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ABSTRACT Using piezoelectric impedance/admittance sensing for structural health monitoring is promis-
ing, owing to the simplicity in circuitry design as well as the high-frequency interrogation capability. The
actual identification of fault location and severity using impedance/admittance measurements, nevertheless,
remains to be an extremely challenging task. A first-principle-based structural model using finite element
discretization requires high dimensionality to characterize the high-frequency response. As such, direct inver-
sion using the sensitivity matrix usually yields an under-determined problem. Alternatively, the identification
problem may be cast into an optimization framework, in which the fault parameters are identified through
the repeated forward finite element analysis that is often computationally prohibitive. This paper presents
an efficient data-assisted optimization approach for fault identification without using the finite element
model iteratively. We formulate a many-objective optimization problem to identify the fault parameters,
where response surfaces of impedance measurements are constructed through the Gaussian process-based
calibration. To balance between the solution diversity and convergence, an ε-dominance-enabled many-
objective simulated annealing algorithm is established. As multiple solutions are expected, a voting score
calculation procedure is developed to further identify those solutions that yield better implications regarding
a structural health condition. The effectiveness of the proposed approach is demonstrated by the systematic
numerical and experimental case studies.

INDEX TERMS Structural fault identification, piezoelectric impedance/admittance, meta-modeling,
Gaussian process, many-objective optimization, simulated annealing, voting score.

I. INTRODUCTION
The timely and accurate identification of faults in aerospace,
mechanical, marine, and infrastructure systems has received
significant recent attention. Different from traditional, offline
non-destructive testing and evaluation (NDT&E) techniques,
e.g., X-ray inspection, where the effectiveness is limited to
the close vicinity of the sensors employed, online struc-
tural health monitoring is often facilitated through actuat-
ing and then sensing/measuring dynamic responses such as
waves/vibrations that can propagate quite far [13]. This yields
much larger coverage area and higher inspection efficiency.
The advent of many new transducer materials/devices and
the advancement in microelectronics have resulted in rapid
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progress in this area. On the other hand, bottlenecks and
unique challenges exist. Structures are continuous media, and
parameters characterizing structural faults, i.e., location and
severity, are continuous variables as well. Hence, structural
faults have infinitely many possible patterns/profiles with
typically small characteristic lengths, which are further com-
pounded by various uncertainties. Intuitively, the dynamic
response data collected by the monitoring system must be
in high-frequency range (i.e., with small wavelengths) so
features of small-sized faults can be captured. The key issues
thus are: 1) how to effectively generate high-frequency sens-
ing data; and 2) how to efficiently and accurately identify
fault location and severity from the data [35].

Owing to their two-way electro-mechanical coupling,
piezoelectric transducers are commonly used in structural
health monitoring [15], [33]. One class of methods is
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ultrasonic propagating wave-based, where these transducers
are used as actuators and sensors. The change of
transient wave (e.g., Lamb wave) patterns, as waves
propagate through fault site, can be used to infer fault
occurrence. While these methods lead to high detection
sensitivity due to the high-frequency nature, it is difficult
to use transient responses to identify fault, especially to
quantify the severity. The piezoelectric transducers have also
been employed in the electrical impedance- or admittance-
based methods where a piezoelectric transducer is integrated
(bonded/embedded) with the structure being monitored [20].
In these methods, the piezoelectric transducer is driven by
a sinusoidal voltage sweep over a certain frequency range,
and the electrical response (i.e., the resulted current) is
measured to extract the impedance/admittance information.
Owing to the electro-mechanical coupling, the piezoelectric
impedance/admittance is directly related to the mechanical
impedance of the underlying structure. Thus, the change of
piezoelectric impedance/admittance signature with respect
to that under the healthy baseline state can be used as fault
indicator. These methods have shown effectiveness for a vari-
ety of structural faults including crack, corrosion, debonding,
joint degradation, etc [26], [38]. The impedance/admittance
can be measured in high-frequency range. A significant
advantage is that in these methods the piezoelectric trans-
ducer serves as actuator and sensor simultaneously and the
circuitry design is extremely simple requiring essentially only
a small resistor, which leads to implementation convenience.

A major hurdle remains. In theory, identifying directly
the fault location and severity from stationary responses
such as impedances/admittances is possible, if a credi-
ble first-principle model such as finite element model of
the healthy baseline is available. A linearized sensitivity
matrix can be derived that links the structural property
changes to the changes of harmonic response magnitudes
measured. Such an inverse problem is usually severely
under-determined. In order to characterize high-frequency
impedance/admittance responses accurately, the finite ele-
ment model must have high dimensionality. To pinpoint fault
condition, we often divide the structure into several seg-
ments where the structural property in each segment is an
unknown to be solved (because each segment is susceptible
of fault occurrence). Therefore, the model has high dimen-
sionality with a large number of unknowns. Meanwhile,
structural faults manifest themselves in structural resonances
and anti-resonances. As such, the effective measurements
of impedance/admittance changes are limited [30]. One
potential way to avoid the direct inversion is to convert the
identification problem into an optimization problem, where
possible property changes in all segments are treated as
design parameters. These parameters are updated by mini-
mizing the discrepancy between sensor measurements and
model predictions through various optimization techniques
in which only forward analyses are performed [2], [6], [7],
[27]. The necessary computational cost, however, could be
very high. The forward optimization generally requires large

number of iterations to converge, while a single run of
high-dimensional finite element analysis can be very costly
already.

