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Abstract
Distributed systems are notoriously difficult to design and
implement correctly. Formal verification provides correct-
ness proofs, and has recently been successfully applied to
various distributed systems. At the heart of a typical formal
verification is a computer-checked proof with an inductive
invariant. Finding this inductive invariant is the hardest part
of the proof: a part that is currently undertaken manually
by the developer and is responsible for most of the effort
associated with formal verification.

In this paper, we present a new approach: Incremental In-
ference of Inductive Invariants (I4), to automatically generate
inductive invariants for distributed protocols. We start from
a simple idea: the inductive invariant of a finite instance of
the protocol must be an instance of a general inductive invari-
ant for the infinite distributed protocol. In I4, we instantiate
a finite instance of the protocol, work out the finite induc-
tive invariant of this instance, then figure out the general
inductive invariant as a generalization of the finite invariant.
Our experiments show that I4 can finish the general proof of
correctness of several systems with minimal human effort.
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1 Introduction
For more than 50 years, the systems community and the
industry have been relying on testing to increase their confi-
dence in the correctness of software [3, 5, 17, 27, 39]. As the
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availability demands started to increase, however, we real-
ized that perhaps testing is not enough: even the most thor-
ough testing discipline is bound to occasionally miss a bug,
which may manifest during production, resulting in loss of
availability, revenue, and company reputation [10, 41, 42, 44].
This has led many researchers and companies to look for
alternative ways to develop software with strong correctness
guarantees.
Thankfully, our increasing need for availability has been

paralleled by an increase in the capabilities of formal verifica-
tion techniques. In the last five years, the systems community
has embraced these tools and techniques enthusiastically and
has started proposing solutions for building provably-correct
systems [7, 8, 22, 23, 28, 34, 38].

However, existing approaches to formally verifying com-
plex systems are fundamentally unscalable. They use interac-
tive and automated theorem provers [11, 32, 35, 36, 40] to dis-
patch a number of proof obligations, thus making the proof
easier. At the heart of every proof, however, lies a critical
process that these approaches cannot automate: finding an in-
ductive invariant. An inductive invariant is an invariant—i.e.,
a safety property thatmust always hold during an execution—
that can be shown to hold inductively. In all but the simplest
systems, the safety property that one sets out to prove—
e.g., at most one node holds the lock at all times—is indeed
an invariant; but this invariant is not strong enough to sup-
port an inductive argument—i.e., that if the invariant holds
in some state and the system transitions to another state, the
invariant will still hold. An inductive invariant is typically
much stronger: it implies the desired safety property, but
also enables inductive reasoning by including other clauses
describing various aspects of the system.
Finding an inductive invariant is tantamount to proving

the correctness of the system; but it is also the hardest part
of the proof. Most importantly, these inductive invariants
are very complicated, even for simple systems. As the sys-
tem complexity increases, these invariants grow proportion-
ally more complex, too. During the IronFleet project [22],
the authors spent about one week trying to identify the
inductive invariant for a very simple distributed protocol,
where a number of nodes pass around a token in a ring.
After careful thought and long discussions, they identified
an invariant that included 5 separate clauses which, when
combined, were sufficient to support an inductive proof. It
is perhaps not surprising then, that when they attempted to
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find the inductive invariant of a real-world system—i.e. the
Paxos protocol [29]—the required effort was in the order of
months.
In this work, we explore an automated way of finding

such inductive invariants; one that does not rely on human
intuition. The core insight that drives this new approach is
that the basic elements of these invariants are independent
of the size of the system; and we could thus infer them from
small, finite instances. For example, the inductive invariant
of the token ring mentioned above states that only the last
node in a sequence of token owners can hold the token. This
must be true regardless of the number of nodes on the ring.
Similarly, the inductive invariant of Paxos states that any
two quorums of acceptors must overlap in at least one node;
this must hold for any number of participating acceptors.

We leverage this insight to automate the process of identi-
fying inductive invariants for distributed systems. We pro-
pose a new proof technique and tool called Incremental In-
ference of Inductive Invariants (I4). The idea of I4 is to first
identify the inductive invariant of a small instance of the
system and then to use that instance-specific invariant to
infer a generalized invariant that holds for all instances.

