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Abstract. There is often latent network structure in spatial and temporal data, and the tools of network analysis
can yield fascinating insights into such data. In this paper, we develop a nonparametric method
for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In
contrast to prior work on network reconstruction with point-process models, which has often focused
on exclusively temporal information, our approach uses both temporal and spatial information and
does not assume a specific parametric form of network dynamics. This leads to an effective way
of recovering an underlying network. We illustrate our approach using both synthetic networks
and networks that we construct from real-world data sets (a location-based social-media network, a
narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison
to using only temporal data, our spatiotemporal approach yields improved network reconstruction,
providing a basis for meaningful subsequent analysis—such as examinations of community structure
and motifs—of the reconstructed networks.
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1. Introduction. Digital devices such as smartphones and tablets generate an enormous
amount of spatiotemporal data about human activities, providing a wonderful opportunity
for researchers to gain insight into human dynamics through our “digital footprints”. A
wide variety of human activities are now analyzed using such data, creating new disciplines
such as computational social science and digital humanities [38]. Examples of such activities
include online check-ins in large cities [15], human mobility [6] and currency flow [11], online
communications during Occupy Wall Street [16], crime reports in Los Angeles [33], and many
others.

Network analysis is a powerful approach for representing and analyzing complex systems
of interacting components [51], and network-based methods can provide important insights
into the structure and dynamics of complex spatiotemporal data [8]. It has been valuable
for studies of both digital human footprints and human mobility [7]. To give one recent
example, Noulas et al. [53] studied geographic online social networks to illustrate similarities
and heterogeneities in human mobility patterns.
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Suppose that each node in a network represents an entity, and that the edges (which
can be either undirected or directed, and can be either unweighted or weighted) represent
spatiotemporal connections between pairs of entities. For instance, in a data set of check-
ins on a social-media platform, one can model each user as a node, which has associated
check-in times and locations. In this case, one can suppose that an edge exists between a
pair of users if they follow each other on the platform. One can use edge weights to quantify
the amount of “influence” between users, where a larger weight signifies a larger impact. In
our investigation, we assume that the relationships between nodes are time-independent.!
In some cases, the entities and relationships are both known, and one can investigate the
structure and dynamics of the associated networks. However, in many situations, network
data are incomplete—with potentially a large amount of missing data in the form of missing
entities, interactions, and/or metadata [69]—and it may not be possible to directly observe
the relationships between nodes [63]. For example, social-media companies attempt to infer
friendship relationships between their users to provide accurate friendship recommendations
for online social networks.

In the last few years, there has been much effort on inferring missing data (both structure
and weights) in networks. A basic approach for inferring relationships among entities is to
calculate cross-correlations of their associated time series [37]. Another approach is to use
coefficients from a generalized linear model (GLM) [49], a generalization of linear regression
that allows response variables to have a non-Gaussian error-distribution. Recently, researchers
have begun to use point-process methods [66] in network reconstruction. For example, Perry
and Wolfe [58] examined the modeling of a network as a multivariate point process and then
inferred covariate-based edges (both their existence and their weights) by estimating a point
process. One well-studied family of point-process models is Hawkes processes (also known
as “self-exciting point processes”),” which have been employed often for studying human
dynamics [23, 40]. Hawkes-process models are characterized by mutual “triggering” among
events [55], as one event may increase the probability for subsequent events to occur. Such
models can capture inhomogeneous interevent times and causal (temporal) correlations, which
are important considerations for human dynamics [32]. These properties illustrate the rele-
vance of using Hawkes processes in social-network applications [30]. It thus seems promising
to employ such processes for network inference on dynamic human data, such as crime events
and online social activity. For example, Linderman and Adams [40] proposed a fully Bayesian
Hawkes model that they reported to be more accurate at inferring missing edges for their data
than GLMs, cross-correlations, and a simple self-exciting point process with an exponential
kernel. Very recently, self-exciting point processes were applied in [71] to reconstruct mul-
tilayer networks [31], a generalization of ordinary graphs. However, despite the successes of
these studies, the aforementioned temporal point-process models are not without limitations.
For example, most of these models do not use spatial information, even when it plays a signif-
icant role in a system’s dynamics. Furthermore, many studies assume an a priori model [40]
or a specific parametrization [72] for their point processes.

!Depending on the relative time scales between spatiotemporal processes and network dynamics, it may be
important to consider time-dependent edges [28, 59].
2We use these terms interchangeably in this paper.
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In the present paper, we propose a nonparametric and multivariate version of a spatiotem-
poral Hawkes process. Spatiotemporal Hawkes processes have been used previously to study
numerous topics, including crime [46], social media [36], and earthquake forecasting [22]. In
our model, each node in a network is associated with a spatiotemporal Hawkes process. The
nodes can “trigger” each other, so events that are associated with one node increase the prob-
ability that there will be events associated with the other nodes. We measure the extent of
such mutual-triggering effects using a U x U “triggering matrix” K, where U is the number of
nodes. If one considers an exclusively temporal scenario, a point process u does not “cause”
(in the Granger sense [24]) a point process v if and only if K(u,v) = 0 [20]. Because trigger-
ing between point processes reflects an underlying connection, one can try to recover latent
relationships in a network from K. Such triggering should decrease with both distance and
time according to spatial and temporal kernels. In our work, instead of assuming exponential
decay [23] or some other distribution [40, 72], we adopt a nonparametric approach [43] to learn
both spatial and temporal kernels from data using an expectation-maximization-type (EM-
type) algorithm [75]. Recently, Chen et al. [14] studied Hawkes processes with both mutual
excitations and inhibitory relationships using a nonparametric approach, although they only
considered exclusively temporal kernels.

Our paper helps fill a gap in the literature on incorporating spatial information into multi-
variate self-exciting point processes [62]. To the best of our knowledge, it is the first paper that
uses a multivariate spatiotemporal Hawkes process with a nonparametric method to estimate a
triggering kernel. Inspired by the successful employment of spatiotemporal univariate Hawkes
processes in earthquake forecasting [22, 43] and predictive policing [47], our work extends these
ideas to multivariate Hawkes processes and uses these ideas in an application to network re-
construction. Our approach outperforms other recent point-process network-reconstruction
methods [23, 40] on both synthetic and real-world data sets with spatial information. Addi-
tionally, our results illustrate the importance both of incorporating spatial information and of
using nonparametric kernels. Although we assume that the relationships between nodes are
time-independent, our model still recovers a causal structure among events in synthetic data
sets. Based on this information, we build event-causality networks on data sets about violent
crimes of gangs and examine gang-retaliation patterns using motif analysis.

Our paper proceeds as follows. In section 2, we review self-exciting point processes and
recent point-process methods for network reconstruction. In section 3, we introduce our
nonparametric spatiotemporal model and our approaches for model estimation and simulation.
In section 4, we compare our model with other models using both synthetic and real-world
data sets. We construct our two examples of the latter from (1) a location-based social-
media platform and (2) crime topics. We conclude in section 5, and we give details about our
preprocessing for the social-media data set in Appendix A.

2. Self-exciting point processes. Given a complete, separable metric space, a point pro-
cess S is a random measure that has values in {0,1,2,...} U {co} [64]. We first consider a
temporal point process, which consists of a list {¢1,ta,...,tx} of N time points, with corre-
sponding events 1,2,..., N. Let S[a,b) denote the number of points (i.e., events) that occur
in a finite time interval [a,b), with a < b. One typically models the behavior of a simple
temporal point process (multiple events cannot occur at the same time) by specifying its
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conditional intensity function A(t), which represents the rate at which events are expected to
occur around a particular time ¢, conditional on the prior history of the point process before
time t. Specifically, when H; = {t;|t; < t} is the history of the process up to time ¢, one
defines the conditional intensity function

E[S[t,t + Ab)|H

One important point-process model is a Poisson process, in which the number of points
in any time interval follows a Poisson distribution and the numbers of points in disjoint sets
are independent of each other. A Poisson process is called homogeneous if A(t) = constant,
and it is thus characterized by a constant rate at which events are expected to occur per unit
time. It is called inhomogeneous if the conditional intensity function A(¢) depends on the time
t (e.g., A(t) = e7!). In both situations, the numbers of points (i.e., events) in disjoint intervals
are independent random variables.

We now discuss self-exciting point processes, which allow one to examine a notion of
causality in point-process models. If we consider a list {¢,%2,...,tx} of time stamps, we say
that a point process is self-exciting if

Cov [S[tkfl,tk), S[tk,tk+1)] >0, with tp_1 <t < Tkt s

where k is a positive integer. In a self-exciting point process, if an event occurs, another event
becomes more likely to occur locally in time.

A univariate temporal Hawkes process, which we express using the common cluster repre-
sentation [27], has the following conditional intensity function:

(2.1) At = pt) + K S gt —t),

te<t

where the background rate p(t) can be either a constant or a time-dependent function that
describes how the likelihood of some process (crimes, e-mails, tweets, and so on) evolves in
time. For example, violent crimes are more likely to occur at night than during the day,
and business e-mails are less likely to be sent during the weekend than on a weekday. One
can construe the rate p(t) as a process that designates the likelihood of an event to occur,
independent of the other events. The summation term in (2.1) describes the self-excitation:
past events increase the current conditional intensity. The function g(¢) > 0 is called the
triggering kernel, and the parameter K > 0 denotes the mean number of events that are
triggered by an event. One standard example is a Hawkes process with an exponential kernel
g(t) = we™*t where the constant decay rate w for the triggering kernel controls how fast the
rate \(t) returns to its baseline level u(t) after an event occurs.

