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Abstract— We propose a random search algorithm for solving
Lipschitz continuous optimization problems. The algorithm
samples candidate from a parameterized probability distribu-
tion over the solution space and uses the previously sampled
data to fit a surrogate model of the objective function. The
surrogate model is then used to modify the parameterized
distribution in a way that concentrates the search on the set
of high quality solutions. We prove the global convergence of
the algorithm and provide numerical examples to illustrate its
performance.

I. INTRODUCTION

We address optimization problems of the form

x∗ ∈ arg max
x∈X

H(x), (1)

where the feasible region X is a compact subset of Rd, and
the objective function H : X → R is Lipschitz continuous.
We consider a black-box scenario where the explicit form of
H is not available and no other functional properties, such as
convexity or differentiability, are known a priori. However,
for a given solution in the domain X , we assume that the
objective function can be evaluated exactly without error.

A popular strategy that has been proven effective for
attacking such problems is to use random search, where
the basic idea is to construct a sequence of random iter-
ates (e.g., candidate solutions, promising subsets, probability
distributions), and then use the sequence to successfully
approximate the optimal solution. Some examples of random
search algorithms include simulated annealing [11], genetic
algorithms [6], the nested partitions [15], tabu search [5], and
model-based methods [8], [14]. Another general approach,
which is frequently adopted when function evaluations are
computationally expensive, is to use a surrogate model to
approximate the response curve of the unknown objective
function. This has given rise to a variety of optimization
techniques based on surrogate modeling or response surface
methodologies (RSMs); see, e.g., [1], [2], [7], [10], and [12].

In this paper, we propose an algorithm called enhanced
annealing random search (EARS) that integrates surrogate
modeling techniques within the class of model-based random
search methods for solving (1). The algorithm is an im-
proved version of the model-based annealing random search
(MARS) method developed in [9], which searches for an
optimal solution by repeatedly sampling from a sequence of
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parameterized distributions that gradually shift their proba-
bility mass to the set of high quality solutions. However, a
potential drawback of MARS is that the the distribution is
updated at each step based only on the currently generated
solutions, which results in the previously sampled data being
either discarded or insufficiently utilized. EARS addresses
this limitation by fully retaining the previous sampling data
and using them to build a surrogate model of the objective
function. Thus, a main difference compared to MARS is
that in EARS, the parameterized distribution is constructed
based on an approximation of the entire objective function
as opposed to be based on the set of sampled solutions. Intu-
itively, a well-built surrogate model can be used to effectively
predict the response values at un-sampled solutions, and thus
allows the algorithm to improve future search by exploiting
knowledge of the objective function. In addition, as will be
discussed in Section II, another benefit of using surrogate
modeling is that it provides a way to resolve a certain ratio
bias issue in the original MARS algorithm, which allows us
to show the global convergence of EARS when only a single
candidate solution is sampled at each iteration. This is in
contrast to the original MARS algorithm, which requires the
number of sampled solutions to increase polynomially with
the number of algorithm iterations.

The rest of this paper is organized as follows. In Sections
II and III, we motivate our work and describe the EARS
algorithm. The global convergence result of EARS under
general conditions is presented in Section IV. Illustrative nu-
merical examples and some preliminary comparison results
are provided in Section V. Finally, we conclude the paper in
Section VI.

II. BACKGROUND AND MOTIVATION

The general idea of the MARS algorithm for solving (1)
is to construct a sequence of parameterized sampling distri-
butions {fθk} that approximates Boltzmann distributions of
the form

gk(x) :=
eH(x)/tk∫

X eH(x)/tkdx
, (2)

where tk > 0 is a temperature parameter. It is well known
that as tk tends to zero, gk will converge to a degenerate
distribution that concentrates only on the optimal solutions.
Thus, if fθk is a good approximation to gk, then candidate
solutions sampled from fθk will be close to x∗ with high
probabilities as k becomes large. The approximation is
carried out by choosing the parameterized distribution fθ
from the so-called natural exponential family (NEF) (see
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Definition 2.1) and then minimizing its Kullback-Leibler
(KL) divergence to gk, i.e.,

θk+1 = arg min
θ∈Θ

{
D(gk, fθ) := Egk

[
ln
gk(X)

fθ(X)

]}
. (3)

Definition 2.1: A parameterized family of density/mass
functions {fθ : θ ∈ Θ ⊆ Rk} is called a natural exponential
family if there exist mappings Γ(·) : Rd → Rk and K(·)
: Rk → R such that fθ(x) = exp(θTΓ(x)−K(θ)), where
K(θ) := ln

