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Abstract

Photosynthesis is a major process included in land surface models. Accurately estimating the parameters of the photosynthetic
sub-models can greatly improve the ability of these models to accurately simulate the carbon cycle of terrestrial ecosys-
tems. Here, we used a hierarchical Bayesian approach to fit the Farquhar—von Caemmerer—Berry model, which is based on
the biochemistry of photosynthesis using 236 curves for the relationship between net CO, assimilation and changes in the
intercellular CO, concentration. An advantage of the hierarchical Bayesian algorithm is that parameters can be estimated at
multiple levels (plant, species, plant functional type, and population level) simultaneously. The parameters of the hierarchical
strategy were based on the results of a sensitivity analysis. The Michaelis—Menten constant (K_,s), enthalpies of activation
(Ey and Ey)), and two optical parameters (8 and ) demonstrated considerable variation at different levels, which suggests that
this variation cannot be ignored. The maximum electron transport rate (J,,,,,,5s), maximum rate of Rubisco activity (V. ..os),
and dark respiration in the light (Ry,5) were higher for broad-leaved plants than for needle-leaved plants. Comparison of the
model’s simulated outputs with observed data showed strong and significant positive correlations, particularly when the model
was parameterized at the plant level. In summary, our study is the first effort to combine sensitivity analysis and hierarchi-
cal Bayesian parameter estimation. The resulting realistic parameter distributions for the four levels provide a reference for
current and future land surface models. Furthermore, the observed variation in the parameters will require attention when
using photosynthetic parameters in future models.

Keywords Photosynthesis - FvCB model - Sensitivity analysis - Hierarchical Bayesian analysis - Plant level - Species level -
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non-rectangular hyperbolic model (Thornley 1976), and
mechanistic models (i.e., Farquhar et al. 1980; Collatz
etal. 1991). Among them, the model proposed by (Farqu-
har et al. 1980) (hereafter, the FvCB model) was based on
a rigorous consideration of biochemical mechanisms, and
as aresult has been widely used in many land surface mod-
els, such as SiB2 (Sellers et al. 1995a, b), CLM (Bonan
etal. 2011), BIOME-BGC (Running and Hunt 1993), and
ECOSYS (Hansen et al. 2005).

However, to improve the simulation accuracy of photo-
synthesis, the parameters in the FvCB model must be prop-
erly identified and estimated. Bonan et al. (2011) pointed out
that the uncertainty in the Community Land Model (CLM4)
estimates of the gross primary production (GPP) due to
uncertainty in the photosynthetic parameters would be about
equal to the uncertainty that derives from structural errors
in the model. Due to the high nonlinearity and noncontinu-
ity of the FvCB model, many researchers have looked for
effective optimization methods (Dubois et al. 2007; Sharkey
et al. 2007; Xu et al. 2012). Unfortunately, researchers have
not reached an agreement on how many parameters in the
model and which ones must be estimated more accurately.
For example, Zhu et al. (2011) estimated all the parameters
in the FvCB model, whereas other researchers selected only
a few parameters: the maximum rate of Rubisco activity
(Vemay)» the maximum electron transport rate (J,,,). triose
phosphate limitation (TPU), dark respiration (R,), and meso-
phyll conductance (g,,,) (Miao et al. 2009) or just V..., Jax
&m- and R (Su et al. 2009). Thus, it’s necessary to improve
our understanding of the behavior of the parameters in the
FvCB model and identify the parameters that are most sensi-
tive to environmental factors and vegetation characteristics.

Sensitivity analysis is a powerful method to identify the
key parameters that determine the performance of a model
(Tang et al. 2007a; Wang et al. 2013) and has been widely
used in many fields, including economics and the physical,
social, and environmental sciences. Of the various sensitiv-
ity analysis methods that have been developed, the Morris
method (Morris 1991) and the Sobol’ method (Sobol’ 1993)
have proven to be effective and are broadly used. The Mor-
ris method is an one-factor-at-a-time method that provides
a qualitative analysis with low computational requirements.
The Sobol’ method is a variance-based method that can
globally characterize single parameter and multiparameter
interactive sensitivities (Fu et al. 2011). In previous studies,
these methods have been applied mainly to complex hydro-
logical, and environmental models (Nossent et al. 2011; Han
and Zheng 2016). Although, there are several prior studies
that have involved sensitivity analyses of photosynthesis
scheme (Zaehle et al. 2005; Walker et al. 2018), it is not
yet known if the sensitive parameters that have significant
influence on the model performance are the same in differ-
ent plant functional types. Thus, the sensitivity analysis in
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the FvCB model should be applied across a wider range of
species and environmental conditions.

Subsequently, due to the significant role that the key
parameters play in the FvCB model and land surface models,
it is essential to estimate their values accurately. However,
previous studies showed that estimates of the model’s pho-
tosynthetic parameters were influenced by the estimation
method, which included least-squares regression (Harley
et al. 1992; Dubois et al. 2007; Miao et al. 2009; Qian et al.
2012), genetic algorithms (Su et al. 2009), and the Bayesian
method (Zhu et al. 2011). More importantly, these param-
eters were confirmed to vary among plants, species, plant
functional types, and bimoes (Pitman 2003; Patrick et al.
2009; Galmés et al. 2014; Hermida-Carrera et al. 2016). To
simultaneously obtain proper ranges of values for the model
parameters in different levels, the hierarchical Bayesian
approach is suitable because its hierarchical approach can
account for the hierarchy of these levels, such as individual
plants being nested within a species, and a species being
nested within a functional type (Clark 2005). Specially, the
hierarchical structure permits analysis of multiple data types
within a single analysis. Data sets from diverse sources (i.e.,
a set of CO, response curve data) can exchange informa-
tion, which makes full use of available data. It can also miti-
gate the effects of measurement errors in the observed data.
Recently, more and more studied proved that the HB method
provides powerful tools for optimizing model parameters
and quantifying uncertainties (Norros et al. 2017; Su et al.
2018). Patrick et al. (2009) and Feng and Dietze (2013) have
ever used the HB method to optimize model parameters of
the FvCB model, and confirmed the HB method had great
potential to improve the estimation of photosynthetic param-
eters in different levels. Nevertheless, photosynthetic data
used in Patrick et al. (2009) just involved shrub species in
a specific desert ecosystem in North America, while Feng
and Dietze (2013) mainly focused on the variations of some
key parameters (i.e., V a0/ Vinax Jmax/k> @, and Ry,) of 25
grassland species. Among all parameters in the FvCB model,
which parameters and how these parameters varied in differ-
ent environmental conditions and plant functional types have
not yet been known, and need to be pay more attentions.

In this study, our goal is to identify the key parameters in
the FvCB model and estimate their values at different hier-
archical levels across a wide range of species. To do so, we
obtained 236 curves for the relationship between net CO,
assimilation and changes in the intercellular CO, concentra-
tion (i.e., the A/C; curves) for 51 C; species. The specific
objectives were (1) to identify the sensitive parameters using
the Morris and the Sobol’ methods, (2) to estimate the values
of the key photosynthetic parameters at the level of plants,
species, and plant functional types using the hierarchical
Bayesian method, and (3) to assess the variation of these
parameters at these three levels. In this context, we address
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the following questions: among all the parameters in the
FvCB model, which parameters have significant influence
on the model performance? then, if the parameters (e.g.,
Michaelis—Menten constant: K5, K, ,s; enthalpies of acti-
vation E}, Ey, Ey, and Eg; or optical parameters 6, and @)
commonly used as constant values are variable within and/
or across a broad plant functional types, species, and plants;
and what are the distributions of these parameter values in
different levels? Moreover, if there are significant differences
in simulation accuracy when using parameter values of dif-
ferent levels (e.g., plant functional types, species level, and
plant level)?

Materials and methods

This section consists of four major components. First, we
describe our formulation of the FvCB model, including infor-
mation on how the model is driven, its structure, and its param-
eters). Next, we introduce the two sensitivity analysis methods
and explain how they reveal the most sensitive parameters.
Third, we clarify the hierarchical structure based on the mod-
el’s structure and the results of the sensitivity analysis. Last,
we describe our data sources and performance metrics.

