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ABSTRACT: Identifying stable coexistence in empirical systems is noto-
riously difficult. Here, we show how spatiotemporal structure and com-
plex system dynamics can confound two commonly used stability metrics
in empirical contexts: response to perturbation and invasion rate when
rare. We use these metrics to characterize stable coexistence across a
range of spatial and temporal scales for five simulated models in which
the ability of species to coexist in the long term is known a priori and for
an empirical old field successional time series. We term the resulting
multivariate distribution of metrics a “stability fingerprint.” In accor-
dance with a wide range of classic and recent studies, our results demon-
strate that no combination of empirically tractable metrics or measure-
ments is guaranteed to “correctly” characterize coexistence. However,
we also find that heuristic information from the stability fingerprint
can be used to broadly characterize dynamic behavior and identify cir-
cumstances under which particular combinations of species are likely to
persist. Moreover, stability fingerprints appear to be particularly well
suited for matching potential theoretical models to observed dynamics.
These findings suggest that it may be prudent to shift the focus of em-
pirical stability analysis away from quantifying single measures of sta-
bility and toward more heuristic, multivariate characterizations of com-
munity dynamics.

Keywords: population stability, community stability, spatial scale, tem-
poral scale, perturbation, mutual invasibility.

Introduction

The primary purpose of this article is to demonstrate how
an empiricist might study stable coexistence in real-world
settings. Such assessments are of great practical importance,
as they are necessary prerequisites for prescriptive manage-
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ment of ecological systems and for testing theory (Levin
1992; Murdoch 1994; Ives and Carpenter 2007). However,
the proper application of existing coexistence metrics requires
substantial a priori knowledge about community structure,
or measurements that are infeasible in empirical contexts
(Stommel 1963; Turelli 1986; Donohue et al. 2016). Conse-
quently, predictions about whether a particular combination
of species is likely to coexist in the long term remain rare, par-
ticularly in diverse, real-world systems (Lawton 1999; Ches-
son 2003; Siepielski and McPeek 2010; Adler et al. 2013).
Although there is no universally accepted definition of
“stable coexistence,” most ecologists would probably agree
that a stably coexisting community should retain a particu-
lar combination of species despite minor disturbances, even
when measured at some point in the distant future. This
property is called “persistence,” and it encompasses a wide
range of dynamic behaviors (Pimm 1984; Anderson et al.
1992; Grimm and Wissel 1997). Persistent states might be
centered around a fixed point (Saavedra et al. 2017), an os-
cillatory cycle (May 1974), a stochastic distribution (Turelli
1986), or a moving trend (Chesson 2017). They might be
robust to infinitely small perturbations (May 1973), pertur-
bations that fall within a fixed range (Armstrong and Mc-
Gehee 1980), or any perturbation of any size (MacArthur
1970). Species might theoretically be able to persist indefi-
nitely or only up to some finite time horizon (Turelli 1980).
In practice, ecologists typically classify coexistence using
one of two methods. Perturbation tests measure species re-
sponses to small disturbances (i.e., asymptotic stability; May
1973; Arnoldi et al. 2016). Stable coexistence is indicated if
all species return to their predisturbance state (which could
be a fixed abundance or a dynamic trajectory). Alternatively,
invasion analyses test whether species can reinvade a com-
munity after being driven to low abundance (i.e., mutual in-
vasibility; Chesson 20000, 2003). If all species can invade, this
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is taken to imply stable coexistence. These two metrics are con-
ceptually similar, as they measure, respectively, the behavior
of a community as it is pushed away from equilibrium toward
a boundary or away from a boundary toward equilibrium.

When applied correctly, either metric can rigorously cod-
ify opportunities for stable coexistence. However, fulfilling
the necessary criteria can be onerous. For example, because
perturbation tests only assess local stability (i.e., in the vicin-
ity of individual equilibria), every possible equilibrium must
be tested separately (Anderson et al. 1992; Saavedra et al.
2017). Similarly, in systems with multiple stable states—as
might occur due to Allee effects, trophic structure, or intran-
sitive competition—species may be able to coexist at high
abundance even if they cannot invade when rare (Barabas
etal. 2018). Thus, invasion analyses typically need to be aug-
mented (Turelli 1981, 1986; Chesson and Ellner 1989), for
example, by introducing species at high enough density to ex-
ceed Allee thresholds (Chesson 20000, pp. 359-360), jointly
introducing predator/prey or mutualist pairs (Chesson and
Kuang 2008; Levine et al. 2017) or assessing invasions from
every possible boundary point (Chesson 2018, p. 1786).

