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ABSTRACT: We address the competition between intermolecular
forces underlying the recent observation that ionic liquids (ILs) with
a hydroxyl-functionalized cation can form domains with attractive
interactions between the nominally repulsive positively charged
constituents. Here we show that this behavior is present even in the
isolated ternary (HEMIm*),NTf,” complex (HEMIm* = 1-(2-
hydroxyethyl)-3-methylimidazolium) cooled to about 35 K in a
photodissociation mass spectrometer. Of the three isomers isolated
by double resonance techniques, one is identified to exhibit direct
contact between the cations. This linkage involves a cooperative H-
bond wherein the OH group on one cation binds to the OH group
on the other, which then attaches to the basic N atom of the anion.
Formation of this motif comes at the expense of the usually
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dominant interaction of the acidic C(,)H group on the Im ring with molecular anions, as evidenced by isomer-dependent shifts in

the C(,)H vibrational fundamentals.

he development of room-temperature ionic liquids

(RTILs) has accelerated in recent years as their properties
become increasingly tailored"” to facilitate chemical processes
ranging from alternative, environmentally friendly solvents for
chemical syntheses® > to spacecraft propellants.”* Because ILs
are often heterogeneous at the molecular scale,”™'* optimizing
their properties for particular applications from first-principles
has proven to be challenging,”'*™>* and there are open
fundamental questions about the intramolecular distortions and
local contact motifs between the ionic constituents.”””>> For
example, recent bulk spectroscopic results (FT-IR) have been
reported that indicate direct points of contact between cations,
denoted (c—c) interactions,”®>’ that arise from cooperative
hydrogen bonds involving the OH groups on hydroxyl-
functionalized systems. In those cases, the spectroscopic
signatures of hydrogen bonding in the OH stretching region
were observed to become more prominent at lower (~213 K)
temperatures, but the diffuse nature of the bands allowed only a
qualitative picture of the local interactions. Here we focus on
the isolated cluster ion consisting of two cations and one anion,
denoted hereafter as (2,1), which are the smallest systems
capable of displaying an anion-mediated, attractive interaction
between molecular cations. The issues at play are indicated in
the schematic arrangements of the ternary ionic complex
displayed in Scheme 1. The arrangement shown on the right in
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Scheme 1, with the anion sandwiched between the cations, has
been observed in many (2,1) complexes that do not have OH
groups.”® The formation of a direct contact between the
hydroxyl groups with short hydrocarbon tails (left structure in
Scheme 1) requires a distortion of this quasi-symmetrical
arrangement. For such a (c—c) interaction to occur, it would
appear that the increased Coulomb repulsion between the
positive charge centers and loss of one OH attachment to the
anion would have to be somehow compensated by the H-bond
linkage. Our goal in this work is therefore to identify a
microscopic (2,1) system displaying this type of (c—c) motif in
order to clarify the nature of the individual contacts that drive
its stability.

We specifically focus on the two cationic imidazolium
derivatives (EMIm* and HEMIm") depicted in Scheme 2,
complexed to NTf,” (bis(trifluoromethylsulfonyl)imide), one
of the most widely used anions in ILs." These cations were
chosen because recent studies'”******~** have reported a
spectroscopic way to measure the strength of the interaction
between the most acidic position (C(;yH) on the positively
charged imidazolium ring and various anions (halides, BF,”).
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Scheme 1. Illustration of Competing Interactions at Play in
an Ionic Liquid with a Hydroxyl-Functionalized Cation in
the Positively Charged, Gas-Phase Ternary Complex

Scheme 2. Structures of 1-Ethyl-3-methylimidazolium
(EMIm"), 1-(2-Hydroxyethyl)-3-methylimidazolium
(HEMIm®), and Bis(trifluoromethylsulfonyl)imide (NTf,")
Ions
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This is accomplished by isolating the behavior of the vibrational
fundamental associated with the isotopologue that is selectively
deuterated at the C,) position (CyD) on the ring.”**"**
When combined with the highly responsive nature of the OH
stretching fundamental to its local environment, we demon-
strate how the locations of the C(;H(D) and OH(D)
stretching transitions provide sensitive spectroscopic reporters
for the intermolecular interactions at play in the ternary ion
assemblies. Specifically, by comparing the spectral behavior of
the EMIm* (2,1) complex with that of the hydroxylated
derivative (HEMIm®), we establish that an H-bond linkage
between the cations occurs even in this remarkably small
complex. This allows us to reveal the detailed competition
between the OH and CH groups for H-bonding attachment
sites on NTf,” that underlie an attractive (c-c) assembly motif.