Dynamic response calibration, as a faster alternative to
exhaustive finite element analysis, has shown promising
aspects in alleviating computational burden by emulating
the full-scale finite element model responses. Traditional
response surface methods applied for model updating use
explicit functions to represent the relation between inputs
and outputs. Least square-based techniques are then devised
to refine parameters in the polynomial representation [12],
[24], [28], [41], [42], (Chakrarborty and Sen, 2014). More
recently, Gaussian process, also referred to as Kriging [19],
[29], has gained popularity due to its capability to simulate
complicated process subjected to uncertainties. A Gaussian
process model is not restricted to certain polynomial form
thus allows highly flexible modeling in input-output relation
based on statistical expectations and variances over functions.
Gao et al. [14] used a Kriging surrogate model to calibrate
frequency responses for crack tip location identification in
cantilever plates. Yang et al. [37] proposed a similar calibra-
tion approach in frequency domain to detect the location and
severity of fault in small structures. Wan and Ren [32] sug-
gested a residual-based Gaussian process model to character-
ize the relation between residual and updated parameters in
frequency domain for finite element model updating.
Jin and Jung [16] formulated a sequential surrogate mod-
eling scheme that constructs multiple response surfaces for
finite element model updating. Balafas et al. [3] presented
a Gaussian process model in wavelet domain that can infer
damage through hypothesis testing. It is worth noting that
all these dynamic response calibration methods are applied
to natural frequency measurements. Since in practice only
lower-order natural frequencies can be realistically mea-
sured, the case setups in these studies are relatively sim-
ple with low dimensionality and the design parameters
are discrete with low dimensionality as well. In compari-
son, in impedance/admittance sensing, considerably larger
amount of measurements at many frequency points, can be
acquired, and a high-dimensional structure is to be identified.

From the underlying physics standpoint, impedance/
admittance sensing offers a new opportunity to identify
fault parameters more accurately for more complex struc-
tures. While the response calibration technique appears to
be promising in possibly avoiding iterative finite element
analyses in an optimization framework, new issue arises.
Although fault effects are reflected in impedance/admittance
change at each frequency point theoretically, the actual
impedance/admittance measurements respond to a fault con-
dition differently at different frequencies. Therefore, in order
to correctly identify fault conditions, one would need to
examine the impedance/admittance changes at many fre-
quency points. In other words, in order to take full advan-
tage of the high-frequency impedance/admittance sensing,
we need to formulate and then solve efficiently an
optimization problem to match response predictions with
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measurements at many frequency points. It should be noted
that many-objective global optimization usually features
more than three objectives, while multi-objective optimiza-
tion refers to that with no more than three objectives.
Although it would appear to be easier to resort to weighted
summation to solve a single objective optimization [14], [32],
[37], weighting selection among objectives is ad-hoc, and the
result could easily converge to a meaningless outcome due to
multiple local optima, measurement noise and uncertainties.

In this research, we develop a new methodology of
fault identification using piezoelectric impedance/admittance
sensing. To thoroughly elucidate the health status, a many-
objective optimization is formulated to match parametric
prediction with measurements at all frequency points of inter-
est. Gaussian process regression is incorporated to construct
the response surfaces, which not only significantly reduces
computational cost but also yields continuous searching of
fault parameters. Our goal in optimization is to find many
solutions (owing to the under-determined nature of the prob-
lem) that are all optimal. In order to balance between solu-
tion convergence and diversity, we establish an ε-dominance
enabled many-objective simulated annealing algorithm. Sub-
sequently, inspired by concepts in social statistics, i.e., vot-
ing power and majority voting [31], a voting framework is
employed to evaluate quality of the solutions obtained. Our
proposed many-objective evaluation approach is able to dis-
tinguish the solutions that could accurately indicate the health
condition of the structure and ultimately provide guidance for
detailed examination.

The novelty of this new framework is multifold. This is the
first research effort to use response surfaces of Gaussian pro-
cess as objective functions for optimization, whereas the solu-
tion (i.e., fault identification result) is obtained by combining
multi-objective Simulated Annealing with ε-dominance. The
voting score calculation based on the outcome of many-
objective optimization is newly developed and success-
fully applied in this manuscript. The rest of this paper is
organized as follows. In Section II, we establish the many-
objective optimization formulation assisted by Gaussian pro-
cess regression for piezoelectric impedance active sensing,
where the ε-dominance enabled many-objective approach
and the voting score calculation are presented in detail.
In Section III, the proposed method is evaluated through
numerical case studies. Experimental validations are con-
ducted in Section IV. Finally, concluding remarks are given
in Section V.

II. APPROACH FORMULATION
A. PIEZOELECTRIC IMPEDANCE/ADMITTANCE ACTIVE
SENSING
In piezoelectric impedance/admittance-based fault identifica-
tion, a piezoelectric transducer circuit is attached to or embed-
ded in a host structure. Harmonic excitation voltage with
sweeping frequency, referred to as the excitation fre-
quency or driving frequency, is supplied to actuate struc-
tural oscillation. The local structural oscillation in turn

induces electrical response of the transducer due to electro-
mechanical coupling. We can write the equations of motion
of the coupled system in the finite element form as [34],

Mq̈+ Cq̇+Kq+K12Q = 0 (1a)

KcQ+KT
12q = Vin (1b)

where M, K and C are the mass matrix, stiffness matrix
and damping matrix, respectively, q is the structural dis-
placement vector, K12 is the electro-mechanical coupling
vector due to piezoelectric effect, Kc is the reciprocal of the
capacitance of the piezoelectric transducer, Q is the elec-
trical charge on the surface of the piezoelectric transducer,
and Vin is the excitation voltage. Clearly in Equation (1),
the impedance/admittance of the transducer is directly related
to the impedance of the underlying structure and thus can
be used as damage indicator. Under harmonic excitation,
Equation (1) can be expressed in frequency domain. The
admittance (reciprocal of impedance) of the piezoelectric
transducer is then given as,

Y (ω) =
Q̇
Vin
=

ωi

Kc −KT
12(K−Mω2 + Cωi)−1K12

(2)

where ω is the excitation frequency and i is the imaginary
unit. In discretized model-based fault identification, struc-
tural fault or damage is frequently assumed as local property
change, e.g., local stiffness loss. We divide the host structure
into n segments and use khj to represent the stiffness matrix of
the j-th segment under healthy condition. The stiffness matrix
of the structure when fault occurs can be written as,

Kd =

n∑
j=1

khj(1− αj) (3)

where the summation refers to the usual direct sum involved
in finite element matrix assemblage, αj ∈ [0, 1] is the fault
index indicating the ratio of stiffness loss in the j-th segment.
For example, if the j-th segment suffers from damage with
a 10% stiffness loss, then αj = 0.1, otherwise αj = 0. α =
[α1, · · · , αn]T is the fault index vector. As the piezoelectric
transducer and the underlying structure form a coupled sys-
tem, structural fault will be reflected through the admittance
of the piezoelectric transducer,

