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ABSTRACT

Stress is a common problem in modern life that can bring both
psychological and physical disorder. Wearable sensors are com-
monly used to study the relationship between physical records
and mental status. Although sensor data generated by wearable
devices provides an opportunity to identify stress in people for pre-
dictive medicine, in practice, the data are typically complicated and
vague and also often fragmented. In this paper, we propose Data
Completion with Diurnal Regularizers (DCDR) and Temporally
Hierarchical Attention Network (THAN) to address the fragmented
data issue and predict human stress level with recovered sensor
data. We model fragmentation as a sparsity issue. The nuclear norm
minimization method based on the low-rank assumption is first
applied to derive unobserved sensor data with diurnal patterns of
human behaviors. A hierarchical recurrent neural network with
the attention mechanism then models temporally structural in-
formation in the reconstructed sensor data, thereby inferring the
predicted stress level. Data for this study were from 75 undergrad-
uate students (taken from a sample of a larger study) who provided
sensor data from smart wristbands. They also completed weekly
stress surveys as ground-truth labels about their stress levels. This
survey lasted 12 weeks and the sensor records are also in this period.
The experimental results demonstrate that our approach signifi-
cantly outperforms conventional methods in both data completion
and stress level prediction. Moreover, an in-depth analysis further
shows the effectiveness and robustness of our approach.
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1 INTRODUCTION

Psychological stress is a human reaction to perceived pressure; it
can be a serious issue for modern people in their daily life.[37]
In the United States, more than half of the population has stress
problems [4] while 75% of college students are experiencing at least
moderate stress [43]. Moreover, stress usually leads to a myriad
of diseases and mental illness, such as heart attacks and depres-
sion [19]. For example, more than 25 and 17 million Americans
suffer from stress ulceration and major depression [1, 45]. There-
fore, understanding human stress is an essential task for healthcare
and clinical research. In addition, it is also beneficial for predictive
medicine to identify stressed patients earlier and prevent potential
harmful effects.

To quantify human stress level, one possible solution is to exploit
sensor data collected by wearable devices, such as smartwatches
and smart-wristbands. More specifically, the sensors in wearable
devices can obtain physiological signals from the users, thereby
tracking user activities and health situations. For instance, electro-
cardiogram circuits and accelerometers monitor heart rates and
user motions [14]. However, high-quality and fine-grained signal
data are not always available for users and developers to predict
human stress level. Precisely, the response speed of sensors can
be extremely inefficient while some wearable devices only provide
aggregate information [29]. Moreover, the average daily wear times
are typically 10.9 and 8.4 hours on weekdays and weekends for
smartwatch users while users typically take off their wearable de-
vices more than three times every day [28]. Furthermore, many
wearable devices only report the distribution of physical activi-
ties in a short period without detailed sensor data for high-level
applications [3]. Hence, the missing or sparse data issues are a dif-
ficult hurdle in the prediction of human stress level with wearable
devices.

Although missing sensor data can lead to extremely low per-
formance of downstream applications, the redundancy between
missing and existing data can be leveraged to recover unavailable
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data and boost the model performance. Matrix factorization and col-
laborative filtering are popular approaches to recover missing data
and have been applied to various domains, such as recommender
systems [35] and sensor networks [10]. Particularly, sensor data can
be represented by a low-rank matrix so that the missing entries can
be recovered by decomposing the matrix into a product of several
smaller latent matrices. For instance, Zhang et al. [55] and Wang
et al. [51] apply matrix factorization to ambulatory fall detection
with wearable sensor data while the latent matrices can be treated
as features for human activity recognition [54]. Although matrix
factorization and collaborative filtering are robust to capture short-
term and universal patterns, complicated long-term and individual
behaviors in sensor data can still be difficult to be considered by
latent matrices [36].

The recent success of deep learning, especially recurrent neural
networks (RNNs) on sequences, provides an opportunity to model
user behaviors and predict human stress level with temporal sensor
data. For example, RNNs have been applied to model latent transi-
tions of words and queries for natural language processing [5, 31]
and information retrieval [18, 30]. Several previous studies also
exploit deep learning to model sensor data of wearable devices for
downstream applications, such as human activity recognition [23]
and sleeping quality analysis [46]. However, there are some draw-
backs of existing deep learning based approaches for predicting
human stress level. First, although RNNs can effectively model
short-term sensor data, human stress is both complex and also re-
lated to long-term behavior, while only a small portion of the data is
crucial for human stress level prediction. Second, human behaviors
are sophisticated and sometimes have non-sequential patterns. For
instance, RNNs can suffer from modeling separated but periodic
patterns like diurnal behaviors without enough training data [36].
Last but not least, most of the existing studies using sensor data
rely on dense raw sensor values so that the data sparsity problem
can be more significant if wearable devices only provide aggregated
information instead of original sensor data.

