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Abstract. We propose an adaptive search algorithm for solving simulation optimiza-
tion problems with Lipschitz continuous objective functions. The method combines the
strength of several popular strategies in simulation optimization. It employs the shrinking
ball method to estimate the performance of sampled solutions and uses the performance
estimates to fit a surrogate model that iteratively approximates the response surface of the
objective function. The search for improved solutions at each iteration is then based on
sampling from a promising region (a subset of the decision space) adaptively constructed
to contain the point that optimizes the surrogate model. Under appropriate conditions,
we show that the algorithm converges to the set of local optimal solutions with probability
one. A computational study is also carried out to illustrate the algorithm and to compare
its performance with some of the existing procedures.
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1. Introduction
A4Many complex systems arising in applications from the
industrial and science sectors require the use of simu-
lation optimization techniques to improve their perfor-
mance. In simulation optimization problems, the per-
formance of a system is rarely known with complete
certainty and needs to be estimated in a pathwise man-
ner through computer simulation. Thus, in contrast
to deterministic optimization, such problems are often
characterized by random uncertainties in their perfor-
mance estimates and therefore require additional sim-
ulation effort and special techniques to be expended
and employed to deal with the noisy measurement of
the objective function.
A well-established class of methods for solving dif-

ferentiable simulation optimization problems is sto-
chastic approximation (Robbins and Monro 1951,
Kiefer andWolfowitz 1952, Spall 1992). These methods
estimate the gradient of the objective function through
stochastic simulation and have the same structure as
the classical gradient descent algorithms in determin-
istic optimization. They usually do not rely on pre-
cise performance estimates but resort to some forms of
averaging to eliminate the estimation error during the
course of the iteration. Sample average approximation
(Kleywegt et al. 2001, Robinson 1996, Kim et al. 2015)
is another approach for approximating the solutions to
problems with structural information. The idea is to
convert a stochastic problem into a deterministic one by
expending a large amount of simulation effort on each
visited solution. The resulting problem can then be

solved by using conventional mathematical program-
ming solvers, where structural properties such as dif-
ferentiability and convexity are often exploited.

For nondifferentiable simulation optimization prob-
lems, one popular and effective method is to use
random search. This encompasses a broad class of
algorithms that use a sequence of randomly gener-
ated iterates, for example, candidate solutions, prob-
ability models, and promising subsets, to approxi-
mate the optimal solution. Examples of random search
techniques include the stochastic ruler method (Yan
and Mukai 1992), simulated annealing (Alrefaei and
Andradóttir 1999), the nested partitions method (Shi
and Ólafsson 2000), shrinking ball methods (Baumert
and Smith 2002, Andradóttir and Prudius 2010), COM-
PASS (Hong and Nelson 2006, Xu et al. 2010), and
model-based approaches (Rubinstein and Kroese 2004,
Hu et al. 2008). These algorithms primarily differ in
the type of iterates an algorithm produces and the ran-
dom strategy used to generate the iterates. For recent
reviews of random search techniques, see, for example,
Andradóttir (2014), Hu (2015), Zabinsky (2015) and ref-
erences therein.

We briefly describe two of the aforementioned ap-
proaches that aremost relevant to ourwork: the shrink-
ing ball method and COMPASS. The shrinking ball
method was first introduced by Baumert and Smith
(2002) in a pure random search context. The method
estimates the objective function value at a sampled
point by averaging the performance of all points that
fall into a ball centered at it. The estimation bias is then
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eliminated by gradually sending the radius of the ball
to zero, whereas the variance is controlled by adjusting
the decreasing speed of the radius to ensure that a suf-
ficient number of points are contained in the ball. This
way of estimating the objective function only requires
a single function evaluation (simulation) to be per-
formed at every point sampled, and thus appears espe-
cially well suited for problems with large or uncount-
able decision spaces. Andradóttir and Prudius (2010)
provide a general analysis for this type of method and
propose a stochastic shrinking ball variant in which the
choice of the ball radius is based on the number of sam-
pled points within the ball. Recently, Kiatsupaibul et al.
(2018) A5also developed a shrinking ball-based frame-
work for the efficient implementation and analysis of
adaptive search algorithms that perform only a single
simulation at each visited solution.
COMPASS (Hong and Nelson 2006) is a discrete

simulation optimization algorithm that uses an adap-
tive neighborhood structure, called the most promis-
ing area, in searching for local optimal solutions. Like
many other local search techniques, the promising area
is designed to explore the structure that good solutions
tend to be clustered together, but is constructed in a
unique way as the set of points that are closer in dis-
tance to the current best sampled solution than to other
visited solutions. Later, the idea was extended in Hong
and Nelson (2007) to arrive at a general local search
framework, and an industrial strength COMPASS algo-
rithm (Xu et al. 2010) was also developed and shown
to have very encouraging finite-time performance.

When simulation experiments are computationally
expensive, it is often desirable to use surrogate mod-
els (metamodels) to represent simulation input-output
relations. This has motivated the use of surrogate-
based or response surface methods (RSMs) for simula-
tion or “black-box” optimization. The construction of
surrogate models can be carried out either in a one-
shot space-filling way or through a sequential sam-
pling strategy. In one-shot RSMs, a surrogate/response
model is fit to the response values obtained from
a set of predetermined design points, and an esti-
mate of the optimal solution is then directly inferred
from the model. On the other hand, a sequential RSM
often selects design points one at a time by iteratively
optimizing a certain criterion function leading to an
improved surrogate model. A variety of RSMs have
been proposed in the literature (e.g., Jones et al. 1998,
Gutmann 2001, Nakayama et al. 2002, Sóbester et al.
2005, Regis and Shoemaker 2007), and their applica-
tions to (stochastic) simulation optimization can be
found in, for example, Huang et al. (2006), Chang et al.
(2013), and Kleĳnen (2015). More recently, a surrogate-
based optimization algorithm has also been developed
in Müller (2017) for solving deterministic problems
with multiple conflicting objectives.

In this paper, we draw upon ideas from these
highly successful techniques and propose an algorithm
called surrogate-based promising area search (SPAS)
for solving Lipschitz continuous simulation optimiza-
tion problems. For a given problem, SPAS proceeds
iteratively by constructing and optimizing a sequence
of surrogate models, which are approximations of the
objective function on promising subsets of the solu-
tion space. Each iteration of the algorithm consists of
the following three steps (see Figure 1 for a schematic
description): (1) Generate a set of candidate solutions
by randomly sampling from the promising region con-
structed in the previous iteration, and use the shrink-
ing ball technique to estimate the performance of the
sampled solutions. (2) Use all candidate solutions gen-
erated thus far to build a surrogate model of the objec-
tive function. (3) Optimize the surrogate model and
construct a new promising region that contains the
optimal solution to the model. Intuitively, the shrink-
ing ball method reduces the simulation noise at a sam-
pled solution by averaging observations at solutions
that are close to it, avoiding the need to allocate multi-
ple simulation replications to the same point. The use
of a promising area helps to concentrate the computa-
tional effort on subsets of the solution space. Addition-
ally, the surrogate model is able to successively predict
the response surface of the objective function by using
past sampling information. Note that since the sam-
pling of new solutions is performedwithin the promis-
ing region (as opposed to the entire solution domain),
the use of the surrogate model in our approach is
not intended to provide a global fit of the underlying
response surface, but rather aims to accurately pre-
dict the objective function values at unsampled points
within the current search area. This facilitates the dis-
covery of better solutions by intensifying the search
in the new promising area surrounding the best point
predicted by the model. Under some appropriate con-
ditions, we show that the sequence of surrogate model
optimizers converges with probability one to the set of
local optimal solutions to the original problem.

