now refer to ϕ = {B, Σ, κ} as the hyperparameters of the
MRGP metamodel. With given response data Y = [yT (p1), . . . ,
yT (pns )]

T under ns sampled uncertainty sets P = [pT1 , . . . , p
T
ns
]T ,

these hyperparameters can be obtained from the maximum likeli-
hood estimation [11,34]. The multivariate normal likelihood func-
tion is

p(Y|B, Σ, κ) = (2π)−nqns/2(det Σ)−ns/2(det R)−nq/2

exp −
1
2
vec(Y −HB)T (Σ⊗ R)−1vec(Y −HB)

{ } (20)

where vec() denotes the vectorization operator to stack the columns
of a matrix in sequence to form a long column vector,⊗ denotes the
Kronecker product, and H = [h(p1)

T , . . . , h(pns )
T ]T . For the conve-

nience of maximum likelihood calculation, we take the natural

logarithm of both sides of Eq. (20), i.e.,

ln [p(Y|B, Σ, κ)] = −
nqns
2

ln (2π) −
ns
2
ln (det Σ) −

nq
2
ln (det R)

−
1
2
vec(Y −HB)T (Σ⊗ R)−1vec(Y −HB)

(21)

The maximum likelihood estimation of B can be derived by
setting the derivative of Eq. (21) with respect to B to be zero
[16]. We obtain

B̃ = [HTR(κ)−1H]−1HTR(κ)−1Y (22)

The maximum likelihood estimation of Σ is given as [35]

Σ̃ =
1
ns
(Y −HB̃)TR(κ)−1(Y −HB̃) (23)

SinceR(κ) is only dependent upon the hyperparameters κ, B̃, and
Σ̃ also become functions of κ. Therefore the maximum likelihood
value can be numerically solved from Eq. (21) with respect to
parameters κ. After we obtain the optimal κ̃, B̃, and Σ̃ can be
obtained sequentially by substituting κ̃ into Eqs. (22) and (23).
After the hyperparameters ϕ̃ = {B̃, Σ̃, κ̃} are determined, the

MRGP metamodel is established. Under a new input p, i.e., new
uncertain parameter set, the posterior of the output is Gaussian
with mean and covariance specified as

e[y(p)] = E[y(p)|Y, ϕ̃] = h(p)B̃ + r(p)R(κ̃)−1(Y −HB̃) (24)

σ[y(p)] = Cov[y(p)|Y, ϕ̃] = Σ̃[1 − r(p)R(κ̃)−1r(p)] (25)

where E[ · ] is the expectation operator and r(p) is an ns × 1 column
vector, the ith element of which is R(p, pi). The output then can be
treated as variables satisfying the multivariable Gaussian distribu-
tion with the mean and covariance given above. The probability
density can be expressed as

p(y|p, Y, P, ϕ̃) = 1

(2π)nq/2|σ|1/2 exp −
1
2
(y − e)σ−1(y − e)T

( )
(26)

The mean value in Eq. (24) gives the best prediction of FRF
parameters (i.e., the parameters involved in the rational fraction
expression of FRF) under the given uncertainty p as it has the
highest probability density. The predicted FRFs can be retrieved
by inserting these FRF parameters into Eq. (8).
It is worth noting that the number of output variables in this meta-

model for FRF prediction is generally greater than those involved in
previous studies using MRGP [16,17]. As such, the actual imple-
mentation should pay attention to numerical stability, which is sum-
marized as follows:

(1) In uncertainty analysis of FRFs, we often have nq > nu, i.e.,
the number of output variables employed to parametrize
the FRF is greater than that of the input variables (i.e., the
uncertainty parameters). Under small uncertainties, the dif-
ference in each set of output variables is approximately pro-
portional to the difference of uncertainty parameters. If nq is
significantly larger than nu, the condition number of Σ will
become very large as some outputs may become linearly
dependent. Therefore, in actual implementation, nq will
need to be carefully selected.