∫
X exp(θTΓ(x))dx is a normalization constant

and the superscript T denotes vector transposition.
In MARS, a convex combination of fθk and gk, i.e.,

g̃k(x) := αkgk(x) + (1 − αk)fθk(x), αk ∈ (0, 1), is used
in lieu of gk when minimizing the KL divergence (3). This
leads to the following recursion connecting the parameter
vectors θk and θk+1 obtained at successively iterations of
the algorithm [9]:

m(θk+1) = m(θk)− αk∇θD(gk, fθ)|θ=θk
= m(θk) + αk(Egk [Γ(X)]−m(θk)), (4)

where m(θ) := Efθ [Γ(X)] is called the mean parameter
function, which is a one-to-one, invertible transformation of
θ. Since the Boltzmann density gk depends on the unknown
objective function H , the term Egk [Γ(X)] in (4) is estimated
using a change of measure under which the density gk is
replaced with the sampling distribution fθk , and then ap-
proximating the expectations by their corresponding sample
averages, i.e.,

Egk [Γ(X)] =

∫
X eH(x)/tkΓ(x)dx∫

X eH(x)/tkdx

=
Efθk [eH(X)/tkΓ(X)f−1

θk
(X)]

Efθk [eH(X)/tkf−1
θk

(X)]

≈
1
Nk

∑Nk
i=1 e

H(xi)/tkΓ(xi)f
−1
θk

(xi)

1
Nk

∑Nk
i=1 e

H(xi)/tkf−1
θk

(xi)
, (5)

where {xi : i = 1, ..., Nk} is the set of candidate solutions
independently sampled from fθk .

Although the estimator given by (5) is straightforward to
implement, its construction only relies on solutions sampled
in the current step and thus involves a ratio bias for any
finite sample size Nk. Therefore, the analysis of MARS
requires Nk to increase polynomially with k to obtain an
asymptotically unbiased estimator. In practice, this may
result in a computational burden that becomes prohibitive
as search proceeds, especially when the cost of function
evaluation is high.

To address this limitation of MARS, we propose an
enhanced version of the algorithm by resorting to the use
of surrogate modeling techniques. The idea is to construct
a surrogate model Sk(x) of H(x) based on all solutions
sampled up to iteration k, and then estimate the expectation
Egk [Γ(X)] by replacing the true objective function H(x)
with its approximation Sk(x), i.e.,

Egk [Γ(X)] ≈ Eĝk [Γ(X)],

where

ĝk(x) :=
eSk(x)/tk∫

X eSk(x)/tkdx
. (6)

Since the surrogate model often has an analytical expression,
Sk is typically much cheaper to evaluate than the objective
function H . Consequently, we assume that Eĝk [Γ(X)] can
be computed arbitrarily accurately, e.g., via numerical inte-
gration or quasi-Monte Carlo methods.

III. ALGORITHM DESCRIPTION

We begin by specifying the following quantities:

• an exponential family of density functions {fθ(x), x ∈
X : θ ∈ Θ}.

• an exploration factor λ, a step-size sequence {αk}, and
an annealing schedule {tk}.

The detailed algorithmic steps of EARS are then given
below.

0: Choose an initial parameter θ1. Initialize the set of
sampled solutions Λ0 = ∅ and set the iteration counter
k = 1.

1: Sample a solution xk from (1 − λ)fθk + λU , where
U denotes the uniform distribution on X . Evaluate the
performance of xk and obtain yk = H(xk). Set Λk =
Λk−1 ∪ {xk}.

2: Construct a surrogate model Sk(x) on X that interpo-
lates the data {(xi, yi) : xi ∈ Λk}.

3: Update the sampling distribution parameter

ηk+1 = ηk + αk(Eĝk [Γ(X)]− ηk) (7)

θk+1 = m−1(ηk+1).

4: If a stopping criterion is met, then terminate the algo-
rithm; Otherwise, set k = k + 1 and go to Step 1.