In this paper, Data Completionwith Diurnal Regularizers (DCDR)
and Temporally Hierarchical Attention Network (THAN) are pro-
posed to address the limitations of using incomplete and aggregated
wearable device sensor data for predicting human stress level, in the
context of deep learning techniques. More precisely, we focus on
addressing the data sparsity issue and modeling structural human
behaviors. Based on the low-rank assumption and observations of
diurnal patterns as regularization, DCDR partially recovers sensor
data. THAN then follows a temporally hierarchical structure to
encode daily and weekly behaviors with a hierarchical recurrent
neural network and the attention mechanism for predicting human
stress level with recovered sensor data. In addition, several supple-
mentary statistical user features are also considered to personalize
predictions according to different users. Here we summarize our
contributions in the following.

• To the best of our knowledge, this paper is the first work to
apply deep learning techniques to predict human stress level with
long-term wearable device sensor data. Although longstanding
sensor data are usually sparse and noisy, they are still capable of
providing thorough understandings about human stress.

• We propose DCDR and THAN to deal with the data sparsity and
precisely predict human stress level. More specifically, diurnal
behavioral patterns can significantly benefit missing data recov-
ery while user behaviors can be more effectively captured by
exploiting temporally hierarchical structures of sensor data.
• Experiments conducted on 75 college students for 12 weeks
demonstrate that our approach significantly outperforms exist-
ing methods in both data completion and human stress level
prediction. The analysis of parameter sensitivity and ablation
studies then indicates the robustness and effectiveness of the
proposed framework. In addition, we will release our code to
facilitate future research.

2 RELATEDWORK

2.1 Stress Level Prediction

Traditional methods for monitoring stress level are mainly from
physiological signals such as heart rate, blood pressure, and body
temperature [6]. By applying machine learning techniques, re-
searchers can predict human stress and emotion by measuring their
physiological signals. A study has shown that, with the specially
designed sensor recording body movement, speech volume, and
pitch, a person-specific model gives 93% accuracy on binary stress
prediction [41]. Personal-specific models significantly outperform
general models [7, 12, 27] regardless of the machine learning model.
Alternatively, the lack of personal history information motivates
us to develop general models that treat all input instances in the
same way.

Physiological signals also have limitations: the necessity of con-
tinuous signal measurement and the data noise restricts its broad
application. Meanwhile, researchers have analyzed stress and mood
predictors from broadly accessible data such as smartphone usage
[38] or general wearable device data such as geographic location
[12] and activities. There are many studies about predicting health-
related index with large-scale accessible datasets, integrating both
public health information and data science. For example, an existing
study shows a significant association between negative sentiment
tweet and stress level[20], inferring the possibility to monitor peo-
ple’s mood and stress using social media data. Several studies [7, 27]
showed the potential to use wearable sensor and other integrated
data sources to monitor people’s stress level through a machine
learning model.

In recent years, different machine learning models have been ap-
plied to predict stress and other similar health indexes. Multi-Linear
Regression (MLR) and Support Vector Machine (SVM) perform well
when the data appears to be linearly separable; these methods have
been applied to phone call/email usage and mobility metrics to
predict mood and depression [12, 38]. Random Forest (RF) and Ad-
aBoost (AB)[15, 22], classifiers with a decision tree structure, are
good at detecting impactful signals and have outperforming several
other baselines when predicting binary stress labels from mobile
phone usage andweather[7]. The k-Nearest Neighbors (KNN) graph
serves as another non-neural network classifier, used in several
diagnostic applications [16, 41, 48]. In the case of Artificial Neural
Network (ANN), adding a task-specific layer for each person could
significantly improve the prediction performance [27].
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2.2 Data Completion

For many regression and classification tasks, when data appears as
a matrix with missing values, researchers would require the com-
pleted matrix instead of dropping all rows with missing data [47].
Besides the most basic strategy, data padding and data interpola-
tion, recent studies proposed various matrix completion method for
different objectives. For example, Maximum Likelihood Estimation
(MLE) is a useful tool to recover the matrix with sparse missing
values or errors [13]. Matrix Factorization (MF), along with its non-
negative version, NMF, is another popular method which generates
a low-rank matrix from sparse observations. The drawback of MF
and NMF is that the algorithm will not fix the original data but only
minimize the difference between the original matrix and the com-
pleted matrix. Alternatively, Nuclear Norm Minimization (NNM),
inspired by the same assumption that the matrix has a low-rank
structure, will keep the existing data unchanged. Instead of forcing
the rank of the completed matrix to be r , NNM minimizes a convex
relaxation of matrix rank. In [44], researchers proved that given
the underlying matrix is low-rank and the observed entries are
sampled uniformly at random, one can achieve exact recovery with
high probability under mild additional assumptions by using NNM.