2.1. Temporal multivariate models. In network reconstruction, one seeks to infer the
relationships (i.e., edges) and the strengths of such relationships (i.e., edge weights) among a
set of entities (i.e., nodes). When modeling the relationships in a network, it is more appro-
priate to use a multivariate point process than a univariate one. In a temporal multivariate
point process, there are U different point processes (Sy)y=1,..v; and the corresponding con-
ditional intensity functions are (Ay(t))y=1,..v. We seek to infer the intensity functions from
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observed data (tj,u;)j=1, ..~ in a time window [0, 7], where t; and u;, respectively, are the
time and point-process indices of event j. There are numerous applications of temporal mul-
tivariate point processes; they include financial markets [5], real-time crime forecasting [76],
and neuronal spike trains [12]. In the present paper, we focus on the application of network
reconstruction.

Let’s first consider two examples of multivariate processes that are not self-exciting. A
trivial example of a multivariate point process is the multivariate Poisson process, in which
each point process is a univariate Poisson process. Another example is the multivariate Cox
process, which consists of doubly stochastic Poisson processes (so the conditional intensity
itself is a stochastic process). Perry and Wolfe [58] used a Cox process to model e-mail
interactions (the edges) among a set of users (the nodes).

Instead of modeling edges as Cox processes, Fox et al. [23] used multivariate Hawkes
processes to model people (i.e., nodes) communicating with each other via e-mail. Their
conditional intensity function has an exponential kernel and a nonparametric background
function p,,(t) > 0 for each person (i.e., process) u. It is written as

(2.2) Au(t) = pu(t) + Z Kuz-uwe_w(t_ti) )

t;<t

where K, = K(u,v) > 0 is the expected number of events of person v that are triggered by
one event of person u. One can estimate the set © of parameters by minimizing the negative
log-likelihood function

N U T
(2.3) ~log(L(8)) =~ Y log(huy (60) + 3 [ Au(o)t,
k=1 u=1 0

where log(z) denotes the natural logarithm of . Recall that uy, is the point process associated
with event k.

There are several variants of a multivariate Hawkes process. One is to add regularization
terms to (2.3) to improve the accuracy of parameter estimation. Lewis and Mohler [39]
used maximum-penalized likelihood estimation, which enforces some regularity on the model
parameters, to infer Hawkes processes. Zhou, Zha, and Song [77] extended this idea and
promoted the low-rank and sparsity properties of K by adding nuclear and L; norms of K
to (2.3) with the conditional intensity function A, (t) from (2.2). Linderman and Adams [40]
added random-graph priors on K and developed a fully Bayesian multivariate Hawkes model.
See [42] for theoretical guarantees on inferring Hawkes processes with a regularizer. Another
research direction is to speed up the parameter estimation of point-process models. For
example, Hall and Willett [26] tried to learn the triggering matrix K via an online learning
framework for streaming data. In a very recent paper, Achab et al. [2] developed a fast
moment-matching method (instead of using a likelihood-based method) to estimate the matrix
K. A recent paper by Chen et al. [14] extended temporal multivariate Hawkes processes to
study inhibitory events, in addition to the usual excitatory ones. (For example, the spiking of
one neuron can decrease the firing rates of other neurons.) They developed a new theoretical
approach that exploits a thinning-process representation [54], instead of the common cluster
representation [27], of temporal Hawkes processes. Using their approach, they derived a
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concentration inequality for the second-order statistics of temporal Hawkes processes with
inhibition and proposed a nonparametric model for network reconstruction.

2.2. Spatiotemporal point processes. Many real-world data sets include not only time
stamps but also accompanying spatial information, which can be particularly important for
correctly inferring and understanding the dynamics that are associated with such data [8].
In earthquakes, for example, most aftershocks usually occur geographically near the main
shock [56]. In online social media, if two individuals often check in at the same location at
closely proximate times, there is more likely to be a connection between them than if such
“joint check-ins” occur rarely [15]. These situations suggest that it is important to examine
spatiotemporal point processes, rather than just temporal ones. Indeed, there are myriad
applications of spatiotemporal Hawkes processes, including crime forecasting [46], detection
of anomalous seismicity [56], and inference of Twitter topics [36].

We characterize a spatiotemporal point process with an event-counting measure S (which
is defined on a spatiotemporal region) via its conditional intensity A(¢,x,y), which is the
expected rate of the accumulation of points around a particular spatiotemporal location.
Given the history H; of all points up to time t, we write

At z,y) =

. E[S{[t,t + At) x [z, + Ax) x [y,y + Ay) }[H]
lim .
At,Az,Ayl0 At Ax Ay

For the purpose of modeling earthquakes, Ogata [56] used a self-exciting point process with a
conditional intensity of the form

t>t;

In this setting, if an earthquake occurs, aftershocks are more likely to occur locally in time
and space. The choice of the triggering kernel g(t,x,y) is inspired by physical properties of
earthquakes. For example, Ogata [56] used a modified Omori formula (a power law) [55] to
describe the frequency of aftershocks per unit time. In sociological applications, there is no
direct theory to indicate appropriate choices for the kernel function. Some researchers have
chosen specific kernels (e.g., exponential kernels) that are easy to compute. For example,
Tita et al. [72] used a spatiotemporal point process to infer missing information about event
participants. They modeled interactions between event participants as a combination of a
spatial Gaussian mixture model and a temporal Hawkes process with an exponential kernel.
A key problem is how to justify kernel choices in specific applications.

3. Spatiotemporal models for network reconstruction. Many network-reconstruction
methods, such as the ones in [14, 23, 40], have used self-exciting point processes to infer
time-independent relationships (i.e., edges) between entities (i.e., nodes) with correspond-
ing (exclusively) temporal point processes. Entity (i.e., process) u is adjacent to entity v if
K(u,v) > 0, where one estimates the triggering matrix K from data. Entity u is not adja-
cent to v if the former’s point process does not cause the latter’s point process in time (in
the Granger sense [20]). For many problems, it is desirable (or even crucial) to incorporate
spatial information [8, 17]. For example, spatial information is an important part of online
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fingerprints in human activity, and it has a significant impact on most other social networks.
In crime modeling, for instance, there is a “near repeat” phenomenon in crime locations, indi-
cating the necessity of including spatial information. Specifically, the spatial neighborhood of
an initial burglary has a higher risk of repeat victimization than more-distant locations [65].
In our work, we propose multivariate spatiotemporal Hawkes processes to infer relationships
in networks and provide a novel approach for analyzing spatiotemporal dynamics.

It is also important to consider the assumptions on triggering kernels for Hawkes processes.
In seismology, for example, researchers attempt to use an underlying physical model to help
determine a good kernel. However, it is much more difficult to validate such models in social
networks than for physical or even biological phenomena [60]. The content of social data
is often unclear, and typically there is little understanding of the underlying mechanisms
that produce them. With less direct knowledge of possible triggering kernels, it is helpful to
employ a data-driven approach for kernel selection. Using a kernel with an inappropriate decay
rate may lead to either underestimation or overestimation of the elements in the triggering
matrix K, which may also include false negatives or false positives in the inferred relationships
between entities.

Therefore, we ultimately choose to use a nonparametric approach to learn triggering ker-
nels in various applications to avoid a priori assumptions about a specific parametrization.
Specifically, we use histogram estimators with EM-type algorithms to maximize the likelihood,
as has been done in applications in seismology and crime modeling [39, 43, 75]. An alternative
approach [14] is a penalized regression scheme. With such a scheme, one can approximate a
kernel as a sum of basis functions and minimize the squared-error loss of the intensity function
with a group-lasso penalty. Although some of the goals of previous Hawkes-process models and
our paper are similar, there are many key differences. For example, the authors [14] focused
on theoretical development of Hawkes processes with inhibition; they did not consider spatial
information. By contrast, the purpose of our paper is to investigate spatiotemporal data sets
from social media and crime with a self-exciting Hawkes process. The theoretical guarantees
of our model arise from the consistency of the Hawkes process with the nonnegative triggering
matrix and kernels (which is necessary for the cluster representation of such processes).

A multivariate spatiotemporal Hawkes process is a sequence {(t;, z:, v, u;)} Y, with N
events, where ¢; and (z;,y;) are spatiotemporal stamps and u; is the point-process index of
event i. Each of the U nodes is a marginal process. The conditional intensity function for
node u is

(3.1) Mt z,y) = pu(z,y) + Z Kyug(x —xi,y — yin t — ) .

t>t;
The above Hawkes process assumes that each node u has a background Poisson process that
is constant in time but inhomogeneous in space with conditional intensity g, (x,y). There is
also self-excitation, as past events increase the likelihood of subsequent events. We quantify
the impact that events associated with node w; have on subsequent events of node u; with
spatiotemporal kernels and the element K(u;, uj) = Ky, of the triggering matrix.

3.1. A parametric model. We first propose a multivariate Hawkes process with a specific
parametric form. We use this model to generate spatiotemporal events on synthetic networks
and provide a form of “ground truth” that we can use later.
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The background rate p,, and the triggering kernel g for (3.1) are given by

%+ y2
202 ’

1
9(w,y,t) = 1(t) X ga(w,y) = wexp (~wt) X 5 exp (‘

N r — Z; 2 — ;)2
,U'u(xa y) _ Z Bum X exp (_( z) +2(y yz) ) )
=1

22T 2n

For simplicity, we use exponential decay in time [55] and a Gaussian kernel in space [45]. We
let T' denote the time window of a data set; K,,, denote the mean number of the events in
process u that are triggered by each event in process u;; the quantity f,,, denotes the extent
to which events in process u; contribute to the background rate for events in process u; and
o and 7, respectively, denote the standard deviations in the triggering kernel and background
rate. The value of o determines the spreading scale of the triggering in space.

3.2. A nonparametric model. With the conditional intensity in (3.1), we estimate the
triggering kernel g(z,y,t) = g1(t) X g2(x, y) nonparametrically using histogram estimators [43].
We assume that g is isotropic, which entails that go(z,y) = ga(r), where r = /22 4+ y2. We
let h(r) be the spatial triggering kernel in the radial coordinate: h(r) = 27wrga(r). We extend
the background rate that was proposed in [22] to the multivariate case and write

(z —2:)* + (y — yi)2> ’

Pii exp | —
2md? 2d?