(2) The determinants of Σ and R need to be calculated in
Eq. (21). In certain cases, these two matrices are close to
being singular. We can carry out the LU decomposition of
these matrices and then compute the determinants through
taking the logarithm, e.g.,

Σ = LU (27a)

051010-4 / Vol. 141, OCTOBER 2019 Transactions of the ASME



ln [det(Σ)] =
∑nq
i=1

ln (Uii) (27b)

where L and U are lower and upper triangular matrices,
respectively, and Uii is the ith diagonal element of U.

(3) The parameters involved in FRF parametrization (Eq. (1))
may have significant differences in their magnitudes. A nor-
malization procedure will help improve the computational
performance. Consider real(μ1) in α1 as an example. A
total of ns real(μ1) values are obtained from ns FRF
samples. We define

˜real(μ1)i = [real(μ1)i − real(μ1)]/σreal(μ1), i = 1, . . . , ns
(28)

where real(μ1) and σreal(μ1) denote the mean and standard

deviation of real(μ1). ˜real(μ1) denotes the modified value
after the normalization, and it has a mean of 0 and a standard
deviation of 1. It is also necessary to perform a similar pro-
cedure at the input site, i.e., to transform each uncertainty
parameter into the normalized range of [0, 1].

(4) Pre-scanning of κ is required to determine the initial value of
numerical maximizing problems which can increase the con-
vergence rate. A convenient way to do the scan is setting
each element in κ to be the same and using simple loop to
enumerate each possible value in a logarithmic scale (base
10). Figure 1 shows an example of pre-scanning, where the
x-axis is the log base 10 of κ and the y-axis is the nature log-
arithm of the likelihood. The κ value achieving the best like-
lihood value can be used as the initial value.

3.2 Uncertainty Identification of Frequency Response
Function Using Bayesian Inference. The MRGP-based formula-
tion can facilitate the forward analysis of uncertainty effects in a fre-
quency response function after it is parametrized through the vector
fitting method. Owing to the accuracy of the metamodel, we can
update it through uncertainty identification, i.e., quantifying the
uncertainty parameters, when new sampled FRFs become available.
This can now be realized by incorporating Bayesian inference into
the MRGP modeling.
Given samples of observed response Y at ns uncertainty input P,

the MRGP model is established with hyperparameters ϕ̃ =
{B̃, Σ̃, ω̃} as outlined in Sec. 3.1. This metamodel can provide
the probability of an arbitrary output vector y under the given
samples and an arbitrary input p as p(y|p, Y, P, ϕ̃) shown in
Eq. (26). We assume that a new given family of FRFs with
unknown uncertainty parameters are parameterized into vector ŷ
by means of vector vetting. We can estimate the posterior of

uncertainty parameters p according to Bayesian inference

p(p|ŷ, Y, P, ϕ̃) = p(ŷ|p, Y, P, ϕ̃)p(p)
p(ŷ|ϕ̃) (29)

where the conditional probability p(ŷ|p, Y, P, ϕ̃) can be calculated
by using Eq. (26) from the MRGP metamodel, and p(p) is the prior
of the uncertainty parameters. The denominator can be determined
as

p(ŷ|ϕ̃) =
∮
p(ŷ|p, Y, P, ϕ̃)p(p)dp1dp2 . . . dpnu (30)

where dpi (i= 1,… , nu) denotes the differential of each component
in the input vector. A common practice is to take p(ŷ|ϕ̃) as a normal-
ization constant.
The posterior actually gives the specific probabilistic distribution

of uncertainty parameters for the new given FRFs under the condi-
tion of samples and prior knowledge. p̂ that maximizes
p(p|ŷ, Y, P, ϕ̃) represents the uncertainty parameters that have the
highest possibility to generate the FRF parameters. In other
words, this p̂ can be regarded as the quantified or identified uncer-
tainty parameters for the system that generates the new given FRF.
Maximizing the likelihood function Eq. (29) with respect to p
yields the quantification of uncertainty parameters. As p(ŷ|p) is
not computed, we only need to apply the maximization to
p(ŷ|p, Y, P, ϕ̃)p(p). Typically, one takes the natural logarithm of
this probability density to facilitate computation [34]

pln = ln [p(ŷ|p, Y, P, ϕ̃)p(p)] = −
nq
2
ln (2π) −

1
2
ln (|σ|)

−
1
2
(ŷ − e)σ−1(ŷ − e)T + ln [p(p)]