For several reasons, it seems unlikely that these criteria can
be fully satisfied in empirical systems. First, without perfect a
priori understanding of system structure, it is unclear which
test augmentations might be necessary. For example, if a
species fails to invade, this could simply indicate that Allee
thresholds were not overcome or that an obligate mutualist
was omitted (Levine et al. 2017; Barabds et al. 2018). Like-
wise, if a perturbed species does not recover its initial state,
this might indicate lack of stability or that the equilibrium
is nonstationary (Chesson 2017). A second challenge is that
real-world systems are subject to demographic stochasticity,
which can obscure effects of perturbations or invasions (Dur-
rett and Levin 1994). For example, failure to recover after a
disturbance or failure to invade from low density might be
indicative of random chance rather than average system be-
havior (Turelli 1981, 1986; Tilman 2004). Finally, even in
well-understood systems, it may not be feasible to conduct
all necessary measurements. For example, diverse communi-
ties have enormous numbers of potential equilibria, each of
which might need to be tested in separate experiments (Le-
vine et al. 2017; Saavedra et al. 2017; Chesson 2018). This
challenge is compounded by effects of spatial and temporal
structure, which can cause community responses to pertur-
bations and invasions to vary greatly across scales (Stommel
1963; Levin 1992). Worse still, the scales required for coexis-
tence to manifest may differ across species (Leibold and
Chase 2018) and “may be much larger than is considered
in most models and field studies” (Chesson 20000, p. 344),
for example, continents or centuries (Lawton 1999; Davis
and Shaw 2001; Ricklefs 2008).

These fundamental challenges are potentially discourag-
ing, and, in the words of Robert May, lead to “rather gloomy

thoughts as to the extent to which one can, or cannot, hope
to give the empiricist some precise, measurable definition of
stability” (May 1973, p. 213). In other words, it seems likely
that in empirical systems, no feasible combination of addi-
tional data or improved methods can conclusively demon-
strate stable coexistence. In response, we suggest a shift of
focus—away from rigidly interpreted tests and toward a more
heuristic approach. In doing so, we are inspired by classical
insights from theory (Turelli 1986; Levin 1992; Lawton 1999)
and from a growing consensus in resilience ecology, which
suggests that stability is best summarized using suites of met-
rics (Pimm 1984; Grimm and Wissel 1997; Carpenter et al.
2001; Ives and Carpenter 2007; Donohue et al. 2013, 2016;
Arnoldi et al. 2016; Hillebrand et al. 2018; Meyer et al. 2018;
Zelnik et al. 2018). Building on these results, we demonstrate
(i) that empirically feasible measurements of coexistence re-
veal complex stability landscapes, which confound attempts
to classify stability in a definitive manner, but (ii) that by com-
bining information from across multiple metrics and scales
of measurement, this complexity can be used to inform stud-
ies of general system behavior.

Methods

We approach our analyses from the perspective of an empir-
icist who has been confronted with a novel ecosystem. Given
limited ability to conduct measurements and no a priori in-
formation about its constituent species, we attempt to char-
acterize coexistence. Due to these constraints, our methods
are never guaranteed to “correctly” identify stable coexis-
tence. We therefore follow the advice of Turelli (1986, p. 331),
who, in reference to applying invasion analyses to complex
community dynamics, suggests, “In desperation, one can ig-
nore mathematical rigor, apply a heuristic coexistence cri-
terion, then do simulations to check its accuracy and hope
for the best.” In other words, in cases where no theoretically
sound, empirically tractable metrics exist, one must make do
with imperfect, practical alternatives. In this spirit, we opti-
mistically present a heuristic solution that provides useful
insights to the problem of characterizing species coexistence
in ecological communities.

We proceed in three stages. First, we introduce five spa-
tially and temporally explicit models of ecological communi-
ties. It is known a priori from theory that in some of these
models long-term coexistence is possible, whereas in others
it is not. However, we hide this information from the empir-
icist. Second, we allow the empiricist to conduct perturbation
tests and invasion analyses in these systems across a variety
of spatial and temporal extents. These do not necessarily cor-
respond to the “best” scales for measurements but rather
represent subsets of scales to which measurements might be
limited due to practical constraints (fig. 1). We term the result-
ing multiscale distributions of metrics “stability fingerprints”
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Figure 1: Because of a combination of physical limitations, financial barriers, and historical legacy, the spatial and temporal scales at which one
can reasonably observe and manipulate ecological systems do not always correspond to those that are useful for studying coexistence. Consider a
time series comprised of three observations, in each of three different types of communities. A, Samples of microbial communities might include
millions of individuals, and hundreds of generations can pass between surveys. B, Herbaceous plant communities can contain hundreds of in-
dividuals per square meter, and measurements of species-level biomass are sufficiently destructive and time-consuming that only a small frac-
tion of the total landscape can be surveyed. C, For tree communities, survey plots might contain only a few individuals, but dynamics can be very

slow, playing out over decades or centuries.

because they summarize unique information about system
dynamics, and we use them to assess stability in each model.
Last, we apply this fingerprinting procedure to characterize
empirical dynamics during old field succession, using data
from a 90-year chronosequence. This worked example serves
as a guide for implementing our approach in a system where
very few of the theoretical requirements for stability analysis
have been met.

