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Modeling and control of wave propagation in a ring
with applications to power grids
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Abstract—This paper concerns the treatment of swing dynam-
ics in a power grid using a continuous approach. Rather than
addressing the problem as oscillations in a discrete system, we
model the swing dynamics as a propagating electro-mechanical
wave using a partial differential equation. A ring geometry with a
one-dimensional wave equation is used to analyze the underlying
dynamics. A control method is proposed to damp the system
dynamics using the concept of Interior Wave Suppression. Unlike
domains with boundaries such as strings, any concentrated input
to the ring generates waves in two directions, thereby preventing
total absorption. Using a judicious combination of concentrated
control inputs, it is shown that a near uni-directional wave can
be generated, with minimal back-waves. The resulting closed-
loop system is proved to be stable. The overall modeling and
control methods are shown to be implementable in a power grid
using Phasor Measurement Units (PMU) as sensors and Flexible
AC Transmission System (FACTS) devices, such as Thyristor
Controlled Series Compensator (TCSC), as actuators. How the
proposed methods of modeling and control can be applied to a
network of rings is briefly discussed. Numerical simulations are
carried out to validate the theoretical derivations.

Index Terms—Swing oscillation damping, wave equation on a
ring, uni-directional wave generation, wave suppression.

I. INTRODUCTION

N a large power grid, where widely dispersed generators are

interconnected through tielines, the essential characteristic
that provides flawless power transmission through the network
is synchronized swing of all generators. However, in the
presence of disturbances, which may be caused due to any
number of reasons including generation trips and outages
or load changes, asynchronous motion can result. Such a
motion leads to oscillations in the rotation frequency and angle
resulting in increasing frequency swings, which are denoted
by swing dynamics (see for example, [1], [2], [3], [4], [5D.
Most of the existing approaches that deal with swing dynamics
are based on spatially discrete modeling, implemented by
ordinary differential equations (ODEs), and focus on analysis
and synthesis using the ODE-models.

Our thesis, in contrast, is that when the number of generators
is relatively large the fundamental mechanism that produces
the phase and frequency oscillations is a continuous one. We
claim that swing dynamics can be viewed as the electrical
analogue of vibrations in a mechanical string. By this analogy,
the generators constitute the inertia, the tieline admittance
constitutes the string tension, and transmitting power over the
grid is equivalent to sending a wave through the string. As a
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result, accurate and physically oriented methods for mitigating
and suppressing these oscillations are better realized through
the use of partial differential equations (PDEs). In this paper,
we use a continuous approach for modeling and control of the
swing dynamics in a power grid by treating it as a wave with
a focus on a ring topology.

It should be noted that the problem of modeling the swing
dynamics as a continuum has been examined by several
researchers, see for example [6], [7], [8], [9]. In [6], the swing
dynamics of a string of generators was modeled, for the first
time, by an undamped wave equation. PDE modeling of more
complex grid configurations including two-dimensional topol-
ogy and various losses was carried out in [7] and [8], where
inclusion of wind penetration was considered in [9]. Control
of the continuously modeled swing dynamics was considered
in [10], [11], [12]. In [10], optimal control algorithm was de-
signed for the exact one-dimensional PDE. In [11], boundary
controllers were designed for one and two dimensional lossless
grids, which eliminated wave reflection from the boundaries.
In [12], adaptive control of a continuously modeled string
grid was designed using finite eigenmode discretization of the
PDE. Existence and propagation of electro-mechanical waves
through the grid was also observed in a high-fidelity simulation
study undertaken in [13]. In particular, a series of videos
showing FNET simulations on how electro-mechanical waves
travel from New York to Florida in response to disturbances
occurring in Tennessee can be found in [14].

The main distinction between the problem addressed in this
paper and those above is that we consider a continuous system
in the form of a ring. Rather than use a two-dimensional
approach as in [7] and [8], where the two-dimensional wave
equation was employed, we regard the grid as interconnected
rings of generators with no boundaries present, where each
ring is governed by the one-dimensional wave equation. Very
few results have been reported in the literature, to our knowl-
edge, on modeling and control of a continuous system with a
ring topology. The second contribution of our paper is the
control of the waves using the Interior Wave Suppression
approach.

Control of systems governed by the wave equation, [15],
is extensively discussed in the literature, proposing various
methods to stabilize, regulate and track the system, e.g. [16],
[17], [18], [19], to name a few. Here too, the focus of most
papers has been on a string topology rather than a ring. The
lack of a boundary in a ring introduces a significant challenge,
as boundary control and related advantages of total wave
absorption cannot be directly applied anymore. The main idea
in a boundary control of waves in a string is the generation of
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a wave traveling in a single direction. The control strategy can
then be viewed as an absolute absorption of waves incoming
into the actuated end, thus preventing their further reflections
(see for example, [18]). Such an approach is not applicable
for rings, as any concentrated actuation is inherently interior,
which in turn implies the generation of two waves traveling
in opposite directions.