(31)

A number of studies utilize the gradient methods or local pertur-
bation, e.g., Markov Chain Monte Carlo, to carry out optimization.
It is, however, possible for the solution to be trapped at a local
maximum, which will be illustrated in the case studies in Sec. 4.
Many recent investigations employ heuristic optimization
approaches [36] such as genetic algorithm [37] or particle swarm
optimization [38,39] to find the global optimum. In this research,
we employ the particle swarm algorithm for all the following iden-
tification analysis.
Figure 2 shows the flowchart that explains how to build an

MRGP model from FRFs and how the MRGP model is used for
FRF prediction and parameter identification. It also illustrates
how the concepts, such as vector fitting, Bayesian inference, are
involved in the entire analysis procedure.

Fig. 1 Pre-scanning example Fig. 2 Flowchart of MRGP establishment and application
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4 Case Illustration and Discussion
In this section, two carefully designed cases are presented to

illustrate the implementation of the approach developed and to
demonstrate the effectiveness. A discrete, spring-mass-damper
model is employed to verify the forward and inverse analysis of
uncertainty effects, where insights to the numerical implementation
are provided. A beam finite element model is then adopted to show
the potential application of this analysis in structural damage
detection.

4.1 MRGP Based Metamodeling and Uncertainty
Quantification Applied to Discrete System

4.1.1 Case Definition. In this first illustration, we analyze a
10DOF structure as shown in Fig. 3. The nominal structure
without uncertainties has stiffness k= 4π2 and mass m0= 1. The
masses are numbered from 1 to 10 sequentially from left to
right. The mass and stiffness matrices of the nominal structure,
denoted as M0 and K0, can be easily obtained. We assume propor-
tional damping, i.e.,

C0 = 0.01M0 + 0.0001K0

We further assume that in all the subsequent analyses of this
structure, uncertainties occur as the changes of masses, i.e.,

mi = m0 + Δmi, i = 1, . . . , 10

Therefore, the actual mass matrix becomes M =M0 + ΔM. A
unit excitation is applied to the first mass and we can acquire the
FRFs of any mass directly. These FRFs can be parameterized by
the vector fitting method for building the MRGP metamodel.

4.1.2 Forward Analysis of Uncertainty Effects. We assume nu
masses, numbered from (11− nu) to 10, respectively, are subjected
to uncertainties. Cases with different nu are to be analyzed. At input
site, the uncertainty parameter Δmi is assumed to be uniformly dis-
tributed within the range [−0.05, 0.05], and Latin hypercube sam-
pling [40] is adopted to acquire the sampled uncertainties. The
frequency range of interest is [0.7, 1.4], and the frequency resolu-
tion of FRF used is 0.001. We focus on the FRF of mass 10, i.e.,
nc= 1. As three natural frequencies can be found within the inter-
ested frequency range for the nominal system without uncertainty,
the number of poles in the vector fitting method is chosen to be
np = 2 × 3 + 4 = 10. Therefore, the dimension at the output site is
nq= np× (nc+ 1)= 20.
We acquire ns sampled FRF responses, which in this simulation

case are obtained by direct calculation from the equation of
motion, as the training data. Following the procedures outlined
in Secs. 2.2 and 3.1, we can obtain the MRGP metamodel. The
sample size of the training data used in constructing the MRGP
metamodel, ns, varies as nu varies because larger nu generally
requires larger ns. In Table 1, we list the performance of the meta-
model obtained under different nu. We compare the FRF results
predicted by the MRGP metamodel with those obtained from
direct computation from the equation of motion. The relative
error of directly calculated FRF T(ω) and the predicted FRF
T̃(ω) from the MRGP metamodel at each frequency point is
defined as

ΔT(ωi) =
||T(ωi)| − |T̃(ωi)||

|T(ωi)| , i = 1, . . . , nω

where nω is the number of frequency points. We further define the
mean and maximum relative errors of an FRF as

Δ �T =
1
nω

∑nω
i=1

ΔT(ωi), max (ΔT) =max [ΔT(ωi)]