Simulating Model Dynamics

Our models are individual-based stochastic patch-occupancy
simulations with similar structures. For all but one model
(plant-soil feedback; see below), we implement simulations
using Gillespie’s method following Lehman et al. (2012). This
method has several advantages, including that demographic
stochasticity arises as an emergent property and that simula-
tions perfectly match analytically tractable models at large
spatial scales (i.e., master equations, sensu Black and McKane
2012), which contributes a priori theoretical knowledge about
their stability. Simulations occur on a 100-by-100-site grid,
where sites can be occupied by at most a single individual.
For each species i, dynamics depend on interspecific interac-
tions and stochastic colonization and mortality events, with
average rates ¢; and m,, respectively. For simplicity, we as-
sume uniform dispersal across all patches. See sections Al
and A2 of appendix A for model derivations and theoretical
stability properties, sections B1 and B2 of appendix B for de-
tails on Gillespie’s method and for results in the absence of

demographic stochasticity, and appendix E for source code
(apps. A-E are available online).'

The first model, Levins, is a spatially and temporally explicit
realization of the metapopulation model of Tilman (1994)
and Levins (1969). At large spatial extents (i.e., large grids),
average dynamics of species considered across all patches
(i.e., the maximum spatial extent) follow Tilman (1994):

dp;
B n(1-X0) - mp-rTon

j<i j<i

where p; is the fraction of sites occupied by species i. Com-
petition in the Levins model is perfectly transitive, such that
species i = 1 is competitively superior to all other species,
species i = 2 is competitively superior to all species but spe-
cies 1, and so on. The first term in equation (1) represents
colonization into sites that are empty or occupied by inferior
competitors, the second term represents mortality, and the
third term represents displacement caused by superior com-
petitors. Following Tilman (1994), species equilibrium abun-
dance p; can be calculated sequentially starting with the best
competitor as

m; B G
p=1—-—= E pj(1+—’>
C; — C;
j<i

(2)

if p; > 0 and 0 otherwise.

1. Code that appears in The American Naturalist is provided as a conve-
nience to readers. It has not necessarily been tested as part of peer review.
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For species i to persist at equilibrium (i.e., p; > 0), ¢; must
exceed m,, and colonization rates of inferior competitors must
be sufficiently large to offset competition. Coexistence is glob-
ally stable, meaning that species are drawn toward the equi-
libria in equation (2) from any nonzero starting abundance
(fig. 2a, 2b).

Our second model, disturbance, is almost identical to the
Levins model but also includes periodic events every D time

steps that destroy fraction d; individuals of each species.
When considered across time (i.e., periods with and with-
out disturbances), disturbances increase average mortality
rate by a factor log(1 — d,)/D. Time-averaged abundances
and global stability at large spatial scales can be calculated
using these average rates and equation (2), just as in the Lev-
ins model (Chesson and Huntly 1997; Barabds and Ost-
ling 2013; see sec. A2 of app. A and fig. S1 for more details;

Levins

disturbance

species abundance

PSF

RPS

neutral

400

b
0 200 400 600

simulation time

Figure 2: Example dynamics of each model at the maximum spatial extent (i.e., across all simulated sites). Each row shows results for a single
model. Colored lines show species abundances. Vertical dashed lines and arrows show perturbation events for perturbation tests (a, , e, g, i) or
removals and invasion events for invasion test (b, d, f, h, j), always for the red species. Colored dashed lines in a, ¢, ¢, g, and i show trajectory in the
absence of perturbation. Horizontal lines in a and b show equilibria from equation (2), and those in ¢ and d show mean abundances predicted
from temporally averaged mortality rates (see sec. A2 of app. A for details). Vertical dotted lines in ¢ and d show disturbance events.
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figs. S1-S16 are available online). However, the more erratic
dynamics caused by disturbances mean that short-term re-
sponses to perturbations—and therefore empirical estimates
of stability metrics—can differ greatly between the Levins
and the disturbance model.

Our third model, plant-soil feedback (PSF), follows a pre-
viously published model (Suding et al. 2013) in which spatial
structure and demography are similar to those in the Levins
model, but species alter the environment in patches they oc-
cupy. These effects build up over time, such that species ei-
ther increase their own mortality and decrease that of their
competitors or vice versa (for negative or positive feedbacks,
respectively). Because of these feedbacks, we could not im-
plement the PSF model using Gillespie’s method (see sec. B1
of app. B for details). Given uniform dispersal, long-term co-
existence requires negative feedbacks for all species (Suding
etal. 2013). This coexistence is locally stable, such that com-
munities can recover from small perturbations but large
perturbations lead to alternate stable states. These alternate
states form because negative feedbacks reduce species per-
formance over time, eventually allowing invaders to displace
resident species (fig. 2e, 2f; see sec. A2 of app. A and figs. S2
and S3 for details).