N2

N
(3.2) pu(,y) =t (@, y) = 2 Y
=1

where 7, is a scaling factor for the process u and p;; is the probability that event i is a
background event (i.e., it is not triggered by any event). We compute d; by determining the
radius of the smallest disk centered at (x;,y;) that includes at least n, other events and is at
least as large as some small value e (which represents the error in location).

Once we fit the model to spatiotemporal data, the triggering matrix K gives our inferences
for the underlying relationships between entities. For two entities u and v, the matrix element
K(u,v) indicates a mixture of temporal causality and spatial dependence between them. In
inferring latent relationships in a network, we assume that entity w is not related to v if
K (u,v) = 0. We threshold the matrix K at a certain level: we set elements that are smaller
than the threshold value to 0; and we either maintain the values of larger or equal elements
to obtain a weighted network, or we set them to 1 to produce an unweighted network. We
use K to denote the thresholded matrix K. We interpret that there is no relation between
two nodes u and v if K(u,v) = K(v,u) = 0.

3.3. Model estimation. We use an EM-type algorithm [75] to estimate the parameters
and kernel functions of our model. This EM-type algorithm gives an iterative method to
find maximume-likelihood estimates of the parameters. We assume that the original model
depends on unobservable latent variables. Suppose that we have data X and want to estimate
parameters ©. One can view the likelihood function L(©;X) as the marginal likelihood
function of L(0;Y, X), where Y is a latent variable. We call L(©;Y, X) the “complete-data
likelihood function” and L(©;X) the “incomplete-data likelihood function”. Because both
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consider the following expectation function:

(3.3)

Q(6,0'") =E [log(L(6; Y, X))| X, 0]
- / log(L(6; Y, X)) (Y |X, 07 ")ay

Therefore, we

where f(Y|X,©"!) is the probability density function of Y, given the data X and ©~1. We
update parameters by solving the following equation:

e = argmgx@(@, o).

Algorithm 3.1. EM-type algorithm for the parametric spatiotemporal Hawkes model.

1: Inputs point process: {(u;,t;, i, yi)}q; initial guesses for parameters:
({Kuv w=1> {@S%) szl,a(o),w(o)) and {pgjo- i 1,{pb (0) ” 1; termination threshold: €.

2: Outputs: model parameters © = ({Kuv}ﬁ{,v:l, {Buv}g,v:l, o, w).
3: Initialize 6 = 1 and k& = 0.
4: while 6 > ¢ do

5:

6:
7

8:
9:

10:

11:

12:

13:

14:

15:
16:
17:

Let n>(*) and 02(*) be the value of % and o2 at the kth iteration.
Expectation step: fori,j € {1,2,...,N},
k
pl(j) - (Kujulg (t’L t]u .’13], Yi — y])) /)\ (xiu Yi, tl) .
2

Bl exp (G ) o DT ).

Max1m1zat10n step: for u,u € {1,2,...,U},
(k
LT Zj<ipz'j .
Z]<Z pz(g)(ti —t5) + 25:1 Zfil Koyu(T — t;)em(T=t)

Let N, denote the number of events in point process u; and let i}, with [ € {1,...

index the events for process u. We update
k+1
Zz 124t <tupluzu/2l 1(1_GXP[ (T_tz‘;?)D7
l

(k+1) N y~Na
/8 l ul l 1 Zu,lu/ a -

N k k N k k
0-2’(k+1) - Zz] 1 (pz]( ) +p( )) (( - I'])2 + (y )2) /Zi,j:l (pz]( ) +p( )) .

2,(k+1) — 52,(k+1)
5= |0 — ekt
E=k+1.

18: end while

o) —

7Nu}7

3.3.1. Parametric model. The log-likelihood for the parametric model defined in (3.1) in
a spatial region R and time window [0, 7] is

(3.4)

log(L(©; X)) Zlog un (s Thy Yi)) Z/// w(t,z,y)dtdaedy.
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Algorithm 3.2. EM-type algorithm for the nonparametric spatiotemporal Hawkes model.

1: Inputs: point process: {(u;,t;, i, y;)}Y; initial guesses of parameters: {KZ(L?)) '[u],vzl and

{ng)}w 1; termination threshold: €.

2: Qutputs: model parameters: {Kuv}g o—1; triggering probability between events:

{pij}gjzl; temporal triggering kernel: g¢1; spatial triggering kernel: g .
Initialize § =1 and n = 0.
while 6 > ¢ do

Update 7"(x,y) using (3.2).

bpatial domain R for u € {1,...,U}.
7 =2 u _uzu _vpln)/N foru vedl,...,U}.

t) =2 i jcc, pl(?)/[Atk dicy pij)] for t in the kth temporal bin.

10: pgj D= K&Z%Jggn) (tj —t; )gé )(’I“U) for i < j and p(m' ) — m(g) (x,95)-

11:  Normalize p(n+ ) 50 that EZ 1pl;7+1) =1 for any j.

)
122 0 = max; ||p(n+1)

13: end while

pw Il and n =n + 1.

(
9 h(n (r) = X ijens pz(-j)/[ATk >icy pg?)] for 7 in the kth spatial bin. Set gé”)(r)
)

%(Ln) = pmn)/Z . where Z(™ satisfies fOT [z, y)dsdt = Z™ on a bounded

We define random variables Y;; and Y} using the approach from [45]. If event j triggers

v

event 4 via the kernel g, then Y;; = 1; otherwise, Y;; = 0. The equality Yllj’ = 1 indicates
that event ¢ is triggered by event j at a background rate of u. We define two expectation
matrices: P(i,7) = p;; = E[Y;;] and Pb(i, j) = ng =E[Y; ] We convert the incomplete-data

log-likelihood function in (3.4) into the following complete data log—hkehhood function:

log(L(0; X,Y)) ZYW log (Kuju,g(ti —tj, @i — a2,y — ZZBulu

7<i u=1 i=1
U N

—ZZKuw(l— —w(T— t>)+zz  log (ta,)
u=1 i=1 =1 j=1

We then calculate the expectation function using (3.3) to obtain

2 — 2)2 + (g — y:)2 v X

01 =3, 3oah o (e (- BT )) 5 s,
i=1 j=1 N u=1 i=1
gy 1 z; —x)? 4+ (y; —y;)?
+Zp¢jlog<wKujuie wits tj)zmjgexp<_(z 3)202(1 j

j<t

U N
S K (1= e 0

u=1 i=1
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We perform the maximization step of the EM-type algorithm (a projected gradient ascent) [39]
directly by taking derivatives with respect to the parameters and setting them to 0. For
the expectation step, we use the “optimal” parameter values from the prior maximization
step to update the probabilities p;; and pg’j. By (alternately) iterating the expectation and
maximization steps, we obtain Algorithm 3.1 for the parametric model. For initialization, we
sample OV, Dij, and pi»’j uniformly at random. Note, additionally, that p;; = 0 for 7 < j.

Algorithm 3.3. Simulation of a multivariate spatiotemporal Hawkes process.

U .
u=1"

temporal and spatial triggering kernels: ¢ (t), g2(x,y) .
N
i=1"

1: Inputs: time-window size: T’; spatial region: R C R?; background rate: {v,}

gering matrix: {Km,}gﬂ}:l;

trig-

Output: point process: C = {(u;, t;, i, y;)}

Initialize an empty set C and an empty stack Q.

Generate background events:

Draw N?, the number of background events of type u, from a Poisson distribution with
parameter A\ = 7,1 for each u < U.

6:  Add each background event i < 2521 N?, with its associated tuple (x;,y;, %, u;), to
the set C and the stack Q, where we draw (z;,y;,t;) from the uniform spatiotemporal
distribution over the time interval [0, 7] and a bounded spatial region R.

7. Generate triggered events:

8:  while Q is not empty do

9: Remove the most recently added element (z;,y;, t;, u;) from the stack Q.

10: Draw n;, the number of events triggered by event ¢, from a Poisson distribution with
parameter \; = 25':1 Koy

11: Generate events (xg, yk, tk, ur) for each k < n; as follows:

12: Sample t, (g, yx), and uy according to ¢1(t — t;), go(x — x4,y — yi), and P(u =

) = %, respectively.

13: Add (xg, yk, tg, ug) to the set C.

14: if ¢, < T then

15: Add the element (zg, yg, tr, ur) to the stack Q.

16: end if

17: end while

3.3.2. Nonparametric model. The log-likelihood function of the nonparametric model is
the same as that for the parametric model in (3.4). We use a similar approach as before to
derive an EM-type algorithm for the nonparametric model. The main differences are that
(1) only Yj; are latent variables and Yj;; = 1 signifies that event ¢ is a background event,
whereas Yj; = 1 signifies that event i is triggered by event j; and (2) we assume that the
triggering kernels g;(t) and ga(r) are piecewise-constant functions. Note that the elements of
the expectation matrix are E[Y;;] = P(7, j) = p;;. In this case, note that p;; = 0 for i > j. We
discretize space and time into n?ins temporal bins and n'?ins spatial bins, and the kernel takes
a constant value in each spatiotemporal bin.

To formally present our EM-type algorithm (see Algorithm 3.2), we borrow notation from
[22]. Let C}, denote the set of event pairs (4, j) for which ¢; —¢; belongs to the kth temporal
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bin, Dy, denote the set of event pairs (4, j) for which r;; (the distance between nodes i and j)
belongs to the kth spatial bin, NV,, denote the number of events for node u, the parameter Aty
denote the size of the kth temporal bin, and Ar; denote the size of the kth spatial bin.

3.4. Simulations. To generate synthetic data for model comparisons, we need to simulate
self-exciting point processes with the conditional intensity in (3.1) for each process u. We use
the branching structures [79] of self-exciting point processes to develop Algorithm 3.3 for our
simulations.