Intuitively, the use of the uniform distribution at Step 1
allows the algorithm to explore the entire solution space.
This ensures that each subset of X with a positive volume
will have a strictly positive probability of being visited by
the algorithm. Equation (7) at Step 3 is essentially identical
to the updating equation (4) with the only difference being
that the idealized Boltzmann model gk is now replaced
by its approximation ĝk (see (6)). Note that since Step 2
requires the use of an interpolation-based surrogate modeling
technique, all previous sampling data are explicitly retained
and directly contribute to the construction of Eĝk [Γ(X)].
Thus, it is reasonable to expect that the estimator will provide
an increasingly accurate approximation to Egk [Γ(X)] even
when a single solution is sampled at each iteration. Moreover,
if the surrogate model Sk is able to accurately represent the
true objective function H as data accumulates, then the dis-
tribution parameters calculated in (7) based upon the model
(as opposed to be based on the randomly selected solutions
as in (5)) could exhibit significantly reduced variability over
time, leading to stable and robust algorithm performance.
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IV. GLOBAL CONVERGENCE

In this section, we analyze the asymptotic behavior of
EARS and show its convergence to the global optimal
solution of (1). Since the algorithm is randomized, it induces
a probability distribution over the set of all sample paths
generated. We denote by P (·) and E[·] the probability and
expectation taken with respect to this distribution. Probability
one convergence (w.p.1) of a sequence of random events is
to be understood with respect to P . Throughout our analysis,
a sequence {ak} is said to be O(bk) if there exists a positive
real number c > 0 and a positive integer N > 0 such that
ak ≤ cbk for all k ≥ N . We make the following assumptions
regarding the problem and the algorithm parameters.

A1: The optimal solution x∗ is unique. The objective func-
tion H is Lipschitz continuous with a Lipschitz constant
L1.

A2: The sufficient statistic Γ(x) is bounded, i.e., ∃B > 0
such that ||Γ(x)|| ≤ B for all x ∈X .

A3: The annealing schedule {tk} satisfies tk → 0 as k →∞
and ( ln k

k )
1
d /tk → 0 as k →∞.

A4: The surrogate model satisfies Sk(x) = H(x) for all
x ∈ Λk. Moreover, all Sk’s are Lipschitz continuous
with their Lipschitz constants uniformly bounded by L2

w.p.1.
A5: The step-size sequence {αk} satisfies αk → 0 as k →

∞ and
∑∞
k=1 αk =∞.

Note that A1 and A2 are the respective assumptions on
the objective function and the parameterized sampling dis-
tribution family. A3 states that the temperature tk should
gradually decrease to zero but at a rate that is sufficiently
slow. A4 requires the use of interpolation-based surrogate
modeling techniques with the fitted models themselves being
Lipschitz continuous. A5 is a well-known condition used in
studying stochastic approximation type of algorithms.

The following result states that for the class of optimiza-
tion problems characterized by condition A1, the sequence of
Boltzmann distributions {gk} given by (2) will converge to
a limiting distribution that concentrates only on the optimal
solution x∗. The proof can be found in Lemma 3.1 of [9].

Proposition 1: If Assumptions A1, A2 and A3 hold, then
we have

Egk [Γ(X)]→ Γ(x∗) as k →∞, (8)

where the limit is taken component-wise.
For a given point x ∈X and a constant r > 0, let B(x, r)

denote a ball centered at x with radius r. Let u1, . . . , uk
be k independent random points uniformly generated from
a compact set X . The following result, adapted from [4],
is well-known in multidimensional spacing and provides a
strong bound on the minimum radius r required for the
collection of balls {B(ui, r), i = 1, . . . , k} to cover X .

Lemma 1: Let u1, u2, ..., uk be k i.i.d. random points
uniformly sampled from X and define rk = min{r > 0 :
X ⊆ ∪ki=1B(ui, r)}. Then rk = O

(
( ln k
k )

1
d

)
as k → ∞

w.p.1.

Lemma 1, together with the Lipschitz continuity of H
and Sk, implies the uniform convergence of the sequence of
surrogate models {Sk} to the objective function H .

Lemma 2: If Assumptions A1, A3 and A4 hold, then

max
x∈X

|Sk(x)−H(x)|/tk → 0 w.p.1 as k →∞. (9)
Proof: Let Uk denote the set of sample solutions

generated from the uniform distribution up to iteration k.
For each x ∈X , we have

|Sk(x)−H(x)| ≤|Sk(x)− Sk(zk)|+ |Sk(zk)−H(zk)|
+ |H(zk)−H(x)|

≤(L1 + L2)||x− zk||
≤(L1 + L2)||x− uk||,

where zk := arg minxl∈Λk
||x − xl|| and uk :=

arg minxl∈Uk ||x − xl||. Let Ω1 = {ω ∈ Ω : |Uk(ω)| ≥ λ̃k}
for some 0 < λ̃ < λ, where |A| denotes the cardinality of the
set A and Ω is the set of all sample path generated by the al-
gorithm. Let Ω2 = {ω ∈ Ω : rk(ω) = O

(
( ln |Uk(ω)|
|Uk(ω)| )