Our fourth model, rock-paper-scissors (RPS), has the
same structure as the Levins model except that species fol-
low an intransitive competitive hierarchy, such that in
terms of competitive ability, species i > j, j >k, k> [, and
I > i. All other species pairs can displace one another, but
without hierarchical advantages. We consider a community
of four species in which species share the same demographic
rates m and ¢, which leads to neutrally stable oscillations
around a fixed point (sensu Allesina and Levine 2011; Grilli
etal. 2017). Demographic stochasticity therefore causes spe-
cies to drift toward extinction, meaning that long-term coex-
istence of all four species is not possible (fig. 2g, 2h). How-
ever, because oscillations are compensatory across species,
total summed community abundance acts like a single spe-
cies in the Levins model and is globally stable around

> P = 1-Z. (3)

Last, our fifth model, neutral, again follows the same form
as the Levins model except that all species share the same
demographic rates m and c and no species are competitively
dominant (i.e., no species can colonize an occupied site).
Population-level dynamics are therefore dominated by eco-
logical drift sensu Hubbell (2001), and species cannot coexist
in the long term (fig. 2, 2j). As with the RPS model, equilib-
rium total community abundance is globally stable and is ap-
proximated following equation (3).

For simplicity, we simulated communities of two species
for all models except for RPS, which included four species.
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Whenever possible, we chose parameters that resulted in
long-term persistence of all species (see sec. A3 of app. A for
parameter values). For the Levins model, we included a fast-
dispersing inferior competitor and a slow-dispersing superior
competitor, for which globally stable coexistence is predicted
by equation (2). For the disturbance model, we chose param-
eter values such that competitive exclusion was predicted in
the absence of disturbance, but long-term coexistence was
possible due to trade-offs between competitive ability and re-
sistance to disturbance. For the PSF model, we included two
species, both with negative feedbacks, which allowed locally
stable coexistence. Recall that long-term coexistence is not
possible in the RPS or neutral model.

Testing for Stable Coexistence

For each model, we characterized coexistence across a range
of spatial and temporal extents (denoted s and ¢, respectively)
by conducting perturbation tests and invasion analyses. These
extents represent contiguous units of space and time, as might
be sampled in an empirical study (e.g., a 1-by-1-m plot, mea-
sured over five field seasons). We considered extents ranging
from 0.5% to 100% of the maximum spatial extent (i.e., all
100-by-100 sites) and from 1 to 200 simulated time steps.

We conducted manipulations and measurements only at
the focal extents corresponding to each test. These proce-
dures were meant to mimic plot-based ecological observa-
tions, where only a fraction of the landscape can be manip-
ulated and observed (e.g., fig. 1; see sec. A4 of app. A for
details). We simulated 20,000 iterations of each model and
report the median test result across iterations (see fig. S4 for
distributions). This procedure generated fingerprints for each
model that summarized stability across extents.

To conduct perturbation tests, we applied small perturba-
tions to a species (20% reduction in abundance) and com-
pared dynamics to those in simulations without the pertur-
bation (e.g., as might be accomplished by comparing control
and treatment plots; see fig. 2, perturbation). We quantified
this response as the average rate of return:

r.(s,t) =

|pi,s,t B P?,s,z| >:| (4)
|Piso = Plsol ’

where p;,, describes the abundance of species i measured at spa-
tial extent s and temporal extent ¢ and p},, describes what the
abundance of species i would have been had the perturbation
not occurred. If the system returns toward its initial state, then
r, < 0, which is interpreted as stability. Thus, r, represents the
most positive—and therefore the least stable—response ob-
served across all species (see fig. S5a-S5¢ for examples) and is
formally an approximation of the Lyapunov exponent (see
sec. A5 of app. A for details and justification).

1
max(over all species 1) {;log(
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To conduct invasion analyses, we removed a species from
the community, allowed the resulting community to equili-
brate to account for transient dynamics, and then reintro-
duced the species at low abundance (5% of unoccupied sites)
sensu Chesson (20000) (e.g., as might be accomplished through
experimental introduction of species into an existing com-
munity; see fig. 2, removal and invasion). We quantified in-
vasions using the average growth rate:

ro(s, t) =

i 5
min(over all species i) [110g (pm,t >} ) (5)
t pi,S,O

where t describes time since reinvasion, and r, describes
the minimum rate observed across all species (i.e., the least
positive, and therefore the least stable; see fig. S5d, S5e for
examples).

Note that if systems recover from perturbations or inva-
sions, both r, and r, necessarily approach zero for large . Ide-
ally, this property should be controlled for by considering
different subsets of temporal extents (Sheil and May 1996).
However, this may not always be possible in empirical set-
tings (e.g., fig. 1a, where system dynamics are fast relative
to measurements). Thus, particularly for large t, our results
represent potential outcomes that might arise due to sam-
pling constraints rather than ideal tests that are best suited
for detecting coexistence.