The FvCB model

The FvCB model was developed by Farquhar et al. (1980) and
refined by other scholars (von Caemmerer and Farquhar 1981;
Bernacchi et al. 2001; Long and Bernacchi 2003). It can be
described as follows:

A, = min{Ac,Aj} N

where A is the net photosynthetic rate (umol m~2 s™1), and
A, and A; are the net photosynthetic rates limited by Rubisco
and RuBP, respectively (pmol m~2 s~!). We did not account

A
C.=C-— 4)
0J% — (I + Jax)J + IJmax = 0 5)
I=Ixax(1-f)/2 (6)

where V.. is the maximum rate of Rubisco activity
(umol m~2s7"); C, and o mean the partial pressure of carbon
dioxide and oxygen, respectively (Pa); I"" means the CO,
compensation point when mitochondrial respiration is zero
(Pa); K_ and K are the Michaelis—Menten constants for car-
boxylation and oxygenation, respectively (kPa or Pa); J is the
electron transport rate in the RuBP-limited stage (pmol m~>
s_l); C,; is the intercellular CO, concentration (pmol mol_l);
Ry means the leaf dark respiration in the light (umol m~2
s7!); and A means photosynthetic rate (umol m=2 s7!). @
means the curvature (convexity) of the light-response curve;
I means the photosynthetically active light absorbed by PSII
(umol m=2s71hy; Jax Means the maximum electron transport
rate (umol m~2 s™!); g  represents the mesophyll conduct-
ance (pmol m~2 s~! Pa~!; Harley and Sharkey 1991; Sharkey
et al. 2007); I, is the total incident irradiance (pmol m=2s~1);
o means the leaf absorbance (von Caemmerer 2000); and fis
a correction factor for spectral quality (equal to about 0.15;
Evans 1987).

The three enzyme kinetics parameters (K., K, and I" *) can
be described as follows (Bernacchi et al. 2001, 2002):

parameter (K, K,, I'*) = Kysexp|E, (T, —298)]/(298RTy)

(N
where K, is the value of K, K,, or I"" at 25 °C (Pa or kPa);
E, (i.e., Ex., Ex,. Er+) is the activation energy (enthalpy;
J mol™! or kJ mol™!) for the three K parameters; and T}
means the leaf temperature (in K). The four temperature
dependence parameters (J,., Vimax R and g,,) can be
expressed using the Arrhenius function (Harley et al. 1986,
1992; Lloyd et al. 1992; Medlyn and Dreyer 2002):

parameter (Jmax. Vemax> Ra» andgy, ) = Ksexp{ E, (T, —298) / (298RT;) } (®)

for triose phosphate limitation (TPU) because this phase
rarely limits photosynthesis and TPU limitation was uncom-
mon in field observations (Medlyn and Dreyer 2002; Patrick
et al. 2009; Feng and Dietze 2013).

c.-rIr
Ac = Vc max = - Rd )
C.+K.(1+0/K))
(G- T
iT4C 80 )

where K5 is the value of V... Jax Rg> O &y at 25 °C
and E, (i.e., the enthalpies of activation; E}, Ey;, Eg, Eg) is
the rate of exponential increase of the function. The FvCB
model uses a total of 16 parameters, which are summarized

in Table 1.
Sensitivity analysis methods
The Morris method

The Morris (1991) method is a global sensitivity analysis
method that provides a qualitative ranking of the sensitivity
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Table 1 Parameters and prior ranges of the FvCB model

Process parameter Range Units Description References
Jnax2s (30.3,200)  pmolm~2s7! Potential light-saturated electron transport ~ Medlyn and Dreyer (2002), Kattge and
rate at 25 °C Knorr (2007), Patrick et al. (2009)
Vemaxas (24.3,200)  pmol m™2s~! Maximum carboxylation rate allowed by Medlyn and Dreyer (2002), Kattge and
Rubisco at 25 °C Knorr (2007), Patrick et al. (2009)

Rys (0.01, 10) pmol m2s~! Leaf dark respiration in the light at 25 °C Sharkey et al. (2007), Su et al. (2009), Zhu
etal. (2011)

8m25 (0.03, 10) pmol m~2s~! P;! Mesophyll conductance at 25 °C Ethier and Livingston (2004), Sharkey et al.
(2007), Su et al. (2009)

K5 (24.8,584) P, K_ at25°C Sharkey et al. (2007), von Caemmerer et al.
(1994), Patrick et al. (2009)

K5 (15.8,50.4) kP, K,at25°C Sharkey et al. (2007), von Caemmerer et al.
(1994), Patrick et al. (2009)

I 2, 10) P, I*at?25°C Sharkey et al. (2007), von Caemmerer
(2000)

Ey (35.9, 120.6) kJ mol™! Activation energy of J . Kattge and Knorr (2007), Leuning (1997,
2002), Medlyn and Dreyer (2002), Shar-
key et al. (2007)

Ey (51.3,128.4) kJ mol™! Activation energy of V.. Kattge and Knorr (2007), Leuning (1997,
2002), Medlyn and Dreyer (2002), Shar-
key et al. (2007)

Eq (41.1,92.6) kJ mol™! Activation energy of Ry Patrick et al. (2009)

E, (20, 100) kJ mol™! Activation energy of g, Sharkey et al. (2007), Patrick et al. (2009)

Ex. (54.6,104)  kJ mol™! Activation energy of K Ethier and Livingston (2004), Sharkey et al.
(2007), von Caemmerer (2000)

Ex, (9.3, 36.3) kJ mol™! Activation energy of K Ethier and Livingston (2004), Sharkey et al.
(2007), von Caemmerer (2000)

Ers (23.5,37.2) kJImol™! Activation energy of I'* Bernacchi et al. (2001), Ethier and Living-
ston (2004), Sharkey et al. (2007)

(0.15, 1) - Light-response curvature Patrick et al. (2009)
a 0.15, 1) mol mol ™! Leaf absorbance Patrick et al. (2009)

of the parameters. In this method, the parameter range is nor-
malized as a uniform distribution within [0, 1] and discretized
into a p-level grid 2= {0, 1/(p-1), 2/(p-1), 3/(p-1), ..., 1}. At
a randomly selected point in £2, the elementary effect (EE) of
the ith parameter is:

F@ .. 05+ A, ... 00) [0, ..
A

- 0%, 0%)
EE,(@, A) = ’

©))
where @ is the n-dimensional vector of parameter sets, (0?,
0, ..., 0,) is a randomly selected point in £, and A is the
fixed increment (p/[2(p—1)]), the function f means goodness-
of-fit metrics or relevant model outputs, and EEi(a,A) means
the change in output f caused by a change in the ith param-
eter. To compute the values of EE for each parameter, n+ 1
simulations (i.e., a simulation for the selected point plus n
simulations for the fixed increment A for the n parameters)
are conducted to complete a “trajectory”. If the number of
trajectories is g, we have g values of EE for each parameter
with g(g + 1) simulations. Using the ensemble of EE values,
it’s possible to describe the statistical characteristics of a
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parameter’s sensitivity: the mean of EE (u), the standard
deviation of EE (o), and the mean absolute EE (IEEl)]. The
mean EE reflects a parameter’s overall effect, whereas the
standard deviation of EE indicates the strength of the param-
eter’s nonlinearity or its interactions with other parameters.
The mean absolute EE reveals the non-influential factor
(i.e., a low mean absolute EE represents a less-important
parameter), which can be used to rank parameter sensitiv-
ity (Campolongo et al. 2007; Han and Zheng 2016). In the
present study, the grid level (p) was set to 6 and chose a
trajectory number (g) of 500 (Gélvez and Capuz-Rizo 2016).
Additionally, all the parameters in 6 were assumed to fol-
low uniform distributions, whose feasible ranges were listed
in Table 1. The proposed ranges were mainly based on the
default ranges in references.

The Sobol’ method

In contrast with the Morris method, the Sobol’ method is a
quantitative sensitivity analysis method based on variance
decomposition (Sobol’ 1990, 2001). The variance of certain



Photosynthesis Research

goodness-of-fit metrics or relevant model outputs can be
decomposed into variances derived from both individual
parameters and their interactions. The total variance D(f) can
be decomposed into a series of summations of increasing
dimensionality:

D(f)= Y, Di+ Y Dy+ Y Dy 4Dy, (10)

i<j i<j<k

where f means a specific goodness-of-fit metric or relevant
model output chosen by the researcher; D, is the amount of
deviation of the ith parameter 8;; D;; is the partial variance
result from the interaction of @, and 0j; and #n is the total
number of parameters. In this method, the sensitivity of a
single parameter or of parameter interactions can be evalu-
ated by their percentage contribution to the total variance
(D) in the form of two sensitivity indexes:

First — order index : S; = D;/D (11)

Total — order index : Sp; = 1— (D.;/D) (12)

where §; indicates the contribution derived from the main
effect of @, S; means both the influence of 6; and the influ-
ence of its interactions with all the other parameters, and
D_; means the amount of deviation of all parameters other
than @,. By analyzing the difference between Sp; and S;, we
can assess the impact of the interaction between parameter
0, and the other parameters.