A crucial requirement of the I4 process is that we be able
to automatically identify the inductive invariant for a small
instance of the system. To that end, we leverage the decades
of progress made by the model checking community. Model
checking is typically considered inadequate [2, 22, 43] for
proving the correctness of real-world distributed systems,
as the state space it must explore increases rapidly. While
this state explosion certainly happens in generic distributed
systems, model checking is powerful enough to prove the
correctness of small, finite instances. In particular, the IC3
model checker [4] has shown that it is possible, given a
finite and moderately complex system instance, to either
provide an inductive invariant which implies the desired
safety property; or to produce a counterexample if the system
is not correct. I4 harvests this power as a means to an end:
not to prove the correctness of those small instances, but to
infer an inductive invariant that holds for all instances.

2 Related Work
In this section, we talk about existing approaches in dis-
tributed system verification and in finding inductive invari-
ants.

2.1 Verification of Distributed Systems
Formal verification is gaining popularity in the systems com-
munity as an alternative to testing. Its significance is partic-
ularly pronounced in distributed systems, which are notori-
ously subtle and complex. Lamport’s TLA+ [30] has mostly
been used to prove the correctness of abstract protocols,
as it is not really designed for actual implementations. The

first practical verified implementations of distributed sys-
tems camewith IronFleet [22] and Verdi [43]. IronFleet uses a
combination of refinement and reduction [33] to facilitate the
verification of distributed systems. Verdi, on the other hand,
uses a series of system transformers. It starts by proving the
correctness of the system under a very strong model and
uses the transformers to prove refinement to increasingly
weaker models. Both Verdi and IronFleet rely on manual
effort to identify the inductive invariants of the system—and
thus prove its correctness.

Ivy [36] aims to reduce that effort by facilitating the hard-
est part about proving correctness properties: finding an
inductive invariant. To achieve that, Ivy restricts the imple-
mentation enough to ensure that it includes no undecidable
proposition. Verification in Ivy is a manual and interactive
process, where the developer iteratively refines the invariant
using the counterexamples provided by Ivy, until an induc-
tive invariant is identified.

2.2 Inductive Invariants
To overcome the challenge of finding an inductive invari-
ant, previous work has taken a number of approaches for
both finite and infinite programs. Daikon [14] was proposed
in 2000 to learn possible program invariants, followed by
Houdini [15] which learns conjunctive inductive invariants.
IC3 [4] and PDR [13] can automatically find inductive in-
variants for finite state machines, and were later extended
to certain systems with infinite-domain variables [9, 24].
For list-manipulating programs, Property-Directed Shape
Analysis [25] and UPDR [26] have shown effective results,
though the approach doesn’t guarantee termination. Greben-
shchikov et al. [21] show that P ∧ T =⇒ P ′ (i.e., a Horn
clause) is the most common pattern in program verification,
and the ICE learning model [12, 16] uses this result to syn-
thesize invariants. Although some of these techniques can
deal with a finite number of variables with infinite domains
(e.g., strings or infinite integers), they cannot effectively deal
with distributed systems, whose state typically contains an
unbounded number of variables (e.g. an unbounded set of
sent messages, and infinite copies of a state variable in dif-
ferent nodes).

3 Algorithm
The notion that verifying a parameterized distributed system
consisting of n identical interacting processes can be accom-
plished by verifying a relatively small finite instantiation
was first proposed by Pnueli et al. [37] The basic idea is that
a system of n > n0 processes can be verified by checking
an instance with just n0 processes, where n0 is linear in the
number of local state variables of a single process.
This fundamental idea is the inspiration behind I4. In-

stead of computing n0, however, we perform verification on
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Figure 1. Flow of I4. Light blue boxes are fully automated, black boxes are partially automated.