Empirical Example

To demonstrate how our methods might be applied to real-
world systems, we analyzed a 90-year-old field successional
chronosequence from the Cedar Creek Ecosystem Science
Reserve in Minnesota (Inouye et al. 1987; Clark et al. 2019).
This chronosequence includes 23 fields, abandoned from ag-
ricultural use between 1927 and 2015. In each field, species-
level percent cover of herbaceous plants has been surveyed
in 100 permanent 0.5-by-1-m plots, roughly every 5 years
since 1983. We chose this data set because of its uniquely large
range of measured spatial and temporal extents (see fig. S6).
Note, however, that very few theoretical assumptions for co-
existence analysis are met in this study; for example, all spe-
cies are perturbed to low abundance simultaneously through
tilling, and no control observations in undisturbed fields are
available. Data can be accessed on the Long Term Ecological
Research (LTER) network data portal (https://doi.org/10.6073
/pasta/aa029df8f7a6091ea879ceb5c6673963; Knops 2018).
We combined species into functional groups following
Clark (2017) and retained the three most abundant catego-
ries: annual species, cool-season (C;) perennial grasses, and
warm-season (C,) perennial grasses/sedges. These accounted
for >80% of total cover. Importantly, successional dynamics
and long-term persistence for these groups are well known:

annuals are primarily found early in succession, C, grasses
are typically midsuccessional, and C, grasses dominate late
in succession (Clark et al. 2019). See appendix C for more de-
tails on the site and analysis methods.

We conducted analyses in three steps. First, to measure
stability we treated succession as an invasion event and ap-
proximated 7, based on changes in percent cover over succes-
sional time following equation (5). Similar metrics might be
calculated following any large disturbance that reduces spe-
cies to low abundance—for example, experimental manipu-
lations or natural events. Although we could not do so here,
in other systems it may be possible to approximate r, based
on differences between perturbed and unperturbed replicates,
following equation (4).

Next, we calculated 7, across observed spatial and tempo-
ral extents to generate an empirical stability fingerprint. We
used years since agricultural abandonment as a proxy for ¢,
yielding extents ranging from 1 to 89 years after disturbance.
For spatial extents, we aggregated nested subsets of plots based
on proximity (e.g., neighboring plots) and calculated s as
total surveyed area, ranging from 0.5 to 406 m* (n.b.: we
excluded some experimentally burned plots from analyses).
Similar methods could be employed in any system with re-
peated sampling through time or spatially replicated obser-
vations. Unlike our analyses of simulated data, we present
rates scaled by time (i.e., ), as this helps visualize dynamics
over long temporal extents (n.b.: this transformation does
not influence subsequent analyses of metric distributions
or model comparisons, which focus on relative values within
individual spatiotemporal extents). In general, we suggest sim-
ilar transformations for any analysis of long-term data, espe-
cially if systems appear to approach an equilibrium.

Finally, we compared empirical fingerprints from the old
fields to those from two models: (i) Levins-OF, a realization of
the Levins model parameterized with demographic rates fol-
lowing Clark (2017); and (ii) neutral-OF, a realization of the
neutral model based on species average demographic rates.
We test the Levins-OF model because it has been hypothe-
sized as a model of successional dynamics at Cedar Creek (Til-
man 1994; Clark et al. 2019). We include the neutral-OF model
as a simple alternate model because it requires little a priori in-
formation for parameterization. To emulate the old fields’
disturbance history, we initialized models using abundances
observed immediately after abandonment and simulated 90 years
of succession. We then compared the empirical and simulated
systems by calculating the likelihood of empirical fingerprints
given simulated fingerprints (see app. D for details).

Results
Model Dynamics

The Levins model most clearly demonstrated properties that
are commonly associated with stable coexistence. At large
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extents, species recovered rapidly following perturbations
and invasions and equilibrated around analytical expecta-
tions from equation (2) (fig. 2a, 2b). Results were similar for
the disturbance model, except that species followed oscilla-
tory cycles (fig. 2, 2d). For the PSF model, species recovered
from perturbations, but invasions led to alternate stable states
wherein each species could displace its competitor but the
two could not coexist (fig. 2e, 2f ). For the RPS model, pertur-
bation tests led to persistent changes in oscillatory dynamics
(fig. 2¢g; n.b.: solid and dashed lines do not converge). In inva-
sion tests, removing one species led to extinction of a second
species, which left the removed species’ superior competitor
unchecked (fig. 2h). Thus, subsequent reinvasion was only
transiently successful. Last, as expected for the neutral model,
both perturbation and invasion tests changed system dynam-
ics, with no recovery to initial state (fig. 24, 2j).