Our algorithm shares some similarities with a class
of algorithms developed under the so-called trust re-
gion framework (e.g., Deng and Ferris 2009, Chang
et al. 2013, Larson and Billups 2016, Chen et al. 2017),
where the common idea is to use a low-order (lin-
ear or quadratic) surrogate model to approximate the
true response surface over a predefined trust region
and then adaptively adjust the size of the region based
on the approximation quality of the model. However,
unlike our approach, which does not use gradient
information, the analysis of trust-region-based meth-
ods typically relies on the twice differentiability of
the objective function, and some of these algorithms
(e.g., Chang et al. 2013) also require the use of gradient
andHessian estimates in constructing localmodels and
determining solution quality. In addition, for highly
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Figure 1. A6A Schematic Description of SPAS
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nonlinear problems, because of the limited approxima-
tion capability of low-order models, the trust region
radius in these algorithms may become very small,
which limits the size of the region to be explored.
In contrast, SPAS adopts an interpolation-based fitting
strategy and allows for the use of more sophisticated
yet practical surrogate models. Such models have been
shown efficient in approximating high-dimensional
nonlinear functions (e.g., Jones et al. 1998, Gutmann
2001, Regis and Shoemaker 2007), and when used in
conjunctionwith promising region search,may quickly
identify areas of the search space with high-quality
solutions at no extra simulation effort.
A preliminary version of SPAS has been presented

in Fan and Hu (2016). Their algorithm uses a different
technique for estimating the performance of sampled
solutions and only relies on points generated in the
current iteration in fitting surrogate models. Although
the algorithm is shown to be convergent, its theoretical
analysis requires restrictive assumptions, for example,
Hessian information of the surrogatemodel, which can
be difficult to verify in practice. In this work, we gener-
alize the algorithm of Fan and Hu (2016) to allow the
reuse of previously generated solutions in algorithm
construction. This, in effect, reduces the computational

cost and thus may have a significant impact on improv-
ing the algorithm’s practical efficiency. We provide a
complete convergence proof for SPAS under a different,
but much weaker, set of conditions than those used in
Fan and Hu (2016) and conduct more comprehensive
numerical experiments, including additional compar-
isons with three other alternative approaches, to illus-
trate its empirical performance.

The rest of this paper is organized as follows. In Sec-
tion 2, we begin by introducing the problem setting
and thenprovide adetaileddescription of the proposed
algorithm. In Section 3, we analyze the algorithm and
show its strong convergence to the set of local optimal
solutions. Illustrative numerical studies including com-
parisonswith two existing approaches are given in Sec-
tion 4. Finally, in Section 5, we conclude the paper with
discussions on some possible future research topics.

2. Surrogate-Based Promising
Area Search

We consider the following general simulation opti-
mization problem:

A7min
x∈�
{H(x)� Ɛ[h(x , φ)]}, (1)
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where the solution space � is a full-dimensional con-
vex, compact subset of �d with nonempty interior, H is
a deterministic, real-valued objective function, and φ
is a random variable representing the stochastic uncer-
tainty of the underlying system, which, for example,
could be a sample path. Note that for a given solu-
tion x, the objective function value H(x) itself takes the
form of an expectation.We assume that the expectation
cannot be computed analytically and instead needs to
be estimated using the “noisy” sample performance h
obtained through computer simulation. To simplify
notation, we will sometimes suppress the dependency
of h on the sample path φ and simplywrite h(x) instead
of h(x , φ). For ease of implementation, we also assume
that � is characterized by simple (deterministic) con-
straints, for example, box constraints, so that solutions
can be easily generated from it; otherwise a penalty
function approach can be used by altering the objective
function to include a penalty term.

2.1. Algorithm Description
We introduce some mathematical notation that will be
needed in the rest of this paper. Let Nk be the number
of candidate solutions sampled at the kth iteration of
the algorithm and Λk be the set of sampled solutions.
Let Vk be the collection of all candidate solutions sam-
pled up to the kth iteration, {rk}k≥1 be a sequence of
deterministic positive real numbers, and B(x , r) � {y ∈
�: d(x , y) < r} be an open ball of center x and radius r.
For two given points x and y in �, we use d(x , y) to
denote the Euclidean distance between them, whereas
for a set A ⊆�, the distance between a point x and the
set A is defined and denoted by d(x ,A)� infy∈A d(x , y).
Finally, let Sk and Pk ⊆ � be the respective surrogate
model and promising area constructed at the kth itera-
tion of SPAS. The detailed algorithmic steps are given
next.

2.2. A8A9Surrogate-Based Promising
Area Search (SPAS)

Step 0. Set the iteration counter k � 0, V0 � �, and
P0 ��. Specify a small positive constant δ > 0, a se-
quence of numbers {αk}k≥1 satisfying αk ∈ [0, 1)∀ k, and
a shrinking ball strategy {rk}k≥1.
Step 1. Let k � k + 1. Uniformly and independently

sample a set of Nk candidate solutions Λk � {xk
1 , x

k
2 ,

. . . , xk
Nk
} from the current promising area Pk−1. Let Vk �

Vk−1∪Λk . Obtain the sample performance at each point
in Λk and use the shrinking ball method to construct
performance estimates H̃k(x) for all x ∈Vk as follows:

H̃k(x)� αk

∑
y∈B(x , rk )∩Vk

h(y)
|B(x , rk) ∩Vk |

+ (1− αk)
∑

y∈B(x , rk )∩Λk
h(y)

|B(x , rk) ∩Λk |
, (2)

where |A| represents the cardinality of a set A.

Step 2. Build a surrogate model Sk(x) that interpo-
lates the objective function estimates H̃k(x) at all sam-
pled points x ∈Vk .

Step 3. Optimize the surrogate model Sk(x) on Pk−1
to obtain aminimizer x∗k , that is, x∗k ∈ arg minx∈Pk−1

Sk(x).
Construct a new promising area Pk based on x∗k as
follows:

Pk�

{
y∈�: d(y , x∗k)≤d

(
y , x+2(x−x∗k)

δ

d(x∗k ,x)

)
,∀x∈Vk

}
.

Reiterate from Step 1 until a stopping condition is
satisfied.

SPAS starts by taking the initial promising area as the
entire solution space and then proceeds to construct
and sample from a sequence of promising areas. Each
is adaptively formed based on the performance esti-
mates collected at all points sampled up to the current
iteration. Note that at Step 1, any sampling measure
can be used to generate candidate solutions from the
current promising region Pk−1, provided that such a
measure guarantees that any subset in Pk−1 with a pos-
itive Lebesgue measure will also have a positive prob-
ability of being sampled. For simplicity, we have used
a uniform distribution throughout our discussion.

A subtle issue worth mentioning is that since the
construction of promising areas is adaptive, the per-
formance estimates obtained at successive iterations
of the algorithm are generally not independent. For
example, the sample performance h(x) at a point x gen-
erated in the kth iteration will affect the shape and
size of the promising region Pk obtained at Step 3.
This will in turn determine the chance/likelihood of
the points to be produced in the next iteration. Thus,
for a given sampled solution x ∈ Vk , the observations
at points that were generated preceding it are corre-
lated, and a straightforward estimation of its true per-
formance H(x) by averaging past observations (such as
the shrinking ball method) will result in an extra bias.
We address this issue by taking the estimator H̃k(x) as
the convex combination of the average of the obser-
vations collected at all points in B(x , rk) ∩ Vk and the
average of the observations at points in B(x , rk) ∩ Λk
(see Equation (2)). The second average in the combi-
nation only depends on points sampled at the current
iteration Λk and does not suffer from the correlation
bias, whereas the first term relies on past sampling
information and is hence biased. This bias effect is dis-
counted by putting a weight parameter αk ∈ [0, 1) that
diminishes as more points are generated. Intuitively
speaking, since there are only a few points generated in
the early iterations, setting the initial values of αk large
(close to 1) helps to effectively use the performance esti-
mates collected at previously sampled points to reduce
the variance of the estimator. On the other hand, as
sampling gets more focused on the current promising
area, the variance of the second term in (2) becomes

jqhu
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smaller while the correlation bias accumulated in the
first term can be removed by letting αk decrease to zero.
Step 2 requires the use of an interpolation-based fit-

ting strategy to ensure that Sk(x) � H̃k(x) at all x ∈ Vk .
The optimization at Step 3 can be carried out using any
deterministic optimization algorithm. The underlying
assumption is that simulation experiments are much
more expensive to run than evaluating the surrogate
model, so that Sk(x) can be optimized relatively effi-
ciently without any additional simulation effort. The
optimizer x∗k of Sk(x) is then used at Step 3 to construct
a new promising subset Pk , which is defined as the set
of points in � whose distances to x∗k are less than 2δ
plus their distances to the set of sampled solutions. The
use of the constant δ > 0 ensures Pk to have a nonempty
interior and prevents it from degenerating into a single
point when the set of sampled points becomes dense
in the neighborhood of x∗k . Figure 2 provides a pictorial
illustration of how the promising subset is obtained
in two dimensions. This is conducted in a way that is
very similar to the approach proposed in Hong and
Nelson (2006) with the major difference being that now
the construction is based on the best point predicted
by the surrogate model rather than the one with the
current best estimated performance. The intuition is
that when the solution space is continuous, the cur-
rent best sampled solution may be far from being opti-
mal; consequently, using the point to directly construct
the promising area may result in the search of new
solutions being conducted in a region that is very dis-
tant from the set of true (local) optimizers, leading to
slow convergence or inferior local solutions. The sur-
rogate model, on the other hand, retains the previous

Figure 2. Graphical Illustration of the Promising Area in
Two Dimensions, Where x∗k Is a Surrogate Model Minimizer
and x1 , . . . , x4 Are Four Sampled Solutions

�
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�
�

�

Notes. The region circumscribed by the dashed line represents the
set of points that are closer in distance to x∗k than to the sampled solu-
tions. The promising area (shaded region) is formed by expanding
the boundaries of the set by δ unit(s) in the directions of the vectors
−→

x∗k xi , i � 1, . . . , 4.

simulation information in predicting the simulation
responses at unsampled solutions. Thus, if the model
can correctly capture the behavior of the true response
surface, then its optimizer would be a more reliable
estimate of the true (local) optimal solution than the
best sampled solution itself.