instances of increasing size until we obtain the desired induc-
tive invariant. This is done primarily because Pnueli et al.’s
result does not readily apply to protocols where the state
space in every process is infinite, which is a common occur-
rence in distributed systems. We show in Section 4 that even
for infinite-state systems, I4 can infer the inductive invariant
from a very small instance.
To model-check invariant instances on a small number

of processes, we leverage model-checking techniques and
our Averroes Formal Hardware Verification system [18, 31],
which we are using as a proof-of-concept demonstration.
Averroes v2.0 (AVR) [18] is a word-level IC3-based model
checker that exploits data abstraction to significantly reduce
verification complexity and has shown very good perfor-
mance for hardware model checking [19, 20]. Given a finite
transition system, a predicate on initial states, and a safety
property that must hold on all reachable states, AVR will
automatically produce either (i) an inductive invariant, i.e. a
conjunction of the safety property and a number of strength-
ening assertions; or (ii) a counterexample showing how the
property is violated.
Figure 1 shows the high-level design flow of the I4 sys-

tem. Starting with a distributed protocol described in the
Ivy language [36], we create an initial small finite instance
of the protocol (step 1 ). In this step we bound everything
to a small finite instance—e.g. the number of nodes in the
protocol, the number of views in Paxos, etc. This is currently
done manually, but the process is mostly mechanical and we
aim to automate it in the future. In our prototype implemen-
tation, this finite instance is encoded in the SystemVerilog
Hardware Description language [1]. This may seem like
an odd choice for software verification. Indeed, our initial
prototype uses Verilog out of mere convenience, as AVR na-
tively supports it. Our end goal is to encode the protocol in a
higher-level language, like Ivy [36] or Dafny [32], and then
automatically translate that description into a format that
AVR understands.

In step 2 , when AVR is applied to a finite instance of a
distributed protocol, it either produces a counterexample
trace as evidence of how the protocol fails to satisfy the
safety property or an inductive invariant specific to that
finite instance (protocol.finv). Failure of the property on a
finite instance of the protocol indicates the presence of bugs
in the protocol or property specification, and we need to
manually inspect the counterexample to debug the protocol
(step 3 ).

Assuming a successful outcome from AVR, the next step
in the I4 flow is to generalize the finite invariant to instances
of arbitrary size in step 4 by universally quantifying the
strengthening assertions produced by AVR. Consider, for ex-
ample, the strengthening assertion P(N1), where P denotes
an arbitrary predicate and N1 is one of the nodes in the finite
instantiation of the protocol. This assertion is generalized
to apply for all nodes; i.e. ∀N1. P(N1). Assertions involving
different nodes require a slightly more complex general-
ization. For example, an assertion such as P(N1) ∧ Q(N2)

where P and Q are different predicates is generalized to
∀N1,N2. (N1 , N2) =⇒ P(N1) ∧Q(N2).
The generalized assertions are then combined with the

original protocol and passed on to Ivy (step 5 ), which checks
if they are sufficient to prove the correctness of the protocol.
Ivy will check if the conjunction of all assertions is inductive.
In particular, it tries to answer the following question: given
a transition from state s to state s ′, such that the conjunction
of all assertions holds for s , does each assertion hold for s ′?
This question is asked separately for each assertion. There
are three possible outcomes:

1. The generalized assertions are sufficient and Ivy suc-
cessfully proves the correctness of the protocol.

2. Ivy fails to prove the safety property on s ′. This hap-
pens if the finite instance that led to the generalized
assertions was too small to capture all behaviors of the
distributed protocol. In this case, we need to create an
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instance with a larger size (with more nodes, etc.) and
repeat the process (step 6 ).

3. Ivy fails to prove one or more of the generalized as-
sertions on s ′. There are two possible reasons for this
failure. First, it is possible that some assertion A is too
strong: even when assuming that the conjecture of
all assertions holds for s , that is not enough to prove
that A holds in s ′. In this case, I4 uses an automatic
refinement step to weaken the assertion (step 7 ).

This step consists of using a number of heuristics
to identify an appropriate weakening for the failing
assertion. We consider, for example, whether the as-
sertion holds only for “special” nodes (e.g. the node
that initially holds the lock). Such special nodes are
typically defined as constants in the protocol descrip-
tion. We use these constants as hints to perform the
appropriate weakening. For example, when weakening
the assertion ∀N1,N2. (N1 , N2) =⇒ P(N1) ∧Q(N2),
we consider the fact that N1 is actually the node that
initially holds the lock—denoted as N1 = f irst in
our instantiation. The weakened assertion then be-
comes ∀N1,N2. (N1 = f irst) =⇒ ((N1 , N2) =⇒

P(N1) ∧Q(N2)). After we refine all failing assertions
in the inductive invariant, we feed it back to Ivy to
check if further refinement is necessary. I4 automati-
cally repeats this process until the proof succeeds or
until our heuristics are exhausted and no refinement
is possible.