Stability Fingerprints

As expected, neither heuristic metric “correctly” identified
stable coexistence across all models and scales (recall that
long-term coexistence is possible in the Levins, disturbance,
and PSF models but not in the RPS and neutral models).
Across models, 7, generally increased with spatial extent, such
that below 1% of the maximum extent it was always positive
(fig. 3a-3e). For r, patterns were more variable, although it
often increased at larger spatial extents (fig. 3/~3;). Both metrics
approached zero for large temporal extents, as expected for
time-averaged growth rates (Sheil and May 1996).

For the Levins model, both metrics correctly indicated that
long-term coexistence was possible with negative r, (i.e., re-
covery from perturbation) and positive r, (i.e., successful
invasion), except at extreme spatial or temporal extents (fig. 3a,
3f). For the disturbance model, metrics gave conflicting re-
sults. Although long-term coexistence was possible, imme-
diately after disturbances we found negative r, (indicating sta-
bility; note that narrow bands are visible at larger spatial scales)
and negative r, (indicating lack of stability), whereas between
disturbance events we detected positive r, and positive 7,
(fig. 3, 3). For the PSF model, for which long-term coexis-
tence is locally stable, results were similar to those for the
Levins model, despite the existence of alternative stable
states (fig. 3¢, 3h). Finally, for the RPS and neutral models,
both metrics correctly indicated lack of stability at large spa-
tiotemporal extents (fig. 3d, 3e, 3i-3j). However, for both
models r, incorrectly indicated stability at small spatial ex-
tents, and for the RPS model r, also indicated stability dur-
ing periods of transient reinvasion.

Empirical Example

Although our empirical analysis of successional dynamics
failed to meet many theoretical requirements, results never-
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theless accorded with species hypothesized successional niches.
Across spatial extents, annuals showed successful invasions
for roughly the first 10 years of succession, followed by pop-
ulation declines over longer temporal extents (fig. 4a). For C,
grasses, growth was generally negative for the first 5 years
and then positive for longer temporal extents, although growth
was always positive at spatial extents above ~25 m* and de-
clined somewhat at temporal extents above 20 years (fig. 4b).
Trends for C, grasses were similar, except that positive growth
only began around successional year 20 or spatial extents
above 70 m* and then increased monotonically for larger tem-
poral extents (fig. 4c).

Correspondence between simulated and empirical finger-
prints was almost always higher for the Levins-OF model
than for the neutral-OF model, particularly for temporal ex-
tents above 10 years and spatial extents above 50 patches
(fig. 4d-4f). Unlike the neutral-OF model, the Levins-OF
model successfully predicted declines in r, with field age for
annuals and increases in r, with field age at smaller spatial
extents for C; and C, grasses (fig. 4g—4i). Interestingly, this
was true even though both models predicted similar dynam-
ics over the first decade of succession and consistently over-
predicted abundances (see fig. S7).

Discussion

Across all models, no combination of empirically tractable
measurements was guaranteed to correctly identify stable co-
existence. While not surprising, this result serves as a re-
minder that attempts to characterize coexistence are neces-
sarily heuristic from the perspective of an empiricist—that
is, given limited ability to make measurements and imperfect
understanding of system structure (Turelli 1986; Levin 1992;
Murdoch 1994; Lawton 1999; Donohue et al. 2016). Thus,
definitive statements about coexistence in empirical contexts
are probably neither testable nor warranted.

More encouragingly, our results show that multimetric,
multiscale empirical tests can still produce useful results. Spe-
cifically, multivariate stability fingerprints contribute three
main types of insight, described in detail below. First, based
on empirically tractable measurements, fingerprints summa-
rize major components of system dynamics, which often re-
late closely to long-term coexistence. Second, in cases where
predictions about long-term dynamics are unclear or con-
founded, fingerprints help identify potential drivers of uncer-
tainty. Third, fingerprints aid in identifying potential mecha-
nisms underlying observed dynamics. Jointly, these findings
support conjectures from a broad range of studies, which sug-
gest that the focus of stability analysis should be shifted to-
ward more holistic, multivariate assessments (Levin 1992;
Grimm and Wissel 1997; Ives and Carpenter 2007; Donohue
et al. 2016; Zelnik et al. 2018).
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Figure 4: Stability fingerprints for successional dynamics in old fields at Cedar Creek generated from approximated invasion statistic r,. Rows
show results for different species groups, and columns show fingerprints for observed dynamics (a-c), simulated results from the Levins-OF
model (d-f), and simulated results from the neutral-OF model (g-i). Colors show median stability metrics, either from 20,000 bootstrapped
samples drawn from old field surveys (a—c) or 20,000 simulations (d-i). Contour lines show relative cumulative likelihood of observed pattern
given the Levins-OF (d-f) versus neutral-OF (g-i) models (defined as RCL,,or; see app. D and fig. S16 for more details). Note that unlike equa-
tion (5) and figure 3f-3j, r, is multiplied by temporal extent ¢ to make patterns at larger temporal extents clearer (Sheil and May 1996).