For each case listed in Table 1, the statistical averages of Δ �T and
max (ΔT ) are calculated based on 1000 samples of uncertainty
parameters. As shown in the table, the mean errors in all cases
are generally small. From case 1 to case 7 with the training data
size ns= 50, we can observe that the maximum error increases as
the number of uncertainty parameters increases, since the size of
the training data remains unchanged. Case 4 along with case 8 to
case 12 indicate that as we increase the size of the training data
while maintaining the number of uncertain parameters, the relative
errors are significantly reduced. Case 13 to case 15 show the same
trend that relative errors are reduced as the size of the training data is
increased from 50 to 100. The size of training data is an important
parameter, and a larger size usually leads to a better MRGP predic-
tion. While it is impossible to decide a priori the necessary size of
training data, in general it can be determined through convergence
analysis whereas the size (i.e., the number of training datasets)
increases.
Figure 4 shows a representative example of FRF comparison with

nu= 7 and ns= 100. The values of Δmi (i= 4,… , 10) equal to
[0.1715, 4.7190, −2.7771, −2.9472, −3.0778, −1.3686, −0.1307]
× 10−2, respectively, which are randomly generated. The amplitude
and phase under this specific set uncertain parameters predicted
from the MRGP metamodel match well with the results from
direct real model calculation. Within the entire frequency range of
interest, the relative error in amplitude is smaller than 1% and the
absolute error in phase is virtually negligible. These results indicate
that the proposed forward analysis approach using MRGP-based
metamodel can be a viable tool to evaluate uncertainty effects.

4.1.3 Inverse Analysis: Uncertainty Parameter
Quantification. In this subsection, we illustrate the quantification
of uncertainty parameters using MRGP metamodeling incorporated
with Bayesian inference. In this type of analyses, in practical situa-
tions, we are usually given a set of FRF results obtained experimen-
tally. Here, in this case study, we use simulated data of FRF results
as input.

Table 1 FRF forward analysis case comparison

Case # nu ns
Average of max
error Δ�T (%)

Average of mean
error max (ΔT ) (%)

1 4 50 0.081 0.890
2 5 50 0.095 1.148
3 6 50 0.263 4.290
4 7 50 0.464 8.290
5 8 50 0.650 12.653
6 9 50 0.720 13.664
7 10 50 0.819 16.083
8 7 60 0.293 4.821
9 7 70 0.151 2.215
10 7 80 0.110 1.400
11 7 90 0.087 1.023
12 7 100 0.075 0.812
13 8 100 0.108 1.404
14 9 100 0.200 3.344
15 10 100 0.326 5.416

Fig. 3 Discrete structure configuration
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To assess the performance of the algorithm, we let the masses
(numbered from (11− nu) to 10 in each case) be subjected to
uncertainties, where nu is the number of uncertainty parameters.
Then, ns sampled FRF results from nc observation locations are
used to generate the corresponding MRGP metamodel. The data-
sets involved are generated directly from the system equation
with nu uncertainty parameters sampled within the range [−0.05,
0.05]. The observation locations are specific masses whose FRFs
are observed for MRGP metamodel establishment. Without loss
of generality, the prior of the uncertainty parameter p(p) for
Bayesian inference in Eq. (29) is chosen to be the same uniform
distribution U[−0.05, 0.05]. Finally, for any new given FRF, the
algorithm is capable of quantifying the uncertainty parameters
that are most likely to generate this FRF based on Bayesian infer-
ence and the procedure of maximizing likelihood. Particle swarm
optimization is employed and, in this section for uncertainty
parameters normalized to range [0, 1], the maximum velocity in
one direction, the cognitive constant, and the social constant for
this algorithm are set to be 0.01, 0.1, and 0.1, respectively. A
number of scenarios are analyzed to assess different parametric
choices (ns, nc, and frequency sampling interval of FRF) and dif-
ferent locations of observation (i.e., different mass elements).
Table 2 lists the parameters of cases analyzed.
In case 1, the structure has two uncertain mass parameters, which

makes it possible to show the likelihood value in a 3-dimensional
contour. This case helps to illustrate localized maximum phenome-
non mentioned in Sec. 3.2. Figure 5 shows an example of the
adjusted equivalent likelihood value generated from Eq. (29)
versus two parameters. Several local maxima are found, indicating
that gradient-based methods could not yield a satisfying result. This
phenomenon is more critical if the number of uncertainty parame-
ters to be quantified is large. Therefore, self-adaptation optimiza-
tion, particle swarm optimization [38], is adopted hereafter.