Based on NNM, the performance of matrix completion could be
further improved by adding a specific regularizer. This regularizer
is usually from the knowledge of some known pattern of the given
matrix. For example, if we are recovering an image with a piece-
wise smooth pattern, adding the total variation regularizer could
improve the performance of the task [24]. If one assumes entries
with smaller absolute value are more likely to be missing, one can
then add a regularization term for unobserved entries that penalize
the size of the missing values [40].

3 PROBLEM STATEMENT

We first formally define the objectives of predicting human stress
level with sparse and incomplete sensor data. LetU and S be the set
ofm users and the set of activities that can be recorded by wearable
devices. For each activity s ∈ S , Ms ∈ Rm×n denotes the sensor
data that should be collected by wearable devices for n hours. Each
entryMs

i j ∈ M
s denotes the percentage of time doing the activity s

in the j-th hour for the i-th user ui ∈ U . Note that entries in Ms

can be missing and unavailable because users may not always wear
the devices. Here the set of recorded hours Ω for all users can be
defined as:

Ω =

{

(i, j) | Ms
i j exists

}

. (1)

The recorded data can then be described as a linearmapping PΩ(M
s ) :

R
m×n → Rm×n , where

[PΩ(M
s )]i j =

{

Ms
i j , (i, j) ∈ Ω

0, (i, j) < Ω.
(2)

Each user ui ∈ U also has a set of features rui to indicate personal
characteristics. The two goals of this paper are listed as follows:

(1) Sensor Data Completion: Given the recorded data PΩ(M
s ),

the first goal is to recover the accurate sensor data Ms . More
precisely, for each activity s , we aim to infer a matrix X s so that
X s can be as similar toMs as possible.

(2) Stress Level Prediction: For each userui ∈ U , the next goal is
to predict the stress level cui ∈ C of the user with the recovered
sensor data X s , where C is a predefined sets of stress levels.
Specifically, a predicted level ĉui ∈ C is inferred for the user
ui so that ĉui can be likely to be cui . In this paper, we consider
both binary-class and 5-class stress level prediction.

4 PROPOSED APPROACH

In this section, we present the proposed framework with two stages,
including Data Completion with Diurnal Regularizers (DCDR) and
Temporally Hierarchical Attention Network (THAN), for two goals
in this paper.

4.1 Data Completion with Diurnal Regularizers

To recover the sensor data, we follow the low-rank assumption [35]
to define a minimization problem that can be approximately solved
by the alternating direction method of multipliers (ADMM) [24, 52].
NuclearNormMinimization. Based on the low-rank assumption,
the task of recovering Ms with a low rank can be formally defined
as the following optimization problem:

X s
= argmin

X
rank(X )

s.t. PΩ(X ) = PΩ(M
s ).

(3)

Unfortunately, the problem has been proven to be NP-hard [50].
Therefore, we follow Candès and Tao [11] to apply the nuclear
norm ∥X ∥∗ as a substitution and convert the original problem into a
convex optimization problem of nuclear normminimization (NNM):

X s
= argmin

X
| |X | |∗

s.t. PΩ(X ) = PΩ(M
s ).

(4)

Herewe denote ∥X ∥∗ =
∑n
k=1 σk (X ) as the nuclear norm of amatrix

X , where σk (X ) is the k-th singular value of X . The nuclear norm
is connected with matrix rank since matrix rank can be interpreted
as the number of non-zero singular values.
Daily and Weekly Regularizers. In addition to solving NNM,
previous studies [24, 40] have demonstrated that the performance
of matrix completion can be improved by specific regularizations
according to the data structure. Since the sensor data are generated
as a temporal sequence, we regularize the differences across differ-
ent days and different weeks. Note that the regularizers should be
convex so that the optimization problem can have a proper unique
solution for further NNM optimization.

We first assume that people should have relatively regular di-
urnal activity patterns. Hence, a diurnal penalizer can regularize
diurnal patterns as:

Dd
i, j (X ) =

{

Xi, j+24 − Xi, j , 1 ≤ j ≤ n − 24,

0, j > n − 24.
(5)

Similar, weekly patterns can also imply a weekly penalizer as:

Dw
i, j (X ) =

{

Xi, j+168 − Xi, j , 1 ≤ j ≤ n − 168,

0, j > n − 168.
(6)

The regularizer based on two patterns can then be computed as:

| |X | |Reд = γ1

∑

i, j

(Dd
i, j (X ))

2. + γ2

∑

i, j

(Dw
i, j (X ))

2, (7)
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where γ1 and γ2 control the importance of two penalizers. Finally,
the minimization problem becomes

X s
= argmin

X
(| |X | |∗ + | |X | |Reд)

s.t. PΩ(X ) = PΩ(M
s ).