The high dimensionality and nonlinearity of the FvCB
model made it difficult to directly obtain analytical inte-
grals of variances. To solve that problem, we calculated the
variances in Eq. (10) using Monte Carlo integrations which
was found to be effective (Sobol’ 1993). The Monte Carlo
approximations for D, D;, and D_; are given in the follow-
ing equations as presented in previous studies (Sobol” 1993;
Hall et al. 2005):

fo=1 gﬂek) (13)
D=1 k}i‘ffz(ek) -1 (14)
D=1 §f<9§:‘>y(9§’3)k, 09) — f2 (15)
D=1 §f<0;“>y(e§?i)k, o) — 2 (16)

where the variable s represents the Monte Carlo sample
size, 0, represents the sampled individual in the scaled unit

hypercube, and superscripts (a) and (b) are two different
samples. Parameters with values drawn from sample (a)
can be denoted by 8(“). The symbols 8" and 6" donated
cases when parameter 8, draws values from sample (a) and
(b), respectively, and 0Ef2)k and 022),{ represented cases when
all of the parameters except for 8, use the sampled values
in sample (a) and (b), respectively. In this study, we chose
the Latin hypercube sampling (LHS) method to obtain sam-
ples (McKay et al. 2000; Sieber and Uhlenbrook 2005).
The method segments the parameter space into N ranges,
and each range was sampled only once. This ensures that
every portion of the parameter space was taken into account
(Helton and Davis 2003; Kucherenko et al. 2009). Then, N
samples are generated for each parameter. Here, N was set
to 10,000. The process can be repeated n (number of param-
eters, equal to 16) times for all parameters, such that a total
of Nxn (=10,000 X 16) random sample combinations were
generated. More detailed description of the implemented
computational process of LHS can refer the following papers
(Hall et al. 2005; Zhang et al. 2013). Moreover, feasible
ranges for each parameter used in this method were the same
as the ranges in the Morris method (Table 1). Based on the
sensitivity index, we defined thresholds to differentiate
among parameters with different sensitivity: highly sensi-
tive parameters had to account for an average of at least 10%
of the overall model variance (i.e., a threshold of 0.10), vs.
1% for sensitive parameters (i.e., a threshold of 0.01). When
the contributions to the overall model variance were less
than 0.01, we considered the parameters to be insensitive
(Tang et al. 2007a, b). This threshold has been widely used
in previous research based on the Sobol” method (Cibin et al.
2010; Galvez and Capuz-Rizo 2016; Zhang et al. 2017).

Goodness-of-fit metrics

In both the Morris method and the Sobol’ method, the direct
model output (f) is replaced by a model goodness-of-fit met-
ric (Nossent et al. 2011). Here, we chose the root-mean-
square error (RMSE):

RMSE = n% ; (Anobs(r) - Ansim(r))2 a7

where m is the total number of input data, and A, ,((r) and
A, im(r) are observed and simulated net photosynthetic rate
of the rth data. To confirm the practicality and reliabil-
ity of our sensitivity analysis results for both the Morris
method and the Sobol’ method using the RMSE metric for
the FvCB model, we tested two additional goodness-of-fit
metrics: the Nash—Sutcliffe efficiency (NSE) and the Bias
(Details of these metrics are provided in the Supplementary
Material). The procedures of the Morris and Sobol” method
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were written in the computer programming language Matlab
2015a (Detail code was provided in the text ‘Model Code’).

Hierarchical Bayesian model of photosynthesis

We used the hierarchical Bayesian framework to estimate
the values of the key parameters by fitting the FvCB model
to photosynthetic data in the form of A/C; curves (Clark
2007). This method can (1) estimate all parameters simulta-
neously, after considering both observation error and param-
eter uncertainty (Carlin et al. 2006); (2) incorporate multiple
gas-exchange datasets simultaneously instead of fitting them
curve by curve, and can therefore strengthen the results and
improve model performance, especially with limited data;
(3) estimate parameters in the form of posterior probability
distributions rather than as single values; and (4) partition
uncertainty into multiple processes, thereby improving our
understanding of the model mechanisms.

This method accommodates complexity by dissecting the
analytical procedure into three primary components: the data

model, the process model, and the parameter model (Fig. 1).
The data model describes the likelihood function for the
observed net photosynthetic rate, which was assumed to be
normally distributed around the simulated net photosynthetic
rate, and can be expressed as:

A

nobs ~ Normal(A .. 7) (18)
where A . is the observed net photosynthetic rate
(umol m™ s71); A, is the simulated net photosynthetic
rate based on the FvCB model (pmol m~2s7!); and 7 is the
precision (= 1/variance) parameter, which reflects the vari-
ation of measurement errors.

The process model specifies the biochemical processes
according to the FvCB model and predicted the simulated
net photosynthesis based on observed data [T (represents
the temperature in °C), /, and C;] and all model parameters.

The parameter model specifies the prior distributions
for the parameters used in the process model. According
to the results of our sensitivity analysis, we classified the
16 parameters into two types: sensitive parameters (i.e.,
0®) and insensitive parameters (i.e., 0D). For the sensitive

Data model

Process model

f(x;0,°,00)

Sensitive | parameters

Plant-level

(O] ®
ep | BS(P)

Parameter model

Species-level

® ®
0.0

T
PFT(s) p

®e®
PFTs-level U—— LA T,
Insensitive | parameters
Population-level 0® Topr 00

Fig. 1 Hierarchical Bayesian parameterization of the FvCB model. In
the data model, A ;¢ (observed net photosynthetic rates), C; (internal
CO, concentration), T (temperature in °C), and / (the photosyntheti-
cally active light absorbed by PSII) are input datasets. The process
model describes parameters and model structure related to biochemi-
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cal process of photosynthesis. The parameter model includes hier-
archical priors for each parameter. 8 and 8 are the sensitive and
insensitive parameters, respectively. z,, 7, and 7ppr are the precision
(1/variance) parameter which represents variation in plant, species,
and PFTs, level, respectively
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parameters, we designed a nested and hierarchical structure
(Fig. 1), in which we allowed the sensitive parameters to
vary at four hierarchical levels (i.e., plant, species, and plant
functional type, and population level) and to exchange infor-
mation within and across levels (Carlin et al. 2006). Based
on this framework, we assumed that the plant-level param-
eters, which were directly relevant to the individual A/C;
curves, were nested within species, and that the species-level
parameters were nested within the plant functional types.
That is, sensitive plant-level parameters (OI()S)) were assumed
to be nested within species, such that:

(S) (S)
Gp ~ Normal(@x(p), 7,) (19)

where 02‘2;) represents the means of the species-level param-
eters for species s and 7, represents the precision (= 1/vari-
ance) parameter that describes variability between individual
plants or the curves within a species. Additional species-
level parameters varied around the plant function type
parameters, such that:

(%) (S)
Ox(p) ~ Normal(GPFT(s), 7,) (20)
where 8 and 7, represent the mean at the plant function

PFT(s)
type level and the corresponding precision parameter for

variation among species, respectively. Note that 7, describes
species-to-species variability within a plant function type.
The plant function type level parameters varied around the
population-level parameters, such that:

Q)

PET(s) Normal(OES), TppT) 1)

where 055) and 7ppr are the population-level mean and preci-
sion parameters for variation among plant functional types,
respectively. Note that zppr describes variability among plant
functional types within the C; metabolic category for all
sites included in our study.

For the insensitive parameters (0), we assigned non-
hierarchical priors (Fig. 1). Although the two Rubisco kinet-
ics parameters at 25 °C (K5 and I7;) and the activation
energy parameters (Eg, E,, Ex., Ex,, and Ep.) are usually
assumed to be constants across a wide range of C; species
(von Caemmerer 2000), we hypothesized that they instead
vary at the level of plant functional types. We employed
slightly informative normal prior distributions with mean
values () and small precision (z):

91(31]27 ~ Normal(6,, 7,) (22)

Finally, we must specify the distributions for the hyper-
prior parameters (i.e., HES), Tprrs Tg» T, and 7) to complete the

model hierarchy. Standard, relatively diffuse distributions
are employed for the hyper-prior parameters, which ensure

the feasible parameter ranges were big enough to determine
their values (Gelman 2006). Here, we specified a normal
density with a large variance for these population-level mean
parameters (9;5)). For the variance parameters, we chose
folded Cauchy densities to generate the priors (Gelman
2004, 2006). Detail information of each prior distribution
were listed in the Supplementary Material.