In case 2 to case 7, the number of uncertainty parameters remains
to be 10, which means all masses are subjected to uncertainty. Dif-
ferent MRGP metamodels are built for each case according to the
parameters listed in Table 2, and they will be used for quantification
in the subsequent investigation. Without loss of generality, we
choose randomly the set of 10 uncertainty parameters [−3.102,
−3.820, 4.193, 3.879, −0.764, −2.246, 1.310, 3.093, −2.485,
3.429] × 10−2 to build a system with uncertainty and calculate its
corresponding FRFs at assigned output locations (different mass
locations). We then take these FRFs as input to quantify the uncer-
tainty parameters. These FRFs are parameterized by using the
vector fitting method, and the results are employed in uncertainty
quantification based on Bayesian inference and different MRGP
metamodel in each case. The results are listed in Table 3.
Obviously, case 2 fails to deliver a good result as it has a large

maximum error. This indicates that only one output location is
insufficient to conduct quantification for a large number of uncer-
tainty parameters. Case 3 and case 5 both successfully complete

Table 2 Case parameters for uncertainty parameter
quantification

Case nu ns nc Mass number
Frequency

sampling interval

1 2 40 1 10 0.001
2 10 100 1 5 0.001
3 10 100 2 3,7 0.001
4 10 50 2 3,7 0.001
5 10 100 3 3,5,7 0.001
6 10 100 2 5,7 0.001
7 10 100 2 3,7 0.01

Fig. 4 (a) Example of FRF amplitude, (b) relative error in amplitude, (c) example of FRF in phase,
and (d ) absolute error in phase
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the quantification with good accuracy based on FRFs at multiple
output locations. Figure 6(a) shows FRF amplitude results of case
3, in the FRF derived from the given original uncertainty parameters
(i.e., actual value) and that derived from the quantified uncertainty
parameters are compared. The two results match with each other
well, and the relative error shown in Fig. 6(b) is very small. The
number of observation output locations should be increased if the
number of uncertainty parameters to be quantified increases.
Cases 3 and 4 have a different number of samples ns, whereas

other parameters remain the same. Case 3 has a smaller error, indi-
cating that the increase of sample size used in MRGP metamodel
increases the accuracy of quantification. Cases 3 and 6 both have
two output locations but the actual output locations are different.
Apparently, case 6 has poor performance as it has a larger
maximum error. The reason is that the output locations in case 6
only focus on the right-hand side of the system. It indicates that
the choice of output location should be carefully considered, and
the desired output locations should have their FRFs more sensitiveFig. 5 Local maxima illustration

Table 3 Quantification results for different cases

Δmi/1E-2 1 2 3 4 5 6 7 8 9 10 Max error

Actual value −3.102 −3.820 4.193 3.879 −0.764 −2.246 1.310 3.093 −2.485 3.429 —
Case 2 −4.081 −3.277 4.201 3.317 0.120 −3.305 1.733 2.968 −2.953 4.598 1.169
Case 3 −3.159 −3.787 4.238 3.850 −0.740 −2.198 1.308 3.070 −2.475 3.463 0.057
Case 4 −3.201 −3.834 4.330 3.828 −0.952 −2.231 1.434 2.910 −2.562 3.651 0.222
Case 5 −3.015 −3.872 4.154 3.893 −0.796 −2.249 1.315 3.171 −2.457 3.382 0.087
Case 6 −2.521 −3.120 4.752 3.122 −2.032 −2.272 1.425 3.172 −2.382 3.406 1.268
Case 7 −3.215 −3.950 3.748 3.327 −0.845 −1.788 2.062 3.153 −2.498 3.368 0.752

Fig. 6 (a) FRF amplitude results of case 3 and (b) relative error in amplitude of case 3
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to the variation of uncertainty parameters. Consideration must be
given to the spatial distribution of uncertainty parameters. In our
system, case 3 gathers information from both the left-hand side
and the right-hand side, which indeed yields a better result. Case
3 and case 7 have different frequency sampling intervals for
FRFs, while other parameters remain the same. A larger frequency
sampling interval in case 7 deteriorates the fidelity of sampled
FRFs. As a result, case 7 has larger error than case 3.
The abovementioned cases demonstrate the effectiveness of com-

bining MEGP metamodel with Bayesian inference to quantify the
uncertainty parameters and illustrate the influences of various
parameters, e.g., the number of samples, the number and the loca-
tion of the FRF observation, as well as the frequency sampling
interval of FRFs.