The proposed control method overcomes this challenge by
utilizing a transfer function (TF) representation, a breakdown
of the underlying disturbance waves into progressive and
regressive components, and a generation of near-unidirectional
control waves that cancel each of these components. By doing
so, we are able to utilize the exact PDE-structure and accom-
modate the presence of damping, despite the latter introducing
fractional order into the overall TF, similar to [20] and [21].
The presence of damping, however, is inevitable and has to
be accommodated. Additionally, the presence of damping aids
the stability of the overall system. The underlying control
approach, denoted as Interior Wave Suppression (IWS), is
inspired by that proposed in [22], [23], designed to control
vibrations of continuous mechanical flexible structures. While
a total wave suppression cannot be expected in a ring topology,
we are able to achieve a significant suppression using the
proposed control method. While much of the discussion of
modeling and control is focused on a single ring topology, we
briefly discuss as to how the approach can be applied to a
network of rings.

The paper also discusses how the proposed IWS controller
can be implemented and actuated in a power grid through the
currently available Flexible AC Transmission System (FACTS)
control devices such as the Thyristor Controlled Series Com-
pensator (TCSC) and sensors such as Phasor Measurement
Units (PMU) [1], [24], [25].

Preliminary results for both modeling and control using
IWS were presented in [26], with a discussion of both string
and ring topologies. However, in both cases, no damping
was modeled. In this paper, we explicitly include damping
in the underlying model while ensuring that the approach
remains tractable despite the introduction of fractional order.
The corresponding IWS controller differs from that in [26],
and is simpler.

The paper is organized as follows. In Sec. II we derive
the continuous TF model for the swing dynamics in a ring
topology. In Sec. III we present the IWS control approach,
specifically the near uni-directional wave generation mech-
anism and the controller design for a single ring (with a
potential extension to multiple connected rings). In Sec. IV
we discuss the implementation of the associated controllers in
an actual power grid. In Sec. V we prove the resulting closed
loop system stability and in Sec. VI we conclude the work.

II. PROBLEM STATEMENT: CONTINUOUS MODEL OF WAVE
PROPAGATION IN A RING

We consider the problem of disturbance regulation for the
linear damped wave equation [15],
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Fig. 1. (a) Part of the US west coast power network topology with major
generators denoted by *. (b) The corresponding ring network representation
of the grid in (a). (¢) A single ring link with a disturbance P(¢) acting u = ug
and output measured at u = uy,.

on a closed string domain u € [0,L], which we denote by a
ring of length L. Lowercase letters denote partial derivatives
and # > 0 is time. Continuity of y and y, at any point along the
ring yields the end conditions y(0,7) = y(L,t), and y,(0,¢) =
yu(L,t). ¢ =+/T/p is the propagation speed of the wave head,
and T and p are, respectively, the equivalent string tension and
the linear density. 8 is a normalized damping coefficient. We
consider a disturbance y/(u,t) that penetrates the ring at a point
ug, i.e. it is a concentrated disturbance formally denoted by
y(u,t) =¥(t)6(u—up), where 6(-) is Dirac’s delta function.

As was discussed in Sec. I, a possible wave phenomenon in
closed 1D domains is the swing oscillations in power grids,
suggesting that these oscillations could be damped using the
wave control method presented in this paper. Since the swing
dynamics is commonly modeled as spatially discrete, we show
in Section II-A that these discrete models coincide with the
wave equation in (1) as the number of discrete elements
increases, [6]. Simulation results are presented to corroborate
this statement. In Section II-B, we derive the associated TF
model, which in turn sets the stage for the control design
proposed in Sec. III-B.