Applying Fingerprinting

Although the simulation methods we employ are complex,
note that generating the stability fingerprints themselves is
relatively simple: , is effectively a log response ratio compar-
ing population size at time ¢ versus initial observed popula-
tion size, and r, compares the log ratio between two observed
time series (e.g., replicates with and without an experimental
perturbation). Moreover, our results do not rely on a theo-
retically “optimal” perturbation. For example, our analysis of

empirical old field data is in many ways a worst-case scenario
for stability analyses, as all species were perturbed to low abun-
dance simultaneously and no control plots were available.
Despite their simplicity, fingerprints generally succeeded
in characterizing complex dynamics. For example, matching
a priori expectations for our models, 7, demonstrates that re-
invasion in the RPS model is transient (fig. 3i), and r, shows
that in the neutral model species abundances can recover from
small perturbations, but only temporarily (fig. 3e; Hubbell
2001; Grilli et al. 2017). Likewise, for empirical old field
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dynamics, r, shows that growth rates for C; and C, grasses
are positive only when measured at extents above a few dozen
plots or temporal extents of greater than 5-10 years (fig. 4a-
4c¢). This result accords with theoretical expectations for
the Levins model, which suggests that long-term persistence
of late-successional species requires large spatial extents
(Tilman 1994).

Note that stability fingerprints are strongly influenced by
perturbation type. We demonstrate two types of responses,
which effectively represent different ends of a continuum
ranging from small and instantaneous (r.) to large and dis-
tributed across time (7,) (Ives and Carpenter 2007). However,
many other perturbation types also contain useful informa-
tion. For example, although the regularly occurring mortality
events in the disturbance model generally confounded our
tests, species responses to these events help demonstrate the
long-term viability of coexistence (see fig. S8). Combining in-
formation from across many species or many different per-
turbation types, including experimental manipulations and
natural events, could therefore greatly increase information
availability, especially in systems where observational scales
are limited (Pimm 1984; Carpenter et al. 2001; Donohue et al.
2013, 2016; Arnoldi et al. 2018). This approach has recently
been termed “probing” and suggested as a general method
for classifying complex dynamics (Zelnik et al. 2018).

Addressing Problems

It is tempting to imagine that deviations between our predic-
tions from individual indices and the actual long-term per-
sistence of species are idiosyncratic to the metrics and models
we consider. However, as noted, our results accord with a
broad array of studies, which suggests that many of the mis-
characterizations that we demonstrate are indicative of fun-
damental obstacles and unavoidable trade-offs (Turelli 1986;
Levin 1992; Murdoch 1994; Chesson 2000a; Carpenter et al.
2001; Hubbell 2001; Levine et al. 2017; Saavedra et al. 2017;
Barabas et al. 2018). Nevertheless, most of these challenges can
be at least partially overcome by assessing multiple metrics
and scales.

First, consider alternate stable states, which can confound
tests if perturbations are sufficiently strong to overcome lo-
cally stable coexistence (Chesson 20000; Levine et al. 2017;
Saavedra et al. 2017; Barabas et al. 2018). In the PSF model,
for example, invasion tests shift simulations into a state where
both species can displace the other, but the two cannot coex-
ist (fig. 2f; see sec. A2 of app. A; n.b.: although r, > 0, most
ecologists would probably classify this result as unstable).
In contrast, r, indicates that species can coexist in the long
term at most scales (fig. 3¢). Jointly, these results (correctly)
suggest that coexistence in the PSF model is locally stable but
that coexistence is not robust to large disturbances.

Conversely, just as disturbances that are too large risk ob-
scuring local stability, perturbations that are too small can be
impossible to distinguish from background noise (May 1973;
Turelli 1980). For example, r, consistently predicts instability
at small spatial extents (s < 0.05) regardless of underlying
dynamics (fig. 3a-3e). This is because these extents harbor
small populations, which allows demographic stochasticity
to overwhelm effects of perturbations (see figs. S9, S10). Sim-
ilar effects confound r, at all spatial extents for the distur-
bance model, because species are frequently driven to low
abundance (see sec. B2 of app. B and fig. S11). Results from
invasion tests are less strongly influenced by stochasticity, as
effects of larger perturbations are easier to detect (fig. 3f-3j).
Thus, especially when populations are small, cases where
both r, and 1, are positive likely indicate that long-term coex-
istence is possible but that dynamics are strongly influenced
by stochastic fluctuations.