By combining the three parts of the model, we gener-
ated posterior probability density functions for all param-
eters. The hierarchical Bayesian model was implemented
in version 3.2.3 of the OpenBUGS statistical software
(http://www.openbugs.net/w/FrontPage). In this method,
many chains could run in parallel, thereby greatly improv-
ing the search efficiency for parameter posterior distri-
butions. We ran three Markov-chain Monte Carlo chains
for 50,000 steps each, discarding the first 5000 steps for
burn-in in every chain. The remaining samples were tested
for convergence of each chain using the BGR diagnostic
tool (Gelman 2004). Details of the hierarchical Bayesian
model and the parameterization process are provided in
the text ‘Model Code’.

Datasets

The photosynthetic data used in this paper came from 23
field sites (Table 2), and had been collected by the Wright
Lab (De Kauwe et al. 2016). These sites provided 236 A/C;
curves from 51 C3 species on four continents (Asia, Europe,
North America, and Oceania) and represent six typical plant
functional types that follow the Simple Biosphere model ver-
sion 2 (SiB2) classification: agriculture/C; grassland (AGG),
broadleaf-deciduous trees (BDT), broadleaf-evergreen trees
(BET), dwarf trees and shrubs (DTS), needleleaf-deciduous
trees (NDT), and needleleaf-evergreen trees (NET). In most
cases, gas-exchange measurements were conducted using the
Li-6400 portable photosynthetic system (Li-Cor, Lincoln,
NE, USA) (Ellsworth et al. 2015).

Performance metrics

The performance of the FvCB model whose parameters we
parameterized was quantified by using the RMSE metric,
calculated using Eq. (13) and Pearson’s correlation coef-
ficient (R) which was computed as follows:

> Anobs (M) = Apope) Angim (1) = Apginy)

r=1

m m

3 (A =)+ Z (a0 = i)

r=

(23)
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Table 2 Details of the data used in this study. Note that negative latitudes are in the southern hemisphere, and negative longitudes are in the
western hemisphere

Site number  Site name Latitude (°N)  Longitude (°E)  Biome type PFT  Species
1 Kuringgai Murrua-track —33.69 151.14 Temperate heath DTS  Hakea dactyloides; Banksia mari-
ana; Hakea teretifolia; Banksia
oblongifolia
—32.70 151.14 Temperate heath DTS  Banksia oblongifolia
-33.69 151.14 Temperate heath BET  Eucalyptus haemastoma
2 Duke Forest (FACE) 35.98 —179.09 Temperate evergreen forest NET  Pinus taeda
3 Duke Forest, NC, USA 35.98 —179.09 Temperate evergreen forest NET  Pinus virginiana
35.97 -179.10 Temperate deciduous forest BDT  Liquidambar styraciflua; Liri-
odendron tulipifera; Quercus
alba; Carya tomentosa
4 Cedar Creek LTER 45.41 -93.19 Temperate deciduous forest BDT  Quercus macrocarpa
5 Cedar Creek LTER/BIOCON 45.40 -93.18 Temperate grassland or prairie ~ AGG  Lupinus perennis; Lespedeza
FACE capitata
AGG Solidago rigida; Anemone cylin-
drica; Achillea millefolium
AGG Agropyron repens; Bromus iner-
mis; Poa pratensis
6 Nevada Test site FACE 36.77 —-115.97 Desert AGG  Oenothera perennis
DTS  Larrea tridentata
7 Nevada Test Site, NV, USA 36.77 —-115.97 Desert DTS  Ambrosia dumosa
DTS  Krameria parvifolia
8 Aspen FACE 45.68 —89.63 Temperate deciduous forest BDT  Populus tremuloides; Acer sac-
charum;, Betula papyrifera
9 Carolina Lake 35.90 -79.09 Temperate deciduous forest NDT  Taxodium distichum
10 Carolina Beach, NC, USA 34.05 -77.91 Temperate coastal forest BET  Quercus virginiana
11 Saginaw forest, MI, USA 42.27 —83.81 Temperate deciduous forest AGG  Podophyllum peltatum
12 UMBS Pellston, MI, USA 45.56 —84.72 Temperate deciduous forest BDT  Acer rubrum; Populus grandi-
dentata
13 Endla bog, Endla, Estonia 58.86 26.17 Boreal coniferous forest NET  Pinus sylvestris
14 Hawkesbury, Richmond, NSW, —-33.61 150.01 Temperate tree plantation BET  Eucalyptus globulus; Eucalyptus
Australia saligna; Eucalyptus dunnii;
Eucalyptus melliodora;
15 Blue Mountains, NSW, Aus- —-33.71 150.55 Sclerophyll woodland DTS  Persoonia levis
tralia BET  Syncarpia glomulifera; Acacia
obtusifolia; Banksia serrata
16 Cape Tribulation crane site, —16.10 145.45 Tropical rainforest BET  Syzygium sayeri
Queensland, Australia
17 La Sueur National Park, WA, -30.19 115.14 Mediterranean (Kwongan) BET  Eucalyptus todtiana; Banksia
Australia woodland attenuata
18 Driftway Cumberland Plain, —33.62 150.74 Sclerophyll woodland BET  Eucalyptus tereticornis
Richmond, NSW
19 Cocoparra National Park —34.17 146.23 Sclerophyll woodland DTS  Hakea tephrosperma
BET  Eucalyptus populnea
20 Tllawarra, Robertson, NSW, —34.62 150.71 Warm-temperate forest BET  Eucalyptus fastigata
Australia
21 EucFACE site —33.62 150.74 Temperate grassy woodland AGG Microlaena sp.
22 Mill Haft forest, UK 52.81 -2.30 Deciduous forest BDT  Quercus robur
23 Edgbaston wood, UK 52.81 -2.30 Deciduous forest BDT  Fagus sylvatica

Plant functional types (PFTs) based on the Simple Biosphere model version 2 (SiB2) classification: AGG agriculture/C3 grassland, BDT broad-
leaf-deciduous trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needleleaf-deciduous trees, NET needleleaf-evergreen

trees
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where A, and A, are the mean of the observed and
simulated net photosynthetic rates, respectively. We also
used the Nash—Sutcliffe efficiency (NSE) and the Bias
goodness-of-fit metrics to validate the results using RMSE.
Details of these two additional metrics are provided in the
Supplementary Material. Additionally, model comparison
was quantified using Deviance Information Criterion (DIC),
details about the method can be found in the Supplementary
Material, and also available in Spiegelhalter et al. (2002).

nsim

Results
Parameter sensitivity analysis

Figure S1 and Table S1 present the results of the sensitiv-
ity analysis using the Morris method. Not surprising, two
parameters (the maximum electron transport rate at 25 °C,
Jmaxas> and the maximum rate of Rubisco activity at 25 °C,
V.max2s) Were the most sensitive across all plant functional

C
types. The dark respiration in the light (Ry,s), mesophyll
conductance (g,,,5), and Michaelis—Menten constant (K,s)
at 25 °C, as well as the enthalpy of activation for J_,,
(Ey) and V., (Ey), the light-response curvature (), and
absorbance («), which were distributed in the intermediate
region of the graphs in Fig. S1, were sensitive parameters.
The other parameters, with sensitivities distributed around
zero, were insensitive. Table 3 shows the ranks of the 10
most sensitive parameters based on the mean IEEIl. Obvi-
ously, Joax25s Vemaxass Rans» and g5 were the four most
sensitive parameters across all plant functional types. The

mean |EE| values for J,,,5 and V. ..»s were nearly two

times those of Ry,s and g,,,5. Figure S2a shows a strong
and significant positive relationship between the Morris
u and o values.

To verify the effectiveness and reliability of the Mor-
ris method, we also used the Sobol’ method to assess
the key parameters in the FvCB model. Based on the
thresholds in Tang et al. (2007a, b), we again found that
Jmaxes and V.- were the most sensitive parameters
across all plant functional types (Fig. 2a). The average
values of S; ranged from 0.34 for DTS to 0.55 for NET
for J,.c05 and from 0.19 for AGG to 0.28 for DTS for
V.max2s (Table S2). These values were about 10 times the
values for the other parameters across all plant functional
types. At the same time, the S; values for Ry,s, 8.5, Kooss
E;, and a ranged between 0.01 and 0.1, indicating that
these five parameters were sensitive and also affected
the model outputs. The remaining parameters had S; val-
ues less than 0.01, suggesting that these parameters were
insensitive and that their variation had little effect on
model simulations.