4. Numerical experiments and results. We apply our algorithms® to both synthetic and
real-world data sets to demonstrate the usefulness of (1) incorporating spatial information into
Hawkes processes and (2) our nonparametric approach. We consider a synthetic data set in
subsection 4.1, a social-media data set from Gowalla in subsection 4.2, a crime-topic network
data set in subsection 4.3, and a violent gang-crime data set in subsection 4.4. Using the
first three of these data sets, we compare our nonparametric spatiotemporal Hawkes model
(“nonparametric Hawkes”) with the Bayesian Hawkes model” from [40] (“Bayesian Hawkes”),
the exclusively temporal Hawkes model with kernel g(t) = wexp(—wt) from [23] (“temporal
Hawkes”), and the parametric spatiotemporal Hawkes model that we detailed in subsection 3.1
(“parametric Hawkes” ). We make comparisons by examining how well the following properties
are recovered when we infer a triggering matrix: (1) symmetry and reciprocity, (2) existence of
edges, and (3) community structure. We also demonstrate the ability of both our parametric
and nonparametric algorithms to infer the triggering kernel g. Using the fourth data set (see
subsection 4.4), we study a network of crime events to illustrate our methodology with an
additional application. We examine relations between crime events and repeated triggering
patterns.

4.1. Synthetic data. We first generate synthetic triggering matrices K using a weighted
stochastic block model (WSBM) [3, 57]. We assign a network’s nodes to four sets (called
“communities”) and assign edges to adjacency-matrix blocks based on the set memberships of
the nodes. Two of the communities consist of ten nodes each, and the other two communities
consist of five nodes each. For each edge, we first draw a Bernoulli random variable to
determine whether it exists, and we then draw an exponential random variable to determine
the weight of the edge (if it exists). An edge between nodes from the same community exists
with probability 0.68, and an edge between nodes from different communities exists with
probability 0.2. The decay-rate parameter for the exponential random variable in these two
situations is 0.1 and 0.01, respectively. By construction, our triggering matrices are symmetric.

The triggering matrices that we generate in this way are not guaranteed to satisfy the
stability condition for Hawkes processes; this condition is that the largest-magnitude eigen-
value of K is smaller than 1 [18]. When this condition is satisfied, it is almost surely true
that each event has finitely many subsequent events as “offspring”. In our work, we discard

30ur code is available at https://github.com/ybcmath/MultiSTHP.

4Linderman and Adams [40] used a sparse log-Gaussian Cox process to model the background rate, a logistic-
normal density for the temporal kernel, an Aldous—Hoover graph prior for the existence of entries in K, and
gamma prior for the weights of those entries. In all of our experiments with their approach, we use the default
hyperparameters and priors that come with the published code at https://github.com/slinderman/pyhawkes.
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any simulated adjacency matrices that do not satisfy the stability condition, and we generate
a new one to replace it. (With our choices of the parameters, we discard about 65% of the
generated adjacency matrices.)

With each triggering matrix K, we use Algorithm 3.3 to simulate a multivariate spatiotem-
poral Hawkes process with our parametric model in subsection 3.1 with w = 0.6, o> = 0.3,
T =250, R = [0, 1] x [0,1], and a homogeneous background rate u, = 0.2 for all nodes u. We
then reconstruct the underlying networks and the triggering kernels from the simulated data.
As a result, our parametric spatiotemporal Hawkes model serves as a “ground-truth model,”
and we expect it to have the best performance for synthetic data, given that we use the same
model to produce the data.

4.1.1. Symmetry and reciprocity. As we noted in subsection 4.1, our simulated triggering
matrices are symmetric, but our reconstructed adjacency matrices generally are not symmet-
ric. Without prior information about symmetry, measuring deviation from symmetry gives
one way to evaluate the performance of our inference methods. We use various reciprocity
measures to quantify such deviation.

We conduct two sets of experiments. In the first set, we fix a single synthetic trigger-
ing matrix and simulate ten multivariate spatiotemporal Hawkes point processes. We then
estimate the triggering matrix K from each point process using various methods, which we
thereby compare with each other. In a second set of experiments, instead of fixing a single
triggering matrix, we generate ten different triggering matrices using the same WSBM and
the same parameters; and we simulate one point process for each triggering matrix.

There is no standard way of measuring reciprocity in a weighted network. In our calcula-
tions, we use diagnostics that were proposed in [68] and [4]. First, as in [68], we compute the
reciprocated edge weight K = min{K,,, K.}, and we then calculate a network-level reci-
procity score R; as the ratio between the total reciprocated weight W< = %" Lo K7 and the
total weight W = Zu#} K,,. That is, the “reciprocity” is Ry := W /W. Second, Akoglu,
de Melo, and Faloutsos [4] proposed three edge-level measures of reciprocity: (1) the “ratio”
Ryatio == min{Kuv’ Kvu}/ maX{Kuva Kvu}; (2) “coherence” Reoher = 2v Kuvau/(Kuv +Kvu);
and (3) “entropy” Rentropy ‘= —Tuv 1082 (Tuv) — Tvu 108o(Tvy), Where ryy = Kyp/(Kuy + Kuu).
These last three measures of reciprocity are measured at an edge level (as they are defined
for a pair of nodes), whereas R; is a network-level measure. For each edge-level measure, we
obtain a network-level measure by calculating the score for each pair of nodes in a network
and then taking a mean over all pairs of nodes. Each of the above quantities gives a score
between 0 and 1, where a larger value indicates a stronger tendency for the nodes in a network
to reciprocate. In a perfectly symmetric and reciprocal network, each of the four methods
gives a value of 1. As another measure of reciprocity, we also calculate the Pearson correlation
between the triggering matrix and its transpose.

In Table 1, we report the mean reciprocity and the standard deviation over ten simulations
with the same triggering matrix. In Table 2, we report the mean results from ten different
triggering matrices. Both spatiotemporal models give higher scores than the exclusively tem-
poral models, which is what we expected, as the temporal models discard spatial information.
According to these measures of success, the nonparametric model has the best performance,
even over the ground-truth (parametric) model that generated the data in the first place.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/19 to 203.9.152.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

HAWKES PROCESSES AND NETWORK RECONSTRUCTION 369

Table 1
Reciprocity of the triggering matrices that we infer using different methods: a nonparametric spatiotemporal
Hawkes model, a temporal Hawkes model, a parametric spatiotemporal Hawkes model, and a fully Bayesian
Hawkes model. We report the mean and standard deviation (in parentheses) over ten simulations that use the
same (ground-truth) triggering matriz.

Nonparametric | Temporal | Parametric Bayesian

Ry 0.59 (0.05) 0.29 (0.06) | 0.54 (0.03) | 0.36 (0.03)

Correlation 0.84 (0.05) 0.36 (0.16) | 0.79 (0.05) | 0.30 (0.14)

Ratio 0.55 (0.02) 0.37 (0.11) | 0.58 (0.02) | 0.32 (0.02)

Coherence 0.75 (0.01) 0.63 (0.03) | 0.71 (0.02) | 0.68 (0.02)

Entropy 0.71 (0.01) 0.59 (0.03) | 0.68 (0.02) | 0.60 (0.02)
Table 2

Reciprocity of the triggering matrices that we infer using different methods: a nonparametric spatiotemporal
Hawkes model, a temporal Hawkes model, a parametric spatiotemporal Hawkes model, and a fully Bayesian
Hawkes model. We report the mean and standard deviation (in parentheses) over ten simulations, each with a
different (ground-truth) triggering matriz.

Nonparametric | Temporal | Parametric Bayesian

R 0.61 (0.12) 0.36 (0.12) | 0.55 (0.10) | 0.40 (0.05)
Correlation 0.81 (0.16) 0.48 (0.27) | 0.76 (0.15) | 0.23 (0.14)
Ratio 0.63 (0.04) 0.43 (0.06) | 0.62 (0.03) | 0.33 (0.03)
Coherence 0.78 (0.04) 0.62 (0.03) | 0.72 (0.03) | 0.70 (0.03)
Entropy 0.75 (0.05) 0.58 (0.03) | 0.69 (0.03) | 0.62 (0.04)

4.1.2. Edge reconstruction. We also evaluate the reconstruction methods based on their
ability to recover the existence of edges. This is particularly relevant if we want to know
whether there is a connection between two entities. We will discuss this application in detail
using the Gowalla data set (see subsection 4.2).

We consider an edge to exist if the corresponding weighted entry in an inferred triggering
matrix exceeds a certain threshold. For different threshold levels, we compute the numbers
of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN)
for a given ground-truth triggering matrix. We summarize our results in a receiver operating
characteristic (ROC) plot (see Figure 1), in which we plot the true-positive rate (TPR) (where
TPR = TP/(TP + FN)) versus the false-positive rate (FPR) (where FPR = FP/(FP + TN)).
A better inference of a triggering matrix gives a larger value of TPR for a fixed FPR.

Based on the ROC plot in Figure 1, we conclude that the spatiotemporal models—both
the parametric and nonparametric spatiotemporal Hawkes models that we proposed in sec-
tion 3—outperform the exclusively temporal ones. Therefore, incorporating spatial informa-
tion improves the quality of our reconstructed unweighted (i.e., binary) networks, at least
according to this measure of success. Unsurprisingly, the best results are from our parametric
(ground-truth) model. The performance of our nonparametric model is very close to that of
the parametric model, confirming its effectiveness at inferring the existence of edges.

4.1.3. Inferred kernels. We report inferred kernels for our synthetic networks of the non-
parametric spatiotemporal Hawkes model, parametric spatiotemporal Hawkes model, and
temporal Hawkes model in Figure 2. Recall that the ground-truth kernels that we use to sim-
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Figure 1. Model comparison using synthetic networks. We show the mean ROC curves with error bars
(averaged over ten simulations, each with a different triggering matriz) on edge reconstruction. The ROC
curve of a better reconstruction should be closer to 1 for a larger range of horizontal-axis values, such that it
has a larger area under the curve (AUC), which is equal to the probability that a uniformly-randomly chosen
existing edge in a ground-truth network has a larger weight than a uniformly-randomly chosen missing edge in
the inferred network.