We characterize the structures of the ternary complexes with
two cations and one anion by analyzing their vibrational
spectra, which are obtained at low temperature (~35 K)
through the use of mass-selective, cryogenic ion trapping
techniques.”® This method acquires spectra in a linear action
mode by infrared photodissociation of weakly bound N,
adducts.”*"*>**7%" Furthermore, where appropriate, structural
motifs of different isomeric structures adopted by these charged
clusters are isolated through application of isomer-selective,
two-color IR—IR double resonance spectroscopy.”® The
structural implications of the resulting band patterns are
discussed in the context of calculated spectra for various
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structural candidates obtained at the B3LYP-D3/6-31+G(d)
level of theory.*”~**

Figure 1 presents the vibrational spectra measured for the
EMIm* and HEMIm" ions (Figure lac, respectively) along
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Figure 1. Photodissociation spectra of N,-tagged (a) EMIm®, (b)
(EMIm*),NTf,”, (c) HEMIm®, and (d) (HEMIm®),NTf,”. The OH
stretches in traces (c) and (d) are colored red, with * in (c)
representing an isomer where the N, tag is bound to the free OH (see
Figure S1). The labels A;, A), A; and A, denote H-bonded OH
features in the ternary complex (d). In trace (b), the strongest band of
the ring CH features (blue) lies close to the C§2 H feature reported
earlier for the [EMIm][NTf,] neutral ion pe1ir2”’3’34 (arrow in trace
(a)). The OH stretch fundamental of bare ethanol is indicated by an
arrow at the right of trace (c).* R = OH for HEMIm" and H for
EMIm®. Measured transition energies are tabulated in Table SI.

with those of the corresponding (2,1) clusters with NTf,~
(Figure 1b,d) in the spectral region associated with the key
fundamentals involving the ring CH (blue) and OH (red)
stretching modes. Energies of the key transitions are listed in
Table S1. The CH multiplet near 3150 cm™" has been traced to
strong mixing among the three aromatic CH stretches (labeled
Cy C4 and Cg in Scheme 2) as well as to Fermi-type
interactions involving overtones of the corresponding bending
modes.””*' >** Nonetheless, both cations exhibit significant
red shifts of these features upon complexation with the NTf,~
anion, with the strongest member of the multiplet appearing
lowest in energy. The fact that this feature occurs at essentially
the same frequency in both ternary systems suggests that
similar interactions are in play between the imidazolium ring
and the anion. Moreover, we note that a similar band was
observed in the [EMIm][NTf,] neutral ion pair (arrow in
Figure la), >33 indicating that this is characteristic of the
preferred binding motif between the EMIm® ring and the
NTf,” anion.
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The spectrum of the ternary (HEMIm*),NTf,” complex
(Figure 1d) also includes an extended suite of transitions in the
OH stretching region (labeled A}, A,, A;, and A,) that appear
below the location of a free OH group (for example, in isolated
ethanol, arrow in Figure 1c), with substructure evident on the
lowest two (A; and A,) features. We note that the asymmetric
doublet in the HEMIm* spectrum near 3650 cm™! arises from
attachment of the N, tag (* in Figure 1c) to the free OH group,
as discussed further in the SI (Figure S1). The red-shifted
bands (A;—A,) in the (2,1) spectrum occur in the region
corresponding to fundamentals of OH groups that strongly
interact with anionic domains.****~>" The picture that emerges
from qualitative behavior of the ring CH and OH stretching
bands is therefore that at least one of these two groups
(available from the two cations) is strongly interacting with the
anion. Moreover, the plethora of transitions in the OH
stretching region raises the specter that different isomers may
contribute to the pattern (as opposed to reflecting strong
anharmonic coupling, which is also known to result in soft
mode progressions built on OH stretching fundamentals™”).

Recognizing that the HEMIm® ion presents two primary
contact points, the C;yH and OH groups (Scheme 2), for
interaction with the anion, the key issue regards whether these
docking motifs compete for attachment sites on the anion. To
establish the activity of the C,)H groups, we obtained the
spectra of the HEMIm" isotopologue with deuterium atom
substitutions at both the C(,) and OH positions (denoted d,)-
DEMIm*, Figure 2a), its ternary complex with NTf,~ (Figure
2¢), and, for comparison, that of the analogous ternary complex
with the d(,-EMIm" ion (Figure 2b). As mentioned above, the
spectral response of the C(,yD group is free of the anharmonic
interactions that complicate the interpretation of the coupled
oscillators in the CH stretching region. As expected, the C(,D
fundamental appears as an isolated band in the bare ion
spectrum, (chyf;D in Figure 2a). Interestingly, the OD pattern in
the (d(z)—DEMIm+)2NTf2_ spectrum (Figure 2c) is very similar
to that of the OH pattern observed in the (HEMIm*),NTf,~
case (Figure 1d). As such, the OD bands in the (d(-
DEMIm"),NTf,” spectrum are readily assigned to the same
series (A}, Ay, A;, and A, and free OD) as those observed in the
spectrum of the light isotopologue. The C(,)D band near 2350
cm™" appears to be asymmetrically broadened in the (d()-
DEMIm*),NTf,” spectrum (blue in Figure 2c) with a