4.2 MRGP Metamodel of Beam Structure Frequency
Response Function Employed for Damage Detection. In this

section, we present another illustration based on a cantilever
beam, which is essentially a continuous structure. Since damage
effect causes a change of structural properties, whereas uncertainties
are generally present, we further extend the analysis to demonstrate
the capability of the proposed method in structural damage detec-
tion through parametric identification.
The nominal beam is uniform, with length, width, and thickness

being 0.5 m, 0.04 m, and 0.004 m, respectively. The Young’s
modulus, mass density, and Poisson ratio are 2.1 × 1011 Pa,
7800 kg/m3, and 0.3. The beam is fixed at the left end, and discre-
tized with 40 × 4 2-dimensional shell elements, as shown in Fig. 7.
The finite element model is used for FRF calculation. The employ-
ment of shell element rather than one-dimensional beam element
can accommodate the more complicated model. It allows the detec-
tion and identification of damage along the width direction. The
detailed procedure of sampling, prediction, and identification are
given as follows.
Similar to the lumped mass-spring system analyzed in Sec. 4.1,

uncertainty, possibly due to damage, is introduced as the variation
of mass in the model. We assume, without loss of generality, that
the structural damage causes property change of the model which
is quantified as local mass change [41,42]. In order to yield a real-
istic and computationally tractable analysis, we divide the beam
finite element model into 10 segments numbered from 1 (left end)
to 10 (right end). We further let the change of mass be concentrated
at the center node of each segment (Fig. 7).
We start from developing the MRGP metamodel of the beam

structure, where five uncertainty parameters representing potential
mass losses due to damage are introduced to the center nodes of
segment 6 to segment 10. Each uncertainty parameter is subjected
to uniform distribution within the range [−0.001, 0], indicating
potential mass loss with the maximum being 0.001 kg (0.16% of
the total mass of the beam). An excitation is applied to the center
node of segment 1, perpendicular to the beam surface and with
constant magnitude 1 N. The FRFs are observed/measured from
center nodes of segment 7 and segment 10. The frequency range
of FRFs is from 50 to 350 Hz with a sampling interval of 0.1 Hz.
The damping coefficient for frequency response analysis in

Fig. 7 Beam structure. The finite element model is divided into 10 segments. For each segment, change of mass (due to either
uncertainty or damage occurrence) is concentrated at the center node.

Table 4 FRF parameters from direct calculation and MRGP
model prediction

Poles
FRF

parameters Direct calculation MRGP model prediction

1 μ1 −0.751± 1.264E2i −1.349± 1.337E2i
γ11 −1.971E-7∓ 1.916E-4i −3.904E-7∓ 1.793E-4i
γ12 −3.978E-7∓ 3.231E-4i −6.448E-7∓ 3.025E-4i

2 μ2 −3.320E-2± 6.636E2i −3.320E-2± 6.636E2i
γ21 −1.190E-10∓ 1.126E-4i −2.139E-10∓ 1.126E-4i
γ22 7.847E-11± 3.550E-4i 5.307E-10± 3.550E-4i

3 μ3 −9.280E-2± 1.856E3i −9.280E-2± 1.856E3i
γ31 1.860E-8± 2.034E-4i 1.347E-8± 2.034E-4i
γ32 −2.845E-8∓ 3.112E-4i −2.051E-8∓ 3.112E-4i

4 μ4 −2.732E2± 3.493E3i −1.914E2± 3.493E3i
γ41 1.440E-6∓ 9.750E-5i 1.948E-7∓ 9.666E-5i
γ42 −5.262E-6± 1.815E-4i −5.032E-6± 1.826E-4i