A. Spatially continuous model of power grid swing dynamics

Figure 1-(a) illustrates the major portion of the US power
grid, with asterisks labeling the main generators. We regard
the network as a collection of interconnected 1D closed-ended
chains of generators, which we denote by rings. For example,
the encircled area in Fig. 1-(a) accounts for three major rings
between Dallas, Memphis, Birmingham and New Orleans,
schematically outlined in Fig. 1-(b). In a single ring element
comprising N generators (Fig. 1-c) the swing dynamics of
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the i, generator, i € [1,N], is usually described by a spatially
discrete model, given by (see, e.g. [27])

2H.S; . .
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sin (6, — 6k)
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Here &;(r) = w;(r) is the swing frequency of the iy gen-
erator, Q = 60}y is the base frequency, Hyy is the inertia
constant, Sy is the generation rating. PI%W] and PI.‘FMW] are
the mechanical and electrical power, respectively. X; ;-1
is the normalized reactance of the line segment {i,k} and
Ej,.u) =1 is the normalized voltage amplitude. The damping
B; represents system losses augmented with secondary control,
which keeps zero steady state swing frequency error, [28]. For
small swing oscillations the model can be linearized about the
equilibrium frequency Q and equilibrium phases 6; = Q¢ +4,,
where §; is the initial phase shift. We then define the deviation
swing frequency and angle by y;(z) = vi(t) = w;(t) — Q and
yi(t) = 6;(t) — 6. Assuming equal characteristics H,S,B for
all the generators and equal spacing between them implying
X = X, the linearized model becomes

2HS

o
To obtain the continuous representation of (2), we set the
locations i — 1, i and i+i in (3) as u— €, u and u+ €,
respectively, where € = L/N. Letting € — 0, (3) takes the
form of the damped wave equation (1) with T = % and
p= %, where s = éS and x = éX represent generation
and reactance densities, respectively. The electro-mechanical
wave head propagation velocity ¢ is then given by ¢ =

\/% = zgeszx The distributed electrical power flow is then
given by pf(u,t) = ﬁyu(mt). The continuous limit of (3)
then actually resembles the continuous model of the swing
dynamics originally derived (for negligible damping) in [6].
The external disturbance y/(u,t) corresponds, for instance, to
a spatially distributed deviation in mechanical power per unit
length, pM (u,t).

We stress that the mathematical limit € — 0 by no means
implies a real zero distance between adjacent generators.
As we demonstrate in Example 2.1, even for few dozens
of kilometers the response of the discrete model (3) obeys
traveling wave behavior predicted by the continuous system
in (1).

Example 2.1: Adopting realistic power grid values sug-
gested in [6], we consider a ring of length L = 6400y,
with N = 200 evenly spanned generators, characterized by
H= 5[3] and S =375 MW)> with total line reactance of X;,; =
0.0031(y/yy-1). The resulting parameters of the equivalent con-
tinuous model, (1), are wave propagation speed ¢ = 2577,/
and characteristic time constant 7 ~ 2.5;. The damping con-
stant B was set to zero. A vanishing pulse disturbance
P(t) = 0.1Ssin e~ [U(t) — U(t — 0.47)], where U(-) is the
Heaviside function, penetrates the grid at ug = %L.

Time responses of swing frequency of the 150, generator
(U = %L) for both discrete and continuous models (3) and (1)
are plotted in Fig. 2-(a). The two graphs overlap quite well,
which demonstrates that the underlying swing dynamics can be

k=i—1,i+1 Xik

~ 1
+By; =P" + 3 Dit1 = 2yi+i1). 3)

represented effectively by a spatially continuous system. The
response of the entire ring to the same disturbance is plotted in
Fig. 2-(b). It shows that the concentrated pulse generates two
electro-mechanical waves that propagate to the left and right
repeatedly, confirming that the oscillations observed in Fig.
2-(a) are only a local effect of the overall wave phenomenon.

—~
i
~

0.02

0.01

Swing frequency [r/s]

-0.01
0

—_~
=3
~

0.02

0.01}

Swing frequency [r/s]

-0.01
0 3200

Ring span [km]

6400

Fig. 2. Response of the swing frequency deviation v(u,t) to a concentrated
pulse disturbance in Example 2.1. (a) The response is plotted at u = 0.85L and
appears in the form of oscillations. Solid blue - simulation of the continuous
model (1). Dotted red - simulation of the discrete model (3). (b) The response
of the entire ring is plotted at four different time instances, #; = 0.057 (dashed-
dotted), t, = 0.2t (solid), 3 = 0.357 (dashed) and 74 = 0.5t (dotted). Two
traveling waves, a progressive and a regressive one, are generated.