It is interesting to observe that in SPAS, if there is
no surrogate model and the promising area is taken
to be the entire feasible region in all iterations, then
the algorithm is identical to the deterministic shrink-
ing ball method discussed in Baumert and Smith (2002)
and Andradóttir and Prudius (2010). On the other
hand, if the solution space is (discrete) integer ordered,
then since each ball B(x , rk) will only contain x itself
(when rk becomes small enough), the shrinking ball
strategy reduces to the usual sample average approx-
imation. Thus, the algorithm (without the surrogate
model) reduces to the COMPASS algorithm of Hong
and Nelson (2006). In this respect, SPAS can essentially
be seen as the extension of COMPASS to continuous
simulation optimization.

3. Local Convergence of SPAS
In this section, we analyze the asymptotic behavior of
SPAS and show its local convergence to the set of opti-
mal solutions of (1). Since the algorithm is randomized,
it induces a probability distribution over the set of all
sequences of sampled solutions and all possible real-
izations of performance measures at these solutions.
We denote by P( · ) and E[ · ] the probability and expec-
tation taken with respect to this distribution. Probabil-
ity one convergence of sequences of random events is
to be understoodwith respect to P. We also define F k �

σ{Λ1 , {h(x), x ∈Λ1}, . . . ,Λk , {h(x), x ∈Λk}}, k � 1, 2, . . .
as the sequence of increasing σ-fields generated by the
set of all sampled solutions and their corresponding
sample performance measures obtained up to itera-
tion k. In the rest of the paper, Fk denotes the uniform
samplingmeasure (conditional onF k−1) used at the kth
iteration, a sequence ak is said to beΩ(kn) if ∃ c > 0 and
k0 > 0, s.t. ∀ k ≥ k0, ak ≥ ckn and to beΘ(kn) if ∃ c1 , c2 > 0
and k0 > 0, s.t. ∀ k > k0, c1kn ≤ ak ≤ c2kn .
The following A10assumptions are used in our analysis:

Assumption 1 (A1). The objective function H(x) is Lips-
chitz continuous on � with Lipschitz constant L1.

Assumption 2 (A2). Conditional on F k−1 and given Λk ,
the simulation noises h(x)−H(x) at all x ∈Λk are indepen-
dent with mean zero. In addition, h(x) −H(x) is uniformly
bounded on �, that is, there exists 0 < B < ∞ such that
|h(x) −H(x)| <B for all x ∈� w.p.1.

Assumption 3 (A3). The surrogate model Sk(x) satisfies
Sk(x) � H̃k(x), ∀ x ∈ Vk . Moreover, all Sk ’s are Lipschitz
continuous on � with their Lipschitz constants uniformly
bounded by L2 for all k w.p.1.
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Assumption 4 (A4). Nk � Θ(k t), rk � Ω(k−p/d) with
limk→0 rk � 0, where t and p are two positive constants satis-
fying p < t. The weight parameter αk satisfies αk ∈ [0, 1) ∀ k
and limk→∞ αk � 0.

Assumptions A1 and A2 are the respective condi-
tions on the true objective function and the simulation
noise. Although the bounded noise in Assumption A2
may appear somewhat restrictive, it is acceptable in
many practical situations given that the bounding con-
stant B is not assumed to be known. For example, the
assumption is satisfiedwhen simulation outputs them-
selves are bounded. In many other cases, for example,
when the batch-mean method is used to collect sam-
ples in steady-state simulation, the noises are often
assumed to follow a normal distribution with finite
variance. Thus, by sending the value of B sufficiently
large, we can still obtain a good estimate on the noise
distribution by taking the normal distribution trun-
cated at B. Assumption A3 stipulates that the fitting
strategy should be interpolation based and requires the
surrogate models to be Lipschitz continuous. However,
note that the Lipschitz constant L2, as well as L1 in A1,
is only used in our theoretical derivations and need
not be known in practice. Assumption A4 controls the
sample size Nk and the decreasing speed of the shrink-
ing ball radius to ensure that enough observations are
collected in balls that shrink with time. It also gives the
conditions on the weight parameter when estimating
the function value.
Let M be the set of all local minimizers of (1). Our

main result is to show that the sequence of the sur-
rogate model minimizers {x∗k}k≥1 will converge to M
with probability one. Our analysis proceeds in sev-
eral steps. First, we prove the following result, which
implies that the collection of sampled solutions will
eventually become dense in Pk .

Lemma 1. For any ε > 0 and xk−1 ∈ Pk−1, define the event
Ak(xk−1 , ε)� {∃ y ∈Λk , d(xk−1 , y)< ε}. If AssumptionA4
holds, then ∑∞

k�1 P(Āk(xk−1 , ε) |F k−1) <∞ w.p.1.

Proof. Note that given F k−1, x∗k−1 is completely deter-
mined. By construction, it is easy to observe that the
δ-neighborhood of x∗k−1, B(x∗k−1 , δ), satisfies B(x∗k−1 , δ) ⊆
Pk−1 for all k � 1, 2, . . . . In addition, since Pk−1 is also
determined, xk−1 becomes a deterministic (arbitrary)
point in Pk−1. To reduce notational burden, we simply
denote the point by x.

We claim that for any x ∈ Pk−1, there exists a con-
stant pε > 0 that does not depend on k such that
Fk(B(x , ε) ∩ Pk−1) ≥ pε, where recall that Fk is the uni-
form sampling measure on Pk−1. For given u ∈ � and
r > 0, let B̃(u , r) � {v ∈ �d : d(u , v) < r}. Clearly, from
the definition of B(u , r), we have B(u , r) � B̃(u , r) ∩�.
Because � has a nonempty interior, there exist a point
y ∈� and a constant ε̄ > 0 such that B̃(y , ε̄) ⊆ �. Now

consider the set C(x∗k−1 , ε̄) � {x∗k−1 + ϕe: ϕ ≥ 0, ‖e‖ � 1,
cos(ε̄/(2 dia(�))) ≤ ((y − x∗k−1)/‖y − x∗k−1‖) · e}, that is,
the cone with its vertex at x∗k−1 that has the direc-
tion y − x∗k−1 and maximum angle ε̄/(2 dia(�)), where
dia(�) � max{d(x , y): x , y ∈ �} is the diameter of �.
Since � is convex and compact, by following an argu-
ment used in Baumert and Smith (2002, p. 14), it can
be directly verified that C(x∗k−1 , ε̄) ∩ B̃(x∗k−1 , ε̄/2) ⊆ �.
This, together with the fact that B(x∗k−1 , δ)� B̃(x∗k−1 , δ)∩
� ⊆ Pk−1, implies C(x∗k−1 , ε̄) ∩ B(x∗k−1 , ε̄0) ⊆ Pk−1, where
ε̄0 � min{ε̄/2, δ}. Consequently, there exist an interior
point yk−1 ∈ C(x∗k−1 , ε̄)∩B(x∗k−1 , ε̄0) and a constant ε̃ > 0,
such that B̃(yk−1 , ε̃) ⊆ C(x∗k−1 , ε̄)∩B(x∗k−1 , ε̄0) ⊆ Pk−1, that
is, the promising region Pk−1 contains a full ball with
constant radius ε̃.
Fix the ball B̃(yk−1 , ε̃) ⊆ Pk−1. For any x ∈ Pk−1, now

define the cone C(x , ε̃) � {x + ϕe: ϕ ≥ 0, ‖e‖ � 1,
cos(ε̃/(2 dia(�))) ≤ ((yk−1− x)/‖yk−1− x‖) · e}. Again, by
invoking the argument of Baumert and Smith (2002)
and noticing that the set Pk−1 is compact and convex,
one can similarly show that C(x , ε̃) ∩ B̃(x , ε̃/2) ⊆ Pk−1.
This in turn suggests that C(x , ε̃) ∩ B̃(x , ε0) ⊆ Pk−1 ∩
B(x , ε), where ε0 � min{ε, ε̃/2}. As a result, we obtain