1
d

)
i.o.},

where rk := min{r > 0 : X ⊆ ∪xl∈UkB(xl, r)} and i.o.
means infinitely often. Thus, on every ω ∈ Ω1 ∩ Ω2, there
exists a constant c > 0 such that when k is sufficiently large,
we have

|Sk(x)−H(x)|
tk

≤ L1 + L2

tk
c
( ln |Uk(ω)|
|Uk(ω)|

) 1
d

≤ L1 + L2

tk
c
( ln λ̃k

λ̃k

) 1
d

= (L1 + L2)
O
(

( ln k
k )

1
d

)
tk

,

which tends to zero as k →∞. Therefore, the result follows
from the strong law of large number and Lemma 1, which
imply P (Ω1) = 1 and P (Ω2) = 1, respectively.

The above lemma gives rise to the next result, showing
that the error of the estimator Eĝk [Γ(X)] decreases to zero
as the number of iterations increases.

Proposition 2: If Assumptions A1, A2, A3 and A4 hold,
then we have∣∣∣∣Eĝk [Γ(X)]− Egk [Γ(X)]

∣∣∣∣→ 0 w.p.1 as k →∞. (10)
Proof: Note that

||Eĝk [Γ(X)]− Egk [Γ(X)]||

≤
∫

X

||Γ(x)||
∣∣ĝk(x)− gk(x)

∣∣ dx
≤ B

∫
X

ĝk(x)
∣∣1− gk(x)

ĝk(x)

∣∣ dx
≤ B

(
exp(2 max

x∈X

|Sk(x)−H(x)|
tk

)− 1
)
,

where the second inequality follows from A2 and the last
inequality is due to the fact that

gk(x)

ĝk(x)
= Egk [e

Sk(X)−H(X)

tk ]e
H(x)−Sk(x)

tk

≤ exp
(

2 max
x∈X

|Sk(x)−H(x)|
tk

)
.
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Thus, Lemma 2 implies that ||Eĝk [Γ(X)]−Egk [Γ(X)]|| → 0
w.p.1.

We now present the main convergence result, which states
that the value of the mean parameter function ηk converges
to Γ(x∗) with probability one.

Theorem 1: If Assumptions A1 to A5 hold, and the sur-
rogate sampling distributions are taken from the NEF, then
{ηk} generated by the EARS algorithm satisfies

ηk → Γ(x∗) w.p.1 as k →∞, (11)

where the limit is taken component-wise.
Proof: Subtract Γ(x∗) on both sides of equation (7),

and let Yk = ηk − Γ(x∗), we have

Yk+1 = Yk + αkf(Yk) + αkbk,

where f(Y ) := −Y and bk := Eĝk [Γ(X)] − Γ(x∗). Note
that since ||bk|| ≤ ||Egk [Γ(X)] − Γ(x∗)|| + ||Eĝk [Γ(X)] −
Egk [Γ(X)]||, propositions 1 and 2 imply that ||bk|| → 0 as
k → ∞ w.p.1. Thus, a direct application of Example 2 in
Section 2.1 of [13] yields Yk → 0 w.p.1.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of the EARS
algorithm by considering some preliminary computational
experiments on four benchmark problems and comparing
its performance with that of the MARS algorithm and the
simultaneous perturbation stochastic approximation (SPSA)
algorithm proposed in [16]. The four test functions are 10
dimensional (d = 10) and their solution spaces are all in
the form of box constraints X = {x ∈ Rd : −10 ≤ xi ≤
10, i = 1, ..., d}.

1) Sum squares function

H1(x) = −
d∑
i=1

i(xi)
2,

where x∗ = (0, ..., 0)T , H1(x∗) = 0.
2) Griewank function

H2(x) = − 1

40

d∑
i=1

(xi)
2 +

d∏
i=1

cos
( xi√

i

)
− 1,

where x∗ = (0, ..., 0)T , H2(x∗) = 0.
3) Ackley function

H3(x) =20 exp

(
− 1

5

√√√√1

d

d∑
i=1

x2
i

)

+ exp

(
1

d

d∑
i=1

cos(2πxi)

)
− 20− exp(1),

where x∗ = (0, ..., 0)T , H3(x∗) = 0.
4) Trigonometric function

H4(x) =−
d∑
i=1

[8 sin2(7(xi − 0.9)2)

+ 6 sin2(14(xi − 0.9)2) + (xi − 0.9)2],

where x∗ = (0.9, ..., 0.9)T , H4(x∗) = 0.
In our implementation, we have used radial basis function

approximation [3] to construct the surrogate models. The
specific approximator considered here is a linear combination
of cubic basis functions, i.e., Sk(x) :=