Table 3
The L1 errors of the inferred spatial and temporal kernels for a monparametric spatiotemporal Hawkes
model, a temporal Hawkes model, and a parametric spatiotemporal Hawkes model. We simulate ten point
processes with the same triggering matriz and triggering kernel. We report the mean and standard deviation
(in parentheses) of the L1 errors averaged over ten simulations that use the same triggering kernel and matrix.
Note that the exclusively temporal model does not estimate a spatial kernel.

Nonparametric | Temporal | Parametric
Temporal kernel 0.07 (0.02) 0.20 (0.06) | 0.02 (0.02)
Spatial kernel 0.06 (0.02) - 0.12 (0.02)

ulate point processes are g(t) = wexp (—wt) and h(r) = 2wrgs(r) = Lexp ( — %), where
r? =22 4+ 9% w = 0.6, and 0? = 0.3. Let g and h denote the inferred temporal and spatial
kernels, respectively.

We calculate the Ly errors [ |g1(t) — g1 (¢)| dt and [ |h(r) —h(r)|dr. We report these errors
in Table 3 and present visualizations of the inferred kernels in Figure 2. As expected, the
two spatiotemporal Hawkes models give more accurate kernel inference than the exclusively
temporal model. The nonparametric Hawkes model does not use any information about the
ground-truth kernels. Surprisingly, it is more accurate (in terms of the L; error) at inferring
the spatial trigger kernel than the parametric model, whose kernel has the same parametric
form as the ground-truth kernel.

4.1.4. Community-structure recovery. We also evaluate the quality of the inferred net-
works based on their community structure, in which dense sets of nodes in a network are
connected sparsely to other dense sets of nodes [21, 61]. Recall that we planted a four-
community structure in the synthetic triggering matrices (see subsection 4.1). We apply the
community-detection methods from [3] (an inference method for a WSBM), [35] (symmetric
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Figure 2. Model comparison using synthetic networks: Inferred (left) temporal and (right) spatial ker-
nels using three different methods: temporal Hawkes, parametric spatiotemporal Hawkes, and monparametric
spatiotemporal Hawkes. The dashed curves are (ground-truth) kernels that we used to generate the synthetic
data.

nonnegative matrix factorization; NMF), and [29, 48, 50, 52] (modularity maximization).?
The WSBM that we infer for community detection is the same one that we used to construct
the synthetic adjacency matrices. (See our earlier discussion in subsection 4.1.) To evalu-
ate our inferred community structure, we use the square-root variant of normalized mutual
information (NMI) [70] between the inferred community assignment and “ground-truth” com-
munity labels. Specifically, let S; and Sy be community assignments of the U nodes to C}
and Cy communities, respectively; and let Sy, with ¢ € {1,2} and k € {1,2,...,C,}, denote
the set of nodes in the kth community in assignment Sy. The NMI between S; and S is

I
NMI(S;, So) = O ) [0,1],
H(S1)H(52)
where I(S1,Sy) = chzll 5221 19 “232j| log (lgl-ilTSi QJH/UU;) (where |J| denotes the cardinality of
illo2;5
the set J) and the entropy is H(S;) = — Zf\gl %log (‘S—]{’,") (with ¢ € {1,2}). Intuitively,

NMI measures the amount of information that is shared by two community assignments.
If they are the same after permuting community labels, the NMI is equal to 1. A larger
NMI score implies that the inferred community assignment shares more information with the
ground-truth labels. See [73] for a discussion of other approaches for comparing different
community assignments in networks.

There are numerous approaches for detecting communities in networks [21, 57, 61], and
we use methods with readily available code. As we show in Table 4, all of these community-
detection methods perform better when we infer triggering matrices using both spatial and
temporal information than when we use exclusively temporal information. One can, of course,
repeat our experiments using other methods.

SFor modularity maximization, we use the implementation of a (locally greedy) Louvain-like [9] method
(called GENLOUVAIN) from [29] with the default resolution-parameter value of 1 and the Newman—Girvan null
model.
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Table 4
Normalized mutual information between the outputs of different community-detection methods applied to
the inferred networks (from four different types of Hawkes models) and the ground-truth community structure
(averaged over ten simulations, each with a different triggering matriz).

Nonparametric | Temporal | Parametric | Bayesian
Weighted SBM 0.80 0.38 0.83 0.36
Symmetric NMF 0.62 0.31 0.66 0.19
Modularity maximization 0.64 0.47 0.71 0.28

4.2. Gowalla friendship network. Gowalla is a location-based social-media platform in
which users share their locations by checking in. We use a Gowalla data set—collected in [15]
using Gowalla’s public application program interface (API)—of a “friendship” network with
196,591 users, 950,327 edges, and a total of 6,442,890 check-ins of these users between February
2009 and October 2010. The data set also includes the latitude and longitude coordinates and
the time (with a precision of one second) of each check-in. Similar to a Facebook “friendship”
network, the Gowalla friendship network is undirected. The mean number of friends per user
is 9.7, the median is 3, and the maximum is 14,730. We study several subnetworks in the
Gowalla data set; see Appendix A for details. We view the spatiotemporal check-ins of Gowalla
users within each subnetwork as events in a multivariate point process and infer relationships
between these users.

We compare our nonparametric Hawkes method with the Bayesian Hawkes method and
the exclusively temporal Hawkes method with respect to how well our inferred edges match
the Gowalla friendships. Because a Gowalla “friendship” relationship is undirected in nature,
we first symmetrize the inferred triggering matrix (by calculating K = (K —I—KT) /2) to
obtain an undirected network. We then calculate FPRs and TPRs in the same fashion as in
subsection 4.1.2 using the matrices K from associated “ground-truth” friendship networks, and
we generate the corresponding ROC curves. As we can see in the ROC curves of three different
cities in Figure 3, we obtain the best results when using our nonparametric Hawkes model
that incorporates spatial information. In the examined subnetworks, the mean AUCs are
0.4277 (with a standard deviation of 0.1042) for the temporal Hawkes method; 0.5301 (with
a standard deviation of 0.0585) for the Bayesian Hawkes method; 0.5816 (with a standard
deviation of 0.0525) for our parametric spatiotemporal Hawkes method; and 0.6692 (with a
standard deviation of 0.0421) for our nonparametric spatiotemporal Hawkes method.

4.3. Crime-topic network. In a recent paper on crime classification, Kuang, Branting-
ham, and Bertozzi [33] performed topic modeling (see [34] for a review) on short narrative
(i.e., text) descriptions of all crimes, with spatial coordinates and time stamps (with a preci-
sion of one minute), that were reported to and officially recorded by the Los Angeles Police
Department (LAPD) between 1 January 2009 and 19 July 2014. The premise in their work
was that crime topics, sets of words that co-occur frequently in the same crime narrative,
better reflect the ecological circumstances of crime than official crime classifications that are
based on legal codes. Targeting discovery of up to twenty topics, they found six topics related
to violent crime, eight topics related to property crime, and six topics that seem to be related
to deception-based crime. This classifies the twenty crime topics into three types.
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Figure 3. ROC curves of four different Hawkes models for reconstructing three Gowalla friendship networks.
(See Appendiz A for details about the networks.) We show results for nonparametric spatiotemporal Hawkes
(dashed blue curves), temporal Hawkes (dash-dotted yellow curves), Bayesian Hawkes (solid red curves), and
parametric spatiotemporal Hawkes (dotted purple curves).

In the present case study, we extend this work by modeling the above data set as a
crime-topic network. We associate each crime topic with a node, and we infer edges based
on whether crime events of one topic trigger events of other topics. That is, we discover
latent relationships between different crime topics based on associated crime events. Inspired
by previous research on point-process models of crime events [46], we model crime events
of different topics via a multivariate point process and infer connections between the crime
topics using our nonparametric spatiotemporal Hawkes method. To evaluate our approach,
we compare the communities that we detect in the reconstructed network with the three crime
classes in [33].

4.3.1. Community detection. We infer crime-topic networks directly from crime events
in individual Los Angeles neighborhoods® using our nonparametric spatiotemporal Hawkes
method, our parametric spatiotemporal Hawkes method, the Bayesian Hawkes method, and
the exclusively temporal Hawkes method. We investigate the 100 neighborhoods with the
most reported crime events among all 296 neighborhoods of Los Angeles (LA). On average,
there are 4,140 crime events in the top-100 neighborhoods and 8,750 such events in the top-
10 neighborhoods. We then apply the community-detection methods that we mentioned in
subsection 4.1.4 to the reconstructed networks; this assigns crime topics to communities. We
quantify the difference between these community assignments and the crime-topic classifica-
tions from [33] by calculating NMI. We also visualize the crime-topic networks of the Westwood
and Wingfoot neighborhoods in Figure 4; they are located in West LA and South LA, respec-
tively. From Table 5, we see that using spatial information combined with a nonparametric

5We use the Zillow neighborhood boundaries from https://www.zillow.com.
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Figure 4. Crime-topic networks generated by the nonparametric spatiotemporal Hawkes and temporal
Hawkes methods colored by community assignments from modularity mazimization: (a) monparametric spa-
tiotemporal Hawkes in Westwood, (b) temporal Hawkes in Westwood, (c) nonparametric spatiotemporal Hawkes
in Wingfoot, and (d) temporal Hawkes in Wingfoot.

Table 5
Mean NMI (with one standard deviation reported in parentheses) between community assignments from
several community-detection methods and the classifications from [33] in the 100 neighborhoods in Los Angeles
with the most recorded crime events between 1 January 2009 and 19 July 2014.

Nonparametric Temporal Parametric Bayesian
Symmetric NMF | 0.25 (0.11) 0.12 (0.084) | 0.084 (0.12) | 0.12 (0.080)
Weighted SBM 0.24 (0.12) 0.085 (0.086) | 0.078 (0.079) | 0.076 (0.075)

kernel leads to the best mean NMI score among the methods that we examine.