Fk(B(x , ε) ∩Pk−1) ≥ Fk(C(x , ε̃) ∩ B̃(x , ε0))

�
Vol(C(x , ε̃) ∩ B̃(x , ε0))

Vol(Pk−1)

≥ Vol(C(x , ε̃) ∩ B̃(x , ε0))
Vol(�) , pε > 0,

where Vol(U) is the volume of a set U ⊆�d and the def-
inition of pε follows because both Vol(C(x , ε̃)∩ B̃(x , ε0))
and Vol(�) are constants.
Consequently, since the Nk solutions are sampled in-

dependently at iteration k, we have P(Āk(xk−1 ,ε) |F k−1)
≤(1−pε)Nk w.p.1 for every k≥1. Finally, using the condi-
tion on Nk in Assumption A4 and applying the Bonfer-
roni inequality, we obtain ∑∞

k�1 P(Āk(xk−1 ,ε) |F k−1)<∞
w.p.1. �

The next result shows that for any point x in the
promising area Pk−1, its true objective function value
H(x) can be closely approximated by the surrogate
model Sk(x) as the number of iterations gets large.

Lemma 2. If Assumptions A1–A4 hold, then for any ε>0
and xk−1 ∈ Pk−1, we have ∑∞

k�1 P(|Sk(xk−1) −H(xk−1)| >
ε |F k−1)<∞w.p.1.

Proof. From the conditions on Nk and rk in Assump-
tion A4, there exists a positive constant q > 0 such
that p + q < t. Define lk � Θ(kq) and let Dk � {∀ x ∈
Pk−1 , Nk(x , rk) ≥ lk}, where Nk(x , rk) � |B(x , rk) ∩ Λk |,
that is, the number of sampled points in Λk that lie in
the ball B(x , rk). Since rk , αk → 0 as k→∞ and Nk �

Θ(k t), there exist k′ ∈ � and constants c1 , c2 > 0 such
that rk ≤ ε/(4L1), αk ≤ ε/(8B), lk ≥ c1kq , and Nk ≤ c2k t
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for all k ≥ k′. For simplicity, wewrite the set B(x , rk)∩Vk

as B′k(x) and B(x , rk)∩Λk as Bk(x). Let ε′� ε/(2(L1 + L2))
and denote by xk a random variable over Pk−1 dis-
tributed according to Fk . Thus, conditional on F k−1, for
any given xk−1 � x ∈ Pk−1 and k ≥ k′, we have

P(|Sk(x)−H(x)|>ε |F k−1)
≤P(|Sk(x)−H(x)|>ε,Ak(x ,ε′) |F k−1)+P(Āk(x ,ε′) |F k−1)

�P
(
|Sk(x)−H(x)|>ε,

⋃
y∈Λk

d(x , y)<ε′
����F k−1

)
+P(Āk(x ,ε′) |F k−1)
≤ |Λk |P(|Sk(x)−H(x)|>ε, d(x ,xk)<ε′ |F k−1)
+P(Āk(x ,ε′) |F k−1) where xk∼Fk

≤NkP(|Sk(x)−Sk(xk)|+ |Sk(xk)−H(xk)|+ |H(xk)−H(x)|
>ε, d(x ,xk)<ε′ |F k−1)+P(Āk(x ,ε′) |F k−1)
≤c2k tP(|Sk(xk)−H(xk)|>ε/2 |F k−1)
+P(Āk(x ,ε′) |F k−1) (3)
≤c2k tP(|Sk(xk)−H(xk)|>ε/2,Dk |F k−1)
+P(Āk(x ,ε′) |F k−1)+c2k tP(D̄k |F k−1)

�c2k tP
(����αk

∑
y∈B′k (xk )(h(y)−H(xk))

|B′k(xk)|

+(1−αk)
∑

y∈Bk (xk )(h(y)−H(xk))
|Bk(xk)|

����>ε/2,Dk

����F k−1

)
+P(Āk(x ,ε′) |F k−1)+c2k tP(D̄k |F k−1)

≤c2k tP
(����αk

∑
y∈B′k (xk )(h(y)−H(y))
|B′k(xk)|

+(1−αk)
∑

y∈Bk (xk )(h(y)−H(y))
|Bk(xk)|

����
+

����αk

∑
y∈B′k (xk )(H(y)−H(xk))

|B′k(xk)|

+(1−αk)
∑

y∈Bk (xk )(H(y)−H(xk))
|Bk(xk)|

����
>ε/2,Dk |F k−1

)
+P(Āk(x ,ε′) |F k−1)+c2k tP(D̄k |F k−1)

≤c2k tP
(����αk

∑
y∈B′k (xk )(h(y)−H(y))
|B′k(xk)|

+(1−αk)
∑

y∈Bk (xk )(h(y)−H(y))
|Bk(xk)|

����>ε/4,Dk |F k−1

)
+P(Āk(x ,ε′) |F k−1)+c2k tP(D̄k |F k−1) (4)

≤c2k tP
(����αk

∑
y∈B′k (xk )(h(y)−H(y))
|B′k(xk)|

����
+

����(1−αk)
∑

y∈Bk (xk )(h(y)−H(y))
|Bk(xk)|

����>ε/4,Dk |F k−1

)
+P(Āk(x ,ε′) |F k−1)+c2k tP(D̄k |F k−1)

≤c2k tP
(����(1−αk)

∑
y∈Bk (xk )(h(y)−H(y))
|Bk(xk)|

����>ε/8,Dk |F k−1

)
+P(Āk(x ,ε′) |F k−1)+c2k tP(D̄k |F k−1) (5)

�c2k t

∫
P
(����∑y∈Bk (z)(h(y)−H(y))

|Bk(z)|

����
>

ε

8(1−αk)
,Dk | xk�z ,F k−1

)
·Fk (dz)+P(Āk(x ,ε′) |F k−1)+c2k tP(D̄k |F k−1) (6)
≤2c2k t e−(c1kq ε2)/(32B2)

+P(Āk(x ,ε′) |F k−1)
+c2k tP(D̄k |F k−1) w.p.1,

where (3) follows from d(x , xk) < ε′ and the Lipschitz
continuity of H and Sk , (4) holds because rk ≤ ε/(4L1)
and that every point y in B′k(xk) or Bk(xk) is at most
rk distance away from xk , and (5) is derived using the
bounded noise condition in Assumption A2 and the
fact αkB≤ ε/8. Finally, the first term in (6) follows from
an application of Hoeffding’s inequality (Hoeffding
1963) to the conditional probability in the integrand.

By using a slight modification of the proof of Lem-
ma 2 in Andradóttir and Prudius (2010), with the feasi-
ble region there replaced by Pk−1 and total sample size
by Nk�Θ(k t), it can be shown that P(D̄k |F k−1)≤ c3e−kq+ε

w.p.1 for some constant c3>0, where ε>0 satisfies q+
ε< t−p. Thus, by applying the result of Lemma 1 and
noticing that ∑∞

k�1 k t e−c1kq ε2/(32B2) <∞ and ∑∞
k�1 k t e−kq+ε

<∞, we obtain ∑∞
k�1 P(|Sk(xk−1)−H(xk−1)|>ε |F k−1)<∞

w.p.1. �

The next result is a strengthened version of Lemma 2,
which shows that the objective function H(x) can be
closely approximated by the surrogate model Sk(x)
uniformly for all points x in the promising area Pk−1.

Proposition 1. If Assumptions A1–A4 hold, then for any
ε > 0, P(maxx∈Pk−1

|Sk(x) −H(x)| > ε i.o.)� 0.