Overall, the I4 methodology starts with a too-strong ver-
sion of the invariant and applies heuristics to incrementally
weaken assertions that are too strong. The caveat, of course,
is that if our weakening is too aggressive, we will end up
with a too-weak assertion. Currently we do not have a mech-
anism for identifying and strengthening too-weak assertions.
If this happens, I4 will keep weakening the invariant until it
is too weak to support the safety property, at which point we
are back in case (2) and need to consider a larger instance.

4 Evaluation
We evaluate the ability of I4 to infer inductive invariants
by testing it on three case studies: a lock server, a leader
election algorithm, and a distributed lock protocol. For
all three cases, we manually instantiated a finite instance
of the protocol. From that instance, I4 was then able to au-
tomatically infer a general inductive invariant that passes
Ivy’s verification.

Before we discuss I4’s success stories, however, we should
caution the reader against generalizing these successes to
larger and more complicated protocols. Our results thus far
have been promising; but they do not yet scale to complex
distributed protocols, like Paxos [29]. Section 5 discusses
some of the limitations and future directions of this work.

4.1 Lock Server
Our first case study is a simple lock server[36, 43], a protocol
with both infinite clients and infinite servers. Every server
maintains a lock and the server’s state is a semaphore indi-
cating if it currently holds its lock. Every client-server pair
is associated with a boolean link(C,S) which denotes if client
C holds the lock of server S . Initially, every server holds its
own lock and all client-server links are set to false.
There are two possible actions in this protocol. A client

may send a lock request and acquire that server’s lock, if
that server currently holds its lock. A client may also release
a lock, handing it back to the server. In this protocol, the
safety property is defined as “no two clients can have a link
to (i.e. hold the lock of) the same server at the same time”:

∀C1,C2, S . link(C1, S) ∧ link(C2, S) =⇒ (C1 = C2)

We instantiated this protocol with 1 server and 4 clients, and
used AVR to obtain the inductive invariant of this particular
instance. The inductive invariant is:

¬(semaphore_0 ∧ link_0_0) ∧

¬(semaphore_0 ∧ link_1_0) ∧

¬(semaphore_0 ∧ link_2_0) ∧

¬(semaphore_0 ∧ link_3_0) ∧

Saf ety Property

It turns our that the above inductive invariant is the easiest
to generalize. In fact I4 only needed to apply step 4 : putting
universal quantifiers before every strengthening assertion.
The resulting generalized inductive invariant below indeed
passes Ivy’s verification without any manual effort.

∀S0,C0. ¬(semaphore(S0) ∧ link(C0, S0)) ∧

∀S0,C1. ¬(semaphore(S0) ∧ link(C1, S0)) ∧

∀S0,C2. ¬(semaphore(S0) ∧ link(C2, S0)) ∧

∀S0,C3. ¬(semaphore(S0) ∧ link(C3, S0)) ∧

Saf ety Property

This first result is promising, but as the protocols and their
inductive invariants get more complicated, mere generaliza-
tion will not be enough; I4’s refinement process will have to
come into the picture.

4.2 Leader Election
Our second case study is more complex: it is a protocol
for leader election on a ring [6, 36]. This protocol has an
unbounded number of nodes, but each node can only com-
municate with its two neighbors on the ring. Each node has
a unique ID and the goal of the algorithm is to elect the node
with the highest ID to be the leader. A node can either (a)
send its ID to the next node or (b) forward a message from
the previous node, if the ID in the message is larger than its
own ID. When a node receives its own ID, it is clear that no
other ID is larger than its own and it becomes the leader.
In this protocol, the safety property is defined as “there

cannot be two distinct leaders”:

∀N1,N2. leader (N1) ∧ leader (N2) =⇒ (N1 = N2)
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Since a meaningful ring involves at least three nodes, we use
an instance with three nodes to generate the finite inductive
invariant:

¬((pendinд_0 = idn_0) ∧ ¬(idn_2 ≤ idn_0)) ∧

¬((pendinд_0 = idn_0) ∧ (idn_0 ≤ idn_1)) ∧

¬((pendinд_0 = idn_1) ∧ (idn_1 ≤ idn_2)) ∧

¬((pendinд_1 = idn_1) ∧ ¬(idn_0 ≤ idn_1)) ∧

¬((pendinд_1 = idn_1) ∧ (idn_1 ≤ idn_2)) ∧

¬((pendinд_1 = idn_2) ∧ (idn_2 ≤ idn_0)) ∧

¬((pendinд_2 = idn_0) ∧ (idn_0 ≤ idn_1)) ∧

¬((pendinд_2 = idn_2) ∧ ¬(idn_1 ≤ idn_2)) ∧

¬((pendinд_2 = idn_2) ∧ (idn_2 ≤ idn_0)) ∧

¬(leader_0 ∧ ¬(idn_2 ≤ idn_0)) ∧

¬(leader_0 ∧ (idn_0 ≤ idn_1)) ∧

¬(leader_1 ∧ ¬(idn_0 ≤ idn_1)) ∧

¬(leader_1 ∧ (idn_1 ≤ idn_2)) ∧

¬(leader_2 ∧ ¬(idn_1 ≤ idn_2)) ∧

¬(leader_2 ∧ (idn_2 ≤ idn_0)) ∧

Saf ety Property

In this case, generalization (step 4 ) is not enough. Take
the third (highlighted) clause of the finite inductive invariant
above, for example. After generalization, this clause becomes:
∀N 0,N 1,N 2. (N 0 ,N 1) ∧ (N 0 , N 2) ∧ (N 1 , N 2) =⇒
¬((pendinд(N 0) =idn(N 1)) ∧ le(idn(N 1), idn(N 2)))

This clause is now too strong. This property doesn’t ac-
tually hold for all triplets of nodes N0,N1,N2. In fact, this
property only holds if N 1 is between N 0 and N 2 on the ring.
The automatic refinement process of I4 realizes (using Ivy’s
feedback) that this clause is too strong and weakens it using
the btw (read "between") relation found in the original pro-
tocol. The resulting inductive invariant is shown in Table 1,
with the relevant clause highlighted for reference. This in-
ductive invariant passes Ivy’s verification, thus proving the
correctness of the protocol without manual assistance.

4.3 Distributed lock protocol
Our last experiment is a distributed lock protocol [22, 36].
This protocol also has an unbounded number of nodes that
transfer ownership of a lock among them. The ownership of
a lock is associated with an ever increasing epoch number,
to allow detection of stale messages. Initially the lock is held
by a designated node called first.

If a node N holds the lock at epoch ep(N ), N can pass the
lock to any node N ′ in the system at epoch E > ep(N ) by
sending them a trans f er (E,N ′). When a node N ′ at epoch
ep(N ′) receives a trans f er message with epoch E ′ > ep(N ′),
node N ′ accepts the lock at epoch E ′, and sends a locked
message with epoch E ′ to denote that N ′ holds the lock at
epoch E ′. Otherwise, if E ′ ≤ ep(N ′), N ′ ignores this stale
message. As the networkmay delay or duplicate anymessage,
we maintain all possible trans f er (E,N ) messages.

The safety property of the protocol is “no two distinct
nodes can have the lock at the same time”:

∀N1,N2,E. locked(E,N1) ∧ locked(E,N2) =⇒ (N1 = N2)

0%

20%

40%

60%

80%

100%

Exp. 1 Exp. 2 Exp. 3

find invariant minimize invariant I4 loop

Figure 2. Runtime Break Down

This protocol involves two sources of infinity: the number of
nodes and the number of epochs. Unlike previous examples,
even an instance with just two nodes would be enough to
generate an unbounded number of messages by passing the
lock between them with ever increasing epoch numbers. We
therefore need to bound not just the number of nodes, but
also the number of epochs to derive a finite instance of the
protocol. In fact, we were able to prove the correctness of
the protocol based on a finite instance with just two nodes
and four epochs.
Given the inductive invariant for this finite instance, I4

finds the general inductive invariant after seven iterations
of refinement.