4.4. Network of crime events. In the previous examples, we studied relationships be-
tween entities based on spatiotemporal events that are associated with them. To examine
connections between events, we now define an event network, which is both weighted and
directed, in which each event is a node and A denotes the adjacency matrix of this network.
That is, A(7, j) is the probability that event j is triggered by event i, and A(4,4) is the prob-
ability that event 7 is a background event. From this definition, we see that A is equal to
the expectation matrix P from subsection 3.3.2. The weight of an edge reflects a triggering
effect between two events, and the direction points from the earlier event to the later one.
(Removing weights yields an unweighted directed acyclic graph.) For example, we can build
a crime-event network in which each node is a crime incident (i.e., an event), and we infer
edges between events using our nonparametric spatiotemporal Hawkes model.

4.4.1. Stochastic declustering. With an event network, a natural question is whether one
can differentiate between “true” background events and triggered events. Such differentiation
using the probability p;; is called stochastic declustering [78]. To determine whether event 7 is
a background event, we compare p;; with a uniformly random sample from the interval (0, 1).
If p;; is larger than the random number, we consider this event to be from the background;
otherwise, we consider it to be triggered by other events.

We perform declustering experiments on synthetic data; we simulate ten synthetic point
processes using a fixed triggering matrix that we generate from a WSBM. (See subsection 4.1
for details of the WSBM.) Recall from Algorithm 3.3 that we retain causality information
(i.e., which events cause which others and which events are from the background) in our
simulations, giving a notion of “ground truth” about the ancestors of each event. One way
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Table 6

Comparison of our stochastic declustering results for the nonparametric spatiotemporal Hawkes, parametric
spatiotemporal Hawkes, and temporal Hawkes methods using synthetic point-process data with networks from a
WSBM (see subsection 4.1) and background labels from simulations using Algorithm 3.3. (We do not include
results for Bayesian Hawkes, because it does not provide P directly.) We report the mean and the standard
deviation (in parentheses) of the branching-ratio error, precision, and recall over ten simulations (which we do
for ten point processes with the same triggering kernels and triggering matriz K). For each simulation, each
calculation is the mean over 20 runs of stochastic declustering.

Nonparametric Parametric Temporal
Branching-ratio error | 0.039 (0.0050) 0.01 (0.011) 0.022 (0.019)
Recall 0.75 (0.0098) 0.65 (0.027) 0.60 (0.035)
Precision 0.70 (0.0082) 0.64 (0.0093) 0.59 (0.0086)

to measure the quality of declustering is by comparing the inferred branching ratio [67] with
the one from the ground-truth data. The branching ratio is defined as 1 — N,/N, where
Np is the number of background events and N is the total number of events. However,
the difference in branching ratios itself typically does not completely reflect reconstruction
errors. For example, in an extreme case, stochastic declustering can erroneously misclassify
some number of background events as triggered ones and the same number of triggered events
erroneously as background ones, although the branching ratio is the same as the true branching
ratio in this scenario. To resolve this problem, we view declustering as a binary classification
problem that assigns events to be either background or triggered events. We use measurements
such as recall and precision to evaluate our declustering results. Recall that “recall” is the
ratio between the number of background events that are correctly recovered by the declustering
methods (i.e., the true positives) to the total number of background events; and “precision”
is the ratio between the number of true positives to the number of events that are labeled
as background events by stochastic declustering. From the results in Table 6, we see that
the temporal Hawkes method performs worse than the nonparametric spatiotemporal Hawkes
and parametric spatiotemporal Hawkes methods. Our nonparametric spatiotemporal Hawkes
method has the best recall and precision (with the smallest variations as well), and our
parametric spatiotemporal Hawkes method has the smallest branching-ratio error.

4.4.2. Motif analysis. Declustering methods can help differentiate between background
and triggered events in an event network. To further examine spatiotemporal dynamics, we
consider causality information between events. Similar to a relational-event model [13], one
can obtain causality information from the matrix P, because p;; is the probability that event
j is triggered by event ¢. We focus on repeated patterns to obtain information about local
causal structure. Specifically, we examine network motifs [44], which are recurrent (and often
statistically significant) patterns in a network.

We find that motif analysis is insightful for studying gang-crime event networks. Gang
crimes are often characterized by retaliations (triggered crime events) between rival gangs;
this can lead to a series of tit-for-tat reciprocal crimes. To find significant gang-retaliation
patterns, we use a gang-crime data set (provided by the LAPD) from 2014-2015 with 4,158
events in Los Angeles. Using these data, we generate an event network with our nonparametric
spatiotemporal Hawkes method. We then threshold the network, by keeping only edges whose
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Figure 5. All possible three-node motifs for a network of events in the form of a directed acyclic graph
(DAG). The DAG structure arises from the temporal information in the events. We highlight the nodes in the
feedforward-loop motif (D) in red.

weight is at least 0.1 and then binarizing them, to yield an unweighted network. We use the
motif-detection method and code [1] from [44], including their null model.”

We find, for thresholds ranging from 0.5 to 0.001, that a three-node feedforward-loop motif
[41] occurs more significantly than by chance (with z-scores that are larger than 2) in both the
city-wide data set and in the South LA® subset (which consists of 1,912 events) of the data
set. Davies and Marchione [19] found that the same three-node motif is significant in networks
that they constructed (using different methods from ours both for network construction and
for motif detection) using data sets from maritime piracy and residential burglaries.

We focus on the South LA area because it is the center of a gang intervention program [10].
Establishing which causal structures are statistically significant has important implications for
countering gang violence, and a fast response to a gang crime may reduce the potential that
it triggers a future retaliation. Knowing that feedforward-loop network motifs occur at rates
that are larger than chance suggests that disrupting retaliation may require assessment of
trade-offs in how to allocate intervention resources. For example, in a simple triggering chain
(see Figure 5C), one can expect that intervention following an initial triggering event will
have a direct effect on the second event and an indirect effect on the third event, although the
effect on the third event may be attenuated by the intervening event. By contrast, we expect
that intervention following the first event in the feedforward-loop motif (see Figure 5D) will
have a direct effect on the second event and both a direct and indirect effect on the third
event. Given the feedforward structure, it is possible that the third event is more likely to be
disrupted from intervention following the first event than would be the case with only direct
intervention following the second event.

5. Conclusions and discussion. In this paper, we studied the role of spatial information
and nonparametric techniques in network reconstruction. We used point-process models to

"For each of our networks, we produce 100 “randomized” networks. To produce one such network, we use
the default edge-swapping approach from [44]. This entails making a number of random swaps equal to about
100—200 times the number of edges. For each node in a network, we require that the randomized network
preserves its numbers of in-edges, out-edges, and bidirectional edges.

8We use the term “South LA” to designate a specific area of Los Angeles that is defined in a recent Gang
Reduction and Youth Development (GRYD) report [10].
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infer latent networks from synthetic and real-world spatiotemporal data sets. We then applied
tools from network analysis to examine the inferred networks.

As we have illustrated, it is very important to incorporate spatial information in net-
work reconstruction. However, using such information effectively requires making a good
choice of spatiotemporal triggering kernels. We achieved this using a nonparametric approach.
Through experiments on synthetic data sets, we showed that a nonparametric spatiotemporal
Hawkes method is capable of doing a good job of successfully recovering spatial and temporal
triggering kernels. Moreover, our approach is able to infer a network structure that bet-
ter recovers—compared to other network-reconstruction methods that we studied—symmetry
and reciprocity, edge reconstruction, and community structure. Through experiments on real-
world data sets, we illustrated that our approach yields meaningful inferred networks, in the
sense that they have large positive correlations with some metadata.

Our approach is not limited to the Euclidean distance (for the spatial variables) that has
been used commonly in seismology [56] and crime applications [46]. In other words, although
the spatial triggering kernel go(r) in this paper is a function of Euclidean distance, one can
potentially use any notion of “distance” between two entities. For example, in a network, one
can measure a distance between two entities based on the length of shortest paths between
them. In a recent paper, Green, Horel, and Papachristos [25] proposed a social-contagion
model in which they assumed, using a parametric form, that the strength of triggering in a
Hawkes-process model depends on the shortest-path distance. With our approach, we can
nonparametrically estimate such dependence. To give another example, consider a point
process in which each event is associated with textual information. For instance, in a Twitter
data set, one can consider each tweet (a time-stamped body of text) as an event in a point
process. One can measure a distance between two tweets based on their text. It will be
interesting to apply our nonparametric spatiotemporal point-process approach to these and
other applications.

Naturally, our network-reconstruction method is not without limitations. It uses O(U?)
parameters for U nodes. To avoid underfitting, it requires a large number of observed events.
The computational complexity and memory requirement scale at least quadratically with the
number of events, so the current EM-type algorithm is not ideal for analyzing large data sets.
Therefore, it will be important to improve our inference method for network reconstruction,
especially for large data sets.

Appendix A. Preprocessing of the Gowalla data. In this section, we detail how we
preprocess the Gowalla data that were collected and studied in [15]. We examine data from
three cities: New York City, Los Angeles, and San Francisco. In Figure 6, we visualize the
networks that we use in this paper.

A.1. New York City (NYC). We study check-ins in New York City (NYC) during the
period April-October 2010. We use a bounding box (with a north latitude of 40.92, a south
latitude of 40.48, an east longitude of —73.70, and a west longitude of —74.26)? to locate
check-ins in NYC. We consider “active” users, who have at least 100 check-ins during the

9We obtain latitude and longitude coordinates from the Google Maps geocoding service through the website
http://www.mapdevelopers.com.
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(a) A subnetwork of the largest (b) A subnetwork of the largest (c¢) The 1-ego network of a user
connected component of the connected component of the of Gowalla in SF.
Gowalla network in NYC. Gowalla network in LA.