Proof. Select a constant r ∈ (0, ε/(2(L1 + L2))]. Let⋃
v∈� B(v , r/2) be an open cover of �. Because � is

compact, there exists a finite collection of points G �

{v1 , . . . , vS } such that � ⊆ ⋃
v∈G B(v , r/2). Note that if

B(v , r/2) ∩ Pk−1 , �, then the distance between any
two points contained in B(v , r/2) ∩ Pk−1 is at most r.
Thus, for every v ∈ G, we can find a point v′ ∈ Pk−1
such that B(v , r/2) ∩ Pk−1 ⊆ B(v′, r). This, together
with the fact that Pk−1 ⊆

⋃
v∈G[B(v , r/2) ∩Pk−1], implies

the existence of a collection of finite points Gk−1 �

{v1
k−1 , v

2
k−1 , . . . , v

sk−1
k−1 } satisfying v i

k−1 ∈ Pk−1 for all i �
1, 2, . . . , sk−1 and sk−1 ≤ S so that Pk−1 ⊆

⋃
v∈Gk−1

B(v , r).
Hence, for any x ∈ Pk−1, there exists a point v j

k−1 ∈ Gk−1

such that d(x , v j
k−1) ≤ r.

Consequently, by the Lipschitz continuity of H(x)
and Sk(x), if |Sk(v

j
k−1) − H(v j

k−1)| ≤ ε/2 for all j � 1,
2, . . . , sk−1, then we must have |Sk(x) −H(x)| ≤ |Sk(x) −
Sk(v

j
k−1)|+ |Sk(v

j
k−1)−H(v j

k−1)|+ |H(v
j
k−1)−H(x)| ≤ ε/2+
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ε/2 ≤ ε for all x ∈ Pk−1. This shows that P(∀ v ∈ Gk−1 ,
|Sk(v) − H(v)| ≤ ε/2 |F k−1) ≤ P(∀ x ∈ Pk−1 , |Sk(x) −
H(x)| ≤ ε |F k−1). It follows that

P
(

max
x∈Pk−1

|Sk(x) −H(x)| > ε |F k−1

)
� P(∃ x ∈ Pk−1 , |Sk(x) −H(x)| > ε |F k−1)
≤ P(∃ v ∈ Gk−1 , |Sk(v) −H(v)| > ε/2 |F k−1)
≤ S max

j�1,...,sk−1
P(|Sk(v

j
k−1) −H(v j

k−1)| > ε/2 |F k−1).

The last inequality holds because the number of points
in Gk−1 is bounded above by S . Then, we sum over k
to get

∞∑
k�1

P
(

max
x∈Pk−1

|Sk(x) −H(x)| > ε |F k−1

)
≤ S

∞∑
k�1

max
j�1,...,sk−1

P(|Sk(v
j
k−1) −H(v j

k−1)| > ε/2 |F k−1) <∞

w.p.1, (7)

where the finiteness of the last sum follows from
the proof of Lemma 2 because sk−1 ≤S is finite and
v j

k−1 ∈Pk−1 ∀k. Finally, since the event {maxx∈Pk−1
|Sk(x)

−H(x)|> ε} is F k-measurable, we conclude from the
Borel-Cantelli-Lévy lemma (Shiryaev 1996) that

P
(
max
x∈Pk−1
|Sk(x)−H(x)|>ε infinitely often

)
�P

( ∞∑
k�1

P(max
x∈Pk−1
|Sk(x)−H(x)|>ε |F k−1)�∞

)
�0. �

Since x∗k∈argminx∈Pk−1
Sk(x) and Sk(x) is close to H(x)

uniformly over Pk−1, it is reasonable to expect that H(x∗k)
should also be close to the minimum of the function
H(x) over the promising area Pk−1. This intuition is for-
malized below.

Lemma 3. If Assumptions A1–A4 hold, then for any ε>0,
P(|H(x∗k)−minx∈Pk−1

H(x)|>ε i.o.)�0.

Proof. By conditioning on the σ-field F k−1, we have

P
(���H(x∗k)−min

x∈Pk−1
H(x)

���>ε |F k−1

)
≤P(|H(x∗k)−Sk(x∗k)|>ε/2 |F k−1)

+P
(���Sk(x∗k)−min

x∈Pk−1
H(x)

���>ε/2 ����F k−1

)
≤P

(
max
x∈Pk−1
|H(x)−Sk(x)|>ε/2

����F k−1

)
+P

(��� min
x∈Pk−1

H(x)−min
x∈Pk−1

Sk(x)
���>ε/2 ����F k−1

)
≤2P

(
max
x∈Pk−1
|Sk(x)−H(x)|>ε/2

����F k−1

)
.

Thus, it follows fromEquation (7) in the proof of Propo-
sition 1 that
∞∑

k�1
P
(���H(x∗k)−min

x∈Pk−1
H(x)

���>ε ����F k−1

)
≤2

∞∑
k�1

P
(

max
x∈Pk−1
|Sk(x)−H(x)|>ε/2

����F k−1

)
<∞ w.p.1.

Consequently, by noticing that {|H(x∗k)−minx∈Pk−1
H(x)|

>ε}∈F k ∀k, a direct application of the Borel-Cantelli-
Lévy lemma yields P(|H(x∗k)−minx∈Pk−1

H(x)| > ε i.o.)
�0. �

In addition, since Sk(x) is uniformly close to the true
objective function H(x) on Pk−1, Proposition 1 also sug-
gests that the distance between x∗k and the set of mini-
mizers of H on the promising area Pk−1 will approach
zero as k tends to infinity. This leads to Proposition 2.

Proposition 2. If AssumptionsA1–A4 hold, then

P(lim
k→∞

d(x∗k ,argmin
x∈Pk−1

H(x))�0)�1.

Proof. LetΩ1�{limk→∞maxx∈Pk−1
|Sk(x)−H(x)|�0}. For

a given sample path ω∈Ω1, let ε>0 be a small constant
and denote the set of minimizers of H(x) on Pk−1(ω)
as Mk−1(ω)�argminx∈Pk−1(ω)H(x). Define Ak−1(ω) :�{x∈
Pk−1(ω): d(x ,Mk−1(ω))≥ ε}, that is, the set of points in
Pk−1(ω) that are at least ε distance away from Mk−1(ω).
Note that since H(x) is continuous and Pk−1 is compact,
the set of minimizers Mk−1(ω) is compact. Thus, it can
be seen thatAk−1(ω) is also compact, and therefore H(x)
attains aminimum value on Ak−1(ω).
Now consider the difference

γ� min
x∈Ak−1(ω)

H(x)− min
x∈Pk−1(ω)

H(x).

Clearly, since Ak−1(ω) ∩Mk−1(ω)��, we must have
γ>0. Thus, there exists K1(ω) sufficiently large such
that maxx∈Pk−1(ω) |Sk(x) −H(x)| < γ/2 for all k ≥ K1(ω).
And because |minx∈Pk−1(ω)Sk(x) −minx∈Pk−1(ω)H(x)| ≤
maxx∈Pk−1(ω) |Sk(x) − H(x)|, we get minx∈Pk−1(ω)Sk(x) <
minx∈Pk−1(ω)H(x)+γ/2 for all k≥K1(ω).
On the other hand, by the definition of γ, for

any x ∈ Ak−1(ω), we have H(x) ≥minx∈Ak−1(ω)H(x) �
minx∈Pk−1(ω)H(x) + γ. This, when combined with
maxx∈Pk−1(ω) |Sk(x) − H(x)| < γ/2, shows that Sk(x) >
H(x) − γ/2 ≥minx∈Pk−1(ω)H(x)+ γ/2 for all k ≥ K1(ω).
Consequently, when k is large enough, we obtain
Sk(x)>minx∈Pk−1(ω)Sk(x) for any x ∈Ak−1(ω), that is, no
point in Ak−1(ω) can be an optimizer of Sk(x). Thus,
since x∗k is a minimizer of Sk(x), it must be contained in
Ac

k−1(ω), that is, d(x∗k ,Mk−1(ω))<ε. Hence, the proof is
completed by noticing that ε is arbitrary and P(Ω1)�1.

Finally, we arrive at the following convergence result
for the SPAS algorithm.
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Theorem 1. If AssumptionsA1–A4 hold, then

P(lim
k→∞

d(x∗k ,M)�0)�1.

Proof. Let Ω2 � {limk→∞d(x∗k ,argminx∈Pk−1
H(x)) � 0}.