Figure 2b presents the results for the total-order sensi-
tivity indexes (St;). Once again, J,,»5 and V... .»s were
the most sensitive across all plant functional types, with
S+, values ranging from 0.53 for DTS to 0.64 for NET for
Jmaxas and from 0.31 for NDT to 0.49 for DTS for V,

max2 cmax25*

J maxas contributed more than half of the total variance and

V.maxas contributed more than about one-third. The Sy; val-
ues of Ey, and O were greater than 0.01, whereas their S,
values were smaller than 0.01. This suggested that although
these parameters themselves had only a small effect, their
interactions with other parameters had a noticeable effect

on the model outputs. Overall, nine sensitive parameters

Table 3 Sensitivities of the 9

.. . L Parameter PFT
sensitive or highly sensitive
parameters based on the mean BET BDT NET NDT DTS AGG
(u) elementary effect [EEI,
and the resulting rankings for H Rank  p Rank 4 Rank 4 Rank 4 Rank  p Rank
EI;CF;‘SZ)C plant functional types T 972 2 1469 1 1610 2 1098 2 1436 1 1472 1
Vemax2s 10.12 1 11.83 2 20.61 1 2313 1 1091 2 10.02 2
Rys 571 4 6.07 4 6.70 3 719 3 514 3 6.08 4
&mos 6.55 3 8.61 3 6.42 4 542 4 418 4 7.87 3
K5 373 5 392 6 434 5 444 5 379 5 326 6
E; 251 8 586 5 223 9 3.68 7 314 7 441 5
Ey 226 9 283 8 272 17 412 6 193 8 1.63 9
263 7 27 9 277 6 1.64 8 192 9 215 8
290 6 3.60 7 2.69 8 1.40 9 341 6 3.09 7

PFTs: AGG agriculture/C3 grassland, BDT broadleaf-deciduous trees, BET broadleaf-evergreen trees, DTS
dwarf trees and shrubs, NDT needleleaf-deciduous trees, NET needleleaf-evergreen trees. 4 mean of |EEI

Parameters: E; enthalpy of activation for J,

maxs Ev enthalpy of activation for V... g..,5 mesophyll con-

ductance, J,,,,»s light-saturated electron transport rate at 25 °C, K ,5 Michaelis-Menten constant at 25 °C,
R»5 dark respiration in the light at 25 °C, V. .»s maximum carboxylation rate of Rubisco at 25 °C, a leaf
absorbance, 6 light-response curvature
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Fig.2 The a first-order (S;) and b total-order (Sy;) sensitivity indexes
for the 16 parameters in the 51 species. Parameters: E; enthalpy of

activation for J_ ., Ey enthalpy of activation for V... Ex enthalpy

of activation for R, E, enthalpy of activation for g, Ex. enthalpy of
activation for K, Ex, enthalpy of activation for K, Er. enthalpy of
activation for I'*, g, ,s mesophyll conductance, J,»s light-saturated

(Jmax2s» Vemaxzs» Razs: 8mas» Keas» Ey» Evs 0, and a) contrib-
uted strongly to the model outputs across plant functional
types, whereas the remaining seven insensitive parameters
had almost negligible effects. We observed similar results
when we used the NSE and Bias goodness-of-fit metrics
(see Supplementary Material Figs. S1g—r, S3, and S4).

@ Springer

electron transport rate at 25 °C, K5 Michaelis-Menten constant at
25 °C, K,,5 Michaelis—Menten constant for Rubisco at 25 °C, Ry,s
dark respiration in the light at 25 °C, V. .»s maximum carboxyla-
tion rate of Rubisco at 25 °C, a leaf absorbance, I 2*5 CO, compensa-
tion point when mitochondrial respiration is zero at 25 °C, @ light-
response curvature

Hierarchical Bayesian parameterization

Figures 3 and 4 show the plant-level posterior distributions
for the highly sensitive and sensitive parameters. The hier-
archical Bayesian algorithm was generally able to decrease
the ranges of the prior distributions of the parameters, as
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Fig. 3 Posterior medians (filled circles) and 95% confidence intervals
(CI, shaded areas) for plant-level variation estimated using the hierar-
chical Bayesian framework based on 236 curves for the relationship
between net CO, assimilation and changes in the intercellular CO,
concentration for the highly sensitive photosynthetic parameters. Esti-
mates are shown for a the maximum electron transport rate at 25 °C
(Jmax2s)» b the maximum rate of Rubisco activity at 25 °C (V. ..25), €

shown by the relatively narrow 95% credible intervals (CIs).
All nine highly sensitive or sensitive parameters (i.e., J,,,0s,
Vemax2s: Raoss &mos» Keos» Ey, Evs 0, and a) exhibited plant-

level variation (Figs. 3, 4; Table S3). J,,,,x05 and V.05 var-
ied from 42.61 to 205.90 pmol m~2 s~! and from 23.53 to
121.70 pmol m~2 s™!, respectively. Both parameters gener-
ally had smaller posterior medians for needle-leaved trees
than for the other plant functional types (Fig. 3). Moreo-
ver, the posterior medians of J;.»5s and V. s were sig-
nificantly positively correlated (P <0.01, n=236; Fig. 5a)
without imposing restrictions on prior information between
the two parameters. Among different plant functional types,
the standard major axis (SMA) slopes of J,,,.»s and V.05
ranged from 1.71 (95% CI 1.51, 1.94) for AGG to 2.37 (95%
CI 1.93, 2.92) for NET (further details about slopes and
intercepts with 95% CI, coefficients of determination (Rz),
P value, and sample size for each plant functional types
were given in Table S4). The plant-level posterior medians
for Ry,5 ranged from 0.29 pmol m~2 57! to 8.73 ymol m™>
s~! across all plants, except for two outliers (with values
of —0.23 and —0.04 pmol m~2 s~! for two plans named

the leaf dark respiration rate in the light at 25 °C (Ry,s), and d meso-
phyll conductance at 25 °C (g,,5). Plant-level estimates were calcu-
lated for the six plant functional types (PFTs): AGG agriculture/C3
grassland, BDT broadleaf-deciduous trees, BET broadleaf-evergreen
trees, DTS dwarf trees and shrubs, NDT needleleaf-deciduous trees,
NET needleleaf-evergreen trees

Banksia attenuata). R 4,5 was also positively correlated with
V.maxas across plants (P <0.01, n=236; Fig. 5b). The SMA
slopes of Ry,5 and V. ,.»s ranged from 0.07 to 0.11 among
plant functional types, and exhibited no significant differ-
ence (further details about slopes and intercepts with 95% CI
were provided in Table S4). In addition, g,,,5 varied widely
among the plants, with a minimum value of 0.36 pmol m™>
s™! P;! and a maximum value of 6.07 pmol m~2 s~! P!
(Fig. 3d). K.»5, Ej, Ey;, 6, and a, which were previously
assumed to be constant across species (von Caemmerer
2000; Bernacchi et al. 2001), exhibited considerable vari-
ation (Fig. 4; Table S3).

Figure 6 shows the posterior medians at the species
level. For J,,s, the median ranged from 52.82 pmol m~>
s™! (Pinus virginiana) to 138.80 pmol m~2 s~ (Ambrosia
dumosa), and V,,,, »s ranged from 35.04 pmol m~2 s~ (Pinus
sylvestris) to 82.00 pmol m~2 s~! (Ambrosia dumosa). Rys
at the species level ranged from 0.45 pmol m~2 s™! (Pinus
sylvestris) to 4.30 pmol m~2 s~ (Ambrosia dumosa). The
posterior distributions of J,;.»5. Vemaxas» and Ryys seemed
much lower for needle-leaved species. The species-level
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Fig.4 Posterior medians (filled circles) and 95% confidence intervals
(shaded areas) for plant-level variation using the hierarchical Bayes-
ian framework based on 236 curves for the relationship between net
CO, assimilation and changes in the intercellular CO, concentration
for the sensitive photosynthetic parameters. Estimates are shown for
a the Michaelis-Menten constant for carboxylation at 25 °C (K »s),

posterior medians of g,,,5 exhibited wide variation, with the
lowest value of 0.79 pmol m2s”! P;l (Acer saccharum) and
the highest of 4.04 pmol m™2 s™' P;! (Ambrosia dumosa).
K ,5 showed slightly higher values for DTS species than for
other species. E; and Ey, for needle-leaved (NET and NDT)
species were obviously lower than for other species. Interest-
ingly, the light-response curvature (8) and leaf absorbance
(@) varied widely, median of them from 0.41 to 0.99 for 6
and from 0.58 to 0.99 mol mol~! for a. Table S5 provides
the medians and 95% Cls for all species at the species level.