dominant red-shifted component (ug‘(’;;gd) and a weaker

higher-energy shoulder. The shoulder appears at the same
location as the C(;)D band in the isolated d(,-DEMIm" cation
(fo’ff)D in Figure 2a) and that of d(,-EMIm* (Figure S2a),
indicating that only one of the two cations attaches to the anion
through the C,H group. The C,D band in the (d(,-
DEMIm*),NTf,” spectrum (Figure 2c) is broader than that in
the d(;-EMIm" derivative (Figure 2b). In addition, the peak
maximum is blue-shifted (by 6 cm™), with the activity near the
I/Crf;D feature merging into the overall asymmetrical shape of the

band. This shift suggests that the interaction strength of the
CH group with the anion is slightly weakened upon
incorporation of the hydroxyl group.

To address the role of isomers in the assignments of the
spectra, we carried out isomer-selective photochemical hole-
burning experiments to establish whether distinct species are
present and, if so, to isolate the spectrum of each. This was
accomplished using a two-color IR—IR double resonance
method described in detail by Yang et al.” Briefly, the method
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Figure 2. Selectively deuterated N,-tagged photodissociation spectra
of (a) d3-DEMIm®, (b) (d(;)-EMIm*),NTf,”, and (c) (d()-
DEMIm"),NTf,”. Traces (d—f) present IR—IR double resonance
spectra of (d(,-DEMIm*),NTf,” probed at 2578 cm™ (A;), 2620
ecm™ (A,), and 2645 cm™' (A,), respectively. R = OD for doy-
DEMIm" and H for d(;-EMIm". Measured transition energies are
tabulated in Table SI.

relies on the occurrence of features that are unique to each
conformer. In such a case, fixing a probe laser on a particular
feature monitors the population of that isomer, while a
powerful second laser is scanned through the entire spectrum
upstream from the probe laser interaction. Because vibrational
predissociation is a destructive method for obtaining IR spectra,
pump laser excitation of resonances associated with the probed
conformer yield a series of dips in the probe signal, thus
isolating its spectrum. The method requires an intermediate
stage of mass separation between the pump and probe and is
thus denoted an IR?MS? class of secondary mass analysis.”
The isomer-selective spectra of the (d(z)—DEMIm+)2NTf2_
isotopologues are reported in Figure 2d—f, which were
obtained by probing the A;, A), and A, features, respectively.
Two isomer classes, denoted I and II, are resolved using double
resonance. Additional frequencies were probed that yielded
isomer-specific spectra consistent with one of these two classes
(Figure S4). Most importantly, the isomer I spectrum (Figure
2d), which accounts for both the A; and A, OD features,
contributes only weakly to the C(,yD region. Most of the C(,)D
intensity is thus traced to the type II isomers, which also
account for the free OD band as well as the moderately red-
shifted A; and A, OD stretching bands. This behavior
establishes that the formation of strong bonds to the OH
groups of both cations in isomer I (evidenced by the strongly
red-shifted OD stretches) comes at the expense of anionic
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bonds to the C(,H positions on the imidazolium rings.
Moreover, the class II isomers display absorptions at the
locations of both the free C(;D (v’gff)D) and bound (l/lé"(‘:)']’g)

regions. As such, the cations in the isomer II class bind to the
anion through one C(,)H and one OH group. This information
does not, however, resolve the question of whether or not these
groups are on the same cation.