From Proposition 2, we know that P(Ω2)�1. For each
path ω∈Ω2, since limk→∞d(x∗k(ω),argminx∈Pk−1(ω)H(x))
� 0, we can find a K2(ω) > 0 sufficiently large so
that for all k≥K2(ω), argminx∈Pk−1(ω)H(x)∩B(x∗k(ω),δ)
, �, where recall that δ > 0 is the parameter
used in the algorithm to construct promising areas.
In addition, because B(x∗k(ω),δ) ⊆Pk(ω) by construc-
tion, we have argminx∈Pk−1(ω)H(x)∩Pk(ω),�. Let x′∈
argminx∈Pk−1(ω)H(x)∩Pk(ω) be arbitrary. It hence fol-
lows that

min
x∈Pk (ω)

H(x)≤H(x′)� min
x∈Pk−1(ω)

H(x).

Since � is compact, H(x) has a lower bound.
Thus, the monotone convergence theorem indicates
that the sequence of minimum function values
{minx∈Pk (ω)H(x)}k≥1 has a limit, and because this
holds for all ω ∈Ω2, we conclude that the sequence
{minx∈Pk

H(x)}k≥1 converges w.p.1.
As a result, since limk→∞ |H(x∗k)−minx∈Pk−1

H(x)|�0
w.p.1. by Lemma 3, {H(x∗k)}k≥1 must have the same
limit as {minx∈Pk

H(x)}k≥1. Let Ω3 � {limk→∞H(x∗k)�
limk→∞minx∈Pk

H(x)}. For each ω∈Ω3, because of the
compactness of�, the sequence {x∗k(ω)}k≥1 has a conver-
gent subsequence {x∗ki

(ω)}i≥1 such that limi→∞x∗ki
(ω)�

x∗(ω) ∈�. Moreover, since H(x) is continuous, it is
not difficult to show that limi→∞minx∈cl(B(x∗ki

(ω)),δ)H(x)�
minx∈cl(B(x∗(ω),δ))H(x), where cl(B(v ,r)) is the closure of
the open ball B(v ,r). Then the following relation holds:

H(x∗(ω))�lim
i→∞

H(x∗ki
(ω))� lim

k→∞
H(x∗k(ω))

� lim
k→∞

min
x∈Pk (ω)

H(x)�lim
i→∞

min
x∈Pki

(ω)
H(x)

≤ lim
i→∞

min
x∈cl(B(x∗ki

(ω)),δ)
H(x)� min

x∈cl(B(x∗(ω),δ))
H(x),

which indicates x∗(ω)∈M. This implies that any limit
point of the sequence {x∗k(ω)}k≥1 is a local minimizer
of H(x).
Finally, to prove the desired result, we proceed by

contradiction andassume that limsupk→∞d(x∗k(ω),M):�
d̄ > 0. This suggests that there is an infinite subse-
quence of {x∗k(ω)}k≥1, denoted by {x∗k j

(ω)} j≥1, such that
d(x∗k j
(ω),M)≥ d̄/2>0 for all j. Then every limit point

x∗0(ω) of {x∗k j
(ω)} j≥1 satisfies d(x∗0(ω),M)≥ d̄/2>0, that

is, x∗0(ω)<M. However, according to our previous argu-
ment, this contradicts the fact that x∗0(ω)∈M, since x∗0(ω)
itself is also a limit point of the sequence {x∗k(ω)}k≥1.
Therefore, we must have limsupk→∞d(x∗k(ω),M)�0 for
all ω ∈Ω3, and because P(Ω3)� 1, this result holds
w.p.1. �

4. Numerical Examples
In this section, we illustrate the performance of SPAS
through some computational experiments on a set
of optimization benchmark functions and an (s ,S)-
inventory control problem. In the implementation of
thealgorithm,wehaveusedaMarkovchain-based tech-
nique discussed in Smith (1984) to sample candidate
solutions from the promising region at each iteration.
It has been shown that under certain conditions, the
points generatedby thismethodare asymptoticallyuni-
formly distributed within a given bounded region. In
particular, at the kth iteration of SPAS, the sampling
procedure begins by taking the surrogate model opti-
mizer x∗k−1 ∈Pk−1 as a starting point. It then chooses a
random direction θ∈�d (i.e., a vector sampled from the
uniform distribution on a unit d-dimensional hyper-
sphere), and subsequently generates a new point uni-
formly on the line {x ∈�: x � x∗k−1 +λθ,λ ∈�}∩Pk−1.
These steps are then repeated by using the newpoint as
the initial point and stopped when the required num-
ber of points is attained. In our experiments, a warm-
up length of 50 epochs is used when collecting the Nk
candidate solutions, that is, the first 50 points generated
are discarded and the sampled candidate solutions are
taken to be the next Nk points in the sequence.
The surrogate model is constructed using the radial

basis function (RBF) approximation method (see, e.g.,
Bishop 1995, Gutmann 2001), which has been success-
fully used as a curve fitting tool in surrogate-based opti-
mization. The specific approximator considered here
is a linear combination of RBFs of the following form:
Sk(x)�

∑|Vk |
i�1 wiψ(‖x−xi ‖), where ψ(r)� r3, xi’s are the

sampled solutions, and wi’s are the weights of the basis
functions, which can be computed by solving a system
of linear equations. Note that since ψ is chosen to be a
polynomial of degree 3, the derivative of Sk(x) admits
an explicit expression and its minimization over the
promising area at Step 3 of the algorithm can be con-
veniently carried out using a straightforward gradient
descent methodwith random restart.

4.1. Deterministic Functions with Added Noise
Tests were performed on 10 deterministic functions
with added noise. These functions are well known and
have been widely used in the literature to investigate
the performance of various optimization algorithms. In
particular, problems h1, h2, and h3 are unimodal, each
with a unique local (global) minimizer. A11h4 and h5 are
low-dimensional problems with a few local minima,
while the last five functions h6–h10 are highly multi-
modal with the number of local minima grows expo-
nentially with the problem dimension. In each case,
the added noise is assumed to follow a zero-mean
truncated normal distribution TN (0,σ2), which is the
normal distribution N (0,σ2) truncated over the region
[−3σ,3σ].
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(1) Beale functionwith added noise

h1(x ,φ1)�[1.5−2x1(1−2x2)]2+[2.25−x1(1−x2
2)]2

+[2.625−x1(1−x3
2)]2+1+φ1 ,

where −10≤xi≤10, i�1,2 and φ1∼TN (0,1). The func-
tion H1(x)�E[h1(x ,φ1)] has only one minimizer x∗1 �
(3,0.5)with function value H1(x∗1)�1.

(2) Powell Singular functionwith added noise

h2(x ,φ2)�(x1+10x2)2+5(x3−x4)2+(x2−2x3)4

+10(x1−x4)4+1+φ2 ,

where −10≤ xi ≤10, i�1,2,3,4 and φ2∼TN (0,1). The
function H2(x)�E[h2(x ,φ2)] has only one minimizer
x∗2�(0,0,0,0)with function value H2(x∗2)�1.
(3) Asymmetric functionwith added noise (n�10)

h3(x ,φ3)�
n∑

i�1
[2xi−4

+(6−xi)]+φ3 ,

where −10≤xi≤10, i�1,2, . . . ,n and φ3∼TN (0,25). The
function H3(x)�E[h3(x ,φ3)] has only one minimizer
x∗3�(4.529,4.529, . . . ,4.529)with function value H3(x∗3)�
2.9139n.

(4) Goldstein-Price functionwith added noise

h4(x ,φ4)�(1+(x1+x2+1)2(19−14x1+3x2
1−14x2

+6x1x2+3x2
2))(30+(2x1−3x2)2(18−32x1

+12x2
1+48x2−36x1x2+27x2

2))+φ4 ,

where −3 ≤ xi ≤ 3, i � 1,2 and φ4 ∼ TN (0,1). The
function H4(x)�E[h4(x ,φ4)] has three local minima
(−0.6,−0.4),(1.8,0.2),(1.2,0.8) and a global minimizer
x∗4�(0,−1)with function value H4(x∗4)�3.
(5) Griewank functionwith added noise (n�2)

h5(x ,φ5)�
1

4,000

n∑
i�1

x2
i −

n∏
i�1

cos
(

xi√
i

)
+φ5 ,

where −10≤ xi ≤10, i�1,2, . . . ,n and φ5∼TN (0,1). The
function H5(x)�E[h5(x ,φ5)] has a globalminimizer x∗5�
(0,0, . . . ,0)with function value H5(x∗5)�0.