(8)

Optimization with ADMM. ADMM [24, 52] is a general algo-
rithm to solve convex optimization problems with the following
form:

argmin
x1,x2

f1(x1) + f2(x2)

s.t. A1x1 +A2x2 = b,
(9)

where f1 and f2 are convex functions of x1 and x2, respectively;
A1 and A2 are linear constraints. The idea is to breakdown the
expression into smaller convex pieces and update x1, x2 separately
so that each step become easier to solve. To solve Eq. (8) through
ADMM, we first follow Han et al. [24] to convert the regularizer
shown in Eq. (7) into the following form:

| |X | |Reд = γ1 | |X − Xϕ1 | |
2
F + γ2 | |X − Xϕ2 | |

2
F , (10)

where ϕ1 and ϕ2 are two auxiliary matrices defined as.

ϕ1 =

[

O24,(n−24) On−24,24

In−24 I24

]

, ϕ2 =

[

O168,(n−168) On−168,168

In−168 I168

]

,

whereOi, j is an i× j zero sub-matrix; Ik is an identity sub-matrix of
size k . Therefore, our minimization problem (8) can be reformulated
as:

X s
= argmin

X
(| |X | |∗ + γ1 | |X − Xϕ1 | |

2
F + γ2 | |X − Xϕ2 | |

2
F )

s.t. PΩ(X ) = PΩ(M
s ).

To fit our optimization problem into ADMM, we introduce an
auxiliary variable Y such that PΩC (Y ) = PΩC (X ), where Ω

C is the
complement set of the observation set Ω. To optimize Eq. (4.1), two
auxiliary matrices can then be computed as:

X s
D = argmin

X ,Y
| |X | |∗ + γ1 | |Y − Yϕ1 | |

2
F

s.t. PΩ(X ) = PΩ(M) and PΩC (X ) = PΩC (Y ).
(11)

X s
W = argmin

X ,Y
| |X | |∗ + γ2 | |Y − Yϕ2 | |

2
F

s.t. PΩ(X ) = PΩ(M) and PΩC (X ) = PΩC (Y ).
(12)

Therefore, the optimization problem now has the general form
of ADMM as shown in Eq (9). More precisely, f1(X ) = | |X | |∗ is a
convex functions on X ; f2(Y ) = | |Y − Yϕ1 | |2F is a convex functions
on Y; PΩ(X ) = PΩ(M) and PΩC (X ) = PΩC (Y ) are the two linear
constraints. Based on ADMM, the augmented Lagrangian of Eq. (11)
can be derived as:

Lt (XD ,YD ,ZD ) =| |XD | |∗ + γ1 | |YD − YDϕ1 | |
2
F

+ ZTD (XD − YD ) +
t

2
| |XD − YD | |

2
F .

whereZ is the dual variable and t > 0 is the parameter for quadratic
penalty . At iteration k , ADMM first minimizes Lt over x1 while

fixing x2 and z:X
s,k+1
D

,Y s,k+1
D

, and Z s,k+1
D

can then be respectively

· · · · · ·

· · ·· · ·

· · ·· · ·

· · ·

i

j

Daily-level

Attention

Hourly-level

Attention

Hourly-level

GRUs

Daily-level

GRUs

Fully-connected

Layer

Predicted

Stress-level

Behavior distribution

of the i-th hour

in the j-th day

Aggregated

Behavior Embedding

User Features ru

Figure 1: The overall schema of THAN.

updated with three sub-problems as follows::

X
s,k+1
D

= argmin
X

Lt (X ,Y
s,k
D
,Z

s,k
D
), (13)

Y
s,k+1
D

= argmin
Y

Lt (X
s,k+1
D

,Y ,Z
s,k
D
), (14)

Z
s,k+1
D

= Z
s,k
D
+ t(Y

s,k+1
D

− X
s,k+1
D

). (15)

The sub-problem (4.1) can be solved by singular value shrinkage [9]
as:

X
s,k+1
D

= D(1−γ1)/t (Y
k
D +

1

t
Zk
D ), (16)

where the soft-thresholding operator D is defined as:

Dτ (X ) = UDτ (Σ)V
∗, Dτ (Σ) = diag({σi − τ }+). (17)

The sub-problem (4.1) can be solved by computing ∂Lt /∂Y and
setting it to be zero:

Yk+1D = (λX
s,k+1
D

− Z
s,k
D
)[2γ1(I − ϕ1 − ϕ

T
1 + ϕ

T
1 ϕ1) + tI ]

−1. (18)

The sub-problem can directly be updated with the solutions of
Eq. and . The optimization process iteratively solves sub-problems

and stops when X
s,k
D

converges to X s
D
. Similarly, Eq. (12) for ob-

taining X s
W

can be also optimized with the same approach. Finally,
we complete the sensor data matrix by X s

= (X s
D
+ X s

W
)/2.