Yd (ω,α) =
Q̇d
Vin
=

ωi

Kc −KT
12(Kd −Mω2 + Cωi)−1K12

(4)

The measured admittance of the structure with fault can
then be compared with the baseline admittance to elucidate
the health condition. The change of admittance before and
after fault occurrence can be written as a function of excita-
tion frequency ω and damage index vector α,

1Y (ω,α) = Yd (ω,α)− Y (ω,α = 0)

=
ωi(kh1−Mω2

+ Cωi)(khα −Mω2
+ Cωi)

−KT
12kh

(5)
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In Equation (5), kh = [kh1, · · · ,khn], which represents the
stiffness sub-matrices of n segments when the structure is
healthy. In impedance/admittance-based fault identification,
as harmonic voltage excitation is supplied for active sens-
ing, Equation (5) is used iteratively giving different read
of 1Y (ω,α) when the excitation frequency is swept within
certain ranges that cover a number of structural resonances
around which physical measurements are taken. In order
to characterize high-frequency responses, the finite element
model must have high dimensionality. It is worth noting that
the active-sensing fault identification framework is effective
in giving implications of severity and location of the fault by
means of stiffness change but limited in distinguishing the
exact type.

B. DATA-ASSISTED IMPEDANCE RESPONSE CALIBRATION
As indicated in Introduction, direct inverse analysis based
on Equation (5) generally yields a severely under-determined
problem. One possible solution is to perform repeated for-
ward finite element analyses in the parametric space within
an optimization framework to identify fault parameters.
In order to render such a procedure computationally tractable,
in this sub-section we present a data-assisted meta-modeling
approach through Gaussian process (GP) regression [17],
[19], [29], (Stein, 2012). Essentially, we aim at rapidly
constructing the response surfaces in the parametric space
through emulations using experimental and/or numerical sim-
ulation data.

Gaussian process (GP) regression is an interpolation
approach by which various spatial and temporal problems can
bemodeled [18], [35], [36]. For impedance-based active sens-
ing, the observed output can be symbolized and denoted as
1Y (x) = f (x)+ ϕ, where f (x) is the output of the numerical
model, x is the input vector, and ϕ is the model discrepancy.
The additive error ϕ is assumed to follow an independent,
identically distributed Gaussian distribution ϕ ∼ N (0, σ 2

n ).
A function φ(x) can be introduced to map the input x to f (x)
as,

f (x) = φ(x)Tw (6)

where w is a vector of unknown parameters. The probability
density of the set of training samples (1Y,X) given w can
then be obtained,

p(1Y |X,w ) =
n∏
i=1

p(1Yi |x i ,w)

=

n∏
i=1

1
√
2πσn

exp(−
(1Yi − φ(xi)Tw)2

2σ 2
n

)

∼ N (φ(x)Tw, σ 2
n I) (7)

The training samples can be acquired either experimen-
tally or from a credible finite element model. Nowwe assume
a multivariate Gaussian prior over the parameters w ∼

N (0, 6p) with zero mean and certain covariance. We can
obtain the posterior probability density of w through Bayes’

theorem,

p(w|X,1Y )=
p(1Y|X ,w)p(w)

p(1Y|X )
∼ (σ−2n A−1φ(x)1Y,A−1)

(8)

where A = σ−2n φ(x)φ(x)T +6−1p . Finally, by averaging over
all possible parameter values, the predictive distribution of f∗
given a test input vector x∗ also followsGaussian distribution,

p(f∗ |x∗,X,1Y )

=

∫
p(f∗ |x∗,w )p(w |X,1Y )dw

∼ N (σ−2n φ(x∗)TA−1φ(x)1Y, φ(x∗)TA−1φ(x∗)) (9)

Therefore, any finite number of outputs f∗ given multiple
test inputs x∗ have a joint Gaussian distribution. To define
such distribution over the stochastic process f (x), a Gaussian
process regression model is developed,

f (x) ∼ GP(m(x), k(x, x′)) (10)

Equation (10) is fully specified by its mean function m(x)
and covariance function or kernel k(x, x′) where x and
x′ are in either the training or the test sets. For prior
w ∼ N (0, 6p), the mean and covariance functions that
determine the smoothness and variability are written as,

m(x) = E[f ] = φ(x)TE[w] = 0 (11)

k(x, x′) = E[(f − m)(f ′ − m′)] = φ(x)T6pφ(x′) (12)

The joint distribution of observation 1Y and unknown out-
put f∗ given training input set X and test input set X∗ is then,[
1Y
f∗

]
∼ N

(
0,
[
K (X,X)+ σ 2

n I K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
(13)

K (X,X∗) denotes the n×n∗ matrix of kernels evaluated at all
pairs of training and test points through k(x, x∗) for n training
samples and n∗ test inputs. Finally, the key predictive distri-
bution of Gaussian process regression, i.e., the conditional
distribution of f∗, is expressed as

p(f∗ |X∗,X,1Y ) ∼ N (K (X∗,X)[K (X,X)+ σ 2
n I]
−11Y,

K (X∗,X∗)−K (X∗,X)[K (X,X)+σ 2
n I]
−1K (X,X∗)) (14)

which is the function-space view of Equation (9). In this
research, the input vector is given as x = [ω,α] ⇔
[ω, αL , αS ], where ω is the excitation frequency, and α is
the fault index vector. The vector α can be further expressed
as [αL , αS ] for single fault cases, where αL is the location
and αS is the severity. For example, if a structure is divided
into 6 segments and the 3rd segment is subjected to 5%
damage (5% stiffness loss), then α = [0, 0, 0.05, 0, 0, 0]
or α ⇔ [αL , αS ] = [3, 0.05]. For each given ωj(j =
1, 2, . . . , l) where l is the number of frequency points
swept during inspection, if m observations or training data
in Gaussian process regression can be obtained as Dj ={
(1Yji, αLi, αSi) |i = 1, 2, . . . ,m

}
, we can then have l cali-

brations trained by {D1,D2, . . . ,Dl}with a Gaussian process
regression model f (α) ∼ GP(0, k(α, α′)). One of the most
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FIGURE 1. Admittance change calibrations (a) single squared exponential
kernel (b) product of squared exponential kernels (©: training sample).