(6) Styblinski-Tang function with added noise
(n�10)

h6(x ,φ6)�
n∑

i�1
[x4

i −16x2
i +5xi]/(2n)+40.166+φ6 ,

where −10≤ xi ≤ 10, i �1,2, . . . ,n and φ6∼TN (0,100).
The function H6(x)�E[h6(x ,φ6)] has a globalminimizer
x∗6�(−2.9035,−2.9035, . . . ,−2.9035) with function value
H6(x∗6)�1.
(7) Rastrigin functionwith added noise (n�10)

h7(x ,φ7)�10n+
n∑

i�1
[x2

i −10cos(2πxi)]+φ7 ,

where −5.12≤xi≤5.12, i�1,2, . . . ,n and φ7∼TN (0,25).
The function H7(x)�E[h7(x ,φ7)] has a globalminimizer
x∗7�(0,0, . . . ,0)with function value H7(x∗7)�0.

(8) Schwefel functionwith added noise (n�10)

h8(x ,φ8)�201.8432n−
n∑

i�1
xi sin(

√
|xi |)+φ8 ,

where −200≤xi ≤250, i�1,2, . . . ,n and φ8∼TN (0,100).
The function H8(x)�E[h8(x ,φ8)] has a globalminimizer
x∗8 � (203.814,203.814, . . . ,203.814) with function value
H8(x∗8)�0.
(9) Rosenbrock functionwith added noise (n�10)

h9(x ,φ9)�
n∑

i�1
100(xi−1−x2

i )2+(xi−1)2+1+φ9 ,

where−10≤xi≤10, i�1,2, . . . ,n andφ9∼TN (0,100). The
function H9(x)�E[h9(x ,φ9)] has a globalminimizer x∗9�
(1,1, . . . ,1)with function value H9(x∗9)�1.
(10) Trigonometric function with added noise

(n�10)

h10(x , φ10)�
n∑

i�1
[8sin2(7(xi −0.9)2)+6sin2(14(xi −0.9)2)

+ (xi −0.9)2]+φ10 ,

where −2≤ xi ≤3, i�1,2, . . . ,n and φ10∼TN (0,25). The
function H10(x)�E[h10(x ,φ10)] has a global minimizer
x∗10� (0.90009,0.90009, . . . ,0.90009) with function value
H10(x∗10)�0.
The parameters of SPAS are set as follows: δ�1, per

iteration sample size Nk�max(
√

k ,4), and the shrinking
ball radius is taken to be of the form rk �a/kp/d . Intu-
itively, since p controls the decreasing speed of rk , its
specification should be based on the choice of the sam-
ple size Nk . For example, if a large number of candidate
solutions are allowedat each iteration, then thedecreas-
ing rate of rk can generally be made faster. Therefore,
we recommend to choose the value of p close to but
smaller than t. Because Nk is taken to be on the order
of
√

k (i.e., t�0.5), we simply set p�0.49 in our experi-
ments. We have experimented with different values of
a and found that a good choice of a should depend
on the size of region �. Therefore, we set its value to
be around 5% of the maximum length of the domain,
which yields reasonable performance in all test cases
considered. The weight parameter is chosen to have a
slow decay rate αk � ln(100)/ln(100+ k). This helps to
make more efficient use of the past sampling informa-
tion and thus reduce the variance of the performance
estimator when the number of sampled points is small.
Note that the above parameter setting satisfies the rele-
vant conditions in Assumption A4 for convergence.

For comparison purposes, we have also applied the
simultaneous perturbation stochastic approximation
(SPSA) algorithm(Spall 1992) and theSTRONGmethod
of Chang et al. (2013) on the 10 testing problems. The
former is a stochastic approximation type of algorithm
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that requires only two function evaluations in esti-
mating the gradient, whereas the latter, as discussed
in Section 1, is based on constructing and optimizing
surrogate models defined on trust regions. To further
illustrate the benefit of using surrogate models in the
proposed algorithm,we have also included a simplified
version of SPAS, called PAS, in our comparison. PAShas
the same structure as SPAS but without the surrogate
model approximation step, and the promising region is
constructed at each iteration based on the current best
sampled solution. Thus, following our discussion at the
end of Section 2, PAS is essentially a version of COM-
PASS applied to continuous simulation optimization.
The values of the parameters used in SPAS, PAS, and
SPSAare listed inTables 1 and2,where for SPSA, αk and
ck are the respective gain and simultaneous perturba-
tion sizes. These parameters are selected based on trial
and error in each case to achieve good performance of
SPSA. All parameters used in STRONG are taken to be
the same as those recommended in Chang et al. (2013).

Figures 3 and 4 show the performance of the four
comparison algorithms, averaged over 50 independent
replication runs, on each of the respective test cases.
It is easy to observe that SPAS yields reasonably good
performance in all cases. In particular, on all unimodal
functions h1–h3, the algorithm converges to the unique
optimal solution in all runs, whereas in the rest of the
cases, SPAS outperforms or at least shows comparable
performance to both SPSA and STRONG. In addition to
its superior performance in the long runwhen the num-
ber of function evaluations gets large, the algorithm
(and PAS) has a significantly faster initial improvement
than the other two methods. We conjecture that this

Table 1. Choices of rk and δ in SPAS and PAS

rk δ

h1
1

(k+1)0.49/2 1

h2
0.5

(k+1)0.49/4 1

h3
1

(k+1)0.49/10 1

h4
0.2

(k+1)0.49/2 1

h5
1

(k+1)0.49/2 1

h6
1

(k+1)0.49/10 1

h7
0.5

(k+1)0.49/10 1

h8
20

(k+1)0.49/10 1

h9
1

(k+1)0.49/10 1

h10
0.5

(k+1)0.49/10 1

is because both SPAS and PAS are population based
and initially explore the entire solution space, and thus
may quickly identify a good promising area after only
a few algorithm iterations. In contrast, the magnitude
of improvement in SPSA is governed by the size of
the gain parameter, which is often chosen small ini-
tially to prevent unstable oscillating behavior of the
algorithm (Spall 2003). On the other hand, although
the low-order surrogate models in STRONG are easy
to construct, they can only accurately approximate the
response surface of a nonlinear function over very small
regions. This may limit the size of the trust region to
be explored, resulting in slow or incremental improve-
ment over time. However, we remark that the perfor-
mance of STRONG may be improved through finding
better algorithm parameter values tailored to the test
problems.

The figures also indicate that SPAS performs at least
as well as PAS, with superior performance especially
manifested on functions with multiple local minima.
We see that both algorithms have similar performance
on all three unimodal test functions h1–h3; however,
SPAS finds better solutions than PAS does on mul-
timodal functions, except for the h10 case. This is as
expected, since the surrogate model in SPAS implic-
itly uses previously sampled points to predict objective
function values at unsampled locations, whereas such
information is not exploited in PAS. Thus, if the surro-
gate model can adequately capture the general trend
of the underlying response curve, then the true perfor-
mance of the point predicted by themodel could be sig-
nificantly better than that of the current best sampled
point. Consequently, by focusing the search around the

Table 2. Choices of αk and ck in SPSA

αk ck

h1
1

(k+600,000)
1

(k+1)0.25

h2
1

(k+1,500)
1

(k+1)0.25

h3
1
(k+1)

1
(k+1)0.25

h4
1

(k+5,000)
1

(k+1)0.25

h5
1
(k+1)

1
(k+1)0.25

h6
1

(k+100)
1

(k+1)0.25

h7
1

(k+1,000)
1

(k+1)0.25

h8
10

(k+1,000)
1

(k+1)0.25

h9
1

(k+150,000)
1

(k+1)0.25

h10
1
(k+1)

1
(k+1)0.25
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best point predicted by the model, SPAS has the poten-
tial to identify better promising areas and prevents the
search process from being trapped into inferior local
minima in early iterations. Unlike other test functions,
H10 has a very strong curvaturewith its shape changing
rapidly over very small regions of the solution space.
This feature makes the true response curve of the func-
tion very hard to predict. An accurate approximation
can only be obtained after a significant number of sam-
pled points has been collected, in which case the min-
imizer of the model will essentially coincide with the
best sampled solution, leading to nearly identical per-
formance of both algorithms. As a result, when com-
pared to PAS, we anticipate that the use of surrogate
models in SPAS will yield the most computational ben-
efits on multimodal objective functions with relatively
smooth response surfaces.