The large number of local minima available for the (2,1)
clusters that have similar contact modalities does not allow
unambiguous structural assignment by comparison with
calculated vibrational band patterns, even when simplified by
isotopomer-selective spectroscopy. This is especially true given
the fact that the simpler binary ion pairs involving [EMIm]-
[NTf,] are analyzed in terms of contributions from several

#»333% involving interactions of the CyH group with
various SO groups on the cis and trans forms of the NTf,~
scaffold. Attachment of the C,)H group to the central N atom,
the most basic site on the anion (which is protonated in the
conjugate HNTT, acid),”* has also been identified as a
minimum-energy structure in calculations® but not invoked
in prior experimental studies.”*>** In our survey of calculated
structures (six selected structures in Figure SS with XYZ
coordinates in Table S2 and rotatable .pdf structures in Figure
S7), we note that all strong CyH interactions occur at an SO
group on the NTf,” anion, with the OH group of the
corresponding HEMIm® cation adopting a nonbonding
configuration. This would therefore suggest that one
HEMIm" cation is responsible for both the strongly red-shifted
C(»)D feature and the free OD feature observed in the spectrum
of the ternary complex. As such, the second cation must bind in
a different contact motif where the OH group binds to the
anion rather than the Cy,)H group, accounting for the weak
band (Vp) in the isomer-selective spectrum (Figure 2f).
Many calculated arrangements are consistent with this
asymmetrical binding behavior (Figure SS), with a representa-
tive structure indicated in Figure 3b. In this geometry, the
NTf,” is in a trans configuration with the Cu)H of the
HEMIm* (with a free OH) bound to an SO group on the
anion, while the OH group on the other cation binds to the
oxygen atom on the same sulfur atom. We note that incomplete
spectral separation of the two class II isomers leaves open the
possibility that isomer II actually binds to the anion with both
OH groups, leading to two overlapping transitions contributing
to peak A,.

The situation regarding the local interactions in isomer I is
more interesting because both cations bind to the anion
through their OH groups, raising the possibility that they also
interact with each other. The much larger red shifts associated
with these OD features (A; and A, in Figure 2c) relative to
those (A, and A,) identified for single OH contacts in isomer II
are indeed consistent with cooperative H-bonding to the anion.
Harmonic calculations (Figure S3) indicate that such large
shifts require a cooperative interaction between the two OH
groups that acts to enhance the H-bonding interaction with the
central N atom on the NTf,” anion. The spectral signature of
this type of cooperative H-bond to an anion has been reported
earlier’’ for methanol attachment to the iodide ion in the
(CH;0H),I” cluster. In that case, two isomers were observed:
one in which both OH groups directly bind to the anion and
another in which one OH attaches to the oxygen of the second
to give an OH:--OH:--I" motif. This yields two OH bands split
apart by 206 cm™’, with the OH in contact with the ion
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Figure 3. Low-energy structures of (HEMIm*),NTf,” calculated at
the B3LYP-D3/6-31+G(d) level of theory representing the binding
motifs of isomers with (a) and without (b) direct contact between the
cations. F atoms of NTf,” and aliphatic H atoms of HEMIm" are
omitted for clarity. Labels indicate groups nominally assigned to bands
indicated in Figures 1 and 2.

appearing 197 cm ™' below that which results from attachment
of a single methanol to iodide. The calculated structure
consistent with the spectral pattern displayed by isomer I
(Figure 3a) indeed displays this type of cooperative arrange-
ment, and its corresponding harmonic band pattern (shown in
Figure S3e) recovers both the weak activity in the C,)D region
as well as the two strongly red-shifted bands (A; and A,) in the
OD spectral region. These results highlight the importance of
the N atom in the interaction with cationic proton donors
despite the fact that NTf,” is often considered to be dominated
by attachment to its SO groups.”******° Support for the role of
the N atom as an H-bond acceptor can be found, however, in
recent solid-state NMR results on triethylammonium-based
protic ILs (PILs),”” which established that H-bonding from the
cation to the central nitrogen atom on NTf,” is stronger than
that to the oxygen. Calculations also indicate that this binding
motif occurs with weakly acidic protons, as illustrated by the
structure of the complex formed by attachment of a carboxylic
acid-functionalized EMIm* cation to NTf,”, as presented in
Figure S6.

Vibrational spectra of the bulk [HEMIm][NTf,] ionic
liquids, with a hydroxyl-functionalized hydrocarbon tail on
the cation, have been interpreted in the context of an attractive,
H-bonding interaction between the cations. We trace this
behavior to the smallest assembly that can display such an
effect, the isolated ternary (HEMIm"),NTf,~ complex, cooled
to about 35 K in a photodissociation mass spectrometer. Of the
three isomers isolated by double resonance techniques, the one
with direct contact between the cations involves a cooperative
H-bond in which the OH group on one cation binds to the OH
group on the other, which then attaches to the N position at
the center of the NTf,™ anion. This can be formally regarded as
an acid—base interaction motif involving cooperativity-
enhanced acidity of an OH group interacting with the
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protonation site of the NTf,” anion. This behavior is thus a
microscopic example of a growing class of interactions in
hydroxyl-functionalized ionic liquids in which cationic con-
stituents bind together in hydrogen-bonded domains sur-
rounded by anionic counterions.
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