widely-adopted kernel functions is the squared exponential
function [29],

k(α,α′) = θ1 exp

(∣∣α − α′∣∣2
θ2

)
(15)

which is efficient toward cases where the training data is of
the same type but in different dimensions. For inputs that
have more than one type of feature, such as [αL , αS ] char-
acterizing location and severity that are different in nature,
a well-accepted way to build a kernel is to multiply kernels
together [11]. In this research, we adopt the product of two
squared exponential functions as kernel,

k(α,α′) = θ1 exp

(∣∣α − α′∣∣2
θ2

)
· θ3 exp

(∣∣α − α′∣∣2
θ4

)
(16)

The hyper-parameters θ used in kernel are trained by maxi-
mizing the marginal likelihood p(1Y |X ), or the log marginal
likelihood w.r.t. θ and σn,

log p(1Y |α ) = −
1
2
1YT (K (α,α)+ σ 2

n I)
−11Y

−
1
2
log

∣∣∣K (α,α)+ σ 2
n I
∣∣∣− n

2
log 2π (17)

The parameters are then evaluated usingMarkov chainMonte
Carlo method [25] in this study.

Compared to single squared exponential kernel
(Equation (15)), the product of squared exponential kernels
(Equation (16)) can better represent the training samples in
impedance-based fault identification. As shown in Figure 1,
admittance changes are calibrated using single squared expo-
nential function as kernel and product of squared exponential
functions as kernel, respectively, given 270 training data.
The calibration surface is the mean value of the predictive
distribution acquired using Equation (14).

For l frequencies ωj(j = 1, 2, . . . , l) swept by a piezoelec-
tric transducer in active sensing, if l sets of training dataDj are
available either by experiment or from a finite element model,
l calibration surfaces similar to Figure 1(b) can be developed,

1Y (c)
1 (αL , αS ) |D1

...

1Y (c)
l (αL , αS ) |Dl (18)

where 1Y (c)
j represents the output of the reconstructed sur-

face for any input (αL , αS ) under excitation frequency ωj.
The proposed method therefore utilizes the regression

models to reproduce responses by given different arguments
of the response surfaces (health condition of the structure),
where the analytical sensitivity matrix to correlate variables
with the response is not involved. By minimizing the dis-
crepancy between the predictions made by reconstructed sur-
faces and the actual measurements, the fault identification
problem is essentially cast into an optimization problem. The
impedance/admittance changes measured physically under
the same l excitation frequencies 1Y (m)

l are used to form
l objective functions,

min J1 =
∣∣∣1Y (c)

1 (αL , αS )−1Y
(m)
1

∣∣∣
...

min Jl =
∣∣∣1Y (c)

l (αL , αS )−1Y
(m)
l

∣∣∣ (19)

where αS and αL are the design variables of the optimization
problem. Consider the case where only one objective func-
tion J1 is employed.Minimizingmerely J1 will possibly yield
a large number of wrong solutions because it is an under-
determined problem with only one measurement subjected to
error. Clearly, more information regarding the health condi-
tion should be taken into consideration by employing more
objective functions. This showcases the underlying reason we
formulate a many-objective optimization problem. We aim
to find the ‘‘overlapping consensus’’ among the available,
many objective functions. It is, however, computationally
challenging to solve such an optimization problem.

C. VOTING-EMPOWERED MANY-OBJECTIVE EVALUATION
In this study, the procedure of many-objective evaluation is
composed of many-objective optimization, post-processing
and reasoning. Many-objective optimization (MaOO) prob-
lems are defined as those with four or more objectives [9]
where the results cannot be directly visualized through
graphical means. In comparison, multi-objective optimiza-
tion problems have two or three objective functions. To illus-
trate the difficulties associated with solving many-objective
optimization problems, we first introduce the Pareto opti-
mality based multi-objective optimization, which has seen
extensive research efforts [5], [8], [21], [39], [40]. For multi-
objective optimization, the Pareto optimality is defined in
a broader sense that no other solution is superior to the
Pareto optimal solutions when all objectives are considered.
Following this, a general Pareto-basedMaOO problemwhere
n objectives are minimized simultaneously is specified as

Minimize f (x) = {f1(x), . . . , fn(x)} (20)

where x is the decision vector and f is the objective vector.
When two sets of decision vectors are compared, the concept
of dominance is involved. Assuming a and b are two deci-
sion vectors, the concept of Pareto optimality can be defined
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FIGURE 2. From Pareto optimal to ε-Pareto optimal.

as follows: a dominate b if:

∀i = {1, 2, . . . , n} : fi(a) ≤ fi(b) (21)

and

∃ j = {1, 2, . . . , n} : fj(a) < fj(b) (22)

Any objective function vector, which is neither dominated
by any objective function vector in the Pareto optimal set
nor dominating any of them, is said to be non-dominated
with respect to that Pareto optimal set. The solution that
corresponds to the objective function vector is then a member
of Pareto optimal set.

In comparison with multi-objective optimization, many-
objective evaluation needs to tackle two major additional
difficulties [9], [23]:

1) Almost all solutions generated are non-dominated to
one another. As the number of objectives increases, even a
mediocre solution could be Pareto optimal because it may
have small advantages over other solutions in at least one
objective, even though the differences are trivial. Conse-
quently, most Pareto optimality-based multi-objective opti-
mization algorithms become inefficient and out of focuswhen
dealing with many objectives. The solution set yielded may
be arbitrarily large.

2) It is hard to maintain good diversity among the solu-
tion set in high dimensional space. Generally, it is computa-
tionally expensive to evaluate diversity for many objectives.
Moreover, the conflict between convergence and diversity is
aggravated in high dimension. Therefore, attempts to main-
tain diversity may hinder the numerical procedure from con-
verging to the optimal solutions.