4.2 THAN for Stress Level Prediction

To predict human stress level, we propose Temporally Hierarchi-
cal Attention Network (THAN) to exploit temporally hierarchical
structures to model behaviors. To ease the discussion, we focus on
the two-level temporal structure, including daily- and hourly-level,
while the depth of the hierarchical structure can be simply expanded
to monthly-level or replaced with other temporally hierarchical
structures. Note that although the hierarchical structures have been
applied in natural language processing [31, 53], this paper is the
first work to apply the idea in stress level prediction.

Session: Applied - Novel Applications CIKM ’19, November 3–7, 2019, Beijing, China

2776



Figure 1 shows the overall schema of the proposed THAN for
stress level prediction. Each activity s has a trainable embedding
vector so that user behaviors in each hour can be represented by an
aggregated behavior embedding vector with the recovered sensor
dataMs . The hourly-level RNN models user behaviors in each day
with hourly-level attention while the daily-level RNN derives an
overall sensor representation with daily-level attention. Finally, the
sensor representation and user features can be applied to predict
the stress level with a fully-connected hidden layer. More details
are explained as follows.
Aggregated Behavior Embedding. Suppose we are predicting
the stress level of the user u ∈ U . Since the wearable devices
can only provide aggregated activity information for sensor data,
we propose aggregated behavior embedding to represent user be-
haviors in a latent space. For each activity s ∈ S , we learn a ds -
dimensional behavior embedding es . For the j-th hour of the i-th
day, the aggregated behavior embedding ai, j is defined as:

ai, j =

∑

s ∈S

X s
u,i, j · es , (19)

where X s
u,i, j is the recovered sensor data about the activity s in the

j-th hour of the i-th day for the user u.
Hourly-level RNN. THAN follows a bottom-up approach for com-
putations with bidirectional recurrent neural networks (Bi-RNNs)
with attention [39]. To encode the behaviors in the i-th day, a
Bi-RNN scans the sequences of corresponding aggregated behav-
ior embeddings during both forward and backward passes. In the
forward pass, the Bi-RNN generates a sequence of hidden states
[−−→
hi,1,
−−→
hi,2, · · · ,

−−−→
hi,24

]

, where
−−→
hi,j = RNN

(−−−−→
hi,j−1,ai, j

)

is a dд-

dimensional hidden states generated by a dynamic function such as
LSTM [26] or GRU [17]. Here we use GRU instead of LSTM because
it requires fewer parameters [32]. The backward pass then processes
the sequence reversely and derives the backward hidden states
[←−−
hi,1,
←−−
hi,2, · · · ,

←−−−
hi,24

]

, where
←−−
hi,j = RNN

(←−−−−
hi,j+1,ai, j

)

. The for-

ward and backward hidden states are then concatenated as hidden
representations for hours in the day as follows:

[

hi,1,hi,2, · · · ,hi,24
]

,

where hi,j =
[−−→
hi,j ;
←−−
hi,j

]

.

To estimate the importance of each hour in the day, the atten-
tion mechanism [39] is applied to extract and aggregate important
hidden representations. More precisely, the importance αi, j of hi,j
can be estimated as:

αi, j =
exp

(

zi,j · z
H
)

∑

j′ exp
(

zi,j′ · z
H
) , (20)

where zi,j = tanh
(

FH (hi,j)
)

; FH (·) is a fully-connected layer;

tanh is the activation for computing similarity; zH is the context
vector to measure the importance of each hour. Finally, the repre-
sentation of the i-th day can be represented as the weighted sum
of the hidden representations as follows:

ai =

∑

j

αi, j · hi,j . (21)

Daily-level RNN.With the daily representations, the Bi-RNN is
applied again to derive the overall representation for stress level

prediction. The sequences of forward and backward hidden states

can be generated as
[−→
h1,
−→
h2, · · · ,

−→
hL

]

and
[←−
h1,
←−
h2, · · · ,

←−
hL

]

, where

L is the number of days for sensor data;
−→
hi = RNN

(−−−→
hi−1,ai

)

;
←−
hi = RNN

(←−−−
hi+1,ai

)

. The hidden representations for all days can

then be represented as [h1,h2, · · · ,hL], where hi =
[−→
hi ;
←−
hi

]

.