At the level of the plant functional types, the values of
the sensitive and highly sensitive parameters also exhibited
obvious differences among plant functional types (Fig. 7).
For example, J, .5 values ranged from 54.71 for NET to
107.10 pmol m™2 s™! for DTS and V,,,,,5 values ranged
from 35.72 for NET to 75.30 pmol m™ s™! for DTS. At
the level of the plant functional types, Ry,s values ranged
from 1.44 for NET to 3.64 pumol m™ s™! for DTS and g,,s

@ Springer

b the activation enthalpy for J,,, (Ej), ¢ the activation enthalpy for
Vemax (Ev), d light-response curvature (¢), and e leaf absorbance (a).
Plant-level estimates were calculated for the six plant functional types
(PFTs): AGG agriculture/C3 grassland, BDT broadleaf-deciduous
trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs,
NDT needleleaf-deciduous trees, NET needleleaf-evergreen trees

values ranged from 0.99 for NDT to 1.87 pmol m~2 s~! P;l
for DTS. The posterior distributions for J,,,.25, Vemaxas> and
R ;5 were generally highest for shrubs and herbaceous plants
(DTS and AGG), intermediate for deciduous trees (BET and
BDT), and lowest for needle-leaved trees (NET and NDT).
8mas values were lowest for needle-leaved trees (NET and
NDT), but did not differ significantly among the other plant
functional types. The posterior distributions for K ,5 was sig-
nificantly higher for DTS than for the other plant functional
types. The two activation energy parameters had values that
ranged from 30.10 (NET) to 66.74 kJ mol~! (DTS) for E yand
from 41.91 (NET) to 90.99 kJ mol~! (DTS) for Ey (Table 4).
The posterior distributions of € were significantly lower for
the needle-leaved plant functional types (NET and NDT) and
the posterior distributions of a was significantly lower for
NET, with no significant differences among the other plant
functional types.
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Fig.5 Relationships between the posterior medians of a the maxi-
mum electron transport rate at 25 °C (J,,,x5) and the maximum rate
of Rubisco activity at 25 °C (V,,.x25) at the individual plant level; and
b leaf dark respiration in the light at 25 °C (Ry,5) and the maximum
rate of Rubisco activity at 25 °C (V,,.25) in using standard major

Figure S5 shows the posterior distributions for the
seven insensitive parameters (Eg, E,, Ex., Ex,, Er+, K5,
and I7), and Table S6 provides detailed statistics for
these parameters. The shape of plots revealed that these
insensitive parameters did not differ significantly among
the plant functional types. The present medians were in
excellent agreement with values derived from traditional
research [63.90 kJ mol ™!, 49.6 kJ mol™", 70.40 kJ mol ™',
29.80 kJ mol ™, 26.80 kJ mol™', 16.58 kPa, and 3.74 Pa for
Eg, Eg, Exe Exy Ers, Kyos, and I 2*:5, respectively; Sharkey
et al. (2007)].

Performance of the FvCB model with parameters
at different hierarchical levels

Having parameterized the FvCB model as described in the
previous sections, we ran the model to simulate A, (Eq. 1)
using parameter values at the plant, species, and plant func-
tional type levels. Figure 8 provides a scatterplot of the
observed and simulated values of A,. Table S7 provides the
detailed regression results. Obviously, the FvCB model with
plant-level parameters performed best. Points in the scat-
terplot for the observed-versus-simulated net photosynthetic
rates fell close to the 1:1 line (Fig. 8a), with R? ranging
from 0.97 to 0.99 and RMSE ranging from 0.40 to 1.31.
Model performance using the species-level parameters was
generally acceptable. RMSE ranged from 0.90 to 5.98, with
R? ranging from 0.83 to 0.95, and the results were tightly

(b) 10

(3]
T

2 1
Rd25 (umol m™ s™)

4
7’ y=0.09x-2.47 R>=0.56 P<0.01

0 50 100 150

-2 -1
vcmax25 (umol m™ s™)

axis (SMA) analyses with 95% confidence intervals (Cls) for different
PFTs. PFTs: AGG agriculture/C3 grassland, BDT broadleaf-decidu-
ous trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs,
NDT needleleaf-deciduous trees, NET needleleaf-evergreen trees

clustered around the 1:1 line (Fig. 8b). The simulations that
used parameters at the level of plant functional types had
the lowest accuracy, with R? ranging from 0.53 to 0.93 and
RMSE ranging from 1.57 to 11.64.

Given that the FvCB model is based on a mechanistic
model of photosynthesis, it’s important to confirm that the
values of the parameters estimated by the hierarchical Bayes-
ian method were biochemically meaningful. We randomly
selected six species (i.e., Eucalyptus todtiana, Liquidambar
styraciflua, Pinus taeda, Taxodium distichum, Persoonia
levis, and Microlaena sp.) which belonged to the BET, BDT,
NET, NDT, DTS, and AGG plant functional types, respec-
tively, to visualize the differences in model performance
using parameters determined at the plant (Fig. 9a—f), species
(Fig. 9g-1), and plant function type levels (Fig. 9m-r). In the
FvCB model, the CO, assimilation rate is limited by either
Rubisco or by regeneration of RuBP. (We omitted limitations
caused by triose phosphate use in our analysis because, as
noted in the Methods section, this is generally not a large
factor.) Obviously, both the Rubisco-limited stage (A.) and
the RuBP-limited stage (A;) were fitted well when the FvCB
model used plant-level parameters. However, the model’s
performance using parameter values at the species or plant
function type levels decreased. For example, the A/C; curve
for Taxodium distichum, Persoonia levis, and Microlaena
sp. using the plant functional type parameters showed that
the RuBP-limited stage provided a best fit to the observed
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parameters for each species. Values are medians (horizontal lines)
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trees; DTS, dwarf trees and shrubs; NDT, needleleaf-deciduous trees;

and the 95% confidence intervals (bars). Species-level estimates were
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Fig.7 Posterior distribution of the highly sensitive and sensitive
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broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needle-
leaf-deciduous trees, NET needleleaf-evergreen trees. The values are
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data, despite the underlying presence of the Rubisco-limited
stage (Fig. 9p-1).

Discussion
Sensitivity analysis results

The biochemically based FvCB model provides a robust
mechanistic representation of photosynthesis, and has there-
fore become the foundation for estimating GPP in many land
surface models (Bonan et al. 2011; Rogers et al. 2017). How-
ever, except for the errors caused by model structure and
data quality, model parameters impose considerable error
when using these photosynthetic parameters empirically
(Wullschleger 1993; Bonan et al. 2002; Orr et al. 2016).
Thus, much effort should devote to obtain optimal param-
eters for characterizing the photosynthetic heterogeneity of
vegetation (Patrick et al. 2009). Therefore, identifying the
sensitive parameters in the FvCB model and analyzing their

BET BDT NET NDT DTS AGG

BET BDT NET NDT DTS AGG
PFTs

bars). Parameters: Ej enthalpy of activation for J ., Ey enthalpy of

activation for V..., g.,s mesophyll conductance, J,,,s light-satu-
rated electron transport rate at 25 °C, Ry,5 dark respiration in the light
at 25 °C, V.05 maximum carboxylation rate of Rubisco at 25 °C, a
leaf absorbance, @ light-response curvature

interactions is crucial for further optimization. Our sensi-
tivity analysis showed that the net photosynthesis rate was
highly sensitive or sensitive to 9 of the 16 parameters (J,,,.»s
Vemax2s» Raos» 8mas» Keos» Ey. Ev, 6, and ) at plant functional
types, species, or even individual plant level. Figure S1,
S3, and S4 provide comparable results using the NSE and
Bias goodness-of-fit results, suggesting that our approach
is reliable.