The difficulties can be alleviated by using a special dom-
ination principle that will adaptively discretize the Pareto
optimal set and find awell-distributed set of solutions. A good
choice to tackle the above-mentioned difficulties is the
ε-dominance principle [21], which alters and discretizes the
objective space into boxes defined by the power of (1+ ε),⌊

log fi
log(1+ ε)

⌋
(23)

Equation (23) projects each objective function vector
uniquely to one box, which can neutralize trivial improve-
ments in any objectives. One example is shown in Figure 2,

TABLE 1. ε-dominance relations.

one Pareto optimal solution (1.5, 3.5) in the original objec-
tive space is eliminated in the ε-Pareto optimal set because
it is merely better in one objective but a lot worse in the
other objective compared to solution (1.6, 2.5). And by keep-
ing one solution per box, a bounded size solution set with
good diversity could be obtained. The difficulties can thus
be addressed by the ε-dominance transformation. Accord-
ingly, the dominance relation based on ε-dominance is given
in Table 1 where the box operator refers to Equation (23)
and≺ is used to denote dominance relation between decision
vectors.

We incorporate the ε-dominance technique into a
previously developed Multi-objective Simulated Annealing
algorithm [5], hereafter referred to as ε-MOSA/R. The
pseudo-code of ε-MOSA/R is provided below.

In this newly proposed ε-MOSA/R, we use ε-dominance
relation as well as the regular dominance relation to com-
pare the new solution, the current solution and Archive.
Algorithm Update renews the Archive when a better solution
in ε-dominance sense is found and meanwhile assures that
only one solution is maintained per ε-box. As Algorithm
Re-seed and Algorithm Simulated Annealing are embedded,
Algorithm Action takes place when a deteriorated solution is
sampled. Instead of abandoning the solution directly, proba-
bility relaxations are devised so that either the deteriorated
solution is accepted with a certain probability to escape
local optima (Simulated Annealing) or the search direction
is swerved towards known search space with good solutions
for better efficiency (Re-seed). The concept of the amount
of domination is used in computing the acceptance proba-
bility in Re-seed and Simulated Annealing [1]. Given two
solutions a and b, the amount of domination is defined as

1doma,b =
∏l

i=1,fi(a)6=fi(b)
(|fi(a)− fi(b)| /Ri) (24)

where l is the number of objectives and Ri is the range of
the i-th objective for normalization. In this research, for all
case studies to converge, the total number of iterations of
ε-MOSA/R is set as 100,000, Tmax is 100, Tmin is 10−4, and
the cooling rate α is set as 0.8.

Ideally, if the calibration surfaces are perfect without
error, using more objectives (i.e., incorporating more mea-
surements) naturally yields solution sets of better accuracy.
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Algorithm ε- MOSA/R
Set Tmax, Tmin, # of iterations per temperature iter, cool-
ing rate α, k = 0
Initialize the Archive(ε-Pareto front)
Current solution = randomly chosen from Archive
While (T > Tmin)

For 1 : iter
Generate a new solution vector in the neighborhood

of current solution vector
If new solution falls into the same ε-box as any solu-

tions in the Archive
If new solution dominates k (k >= 1) solutions in

the Archive
Update

Else
Action

End if
Else if new solution ε-dominates k (k >= 1) solu-

tions in the Archive
Update

Else if new solution ε-dominated by k (k >= 1)
solutions in the Archive

Action
Else if new solution and Archive are non-ε-dominant

to each other
Update

End if
End for
k = k + 1
T = (αk ) ∗ Tmax

End While

Algorithm Update
Remove all k dominated solutions from the Archive
Add new solution to the Archive
Set new solution as current solution

When enough response surfaces are used, the solution set
should contain only one solution that matches perfectly the
fault scenario. However, owing to modeling and calibration
errors, utilizing more objective functions does not necessarily
associate with better performance. As seen in Equation (19),
l objective functions can be formulated under l excitation fre-
quencies. While ε-MOSA/R introduced could cope with such
a many-objective optimization problem, the solution size
would increase nonlinearly with l [10]. Therefore, it could
be even harder for a greater number of calibration surfaces
to reach the ‘‘overlapping consensus’’ in determining the
structural damage. Although using some subsets of avail-
able calibrated surfaces can uncover a small set of trust-
worthy solutions for further analysis, using other subsets
may return many erroneous results. Given the difficulties,
guiding the algorithm to only a few optimal solutions or mak-
ing an objective decision becomes critical in many-objective
optimization.

Algorithm Action
If new solution and Archive are non-dominant to each other
Set new solution as current solution

Else
If new solution dominated by current solution
Re-seed
Else
Simulated Annealing
End If

End if

Algorithm Re-Seed
new solution is dominated by k (k >= 1) solutions in the
Archive
Set selected solution as thei-th solution i =

argmin
i=1,2,...,k

(1domi,new)

If 1
1+exp(−1domselected,new/max(T ,1)) > rand(0,1)∗

Set selected solution as current solution
Else

Simulated Annealing
End if
∗ rand(0,1) generates a random number between 0 to1

In this research, inspired by social statistics [31] and
ensemble learning [4], we introduce a voting score calcu-
lation based on the concepts of majority voting and voting
power to evaluate the quality of the solutions generated using
different sets of response surfaces as objective functions.
As not all those l objective functions are essential or equally
important, to reduce variance, N (N ≤ l) functions are
randomly selected from the set as objectives of the many-
objective optimization problem denoted as J, which can be
deemed as input of the many-objective algorithm,

A = ε −MOSA/R(J) (25)

where A = {αa,αb,αc, . . .} represents the set of
Pareto optimal solutions obtained after one many-objective
optimization.

As shown in Figure 3, the many-objective optimization
proposed is carried out M times for N randomly selected
response surfaces as objective functions different for each
execution. Hence, we have,

{A1,A2, . . . ,AM } = ε −MOSA/R({J1, J2, . . . , JM }) (26)

We use Ai to represent the solution set of the i-th execution
of the optimization given objective function set Ji. The voting
score for a specific solution is calculated as in the following
manner.
Voting strategy 1.

vs(αa) =
M∑
i=1

∣∣∣αa⋂Ai

∣∣∣ / |Ai| (27)
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Algorithm Simulated Annealing

1domavg =

∑k
i=11domi,new

k

If 1
1+exp(1domavg/T )