The importance of each day αi in sensor day can also be esti-
mated by the attention mechanism as follows:

αi =
exp

(

zi · z
D
)

∑

i′ exp
(

zi ′ · z
D
) , (22)

where zi,j = tanh
(

F (hi,j)
)

; F (·) is a fully-connected later
To estimate the importance of each hour in the day, the atten-

tion mechanism [39] is applied to extract and aggregate important
hidden representations. More precisely, the importance αi, j of hi,j
can be estimated as:

αi, j =
exp

(

zi,j · z
H
)

∑

j′ exp
(

zi,j′ · z
H
) , (23)

where zi,j = tanh
(

F D (hi,j)
)

; F D (·) is a fully-connected layer;

z
D is the context vector to measure the importance of each day.
Finally, the overall representation of sensor data can be derived as:

a =

∑

i

αi · hi . (24)

Stress Level Prediction.The representation of sensor dataa presents
the user behaviors while the user features ru provides the aspects of
user characteristics. To precisely predict the stress level of the user,
we apply a fully-connected hidden layer to combine the knowledge
of two resources as:

ĉu = argmax
c
F c

(

F P ([a;ru ])
)

, (25)

where F P (·) is a fully-connected layer with dp hidden neurons;
F c (·) computes the logit of the stress level c ∈ C for classification.
Learning and Optimization. The task of stress level prediction
can be modeled as a classification problem. Here we adopt the
categorical cross-entropy [21] as the loss function for optimization.
More precisely, the loss function for each training example can be
written as

−
∑

c

1(c = cu ) log
(

F c
(

F P ([a;ru ])
))

, (26)

where 1(·) is an indicator function; cu is the ground truth of the
stress level.
User Features. Any user-related information can be represented
in the user feature vectors to potentially boost the prediction per-
formance. In this paper, we adopt historical stress levels in the
previous 11 weeks as user features. The mean and variance val-
ues of historical stress levels are also considered. Finally, there are
13 user features in the experiments. Note that we also evaluate
the performance without using user features to demonstrate the
effectiveness of both of the proposed model and user features.
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Table 1: The sensor data completion performance of fivemethods for the activities Sleep andWalk. All improvements of DCDR

against baseline methods are significant at 99% level in a paired t-test.

Sleep Walk

Method RMSE MAE Accuracy Precision Recall F1 RMSE MAE Accuracy Precision Recall F1
ITP [34] 0.2957 0.1975 0.8488 0.7249 0.7481 0.7363 0.1027 0.0613 0.6544 0.7395 0.4072 0.5252
MF [8] 0.3011 0.2010 0.8568 0.6964 0.7873 0.7390 0.1111 0.0504 0.7439 0.0191 0.6618 0.0371

NMF [42] 0.3053 0.2055 0.8514 0.6796 0.7815 0.7270 0.1113 0.0504 0.7996 0.7432 0.0127 0.0250
ADMM [52] 0.3096 0.2089 0.8433 0.5880 0.8472 0.6942 0.1025 0.0552 0.7202 0.5841 0.4301 0.4954

DCDR 0.2861 0.1754 0.8671 0.7464 0.7864 0.7659 0.1039 0.0573 0.7200 0.5999 0.4676 0.5256

5 EXPERIMENTS

In this section, we conduct extensive experiments and in-depth
analysis to evaluate the proposed DCDR and THAN.

5.1 Experimental Settings

Data Collection. To obtain the datasets, we filtered data from a
longitudinal study among college students, designed to collect twit-
ter, survey, and wearable device data for 12 weeks from September
28, 2015, to December 20, 2015.

The students were asked to fill in an online survey and report
their stress levels. There are five options: 1 (Not at all), 2 (Low),
3 (Average), 4 (High), and 5 (Extremely high). For the purpose of
this paper, we view the survey data as "ground truth". Each of the
students was invited/requested to wear a smart-wristband to record
hourly aggregated information of activities, including sleep, walk,
run, bike, and moderate activities, as the collected sensor data.

Incomplete data should at least have basic structural information,
so we filtered out students with ≤ 2 survey taken and ≤ 2 hours
sleeping record. This leaves 75 students and only 52% entries of
the sensor data observed. Finally, we have 855 records of weekly
reported stress levels with incomplete sensor data. Note that the
number is not 75 ∗ 12 because some students did not turn in the
survey every week, so that some ground truth data is missing.
Training Data for Algorithms. For the task of sensor data com-
pletion, we randomly sample 90% of observed entries for training
and evaluate DCDR with the remaining observed entries. For the
task of stress level prediction, we treat each week for each student
as an instance with the corresponding sensor data and the stress
level indicated in the survey. We then randomly sample 80% of
instances as training data and evaluate THAN with the remaining
instances. Finally, we have 7,0786 and 7,865 training and testing
entries for sensor data completion while 684 and 171 records are
applied for training and testing in stress level prediction. For the
set of stress levelsC , we attempt two different partitions, including
binary-class and 5-class stress levels. In the binary-class setting, we
consider the students who reported stress levels greater than 3 as
stressed students.
Implementation Details. We implement DCDR in Matlab while
THAN is implemented in Tensorflow [2]. The Adam optimizer [33]
is applied to optimize THAN with a 10−4 initial learning rate. After
parameter tuning, γ1 and γ2 in DCDR are set as 0.2154 and 0.0774.
The number of dimensions for behavior embeddings ds in THAN
is 4 while the numbers of dimensions for GRU hidden states and
context vectors of attention mechanism are 64. The number of
hidden neurons in the fully-connected layer is 128.