Scalability. In an attempt to understand the scalability of
the I4 approach, we applied it to larger instances of the
distributed lock protocol. Table 2 shows the evaluation of
three instances of size (2, 4), (2, 8), and (8, 4), where (m,n)
indicates an instance withm nodes and n epochs. We find
that both the complexity of the finite inductive invariant and
the I4 execution time grow exponentially with the size of
the system.
Figure 2 shows a breakdown of the I4 execution time. A

large fraction of the time (6% ∼ 50%) is currently taken by our
invariant minimization process: we not only ask AVR for a
finite inductive invariant, but we further ask it to remove any
redundancy from the invariant’s clauses, if possible. This
process produces more compact and readable invariants,
but it is not really necessary for automation, so we aim to
dispense with it in the future.

4.4 Comparison With Other Tools
The lock server protocol is taken from [36, 43]. With the
Coq and Verdi framework, the authors write a proof that
is approximately 500 lines long. In Ivy, it still requires 8
iterations of user-guided generalizations. I4 finishes the proof
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Table 1. General Invariant of Leader Election

∀N 0,N 2. (N 0 , N 2) =⇒ ¬((pendinд(N 0) = idn(N 0)) ∧ ¬le(idn(N 2), idn(N 0))) ∧

∀N 0,N 1,N 2. rinд.btw(N 0,N 1,N 2) ∧ rinд.btw(N 1,N 2,N 0) ∧ rinд.btw(N 2,N 0,N 1) =⇒
((N 0 , N 1) ∧ (N 0 , N 2) ∧ (N 1 , N 2) =⇒ ¬((pendinд(N 0) = idn(N 1)) ∧ le(idn(N 1), idn(N 2)))) ∧

∀N 0,N 2. (N 0 , N 2) =⇒ ¬(leader (N 0) ∧ ¬le(idn(N 2), idn(N 0))) ∧

Saf ety Property

Table 2. Scalability results

Exp.1 Exp.2 Exp.3
# of nodes 2 2 8
# of epochs 4 8 4

size of 40 457 686initial invariant
size of 38 209 602minimized invariant

# of refine iterations 8 15 14
total time(s) 11.960 378.306 5271.316

with automatic inductive invariant inference at our first
attempt, in a few seconds.

The distributed lock protocol is taken from [22, 36]. With
the Dafny and IronFleet framework, proving the correctness
of this protocol took the authors several days, most of which
was spent on identifying the inductive invariant. With Ivy,
it still requires several hours to iterate with the user-guided
generalizations. I4 proved the correctness of the protocol
automatically and took only 12 seconds.

5 Discussion
Our experiments show that our algorithm can automate the
process of finding inductive invariants, but there is much
room for improvement:

• Choosing an instance size. When instantiating a
protocol, we need to use an instance that is large
enough to exhibit all the interesting properties of an
arbitrarily-sized instance. Currently, we incrementally
increase the size of the instance to guarantee we will
eventually consider an instance that is large enough.
In our experiments, we manually select an initial size
to speed this process up.

• Instantiating. Currently, we need to manually instan-
tiate the protocol to a finite system and feed it to AVR.
We plan to fully automate this process.

• Leveraging Ivy’s feedback.We are currently using
Ivy as a means to detect which strengthening asser-
tions are part of an inductive invariant. We have plans
to further leverage the counterexamples produced by
Ivy to guide our refinement.

• Heuristic refinement. Heuristic refinement is criti-
cal in our algorithm. We are currently using a small

number of heuristics during our refinement step. These
heuristics are sufficient to perform refinement for the
simple protocols we have considered so far. As we
apply I4 to more complex protocols, we expect our
arsenal of heuristics to grow.

• Verifying implementation. Our current approach
focuses on verifying distributed protocols, rather than
implementations. Automating the proof of a full dis-
tributed implementation is much harder, as it usually
requires reasoning about undecidable fragments of
logic, which are notoriously hard to verify automati-
cally.

6 Conclusion
We have presented I4, a tool for incremental inference of
inductive invariants. I4 is based on a simple intuition: an
inductive invariant of a small finite instance can be used to
infer a general inductive invariant. We leverage the power
of model-checking to automatically identify the invariants
of small instances and we use an iterative refinement pro-
cess to identify an invariant that holds for all instances of
the system. I4 was successful in automatically inferring the
inductive invariants for three simple distributed protocols.
Our next steps will be to scale our approach to larger and
more complex distributed systems.
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