> rand(0,1)
Set new solution as current solution

End if

where
∣∣αa⋂Ai

∣∣ equals to 1 if Ai contains αa. For exam-
ple, if αa appears in optimal solution set A1, A3 and A4,
then vs(αa) = 1/ |A1| + 1/ |A3| + 1/ |A4|. As given
in Equation (27), the solution set obtained after each execu-
tion of optimization is assigned a total voting score of one,
meaning that the more solutions there are in one solution set,
the less voting power per solution. The rationale behind such
design is that we want to grant larger voting power to the
solutions in smaller solution sets which are considered as less
affected by error. Thereafter, the scores assigned are added
altogether for each possible damage scenario and the ones
with higher voting scores are more likely to give accurate
implications about the true structural damage. As a result,
we look for indications made by the calibrations rather than
a decisive result, which is prone to error and hard to obtain
owing to the under-determined nature of fault identification
problems. Notably, by keeping one less digit after the decimal
point in terms of damage severity αL , we can investigate the
voting scores for possible severity ranges.
Voting strategy 2.

vs(α̂a) = vs(αaL , round(αaS )) =
M∑
i=1

∣∣∣α̂a⋂Ai

∣∣∣ / |Ai| (28)

The round operator (i.e., ‘round’ in Equation (28)) rounds
the number to the nearest decimal with one less digit, and∣∣α̂a⋂Ai

∣∣ here gives the number of solutions belong to
both α̂a and Ai.

Recall that voting score calculation is designed to endow
certain solutions more voting power when the solution set
is small. We go one step further by withdrawing the voting
scores from the solution sets that exceed the average size of
all solution sets instead of equally assigning each solution set
a voting score of one.
Voting strategy 3.

vspartial(αa) =
M∑
i=1

I (|Ai| ≤
∣∣Ā∣∣) · (∣∣αa⋂Ai

∣∣)
|Ai|

(29)

Voting strategy 4.

vspartial(α̂a) =
M∑
i=1

I (|Ai| ≤
∣∣Ā∣∣) · (∣∣α̂a⋂Ai

∣∣)
|Ai|

(30)

where I (
∣∣Aj
∣∣ ≤ ∣∣Ā∣∣) is a logic operation that the value of it

is 1 if the argument is true and 0 otherwise. By applying either
Equation (29) or (30) for post-processing, a higher level of

FIGURE 3. Voting score calculation for multi-objective evaluation.

FIGURE 4. Illustration of structure for numerical case studies.

separation between insightful solutions and trivial solutions
could be achieved.

In this study, we propose four decision making heuris-
tics (Equations (27-30)) that essentially serve as four voting
strategies to identify and isolate possible fault scenarios for
further inspection. The randomness introduced when select-
ing response surfaces (Figure 3) as objective functions has
desirable characteristics. It not only makes the evaluation
scheme robust to outliers, but also gives useful internal esti-
mates of noise such that we can withdraw voting scores
from certain solution sets (Equations (29) and (30)). More-
over, it is compatible with parallel computing. Combined
with Gaussian process regression and many-objective opti-
mization, the proposed data-assisted many-objective evalu-
ation framework is illustrated in detail through numerical
and experimental case studies in Section III and Section IV,
respectively.

III. NUMERICAL CASE STUDIES
In this section, we carry out two numerical case studies
to illustrate the proposed methodology and gain insights.
The structure of interest is an aluminum cantilevered plate
(Figure 4) with the following properties: length 0.561 m,
width 0.01905 m, thickness 0.0014 m, density 2700 kg/m3,
and Young’s modulus 68.9 GPa. A piezoelectric transducer
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is attached to the middle left of the plate, i.e., 0.18 m from
the fixed end. The properties of the piezoelectric transducer
are: length 0.015 m, width 0.01905m, thickness 0.0014 m,
Young’s moduli Y11 = 86 GPa and Y33 = 73 GPa, density
9500 kg/m3, piezoelectric constant −1.0288× 109 V/m, and
dielectric constant β33 = 1.3832 × 108 m/F. The finite
element model of the plate contains 11,250 20-node hexahe-
dron elements, the size of which is smaller than the shortest
wavelength of the response involved in this study. The plate is
further evenly divided into 25 segments lengthwise, each rep-
resenting a possible damage location. In this research, we use
finite element code developed by ourselves to carry out the
investigations. This will facilitate a streamlined process to
generate simulated responses of impedance/admittance as
well as the segmentation procedure involved. The plate model
used in the analysis is fully validated using ANSYS.

In structural health monitoring using impedance or admit-
tance measurements, the response changes due to damage
occurrence are most evident around the resonant peaks. In the
following numerical case studies, we acquire admittance
measurements at 40 excitation frequencies around the plate’s
14th, 16th, 21st and 23rd natural frequencies. Specifically,
the admittance values at 40 evenly distributed excitation fre-
quencies in the ranges 1886.6 Hz to 1890.4 Hz, 2423.7 Hz
to 2428.5 Hz, 3694.6 Hz to 3702.0 Hz and 4438.7 Hz
to 4447.6 Hz are employed. Identical for each frequency,
270 randomly generated fault scenarios are emulated for
the calibration of impedance response surface. The sampling
range is specified as 1 to 25 for location and 0 to 0.1 for
severity. In actual implementation, we can utilize experimen-
tally acquired measurements directly. The data sampled from
the model is contaminated by ±0.15% standard Gaussian
uncertainties to demonstrate the effectiveness of the pro-
posed approach. We randomly selected fault scenarios that
do not belong to the training set, i.e., damage occurring at the
13th segment with severity α13 = 0.0600 (6.00% stiffness
loss in 13th segment), and at 22nd segment with severity
α22 = 0.0857 (8.57% stiffness loss).

Figure 5 showcases all 40 impedance response surfaces
using Gaussian process regression outlined in Section II-B,
which serve as 40 objective functions. The two horizontal
axes indicate damage location and severity (normalized),
the vertical axis indicates the admittance change measured,
and the red circle represents a training sample. The fidelity
and effectiveness of response surfaces hinges upon the
quality and quantity of samples. A general guideline is to
sample as uniformly as possible, to capture the peaks and
valleys. Certain response surface could be portrayed relative
easily with less samples while the others requires more sam-
ples to be reliable, as shown in Figure 5. But we can use
different combinations of surfaces as objective functions in
each optimization for robust performance.