Evaluation Metrics. For sensor data completion, we treat the
problem as a regression task and consider Root Mean Squared
Error (RMSE) and Mean Average Error (MAE) as the evaluation
metrics. In addition, we also use a threshold 0.5 to convert the task
into a classification problem while accuracy, precision, recall, and
F1 score can be applied for evaluation. Stress level prediction is a
classification task, so accuracy, precision, recall, and F1 score are
considered as the evaluation metrics.

5.2 Sensor Data Completion

To evaluate the performance of DCDR, we compare with four
conventional approaches for data completion, including interpo-
lation (ITP) [34], matrix factorization (MF) [8], non-negative ma-
trix (NMF) [42], and NNM [24, 52]. Note that NNM is a special case
of DCDR at γ1 = γ2 = 0. Table 1 shows the performance of five
methods in the task of sensor data completion for two activities.
For the Sleep activity, baseline methods have similar and good per-
formance in both regression and classification tasks because the
low-rank assumption and data redundancy are leveraged. Our pro-
posed DCDR significantly outperforms all of the baseline methods.
This is because the regularizers capture the patterns of user be-
haviors instead of only modeling sensor data as a low-rank matrix.
For theWalk activity, it is interesting that all of the methods per-
form worse because people usually have diurnal sleeping patterns
while the walking behaviors are more random and irregular. This
is also the reason that THAN does not improve ADMM by adding
regularizers.

5.3 Stress Level Prediction

To evaluate the performance of THAN, we compare with seven
baseline methods introduced in Section 2.1, including decision
tree (DT) [49], random forest (RF) [7], AdaBoost (AB) [15, 22],k near-
est neighbor (KNN) [16], support vector machine (SVM) [7], multi-
linear regression (MLR) [38], and artificial neural network (ANN) [25].
Table 2 and 3 indicate the performance of eight methods in stress
level prediction with binary-class and 5-class stress levels. For the
baseline methods, RF performs the best because of its robustness
with limited training data. The complicated methods, such as SVM
and ANN, perform worse because more training data are needed
without considering temporally structural information. Our pro-
posed THAN significantly outperforms all of the baseline methods
in both binary-class and 5-class stress level prediction. This is be-
cause the temporally hierarchical structures can precisely capture
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Table 2: The stress level prediction performance of eight

methods with binary-class stress levels. All improvements

of THAN against baseline methods are significant at 99%

level in a paired t-test.

Method Accuracy Precision Recall F1
DT [49] 0.6433 0.6111 0.5714 0.5906
RF [7] 0.7076 0.7288 0.5584 0.6324

AB [15, 22] 0.6784 0.6774 0.5455 0.6043
KNN [16] 0.5789 0.5352 0.4935 0.5135
SVM [7] 0.6491 0.6735 0.4286 0.5238
MLR [38] 0.5965 0.5541 0.5325 0.5430
ANN [25] 0.6608 0.6727 0.4805 0.5606
THAN 0.7661 0.6796 0.9091 0.7778

Table 3: The stress level prediction performance of eight

methods with 5-class stress levels. All improvements of

THAN against baseline methods are significant at 99% level

in a paired t-test.

Method Accuracy Micro-F1 Macro-F1
DT [49] 0.2982 0.2982 0.2747
RF [7] 0.4561 0.4561 0.4631

AB [15, 22] 0.4737 0.4737 0.4389
KNN [16] 0.2982 0.2982 0.2568
SVM [7] 0.3216 0.3216 0.1861
MLR [38] 0.4737 0.4737 0.4389
ANN [25] 0.3509 0.3509 0.3013
THAN 0.4757 0.4757 0.4706

the structural patterns of user behaviors while the attention mech-
anism is capable of effectively seizing essential information for
predicting human stress level.

5.4 Analysis and Discussions

In this section, we conduct ablation studies and parameter sensitiv-
ity analysis to demonstrate the robustness and effectiveness of our
proposed approach.
Effectiveness of Sensor Data Completion. We first verify the
effectiveness of recovered sensor data for predicting the stress level.
Figure 2 illustrates the F1 scores of eight methods in stress level
prediction with and without sensor data completion. Almost all of
themethods can be improved by sensor data completion. The results
show that although about 50% of sensor data are unobserved, DCDR
can still appropriately recover missing data, thereby benefiting the
downstream applications.
Depth of Temporally Hierarchical Structures. One of the con-
tributions in THAN is to consider temporally hierarchical struc-
tures, so here we verify the effectiveness of this idea. Table 4 shows
the performance of THAN in stress level prediction with differ-
ent depths of temporally hierarchical structures. Note that depth-1
THAN degenerates to a sequential RNN with attention without
considering any hierarchical structure. More specifically, depth-1
THAN only utilizes hourly RNNswhen depth-2 THAN exploits both
hourly and daily RNNs based on hierarchical structures. The results

DT RF AB KNN SVM MLR ANN THAN

F
1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Without Sensor Data Completion
With Sensor Data Completion

Figure 2: The F1 scores of eight methods in stress level pre-

diction with and without sensor data completion.