∑k
i=1 wiφ(||x−xi||),

where φ(r) := r3, xi’s are sampled solutions, and wi’s
are weights that can be obtained by solving a system of
linear equations based on sampled information. In order to
achieve a robust performance of the algorithm, we begin
by uniformly sampling 50 solutions from X and using
their function values to construct an initial surrogate model.
The parameterized sampling distributions are taken to be
normal densities with independent components. The initial
mean vector is uniformly generated from X and the initial
covariance matrix is set to a d × d diagonal matrix with
all diagonal entries equal to 100. In all test cases, we
set the annealing schedule, the step-size sequence, and the
exploration factor to tk = 1

log(k+1) , αk = 1
(k+20)0.51 and λ =

0.1, respectively. At each iteration, the value of Eĝk [Γ(X)] is
calculated by quasi-Monte Carlo integration using 310 Sobol
points generated from X .

The parameters of MARS and SPSA are tuned separately
for each test function to allow good performance of these
algorithms. For MARS, the number of candidate solutions
generated per iteration is taken to be Nk = bK0.502c and the
step size is set to αk = 1

(k+20)0.51 . An adaptive annealing

schedule tk =
0.1|h∗

k|
log(k+1) is used in the algorithm, where h∗k

indicates the objective function value at the current best
solution. For SPSA, the parameter values for each of the
respective test cases are listed in Table I, where αk is the
gain sequence and ck is the simultaneous perturbation size.

Each algorithm is run independently 50 times, and the
averaged results are presented in Tables II, where H∗ denotes
the averaged function value at the final solution obtained by
an algorithm and std err is the standard error. Fig. 1 also
shows the performance of the three comparison algorithms,
where we plot the function values at the current best sampled
solutions against the number of function evaluations used.
We see that EARS shows superior performance over the two
competing algorithms and finds solutions that are very close
to the optimal ones in less than 200 function evaluations on
all test functions. Note that due to the warm-up period used in
EARS to construct the initial surrogate model, the algorithm
is essentially conducting pure random search during the
first 50 iterations. Therefore, EARS shows a slower initial
improvement than MARS and SPSA. However, once an

TABLE I
CHOICES OF PARAMETERS IN SPSA.

αk ck
H1

1
k+100

1
(k+1)0.25

H2
50

k+100
5

(k+1)0.25

H3
10

k+10
2

(k+1)0.25

H4
1

k+10
5

(k+1)0.25
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Fig. 1. Averaged performance of EARS, MARS and SPSA.

TABLE II
AVERAGE PERFORMANCE OF EARS, MARS, AND SPSA.

EARS MARS SPSA
H∗ std err H∗ std err H∗ std err

H1 -3.69e-9 1.63e-11 -58.02 5.82e-1 -17.16 2.33
H2 -1.52e-8 5.47e-10 -7.42e-1 6.61e-3 -1.11 5.42e-2
H3 -8.96e-4 8.73e-5 -4.18 1.12e-2 -9.34 5.49e-1
H4 -1.21e-2 1.01e-3 -70.34 2.76e-1 -27.62 1.23

initial model is obtained, it allows the algorithm to compute
new distribution parameters using knowledge of the objective
function predicted by the model. If the model can adequately
capture the general trend of the response surface of the
objective function, then the algorithm may quickly locate
subsets of X containing high-quality solutions, leading to
significantly improved performance.

VI. CONCLUSIONS

In this paper, we have proposed a random search algorithm
called EARS for solving global optimization problems with
Lipschitz continuous objective functions. EARS improves
upon the MARS algorithm by incorporating a surrogate
model to successively predict the response surface of an
unknown objective function. The use of surrogate modeling
provides a means to explicitly take into account the previous
sampling information and thus allows the algorithm to con-
duct future search by exploiting knowledge of the objective

function. Under appropriate conditions, we have shown that
the algorithm converges globally to an optimal solution with
probability one. Our preliminary computational results also
indicate that the algorithm is promising and may find high-
quality solutions very close to the optimal within a small
number of function evaluations.
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[15] L. Shi and S. Ólafsson, “Nested Partitions Method for Global Opti-
mization,” Oper Res, vol. 48, pp. 390-407, 2000.

[16] J. C. Spall, “Multivariate stochastic approximation using a simultane-
ous perturbation gradient approximation,” IEEE Trans Autom Control,
vol. 37, no. 3, pp. 332341, Mar. 1992.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 110 submitted to 2019 IEEE 15th International Conference on Automation
Science and Engineering (CASE). Received February 27, 2019.