Figure 6. Three different friendship networks (from New York City, Los Angeles, and San Francisco) in
the Gowalla data set. We compare different network-reconstruction methods for these networks.

period. To alleviate our computational burden, we also only consider users who have at most
500 check-ins during the period to reduce the number of users and the total number of check-
ins. Our inference process requires computing a triggering probability for each pair of events
(i.e., check-ins); this results in a full upper-triangular matrix. The number of nonzero entries
in this matrix scales with the square of the total number of events, so the memory requirement
also scales quadratically with the number of events. We perform experiments only for cases in
which the total number of events is at most 10,000 to be able to store triggering probabilities
for all pairs of events in 4 GB of memory. There are 5,801 unique users with at least one
check-in in NYC during the period, and there are 101,329 check-ins in total. After removing
“Inactive” users (i.e., those with strictly fewer than 100 check-ins) and overly active users
(i.e., those with strictly more than 500 check-ins), we are left with 160 users and a total of
29,118 check-ins. We also restrict ourselves to users in the largest connected component (LCC)
of the network. This yields 46 users and 8,495 check-ins, on which we apply our inference
methodology.

A.2. Los Angeles (LA). We apply the same procedure as in Appendix A.1 on the check-
in data for Los Angeles (LA). The bounding box that we use for LA has a north latitude of
34.34, a south latitude of 33.70, an east longitude of —118.16, and a west longitude of —118.67.
We restrict the area of LA to be the same as that of NYC, although LA’s geographic area is
much larger than that of NYC. After selecting only users in the LCC of the Gowalla network
among users who are active (with at least 150 check-ins) but not overly active (with at most
1,000 check-ins) users, we are left with 23 users and 6,203 check-ins.

A.3. San Francisco (SF). To look at a different type of example, we also study the 1-
ego network of the most popular user (who has 14 friends) in San Francisco (SF). (A 1l-ego
network [74] of a node is an induced subgraph that includes a focal node—the ego—and its
neighbors, which are its adjacent nodes.) The bounding box that we use for SF has a north
latitude of 37.93, a south latitude of 37.64, an east longitude of —122.28, and a west longitude
of —123.17. In this 1-ego network, there are 9,887 check-ins.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/19 to 203.9.152.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

HAWKES PROCESSES AND NETWORK RECONSTRUCTION 379

Ac

knowledgments. We thank Chandan Dhal and Jialin Liu for helpful discussions and

preliminary work on community detection. We also thank Jialin Liu for making the plots in
Figure 4.

(11]
(12]

(13]
(14]

(15]

REFERENCES

MFINDER 1.21, http://www.weizmann.ac.il/mcb/UriAlon/download /network-motif-software.

M

C.

L.

<z

2Ne!

M

S.

E.

. AcHAB, E. BACRY, S. GAIFFAS, I. MASTROMATTEO, AND J.-F. Muzy, Uncovering causality from
multivariate Hawkes integrated cumulants, J. Mach. Learn. Res., 18 (2017), pp. 6998-7025.

AICHER, A. Z. JacoBs, AND A. CLAUSET, Learning latent block structure in weighted networks, J.
Complex Netw., 3 (2014), pp. 221-248.

AxkogLu, P. O. V. DE MELO, AND C. FALOUTSOS, Quantifying reciprocity in large weighted commu-
nication networks, in Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer-
Verlag, 2012, pp. 85-96.

. BACRY, I. MASTROMATTEO, AND J.-F. Muzy, Hawkes processes in finance, Mark. Microstructure

Lig., 1 (2015), 1550005.

. BALcan, V. Corizza, B. GoNgaLves, H. Hu, J. J. RAMASCO, AND A. VESPIGNANI, Multiscale

mobility networks and the spatial spreading of infectious diseases, Proc. Natl. Acad. Sci. USA, 106
(2009), pp. 21484-21489.

. BARBOSA, M. BARTHELEMY, G. GHOSHAL, C. R. JAMES, M. LENORMAND, T. LoUAIL, R. MENEZES,

J. J. RamAsco, F. SIMINI, AND M. TOMASINI, Human mobility: Models and applications, Phys. Rep.,
734 (2018), pp. 1-74.
. BARTHELEMY, Morphogenesis of Spatial Networks, Springer International Publishing, Cham, 2018.

. D. BLONDEL, J.-L. GUILLAUME, R. LAMBIOTTE, AND E. LEFEBVRE, Fast unfolding of communities

in large networks, J. Stat. Mech. Theory Exp., 2008 (2008), P10008.

. J. BRANTINGHAM, N. SUNDBACK, B. YUAN, AND K. CHAN, GRYD Intervention Incident Response &

Gang Crime 2017 Evaluation Report, 2017; available online at paleo.sscnet.ucla.edu/GRYD_IR_and_
Gang_Crime_Report_FINALv2.pdf.

. BROCKMANN, L. HUFNAGEL, AND T. GEISEL, The scaling laws of human travel, Nature, 439 (2006),

pp. 462-465.

. N. BRown, R. E. Kass, AND P. P. MITRA, Multiple neural spike train data analysis: State-of-the-art

and future challenges, Nature Neuroscience, 7 (2004), pp. 456—461.

. T. ButTs, A relational event framework for social action, Sociol. Methodol., 38 (2008), pp. 155-200.

CHEN, A. SHOJAIE, E. SHEA-BROWN, AND D. WITTEN, The Multivariate Hawkes Process in High
Dimensions: Beyond Mutual Ezcitation, preprint, https://arxiv.org/abs/1707.04928, 2017.

. CHo, S. A. MYERS, AND J. LESKOVEC, Friendship and mobility: User movement in location-based

social networks, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, New York, 2011, pp. 1082—-1090.

. D. CoNOVER, C. Davis, E. FERRARA, K. MCKELVEY, F. MENCZER, AND A. FLAMMINI, The
geospatial characteristics of a social movement communication network, PloS ONE, 8 (2013), €55957.

. CRESSIE, Statistics for Spatial Data, John Wiley & Sons, Hoboken, NJ, 2015.
. J. DALEY AND D. VERE-JONES, An Introduction to the Theory of Point Processes: Volume I1: General

Theory and Structure, Springer-Verlag, Berlin, 2007.

. DAVIES AND E. MARCHIONE, Event networks and the identification of crime pattern motifs, PloS ONE,

10 (2015), €0143638.

. EICHLER, R. DAHLHAUS, AND J. DUECK, Graphical modeling for multivariate Hawkes processes with
nonparametric link functions, J. Time Series Anal., 38 (2017), pp. 225-242.

FORTUNATO AND D. HRrIc, Community detection in networks: A user guide, Phys. Rep., 659 (2016),
pp. 1-44.

W. Fox, F. P. SCHOENBERG, AND J. S. GORDON, Spatially inhomogeneous background rate esti-
mators and uncertainty quantification for nonparametric Hawkes point process models of earthquake
occurrences, Ann. Appl. Stat., 10 (2016), pp. 1725-1756.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/19 to 203.9.152.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

380

YUAN, LI, BERTOZZI, BRANTINGHAM, AND PORTER

23]

[24]
[25]
[26]
[27]
28]
[29]
[30]
31]
[32]
33

34]

35]

(36]
37]
(38]
(39]
(40]
[41]
(42]
(43]
(44]
(45]
[46]

(47]

A.

M
M.
M
D.

D.

D.

E.

D.

w

o 0 o @

. W. Fox, M. B. SHORT, F. P. SCHOENBERG, K. D. CORONGES, AND A. L. BERTO0ZZI, Modeling

e-mail networks and inferring leadership using self-exciting point processes, J. Amer. Statist. Assoc.,
111 (2016), pp. 564-584.

W. J. GRANGER, Investigating causal relations by econometric models and cross-spectral methods,
Econometrica, 37 (1969), pp. 424-438.

. GREEN, T. HOREL, AND A. V. PAPACHRISTOS, Modeling contagion through social networks to explain

and predict gunshot violence in Chicago, 2006 to 2014, JAMA Intern. Med., 177 (2017), pp. 326-333.
C. HAaLL AND R. M. WILLETT, Tracking dynamic point processes on networks, IEEE Trans. Inform.
Theory, 62 (2016), pp. 4327-4346.

G. HAWKES AND D. OAKES, A cluster process representation of a self-exciting process, J. Appl.
Probability, 11 (1974), pp. 498-503.

. HOLME, Modern temporal network theory: A colloguium, Eur. Phys. J. B, 88 (2015), 234.
. G. JEUB, M. Bazzi, 1. S. JuTtLA, AND P. J. MucHA, A Generalized Louvain Method for Commu-

nity Detection Implemented in MATLAB (2011-2017; Version 2.1.1), http://netwiki.amath.unc.edu/
GenLouvain.

. Karsarl, H.-H. Jo, AND K. KASKI, Bursty Human Dynamics, SpringerBriefs in Complexity, Springer

International Publishing, Cham, 2018.
KIVELA, A. ARENAS, M. BARTHELEMY, J. P. GLEESON, Y. MORENO, AND M. A. PORTER, Multilayer
networks, J. Complex Netw., 2 (2014), pp. 203-271.

. KIVELA AND M. A. PORTER, Estimating interevent time distributions from finite observation periods

in communication networks, Phys. Rev. E, 92 (2015), 052813.

KUANG, P. J. BRANTINGHAM, AND A. L. BERTOZZI, Crime topic modeling, Crime Science, 6 (2017),
12.

Kuang, J. CHOO, AND H. PARK, Nonnegative matrix factorization for interactive topic modeling and
document clustering, in Partitional Clustering Algorithms, Springer International Publishing, Cham,
2015, pp. 215-243.

Kuang, C. DING, AND H. PARK, Symmetric nonnegative matrix factorization for graph clustering, in
Proceedings of the 2012 STAM International Conference on Data Mining, STAM, Philadelphia, 2012,
pp. 106117, https://doi.org/10.1137/1.9781611972825.10.