4.2. An Inventory Control Example
We consider a discrete-time (s ,S) inventory control
problem with A12independent and identically distributed
exponentially distributed demands (see e.g., Fu and
Healy 1992, Hu et al. 2008). The inventory level is
reviewed at the beginning of each time period. When
the inventory position (the on-hand inventory plus that
on order) falls below the level s, an order is placed
to increase the inventory position to S. We assume
that orders are placed and received instantly (i.e., zero
order lead times) and unsatisfied demands are fully
backlogged.
Let Wt andDt be the inventory position and demand

in period t. Denote by p the per-period per-unit penalty
cost for unmet demand, h the per-periodper unit inven-
tory holding cost, c the per-unit ordering cost, and K
the per-order set-up cost. The dynamic of the inven-
tory position Wt can then be described by the following
formula: Wt+1�S−Dt+1 if Wt < s, and Wt+1�Wt−Dt+1
whenever Wt ≥ s. The objective is to find the optimal
threshold values, s∗ and S∗, in order to minimize the
long-run average cost per period, that is,

(s∗ ,S∗)�argmin
(s ,S)∈�

{
J(s ,S)� lim

t→∞

1
t

t∑
i�1

[
I{Wi<s}

·(K+c(S−Wi))+hW+

i +pW−
i

]}
,

where �� [0,1,000] × [0,2,000], w+ �max(0,w), w− �
max(0,−w), and I{·} is the indicator function.

Table 4. Performance of Different Algorithms on the Four Test Cases (Standard Errors in
Parentheses)

Case Nrep SPAS PAS SPSA Strong

1 200 40.47 (0.16) 98.12 (22.90) 422.29 (36.09) 636.50 (61.03)
2 200 103.94 (0.24) 147.47 (18.85) 426.78 (36.14) 585.47 (66.83)
3 1,000 750.83 (2.12) 756.51 (4.32) 841.29 (10.25) 941.59 (29.52)
4 1,000 1,499.01 (5.84) 1,498.68 (5.74) 1,664.13 (63.44) 2,476.70 (322.37)

Table 3. Four Test Cases of the Inventory Problem

Case E[Dt] p K J(s∗ ,S∗)

1 20 1 10 40.00
2 20 10 100 102.68
3 200 10 100 740.95
4 200 100 1,000 1,470.30

In the simulation experiments, we fix h� c�1 and
consider four test cases by varying the mean demand
E[Dt] and the values of p and K; the optimal objective
function values in all cases can be computed analyti-
cally (e.g., Fu and Healy 1992) and are given in Table 3.
SPAS is implemented based on the following param-
eter setting: δ�1, rk �25/(k+1)0.49/2, Nk �max{

√
k ,4},

and the exponential demand distribution is truncated
over the interval [0,5E[Dt]], which corresponds to a
tail probability of e−5. For SPSA, we set αk�100/(k+1),
ck�10/(k+1)0.25. In STRONG,we choose the initial trust
region radius ∆�20 and the threshold ∆̃�12; the val-
ues of the rest of the parameters remain unchanged
from Chang et al. (2013). The initial solutions in SPSA
and STRONG are uniformly selected from the feasi-
ble region �, and the value of J(s ,S) is estimated in
all algorithms by simulating the (s ,S)-policy for 250
periods with a warm-up length of 50 periods and then
averaging the cost accumulated over the remaining
200 periods.

The simulation results, averagedover 30 independent
runs for each algorithm, are reported in Table 4, where
Nrep indicates the total number of simulation replica-
tions (i.e., the number of (s ,S) pairs evaluated), and
the entries represent the averaged function value J at
the final (best) sampled solutions. The results are sim-
ilar to those obtained in Section 4.1, withA13SPAS pro-
viding either superior or comparable performance to
PAS in all cases. Both SPAS and PAS significantly out-
perform SPSA and STRONG. In addition, note that the
estimates obtained by SPAS have significantly smaller
standard errors than those of PAS in three out of the
four cases, which suggests that the use of the surrogate
model could lead to more stable and robust algorithm
performance.

In Table 5, we also recorded the computational run
times (on aPCwith a 2.6GHz IntelXeonCPUand16GB
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Table 5. Computational Run Times (in Seconds) of Different
Algorithms (Standard Errors in Parentheses)

Case Nrep SPAS PAS SPSA Strong

1 200 6.24 (0.11) 1.98 (0.03) 0.84 (1.8e−3) 0.99 (0.01)
2 200 6.17 (0.09) 1.89 (0.03) 0.86 (3.7e−3) 1.02 (0.03)
3 1,000 48.47 (0.28) 23.37 (0.19) 4.13 (3.6e−3) 5.16 (0.36)
4 1,000 47.69 (0.36) 24.64 (0.16) 4.49 (1.5e−2) 6.02 (0.48)

memory)ofdifferent comparisonalgorithms.Although
SPAS finds better solutions than the other algorithms
do, it is clear from the table that it is also the slowest
among the four algorithms. This is primarily because of
the computational time required to construct and opti-
mize the surrogate model, which is significantly longer
than the time used in conducting simulation runs. Con-
sequently, we expect that the advantage of SPAS will
become evidentwhen the cost of simulation is high and
dominates the computational overhead incurred by the
algorithm.

5. Conclusions andFutureResearch
In this paper, by integrating ideas from the shrink-
ing ball method, surrogate model approximation, and
promising region search, we have proposed a novel
approach, called SPAS, for solving Lipschitz continu-
ous simulation optimization problems. Under appro-
priate conditions, we have shown that the algorithm
converges almost surely to the set of local optimal solu-
tions. Theperformanceof SPAShasbeen illustratedona
set of 10 benchmark testing problems and an inventory
control example. Empirical results on these examples
indicate that the algorithm ispromising andmay signif-
icantly outperform some existing methods that exploit
gradient information.
Although our discussion of SPAS has been based

on a specific promising area construction scheme, the
algorithm offers the flexibility of using other suitable
neighborhoodstructures or constructionprocedures. In
addition, there are a wide variety of surrogate models
that can be employed, ranging from simple polynomial
regressions to sophisticated neural network models.
For example, instead of the RBF method considered
here, another potentially promising approach is Krig-
ing, which is also an interpolation-based approxima-
tion technique. From this perspective, SPAS can be
viewed as a general framework for Lipschitz simula-
tion optimization. Thus, an important line of research
is to investigate the use of other procedures for con-
structing promising areas and surrogatemodels within
the framework and to compare the computational effi-
ciency in terms of algorithm performance between dif-
ferent strategies.

The convergence of SPAS requires the sample size Nk
to increase polynomially with the number of algorithm

iterations. This is in contrast to the shrinking ball meth-
ods of Andradóttir and Prudius (2010) and the recent
development in Kiatsupaibul et al. (2018), where only a
single candidate solution is sampled at each iteration.
The cause of this difference is that in latter approaches,
the sampling is performed from the entire fixed feasible
region; whereas in SPAS, the candidate points are gen-
erated from random subsets so that a point sampled at
an earlier time cannot be guaranteed to lie within the
promising area constructed at a later iteration. How-
ever, our intuition is that while the underlying promis-
ing areas vary with k, their intersection may contain an
invariant set with positive volume as k becomes large.
Thus, although currentlywewere only able to prove the
convergence of SPAS when the sample size increases,
we conjecture that the same convergence result could
be warranted in the case when Nk is held constant, but
the theoretical analysis might require a totally differ-
ent approach. This is clearly a future research issue that
merits investigation.

The shrinking ball method improves the algorithm
efficiency by allowing search (exploring better solu-
tions) and evaluation (obtaining better estimates at cur-
rent solutions) to be conducted at the same time. How-
ever, the use of the method in SPAS may not have
reached its full potential yet. In particular, because of
the correlation issue mentioned in Section 2.1, the con-
tribution of historically sampled points is not fully uti-
lized in performance estimation and needs to be dis-
counted to eliminate the induced bias effect. Recently,
this correlation bias issue has also been noted and
successfully addressed in Kiatsupaibul et al. (2018)
under a different adaptive search framework by using
a martingale-based approach. So it will be interesting
to study whether the martingale approach proposed
there can also be usefully applied to our setting. How-
ever, since the sampling regions in SPAS are random,
the theoretical analysis is likely to require more techni-
cal manipulations.
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