Based on the many-objective evaluation approach outlined
in Section II-C (Figure 3), for each optimization practice, FIGURE 5. Calibrated response surfaces for 40 excitation frequencies

(© denotes training point).
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FIGURE 5. (Continued.) Calibrated response surfaces for 40 excitation
frequencies (© denotes training point).

FIGURE 5. (Continued.) Calibrated response surfaces for 40 excitation
frequencies (© denotes training point).

10 (N=10) surfaces out of 40 are randomly selected as
objective functions, to decouple each voting for robust
performance. The many-objective optimization is executed
30 (M=30) times. The parameter N is selected in accordance
with the capacity of the many-objective optimization algo-
rithm implemented, and the value ofM should be set as large
as possible for robustness. In this study, we use M=30 for
illustration. In other words, a total of 30 voting scores are
assigned to possible solutions obtained in 30 many-objective
optimization practices.

A. 6.00% STIFFNESS LOSS IN 13th SEGMENT
We first investigate the case where the 13th segment suf-
fers from 6.00% stiffness loss. Here, the post-processing
of MaOO introduced in Section II-C warrants detailed dis-
cussion. After performing the many-objective optimization,
we obtain 369 solutions, or 369 possible fault scenarios.
Voting score calculation (Equation (27)) is carried out suc-
cessively accrediting score to each solution. As shown
in Figure 6, the solution with the highest voting score agrees
with the actual damage with only 0.0001 difference in stiff-
ness loss ratio.

In the first voting strategy, four digits are kept for damage
severity. By keeping one less digit after the decimal point
following Equation (28), we are able to examine the voting
scores for possible severity ranges, as plotted in Figure 7(a).
Some are more distinct from the others compare to Figure 6.
The range with the highest voting score indeed includes the
induced fault (Table 2). We then withdraw the voting scores
from those solution sets that exceed the average size follow-
ing Equation (29). A total of 16 voting scores are to be dis-
tributed among possible solutions. As shown in Figure 7(b),
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FIGURE 6. Voting strategy 1: 369 fault scenarios and the one with the
highest score.

FIGURE 7. (a) Voting strategy 2: 282 fault ranges (b) Voting strategy 3: 369
fault scenarios (c) Voting strategy 4: 282 fault ranges.

some of the fault scenarios are now affiliated with zero
scores. Meanwhile, the solutions with higher voting scores
are significantly separated. Similarly, the voting scores for
severity ranges can be inspected by grouping certain damage
severities (Equation (30)) and, as illustrated in Figure 7(c),
a greater separation is achieved.

The purpose of acquiring higher level of separation stems
from the under-determined nature of such fault identification
scheme due to insufficient measurements, uncertainties and
errors. Thus, multiple solutions are expected. The proposed
data-assisted many-objective evaluation seeks to isolate a
small number of possible solutions for detailed inspections.
In Figure 8, we observe that for each voting strategy, the per-
centage of voting score earned by the true fault is significantly
higher than the average. The margin increases as we move
from strategy one to four. The true fault is clearly favored
and pinpointed among all possible fault scenarios using the
proposed methodology.

Table 2 lists the fault scenarios with the three highest voting
scores calculated. As shown, the ones with the highest scores
all match or cover the true fault scenario. The percentage of

TABLE 2. Three fault scenarios with highest voting scores.

FIGURE 8. Voting score percentage of true fault compared to average.

voting score out of all voting scores being allotted is also
reported. When prior knowledge is unavailable, solutions
with relatively higher scores should be considered as candi-
dates while the proposed voting score scheme filters out most
of the unlikely scenarios. Therefore, even though one certain
solution is hard, if not impossible, to obtain, only a few need
to be examined with the help of many-objective evaluation,
and the one with the highest voting score is more likely to
match the true fault scenario.

B. 8.57% STIFFNESS LOSS IN 22nd SEGMENT
To further demonstrate the approach, we look into another
numerical case where the 22nd segment suffers 8.57% stiff-
ness loss. Similarly, the four voting strategies are imple-
mented, aiming to identify and distinguish the true fault in the
host structure. Figure 9 depicts the voting score for the true
fault in comparison with the average voting score. The pro-
posed method accredits higher score to the true fault, and the
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FIGURE 9. Voting score percentage of true fault compared to average.

TABLE 3. Three fault scenarios with highest voting scores.

indication towards the true fault becomes more pronounced
when we progress through the voting strategies.

The results associated with the three highest voting scores
are ranked in Table 3. Similar to the results reported
in Section III-A, in this case study, the ones with the highest
scores all agree with or cover the true fault scenario.

Here in this section, we also study the effectiveness of the
proposed voting score calculation (Equation (27)) in discrim-
inating possible damage scenarios. The idea of voting has also
been used in ensemble learning such as random forest [4]
and pattern recognition [22] to combine different sets of
result where majority voting is implemented. Compared to
the proposed voting score strategy, majority voting considers
the one damage scenario that appears the most in all solution
sets as the indication of true damage. Figure 10 compares
the solution associated with the highest voting score, which
concur with the true damage scenario, to the solution that
appears the most among solution sets. As revealed in Table 4,

FIGURE 10. The fault scenario with the highest voting score vs. the
damage scenario with the most occurrence.

TABLE 4. Top five fault scenarios: highest voting scores vs. most
occurrences.

the voting score calculation successfully re-adjusts weights
among all solutions. The voting heuristics manage to rank
them essentially based on their quality and thus have better
performance identifying the true fault. Indeed, the solution
with the highest voting score is not only among the solu-
tions that appear the most in the results of many-objective
optimizations, but also is less affected by error. It appears
mostly in small solution sets which are considered more
insightful with less conflict between objective functions and
more confidence. After all, the objective functions should not
be contradicted with each other ideally without error.