L. Lai, D. MoYER, B. YuaN, E. Fox, B. HUNTER, A. L. BERTOZZI, AND P. J. BRANTINGHAM,
Topic time series analysis of microblogs, IMA J. Appl. Math., 81 (2016), pp. 409-431.

L. LAURITZEN, Graphical Models, Clarendon Press, Oxford, 1996.

LAZER, A. PENTLAND, L. ADAMIC, S. ARAL, A.-L. BARABASI, D. BREWER, N. CHRISTAKIS, N. CON-
TRACTOR, J. FOWLER, M. GUTMANN, T. JEBARA, G. KiNnG, M. MAcy, D. Roy, AND M. VAN AL-
STYNE, Computational social science, Science, 323 (2009), pp. 721-723.

. LEwIS AND G. O. MOHLER, A Nonparametric EM Algorithm for Multiscale Hawkes Processes, preprint,

2011, available online at http://paleo.sscnet.ucla.edu/Lewis-Molher-EM _Preprint.pdf.

. LINDERMAN AND R. ADAMS, Discovering latent network structure in point process data, in International

Conference on Machine Learning, 2014, pp. 1413-1421.

MANGAN AND U. ALON, Structure and function of the feed-forward loop network motif, Proc. Natl.
Acad. Sci. USA, 100 (2003), pp. 11980-11985.

MARK, G. RAskuTTI, AND R. WILLETT, Network Estimation from Point Process Data, preprint,
https://arxiv.org/abs/1802.04838, 2018.

. MARSAN AND O. LENGLINE, Eztending earthquakes’ reach through cascading, Science, 319 (2008),

pp- 1076-1079.

MiLo, S. SHEN-ORR, S. ITzZKOvITZ, N. KASHTAN, D. CHKLOVSKII, AND U. ALON, Network motifs:
Simple building blocks of complex networks, Science, 298 (2002), pp. 824-827.

O. MOHLER, Marked point process hotspot maps for homicide and gun crime prediction in Chicago,
Int. J. Forecast, 30 (2014), pp. 491-497.

O. MOHLER, M. B. SHORT, P. J. BRANTINGHAM, F. P. SCHOENBERG, AND G. E. T1TA, Self-exciting
point process modeling of crime, J. Amer. Statist. Assoc., 106 (2011), pp. 100-108.

O. MOHLER, M. B. SHORT, S. MALINOWSKI, M. JOHNSON, G. E. TiTA, A. L. BERTOZZI, AND P. J.
BRANTINGHAM, Randomized controlled field trials of predictive policing, J. Amer. Statist. Assoc., 110
(2015), pp. 1399-1411.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/19 to 203.9.152.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

HAWKES PROCESSES AND NETWORK RECONSTRUCTION 381

(48]

[49]
[50]

[51]
[52]

(53]
[54]
[55]
[56]

[57]

(58]
[59]
(60]
(61]
(62]

(63]

(64]

(65]

P.

J.

KoK <Ko 22 2

)

> = E =

[66] A

[67]
(68]
(69]
[70]
(71]

(72]

J. MucHA, T. RICHARDSON, K. MAcoN, M. A. PORTER, AND J.-P. ONNELA, Community structure
in time-dependent, multiscale, and multiplex networks, Science, 328 (2010), pp. 876-878.

A. NELDER AND R. J. BAKER, Generalized Linear Models, John Wiley & Sons, Hoboken, NJ, 1972.

. E. J. NEWMAN, Finding community structure in networks using the eigenvectors of matrices, Phys.
Rev. E, 74 (2006), 036104.

. E. J. NEWMAN, Networks, 2nd ed., Oxford University Press, Oxford, UK, 2018.

. E. J. NEWMAN AND M. GIRVAN, Finding and evaluating community structure in networks, Phys.
Rev. E, 69 (2004), 026113.

. Nouvras, S. SCeLLATO, R. LAMBIOTTE, M. PONTIL, AND C. MASCOLO, A tale of many cities:

Universal patterns in human urban mobility, PloS ONE, 7 (2012), e37027.

. OGATA, On Lewis’ simulation method for point processes, IEEE Trans. Inform. Theory, 27 (1981),

pp. 23-31.

. OGATA, Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer.

Statist. Assoc., 83 (1988), pp. 9-27.

. OGATA, Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math., 50

(1998), pp. 379-402.

. P. PEIXOTO, Bayesian Stochastic Blockmodeling, preprint, https://arxiv.org/abs/1705.10225, 2018; in

Advances in Network Clustering and Blockmodeling, P. Doreian, V. Batagelj, A. Ferligoj, eds., John
Wiley & Sons, New York, in press.

. O. PERRY AND P. J. WOLFE, Point process modelling for directed interaction networks, J. R. Stat.

Soc. Ser. B. Stat. Methodol., 75 (2013), pp. 821-849.

. A. PORTER AND J. P. GLEESON, Dynamical Systems on Networks: A Tutorial, Front. Appl. Dyn.
Syst. Rev. Tutor. 4, Springer International Publishing, Cham, 2016.

. A. PORTER AND S. D. HOWISON, The Role of Network Analysis in Industrial and Applied Mathemat-
ics, preprint, https://arxiv.org/abs/1703.06843, 2017.

. A. PORTER, J.-P. ONNELA, AND P. J. MucHA, Communities in networks, Notices Amer. Math. Soc.,
56 (2009), pp. 1082-1097, 1164-1166.

. REINHART, Rejoinder: A review of self-exciting spatio-temporal point processes and their applications,

Statist. Sci., 33 (2018), pp. 330-333.

. SCELLATO, A. NouLAs, AND C. MASCOLO, Ezxploiting place features in link prediction on location-based

social networks, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, New York, 2011, pp. 1046-1054.

. P. SCHOENBERG, D. R. BRILLINGER, AND P. GUTTORP, Point processes, spatial-temporal, in Ency-

clopedia of Environmetrics 3, John Wiley & Sons, Chichester, UK, 2002, pp. 1573-1577.
. B. SHORT, P. J. BRANTINGHAM, A. L. BERTOZZI, AND G. E. TITA, Dissipation and displacement of
hotspots in reaction—diffusion models of crime, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 3961-3965.

. SIMMA AND M. I. JORDAN, Modeling events with cascades of Poisson processes, in Proceedings of the

Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, VA, 2010,
pp. 546-555.

. SORNETTE AND S. UTKIN, Limits of declustering methods for disentangling exogenous from endogenous

events in time series with foreshocks, main shocks, and aftershocks, Phys. Rev. E, 79 (2009), 061110.

. SQUARTINI, F. Piccioro, F. RUZZENENTI, AND D. GARLASCHELLI, Reciprocity of weighted networks,

Sci. Rep., 3 (2013), 02729.

. STOMAKHIN, M. B. SHORT, AND A. L. BERTOZZ1, Reconstruction of missing data in social networks

based on temporal patterns of interactions, Inverse Problems, 27 (2011), 115013.

. STREHL AND J. GHOSH, Cluster ensembles—A knowledge reuse framework for combining multiple

partitions, J. Mach. Learn. Res., 3 (2002), pp. 583-617.

. Suny, J. L1, Y. Mao, R. ZHANG, AND L. WANG, Inferring Multiplex Diffusion Network via Multi-

variate Marked Hawkes Process, preprint, https://arxiv.org/abs/1809.07688, 2018.

. Trra, P. J. BRANTINGHAM, A. GALSTYAN, AND Y.-S. CHO, Latent self-exciting point process model

for spatial-temporal networks, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), pp. 1335-1354.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/19 to 203.9.152.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

382

YUAN, LI, BERTOZZI, BRANTINGHAM, AND PORTER

(73] A.

[74] J.

[75] A.

[76] B.

[77] K.

(78] J.

[79] J.

L. Traup, E. D. KgLsic, P. J. MucHA, AND M. A. PORTER, Comparing community structure
to characteristics in online collegiate social networks, SIAM Rev., 53 (2011), pp. 526-543, https:
//doi.org/10.1137/080734315.

UGANDER, B. KARRER, L. BACKSTROM, AND C. MARLOW, The Anatomy of the Facebook Social
Graph, preprint, https://arxiv.org/abs/1111.4503, 2011.

VEEN AND F. P. SCHOENBERG, Estimation of space—time branching process models in seismology using
an EM-type algorithm, J. Amer. Statist. Assoc., 103 (2008), pp. 614-624.

Wang, X. Luo, F. ZuANG, B. YuAN, A. L. BERTOZZI, AND P. J. BRANTINGHAM, Graph-Based
Deep Modeling and Real Time Forecasting of Sparse Spatio-Temporal Data, preprint, https://arxiv.
org/abs/1804.00684, 2018.

Zuou, H. ZHA, AND L. SONG, Learning social infectivity in sparse low-rank networks using multi-
dimensional Hawkes processes, in Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, 2013, pp. 641-649.

ZHUANG, Y. OGATA, AND D. VERE-JONES, Stochastic declustering of space-time earthquake occur-
rences, J. Amer. Statist. Assoc., 97 (2002), pp. 369-380.

ZHUANG, Y. OGATA, AND D. VERE-JONES, Analyzing earthquake clustering features by using stochastic
reconstruction, J. Geophys. Res., 109 (2004), B05301.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Self-exciting point processes
	Temporal multivariate models
	Spatiotemporal point processes

	Spatiotemporal models for network reconstruction
	A parametric model
	A nonparametric model
	Model estimation
	Parametric model
	Nonparametric model

	Simulations

	Numerical experiments and results
	Synthetic data
	Symmetry and reciprocity
	Edge reconstruction
	Inferred kernels
	Community-structure recovery

	Gowalla friendship network
	Crime-topic network
	Community detection

	Network of crime events
	Stochastic declustering
	Motif analysis


	Conclusions and discussion
	Appendix A. Preprocessing of the Gowalla data
	New York City (NYC)
	Los Angeles (LA)
	San Francisco (SF)

	Acknowledgments