Table 4: The stress level prediction performance of THAN

with different depths of temporally hierarchical structures.

Depth Acc Prec Rec F1
1 (Hourly RNNs) 0.7485 0.6771 0.8442 0.7514

2 (Hourly&Daily RNNs) 0.7661 0.6796 0.9091 0.7778

Table 5: The stress level prediction performance of THAN

with different features. S denotes the sensor data while U

represents the user features.

Features Accuracy Precision Recall F1
S Only 0.6140 0.5902 0.4675 0.5217
U Only 0.7485 0.7361 0.6883 0.7114
S+U 0.7661 0.6796 0.9091 0.7778

show that the stress level prediction performance can be signifi-
cantly boosted after considering temporally hierarchical structures.
It further demonstrates that the temporally structural information
in sensor data is much beneficial for understanding human stress.
Effectiveness of User Features. We propose a set of personal
user features for THAN to capture individual characteristics for
predicting stress level more precisely. Here we conduct an ablation
study to validate the effectiveness of our proposed user features.
Table 5 shows the performance of THAN in stress level prediction
with different features. Note that S and U in Table 5 represent the
usage of sensor data and user features. The results demonstrate that
the proposed user features are effective because the historical and
statistical features can directly reflect the stress level distribution
for a specific user. Without personalized information, THAN with
only sensor data can still achieve good performance. It indicates
that sensor data and user features all are valuable for stress level pre-
diction so that THAN can achieve the best prediction performance
by simultaneously considering both of features.
Regularizers in DCDR.As shown in Section 5.2, regularizers play
an important role in sensor data completion, so we conduct a pa-
rameter sensitivity analysis for the regularization weights of two
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Figure 3: The RMSE scores of DCDR in sensor data comple-

tion with different weights of the parameters γ1 and γ2.

regularziers. Figure 3 illustrates the RMSE scores of DCDR in sen-
sor data completion with different weights of γ1 and γ2 for diurnal
and weekly regularizers. The results show that the regularization
weights cannot be too small or too large for satisfactory data com-
pletion, so the parameter tuning is essential. Moreover, the best
parameters of γ1 and γ2 are 0.2154 and 0.0774. It indicates that the
diurnal patterns are more effective than the weekly patterns for
stress level prediction.
Parameter Sensitivity of THAN.We also conduct the parameter
sensitivity analysis for three parameters of THAN, including the
numbers of dimensions for behavior embeddings ds , dimensions
for GRU hidden states dд , and hidden neurons in the last fully-
connected layer dp . Figure 4 shows the F1 scores of THAN in stress
level prediction across different parameters. For behavior embed-
dings, it is interesting that THAN does not favor a large dimension
number ds . This can be because the number of available activities
is limited so that it does not require a complicated latent space
to represent each activity. For the number of dimensions for GRU
hidden states dд and the number of hidden neurons dp , greater
numbers usually lead to more satisfactory results. However, the
model can start over-fitting if the numbers become too large. As a
result, it demonstrates again that parameter tuning is required to
achieve the best performance.

6 CONCLUSIONS

In this paper, we focus on predicting human stress level with in-
complete sensor data from wearable devices. To recover missing
sensor data, our model, Data Completion with Diurnal Regulariz-
ers (DCDR), exploits user diurnal and weekly behaviors patterns as
two effective regularizers, thereby precisely inferring unobserved
sensor data. To predict human stress level, we propose Temporally
Hierarchical Attention Network (THAN) to consider temporally
hierarchical structures in sensor data with hierarchical RNNs with
the attention mechanism. The extensive experiments demonstrate
that our approach significantly outperforms competitive baseline
methods in both sensor data completion and stress level prediction.
Moreover, the analysis results also show the robustness and effec-
tiveness of our proposed models. The reasons and insights can be
concluded as follows: (1) The conventional low-rank assumption
is not enough for precise data completion while the patterns of
diurnal behaviors can be beneficial as regularizers; (2) The hierar-
chical structures can leverage temporal knowledge in sensor data so

that the model does not require much training data for satisfactory
prediction performance; (3) Parameter tuning is required to reach
the best performance for both DCDR and THAN in sensor data
completion and stress level prediction.
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