Jaxos and V. s were highly sensitive parameters across
all plant functional types. As J,,,.»s and V.. s limit the
photosynthetic rate at high and low CO, concentrations,
respectively, their values directly restrict RuBP-limited (A;)
and Rubisco-limited photosynthesis (A,). Previous studies
have confirmed that appropriate values of J,,.»s and V. o5
were crucial to accurately estimate net photosynthesis rate
(Wullschleger 1993; Feng and Dietze 2013; Brito et al.
2014; Atkin et al. 2015). After considering the seasonal vari-
ation of J_, »s and V. »s, Zhu et al. (2011) provided a more
accurate simulation of A, in a typical desert riparian forest in
northwestern China. Besides, R,s was another parameter to
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Table 4 Posterior probability distributions (medians and 95% credible intervals [CIs]) for highly sensitive and sensitive parameters at the level of
the six plant functional types (PFTs)

Parameters PFT

BET BDT NET NDT DTS AGG
Median [95% CI] Median [95% CI] Median [95% CI] Median [95% CI] Median [95% CI] Median [95% CI]

Jowos (umol m™2s7h 100.90 92.01 54.71 71.01 107.10 91.05

[84.83109.90]  [85.41194.21]  [42.9470.07] [60.25 81.30] [91.05117.20]  [83.77 105.90]
Vemaos (umol m~2s™h)  65.30 59.40 3572 42.94 75.30 62.13

[62.78 67.20] [53.75 64.14] [30.23 45.21] [35.00 50.01] [70.41 78.90] [56.02 67.10]
Ryos (pmol m=2s71) 3.01 2.40 1.44 1.59 3.64 2.89

[2.22 3.47] [1.67 2.95) [0.50 2.40] [0.89 2.06] [3.36 4.30] [2.38 3.85]
Zmas (umol m~2s1 Py 1,74 1.56 1.00 0.99 1.87 1.69

[1.94 2.88] [0.99 2.31] [0.50 1.63] [0.30 1.56] [1.322.12] [1.13 2.23]
K5 (P,) 31.44 31.55 30.24 35.00 39.76 31.53

[28.46 30.81] [30.00 34.41] [28.00 32.17] [33.00 38.01] [37.56 42.73] [20.46 32.47]
E; (kJ mol™!) 55.73 52.84 30.10 36.31 66.74 58.13

[58.10 62.22] [49.77 55.78] [25.00 35.02] [29.99 44.01] [62.24 70.79] [53.47 56.59]
Ey (kI mol™") 78.61 74.26 41.91 51.69 90.99 82.79

[73.89 86.67] [67.74 85.95] [32.00 48.01] [40.00 87.17] [81.79101.40]  [75.9285.97]
6 (dimensionless) 0.92 0.85 0.51 0.55 0.76 0.92

[0.81 0.98] [0.76 0.99] [0.41 0.68] [0.45 0.66] [0.66 0.88] [0.83 0.99]
a (mol mol ™) 0.88 0.80 0.59 0.76 0.88 0.82

[0.79 0.98] [0.68 0.89] [0.46 0.69] [0.66 0.88] [0.80 0.94] [0.69 0.93]

PFTs: AGG agriculture/C3 grassland, BDT broadleaf-deciduous trees, BET broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needle-
leaf-deciduous trees, NET needleleaf-evergreen trees

Parameters: Ej enthalpy of activation for J,,,,, Ey enthalpy of activation for V., Eg enthalpy of activation for Ry, E, enthalpy of activation for

gm» Ex. enthalpy of activation for K, Ey, enthalpy of activation for K, Er enthalpy of activation for I'*, g, ,5 mesophyll conductance, J, .5

light-saturated electron transport rate at 25 °C, K,5 Michaelis—Menten constant at 25 °C, K ,5; Michaelis—-Menten constant for Rubisco at 25 °C,
Rys dark respiration in the light at 25 °C, V,,,,,»s maximum carboxylation rate of Rubisco at 25 °C, a leaf absorbance, I'); CO, compensation

point when mitochondrial respiration is zero at 25 °C, @ light-response curvature
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Fig.8 Regression between the observed (A- ) and simulated (A ) tion (DIC,,=973.44, DIC,=633.52, and DIC,=1583.68). PFTs:
net photosynthetic rates. Regressions were conducted using the AGG agriculture/C3 grassland, BDT broadleaf-deciduous trees, BET
derived parameter values at the a plant level, b species level and ¢ broadleaf-evergreen trees, DTS dwarf trees and shrubs, NDT needle-
plant functional type (PFT) level. The DIC was used for model selec- leaf-deciduous trees, NET needleleaf-evergreen trees
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Fig.9 Relationships between the simulated curve for the net photo-
synthetic rate (A,) and the intercellular CO, concentration (C;) for six
representative species from different plant functional types (PFTs): a
Eucalyptus todtiana (broadleaf-evergreen trees), b Liquidambar sty-
raciflua (broadleaf-deciduous trees), ¢ Pinus taeda (needleleaf-ever-

which A, was sensitive. This parameter can reveal CO, evo-
lution from mitochondria under lighted conditions, which is
a significant process of the carbon lost by plants, and is cen-
tral to the prediction of plant photosynthesis capacity with
the FvCB model. Furthermore, g5 were also identified as
sensitive parameter in our study. It is important because sto-
matal aperture dominates a plant’s photosynthesis process
and responds rapidly to changes in environmental conditions
such as the air temperature, relative humidity, and soil water
content (Lin et al. 2015; Franks et al. 2018).

Interestingly, parameters K ,s, Ej, Ey, 0, and a, which
were paid relatively less attention in model simulation, were
found to be sensitive to model output. K ,5 describes intrin-
sic properties of Rubisco which tendency to confuse the
photosynthetic substrate (CO,) with the product (O,), and
determines the efficiency with which plants use their basic
resources of light, water, and N (Tcherkez et al. 2006; Orr
et al. 2016). The Rubisco-limited stage of photosynthesis
(A.) can be restricted by the parameter K .,5. Therefore, the
variation of K5 would have a big influence on the photo-
synthetic rates simulation. In terms of the model structure,

400 600 800 1000 1200 1400 O 500
C, (umol mol™)

1000
C, (umol mol'1)

1500

green trees), d Taxodium distichum (needleleaf-deciduous trees), e
Persoonia levis (dwarf trees and shrubs), and f Microlaena sp. (agri-
culture/C3 grassland) at the plant (a—f), species (g-1), and plant func-
tional type levels (m-r)

E; and Ey, represent the exponential rate of increase of the
Arrhenius function. Fluctuations of both parameters are
directly linked with the accuracy of simulations of J,, and
Vemax- At the same time, the activation energy, Ey and Ey,, is
a measure of temperature dependence of A; and A, respec-
tively (Yamori et al. 2005). Previous study has confirmed
that the optimal temperature of A; and A, was influenced by
the variation of E; and Ey, (Hikosaka et al. 2006). That may
be why optimal values of E; and Ey,; significantly improved
estimates of A,. € and «a are related to the underlying opti-
cal properties of a leaf, which were believed to be similar
across diverse C; species with empirical values of around
0.7 and 0.85 (Evans 1989; Kosugi et al. 2003). In the pre-
sent study, the magnitude of the effect of parameter interac-
tions on sensitivity (i.e., Sy; — S;) accounted for an important
proportion of their total-order indexes. Such results suggest
that 8 and a can affect model performance through their
interactions with other parameters. Furthermore, Ogren and
Evans (1993) found that plants had high CO, assimilation
rate commonly with low 8 values, while plants had low CO,
assimilation rate with high 8 values. Therefore, to simulate
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a more reliable A, more accurate values of these sensitive
parameters are required.

Parameterization of the hierarchical Bayesian model

Given that the FvCB model has been widely used as the
basis for predicting carbon assimilation across a diverse
range of PFTs, it is important to understand how the under-
lying behavior of the biochemical parameters varies among
plant functional types, species, or individual plants. Our
results provide new insights into these parameters based on
a combination of sensitivity analysis and the hierarchical
Bayesian framework based on 236 A/C; curves from across
continents and species. In particular, when comparing our
results with the results based on the simple Bayesian frame-
work, we found that the model in using hierarchical Bayes-
ian framework exhibited a much better performance (RMSE
values were 5.56 and 1.08, and the DIC values were 1755.81
and 973.44 based on the simple Bayesian and hierarchical
Bayesian framework, respectively; Figure S6; Table S8).