A related trade-off involves temporal extent. Effects of per-
turbations or invasions are typically diluted over time, mak-
ing responses difficult to detect (Sheil and May 1996). A par-
tial solution is to scale estimates of r, and r, by ¢, as we do in
figure 4, as these transformed metrics measure total recovery
rather than recovery per unit time. If long-term estimates of
r.t remain negative or of r,t remain positive, then this indi-
cates long-term coexistence. Tests conducted at shorter tem-
poral extents also risk being confounded by transient or fluc-
tuating dynamics, as is the case with 7, for the RPS model
(figs. 2h, 3i), or short temporal extents (t < D) in the distur-
bance model (fig. 3b, 3g). In general, we therefore advocate
caution when interpreting results from systems that may
be subject to transience or fluctuations if it is suspected that
surveys are too short to accurately capture the full range of
potential dynamics.

One last obstacle pertains to processes acting outside the
scope of tests. For example, in the PSF and neutral models,
1, incorrectly indicates stability at small scales because dis-
persal from outside the focal area overwhelms local dynam-
ics (fig. 31, 3j; Pimm 1984; Hubbell 2001). Similarly, r, incor-
rectly indicates stability for the neutral model even at large
spatial extents because total community abundance is stable
(see fig. S12), which leads to compensatory increases in abun-
dance that are shared across species (see fig. S13). While
these effects could potentially be mitigated by preventing im-
migration into the focal patch or by replacing removed indi-
viduals with those of another species, such interventions would
be difficult to implement in practice and could inadvertently
destabilize the system, for example, by altering metacom-
munity processes (Tilman et al. 1994; Leibold and Chase 2018;
see the example in fig. S14). In these cases, there is no general
solution. Either statements about stability must be limited to
the observed range of spatial and temporal extents or specific
assumptions must be made about how the system behaves
outside these extents (see “Identifying Mechanisms” below).
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Identifying Mechanisms

In addition to providing qualitative information about sys-
tem dynamics, fingerprints also appear to be useful for iden-
tifying potential underlying mechanisms that influence sys-
tem dynamics. For example, our old field analyses suggest
that the Levins-OF model better explains observed dynamics
than does the neutral-OF model, in accordance with results
from long-term studies at Cedar Creek (Gleeson and Til-
man 1990; Tilman 1990, 1994; Clark et al. 2019). Likewise,
despite superficial similarities among some fingerprints—for
example, the Levins versus PSF model (fig. 3a, 3c)—we were
typically able to distinguish among simulated models with
high certainty, especially when considered across multiple ex-
tents (see app. D and fig. S15). Critically, once an appropriate
model has been identified, its stability properties can be used
as a proxy of those for the empirical system, which overcomes
many of the problems discussed here (Ellner et al. 2019).

An important caveat is that all information that is con-
tained in stability fingerprints is also available in time series
data on species abundances. Thus, similar results could prob-
ably be achieved by fitting dynamic models to multiscale in-
formation about species abundances. However, doing so re-
quires complex methods that are rarely applied in practice
(Detto and Muller-Landau 2016; Clark et al. 2018). Finger-
prints may therefore be useful as a low-dimensional summary
of dynamic information, which is comparatively easy to inter-
pret and compare across models. This feature could be par-
ticularly important in empirical systems where community
composition is influenced by large-scale processes such as meta-
community dynamics, biogeography, or evolutionary history
(Lawton 1999; Chesson 2000b; Davis and Shaw 2001; Rick-
lefs 2008; Leibold and Chase 2018). Ideally, information al-
ready collected as part of other studies may provide sufficient
spatial and temporal extents to identify underlying mecha-
nisms. However, for some systems or mechanisms, available
data may not be sufficient to identify unique aspects of fin-
gerprints, and surveying the necessary scales may not be fea-
sible. Under these circumstances, fingerprinting may still help
reduce the number of potential mechanisms that could ex-
plain observed patterns.

Future Directions

Here, we present an empirically tractable approach for char-
acterizing long-term coexistence in ecological communities.
By exploring some of the challenges that confront stability
analysis, we hope that we have convinced readers that rigidly
interpreted binary metrics of coexistence are probably not
appropriate in most empirical contexts. More importantly,
by demonstrating how fingerprinting can be applied to heu-
ristically characterize system dynamics and stability, we hope
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to encourage future empirical studies to employ a wider range
of experimental perturbation treatments and to conduct
measurements across a broader array of spatial and tempo-
ral extents.

The next challenge will be to find combinations of metrics,
scales, and perturbation types that can uniquely identify a
wide range of dynamic behavior across many systems (Levin
1992; Ives and Carpenter 2007). For some systems, this may
require new measurements or methods for extrapolating dy-
namic behavior across unobserved spatial and temporal scales
(Leibold and Chase 2018). However, in many cases it seems
likely that the data, methods, and theory necessary for con-
ducting these tests are already in place. We are therefore op-
timistic that stability fingerprinting could help greatly ex-
pand our understanding of coexistence in a rich variety of
theoretical and empirical systems.
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