IV. EXPERIMENTAL VALIDATION
In this section, experimental case studies using physical
measurements of piezoelectric admittance are carried out.
The experimental setup, geometry measures and material
parameters are consistent with those used in the numerical
analysis in Section III. Figure 10 shows the experimental
setup. Since certain faults, such as erosion and crack, are
hard to emulate under experimental conditions, we add a
small mass to the host structure, which can result in the same
resonant frequency shift and admittance change as a local
stiffness reduction would. To obtain the admittance of the
piezoelectric circuit, a resistor of 100� is serially-connected
to the transducer to measure the voltage drop, which is further
used to extract the current in the circuit. An Agilent 35670A
signal analyzer is employed, where the source channel is used
to generate sinusoidal voltage sent to piezoelectric transducer
denoted as Vin, and the output voltage across the resistor is
recorded as Vout. Hence, the admittance can be obtained as
Y = I/Vin = Vout/RsVin. In experimental case studies,
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FIGURE 11. Experiment Setup.

we acquire measurement samples using 18 excitation fre-
quencies around the plate’s 14th and 21st natural frequencies.
That is, 10 evenly distributed frequencies from the range
1886.6 Hz to 1890.4 Hz and 8 evenly distributed frequencies
from the range 3696.2 Hz to 3702.0 Hz are acquired.

Identical for each frequency, 150 randomly generated dam-
age scenarios are emulated for impedance response sur-
face calibration using the corresponding numerical model.
Figure 11 illustrates all 18 impedance response surfaces
reconstructed by Gaussian process regression. In order to
reduce the unwanted variations and uncertainties in this case
illustration, instead of disassembling and cutting the plate to
reduce the local stiffness, we add small masses to emulate the
damage occurrence.Mathematically, adding a small mass can
result in the same resonant frequency shift and admittance
change as a local stiffness reduction would. In the first exper-
iment, a 0.6 g mass is attached to the 14th segment of the
plate, which causes admittance change equivalent to a 0.28%
local stiffness loss. In the second experiment, the same mass
is attached to the 12th segment, which is equivalent to a 0.16%
local stiffness loss.

Based on the methodology proposed, the many-objective
optimization is executed 10 times, and for each optimization
execution, 10 surfaces out of 18 are randomly selected as
objective functions. In other words, a total of 10 voting scores
are assigned to solutions obtained.

A. 0.28% STIFFNESS LOSS IN 14th SEGMENT
We first perform the experimental case study where the
14th segment is subjected to a 0.28% stiffness loss.
Figure 12 plots the voting score percentage, which quantifies
voting power, after many-objective optimization for the true
fault scenario comparatively with the average of all possible
fault scenarios. As uncertainties such as modeling error and
measurement error are present inevitably in experimental
case studies, the advantage of the true fault using voting
strategy 1 is relatively modest. However, by examining the
solutions based on the severity ranges they fall into (strategy
2), more confidence is gained. The visualizations of the solu-
tions associated with the highest voting scores (Figure 13)
imply accurate predictions is achieved based upon the pro-
posed methodology. In practice, the solutions with relatively
higher voting scores should be considered as candidates.

FIGURE 12. Calibrated response surfaces for 18 excitation frequencies
from small to large (© denotes training point).

Such candidate set provided could serves as the starting point
for detailed inspections, which streamlines the typical proce-
dure of inspection and maintenance in engineering practice.
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FIGURE 13. Voting score percentage of true fault compared to average.

FIGURE 14. (a) Identified damage (the fault scenario with the highest
voting score) (b) Identified damage range (the range with the highest
voting score).

Next, by assigning zero voting scores to the solution sets
that exceed the average size of all solution sets (strategy 3),
we can probe some of the solutions provided by certain
solution sets which are considered of better quality. As shown
in Figure 12, a higher level of distinction is achieved among
solutions using strategy 3 and 4. The detailed results are
reported in Table 5 where the three damage scenarios with
highest voting scores are demonstrated.

B. 0.16% STIFFNESS LOSS IN 12th SEGMENT
The second experimental study concerns the case where
the 12th segment is subjected to a 0.16% equivalent

TABLE 5. Three fault scenarios with highest voting scores.

FIGURE 15. Voting score percentage of true fault compared to average.

stiffness loss. Figure 14 plots the average voting score per-
centages for all 139 possible fault scenarios and 71 severity
ranges after many-objective evaluation stacked on top of the
voting score percentage true fault received. It is noticed that,
again, that the true fault scenario stands out in voting.

As shown in Figure 15, the solution with the highest voting
score delivers close indication of the health condition of the
structure. And if we consider the severity range with the
highest voting score as the identified damage severity range,
it also covers the true damage scenario. The actual voting
power granted to a fault scenario is given by the ratio of
the voting score percentage to the average percentage. For
example, in Figure 14, the absolute voting score percentage of
strategy 3 is lower than that of strategy 2, but it still has larger
voting power due to the higher ratio to average percentage.

As can be seen in Table 6, for all four post-processing
means, the ones with the highest voting scores all make
accurate implications of the health condition of the structure.
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FIGURE 16. (a) Identified damage (the fault scenario with the highest
voting score) (b) Identified damage range (the range with the highest
voting score).

TABLE 6. Three fault scenarios with highest voting scores.

In practice, as wewant to inspect only a small number of dam-
age scenarios in maintenance, the overall approach proposed
in this study can help to isolate a small set of the solutions
that are more related to the health condition of the structure
through its data-assisted analysis. Instead of seeking for one

deterministic solution that could be misguiding, the approach
proposed in this research utilizes training data to analyze
and identify probable fault scenarios that serve as guidance
for further examination through heterogeneous sensing and
inspection.

V. CONCLUDING REMARKS
This research presents a data-assisted approach for struc-
tural fault identification through Gaussian process-based
impedance response calibration and many-objective evalu-
ation. To address the fundamental challenges posed by the
under-determined problem formulation andmodel-based sen-
sitivity approximation, we cast the damage identification
problem into a many-objective optimization by reconstruct-
ing impedance response surfaces as objective functions utiliz-
ing training data. The optimization problem is then tackled by
an ε-dominance enabled many-objective simulated anneal-
ing algorithm. As many solutions are expected in many-
optimization practices, a voting score calculation procedure
is developed and applied after to quantify and identify the
solutions that could make better implication about the health
condition of the structure. The numerical case studies and
experimental case studies demonstrate that the proposed
approach is capable of obtaining a small set of solutions based
on their voting scores that could provide accurate implication
about the health condition of the interested structure. The
proposed scheme is inherently malleable and can be applied
to either model-based or model-free fault identification sys-
tems wherever data is available. The combination of Gaus-
sian process-based calibration, many-objective optimization,
and voting score calculation can be extended to a variety of
inverse analysis problems.
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