Fig. 8 (a) Identification results for nodes with damage in line 1 and (b) identification results for nodes with
damage in line 2
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Patran/Nastran is set to be 1 × 10−4 [43]. Within this range, two res-
onant frequencies exist, and therefore np = 2 × 2 + 4 = 8 poles are
chosen for vector fitting. Hundred samples of uncertainty parame-
ters are generated through Latin hypercube sampling. The corre-
sponding FRFs are then acquired by using the Patran/Nastran
solver and subsequently parameterized through the vector fitting
method. An MRGP metamodel is then established based on the
approach outlined in Sec. 3.1.
We first examine the validity of the MRGP metamodel. We

compare the vector-fitted FRF results from both direct calculations
using finite element analysis and from prediction using MRGP
metamodel. The uncertainty parameters as inputs are randomly
chosen as [−0.418, −0.459, −0.130, −0.735, −0.682] × 10−3 kg.
The results of parameterized FRFs from two approaches are listed
in Table 4. It can be observed that the MRGP metamodel can
predict these parameters with very good accuracy. With an Intel
i7-7820HQ CPU, the computational times for direct analysis
using finite element and using MRGP metamodel are, respectively,
11.21 s and 1.38 × 10−4 s. Apparently, the MRGP metamodel
would entertain significant advantage in computational efficiency
when dealing with large-scale problems. It is worth noting that
essentially the establishment of MRGP metamodel only requires
FRF information. Therefore, while simulation datasets are used in
this paper, the proposed framework can directly employ experimen-
tal data (without involving the numerical model) in practice.
We then utilize the MRGP metamodel obtained to perform

system identification and damage detection. We assume single
damage occurrence [41,42] quantified as mass loss at a single
node. In Fig. 7, line 1 and line 2 contain nodes 21–41 and nodes
62–82. The mass loss is applied to each individual node among
these nodes one by one, and altogether we then have 42 cases.
For each case, a 2.5 × 10−4 kg mass loss applied. The FRF of
each case is calculated by Nastran and then parameterized by the
vector fitting method for identification purpose. As the MRGP
metamodel is built based on mass variations in center nodes of spe-
cific segments, the identification results here are the mass losses at
the center nodes. As a segment is small, the mass loss at the center
node can also be regarded to represent the mass loss of this segment
during identification. Figures 8(a) and 8(b) show the results corre-
sponding to nodes with mass losses in line 1 and line 2. In each
identification case, the segment with maximal quantified uncer-
tainty parameter value is in accordance with the actual damage loca-
tion (i.e., the segment to which the damage node belongs). Also, the
quantified mass loss value in that segment is very close to the actual
mass loss value 2.5 × 10−4 kg. In some cases (e.g., node 25 and
node 66), both two neighboring segments show conspicuous
values identified, which is in accordance with the fact that
damage is located on the boundary of these two segments. These
two figures look similar, indicating that the system is not sensitive
to mass loss shifted in the width direction. This is because the width
of beam is small. Nevertheless, the identified parameters success-
fully mark the damage segment location. MRGP can identify the
damage segment even if the mass loss is not located at the center
of the segment or along the center line of the beam width, revealing
the good robustness of MRGP.

5 Concluding Remarks
In this research, the uncertainty analysis and quantification of

vibration systems utilizing their FRFs through statistical metamo-
deling are presented. The metamodel development is built upon
the MRGP approach which takes advantage of the inherent correla-
tion of FRF values at different frequency points. To facilitate the
implementation, a rational approximation of FRF by means of
vector fitting is incorporated. Based on sampling data, a well-built
MRGP model is capable of predicting FRF values when new uncer-
tainty parameters are given. Meanwhile, to fully utilize the MRGP
metamodeling, we further integrate Bayesian inference to realize
model updating and uncertainty quantification as new FRFs are

acquired. Two case studies, a lumped parameter mass-spring struc-
ture and a beam structure discretized by finite element modeling, are
analyzed to verify the proposed framework. The results indicate that
the MRGP metamodel can predict and quantify uncertainty effects
to FRF efficiently and accurately. The MRGP metamodel with the
assistance of Bayesian inference can effectively identify parametric
variation in the underlying structure, which can be used to realize
damage detection and identification.
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