Parameter J,,,,55, Vemax2s» Raps» and g,»s exhibited obvi-
ous variability at the levels of plants, species, and plant
functional types (Figs. 3, 6 and 7; Table S3). The posterior
medians generally fell within the range of values reported
in previous research (Wullschleger 1993; Zhu et al. 2011).
Furthermore, J,.,s and V_,,.,5 demonstrated much lower
values for needle-leaved trees (NET and NDT) than for other
plant functional types (BET, BDT, DTS, and AGG). Medlyn
and Dreyer (2002) observed similar results: J,,.,5 ranged
from 70.77 pmol m~2 s~! for the needle-leaved tree Pinus
sylvestris to 217.88 pmol m~2 s™! for the agricultural species
Glycine max. V.5 ranged from 41.64 pmol m=* s™' for
Abies alba to 97.76 pmol m~2 s~! for Glycine max. J -5
and V,..»s have long been found to be correlated, with
slopes ranging from 1.0 to 3.0 across species (Wullschleger
1993; Kattge and Knorr 2007; Miao et al. 2009). The SMA
slopes of J.,,425 t0 Vax2s in our study ranged from 1.71 to
2.37 with an average of 1.85 (Fig. 5a; Table S4), and hetero-
geneity were not significant among plant functional types.
As has long been discussed, R 4,5 is not yet well understood,
and hence, it has been difficult to estimate accurately (Way
and Yamori 2014). As a result, researchers have commonly
used a fixed relationship between Ry,5 and V. ,.»5 in their
models (Bonan et al. 2011). Unfortunately, the relationship
between Ry,s and V. -5 was not always constant among
plant functional types (Fig. 5b), which was also confirmed
by de Kauwe et al. (2016). Here, we found that the values of
R ,5 were generally highest for shrubs and herbaceous plants
(DTS and AGG), intermediate for deciduous trees (BET and
BDT) and lowest for needle-leaved trees (NET and NDT).
Atkin et al. (2015) also found that R4,5 values were higher
in herbaceous plants (including C; herbs/grasses) than in
trees (including broad-leaved trees and needle-leaved trees)

@ Springer

based on an analysis of 899 species. Our findings there-
fore improve estimates of R,5 in the FvCB model and will
improve associated estimates of carbon cycle components
in land surface models. Extensive work has been done
to compare g, values among species or plant functional
types (Brito et al. 2014). For instance, Flexas et al. (2008)
argued that herbaceous plants had the largest g, values (ca.
4 mol pmol m2 57! P;!), followed by deciduous trees (c.
2 pmol m~2 57! P;l), whereas evergreen trees had the lowest
g, values (around 1 pmol m=2 s~ P, 1. However, there are
also limitations in our understanding of g, at 25 °C (g»5)
that may lead to biases in using empirical values, which have
mostly been based on limited data for tobacco plants (Walker
et al. 2013). In the present study, the values of g,,,5 showed
no obvious differences among BET, BDT, DTS, and AGG,
but the values for needle-leaved trees (NET and NDT) were
much lower, with average values of around 1.01 pmol m~2
s P;l; this agrees with the results of Flexas et al. (2008).
This difference may be driven by the unique leaf structural
characteristics of needle-leaved trees, which have thicker cell
walls and lower ratio of exposed chloroplast surface to leaf
area (Tomas et al. 2013).

Originally, the use of Michaelis—Menten constant for car-
boxylation (K ,5) was conserved, whose value was around
27.24 Pa for most C; plants (von Caemmerer 2000). How-
ever, there is mounting evidence that K ,5 is not constant. A
recent study revealed significant variation in K ,5 across 75
species that resulted from diversity of the catalytic function
in Rubisco (Orr et al. 2016). Variations were also confirmed
in our study, with higher posterior distributions for K ,5 in
DTS than in the other plant functional types. This empha-
sizes the need for additional work to improve our under-
standing of K,5. Many current models related to the FvCB
model assumed that E; and Ey, were constant and could be
based on values that usually come from spinach (Jordan and
Ogren 1984) or tobacco (Bernacchi et al. 2001). However,
our results suggest that this assumption is not robust. For
example, the values of E; and Ey, for needle-leaved trees
(31.0 and 44.44 kJ mol~! on average, respectively) were
much lower than those of broad-leaved plants (58.36 and
80.73 kJ mol~! on average, respectively). Thus, variation
of Ey and Ey, should be taken into account when using these
parameters in future research. Until the present study, 8 and
a have been commonly assumed to be constant at 0.7 (Evans
1989) and 0.85 (von Caemmerer 2000), respectively. How-
ever, our results show that 8 and a were both variable, with
values of 6 ranging from 0.41 for Pinus taeda to 0.99 for
Populus tremuloides and with values of a ranging from 0.58
for Pinus virginiana to 0.99 for Oenothera perennis. These
findings highlight the need to improve our understanding of
these parameters both through better parameter estimation
methods and from more accurate field gas-exchange data.
All in all, the variation of parameters K,s, E;, Ey, 6, and
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a at different levels confirmed our hypotheses that param-
eters commonly used as constant values in previous studies
are evolvable within and/or across diverse species and plant
functional types.

The FvCB model has been widely applied to scale pho-
tosynthesis from the leaf level to whole canopies or even
biomes (Rogers et al. 2017). In most LSMs, some photo-
synthetic parameters are empirical values, whereas some
are chosen at a coarse resolution to distinguish among plant
functional types (Wullschleger et al. 2014; Fisher et al.
2015). However, the present results demonstrate that vari-
ations of parameters at the plant and species levels were
significant (Figs. 3, 4, 6; Table S3). We also found that mod-
els based on plant- and species-level parameters performed
much better fitting precision than models based on plant
functional type parameters (Fig. 8, Tables S4, S7). These
findings highlight the importance of considering species-
and plant-level variation in sensitive parameters when apply-
ing these parameters in land surface models. Moreover, bal-
ancing model performance and model complexity is also
very important in LSMs’ simulation. The differences in DIC
among the model in which parameters were used at different
levels suggested that calibrating J,,105: Vemax2s» Ra2s» 8m2ss
0 and «a at species level, and K ,s, E}, and Ey, at plant func-
tional types level was more reasonable than directly using
a fixed value or at other levels, although these parameters
exhibited obvious variability at the three levels simultane-
ously (further details were provided in the Supplementary
Material Table S8). In summary, combining sensitivity
analysis with a hierarchical Bayesian approach provided
an effective framework to identify and optimize parameters
in the FvCB model across a diverse range of species. The
results not only improved our understanding of the behavior
of these parameters, but also provided more accurate esti-
mates of the parameter values for use in land surface models
to simulate the carbon cycle.

Looking forward

For the moment, working at the resolution of the PFTs offers
a reasonable compromise, as this level has been well inte-
grated into LSMs [SiB2 (Sellers et al. 1995a, b); CLM4.5
(Oleson et al. 2013)]. Most current models use PFT-specific
constant parameter values for regional or global applica-
tions (Wullschleger et al. 2014), and do not account for spe-
cies- and plant-level variation. Our results demonstrated that
variation of parameters at the species and plant levels was
also highly significant, and should be considered in future
models. Also, some field experiments documented that the
variation of plant traits in species level was large and often
even greater than that in plant functional types level (Wright
et al. 2005; Laughlin et al. 2010). Given recent advances in
our ability, like the HB method, to model diverse variation

in different levels (e.g., plant functional types and species),
future research should present a more accurate parameteriza-
tion scheme for LSMs.

Conclusions

To obtain more accurate values of the common key param-
eters used in the FvCB model and analyze their variation
within and across different hierarchical levels (plant, species,
and plant functional types), we combined the use of two sen-
sitivity analysis methods (the Morris and Sobol’ methods)
and the hierarchical Bayesian parameter estimation method.
The results were more accurate than the results of simula-
tions with a simple Bayesian framework. We found that: (1)
Jnaxos and V.. »s were highly sensitive parameters and R s,
8mas» Keos» Ey, Ey, 6, and a were sensitive parameters; thus,
these parameters should be estimated as accurately as pos-
sible for each model; (2) J 0425 Vemax2s: and Ry,5 exhibited
lower posterior distributions for needle-leaved trees (NET
and NDT) than for the other plant functional types (BET,
BDT, DTS, and AGG); thus, these parameters should be esti-
mated separately for these groups; (3) the posterior medians
of J .05 and V...»s were strongly correlated, suggesting
that more work will be necessary to understand their rela-
tionship; and (4) variation of parameters at the species level
should be accounted for in future research. Note that because
our study focused on C; plants, the results should not be
extended to C, plants. Such studies will further improve our
understanding of the distributions of parameter values so
that we can account for this variation in the photosynthesis
modules of LSMs.
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