B. Transfer function representation

Applying Laplace transform to (1) and the continuity con-
ditions with respect to time (assuming zero initial conditions),
and using, for convenience, the same notations for the trans-
formed variables, gives a second order ODE in u,

3\ 2 ~
(R9) 355) = yualuss) + $()8 (- wo), )
where
1
A(s) = (s*+Bs)?. (5)

Assuming that the variable of interest is v(u;s) = sy(u;s) (e.g.
swing frequency in power grids), we obtain

v(u;8) = Gy(u,up;5)P(s), (6)
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where G, (u,up;s) is the system Green’s function or the TF
from a concentrated input at ug to the output at u, given by

1 )
c) — —=|Tu—Tuy 1A (s) —(T= =7y )2 (5)
GV(”?”O’S) 2¢ )V(S)A(S) [e 0 +e 0 ] ,
(7
where
A(s) =1 —e ™) (®)

is the characteristic equation (excluding A(s)). The constant

_T
¢ == ©))
is the undamped system’s characteristic impedance, and

L Tu:ﬂv

__up
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(10)

are time constants. The absolute values in (7) indicate the
relative location of the input at uy and the output at u. It can
be seen that TF (7) is irrational and for § > 0 it is of fractional
order. The analogue of (7) for an open-ended string topology
was discussed at length in [21] in the context of boundary
control of the damped wave equation. Since (7) is infinite
dimensional in Laplace domain, it accounts for the conjoint
action of all vibrational modes, which indicates traveling wave
phenomenon.

1) Progressive and regressive waves: In order to motivate
the choice of control architecture that will be used to suppress
the waves exhibited in (1), it is useful to further analyze the
TF model in (7), which is carried out below.

It is well known that any input to a system governed by a
linear wave equation generates two waves, equal in amplitude
(both absolute value and sign) propagating in opposite direc-
tion with respect to each other, whether or not any damping
is present. This is usually discussed in a string topology,
with regard to effect of reflection from the boundaries [29],
[30]. In a ring topology, one wave propagates clockwise and
denoted by a progressive wave, whereas the other propagates
counterclockwise and denoted by a regressive wave. These
waves are captured by the infinite series expansion of (7),
given by

1 s

_ L s N [L-ewhAls) 4 -0 (wh)AGs)
2¢Ms)z[e +e } (1)

k=0

GV(M, MO;S)

where the summation index k indicates a cycle of motion. The
time that takes each wave generated at u( to reach u at the k
cycle is given respectively by

01 (u, k) =kt + |7 — Tuy|, O2(uk) = (k+1)T— |7 — Ty |-

(12)
For 7, > 1,,, 01(u,k) stands for the progressive wave and
6> (u,k) for the regressive, whereas for 7, < 7,, they are
swapped. The two waves routes are illustrated in Fig. 3 for
Ty > Ty, for the first cycle of motion (k=0 in (11)) with the
arrival times (12) indicated above the arrows. The evolution
of the wave shape during its propagation is determined by
A(s), which is defined in (5). To obtain the time domain
interpretation of (11), we denote each term of the series therein
by sI'(0;s), where

['(0;s)= —1 e 0A0)

6) . 13)

L,0

Exe

Fig. 3. The two routes a wave generated by a concentrated power input F at
u = uy travel along the ring to the location u. The arrows indicate directions
with the arrival times specified above each arrow. Blue - the progressive wave.
Red - the regressive wave.

and 6 represents any of the particular exponent arguments in
(12). We then use the tables in [31] to calculate the inverse
Laplace transform of (13), which is given by

1(0,1) = e 2P (%/3\/;2 - 92) U(t—6).

The function Iy(-) is the zero order modified Bessel function
of the first kind, [32]. The Heaviside function U(-) indicates
that (14) is delayed by r = 6. Since the wave head propagation
speed c is independent of the damping coefficient 3, the delay
in (14) (or, equivalently, the wave arrival time) is independent
of it as well. The speed of all the wave points except the head
does depend on 3 (aka dispersion), which is expressed through
the wave shape distortion during motion. The distortion is
according to a convolution of the input with a shifted time
derivative of (14).

For B =0, the damped wave equation (1) reduces to the
classical wave equation. The fractional order terms A(s) are
then reduced to s, indicating pure delay exponents in (11).
Equivalently, the Bessel function in (14) then reduces to a
delayed unity constant, implying that the output v(u,f) is
simply the shift of the input.

We conclude this section by discussing the stability of the
open loop system (7). For f = 0 the system is not stable.
The poles of (7) are then given by p; = ’12—7?, n € Z, which
are the roots of A(s) in (8). All poles lie on the imaginary
axis including one at the origin. For f > 0 the system (7)
becomes stable, which is rigorously proved in Sec. V. This
can be motivated by the fact that ﬁ changes to W,
which eliminates the pole at the origin and shifts the rest of
the poles, in the presence of a nonzero 3, to the open left half
plane, which asymptotically approach the vertical line f% B.

In this section we showed that swing oscillations, an
important problem in power grids, can be represented by
a continuous model that describes wave propagation. We
derived the model in time-domain, which coincides with (1),
and its frequency domain counterpart in form of an infinite
dimensional TF, (7). This TF model is valid for ring topology
and is effective whether or not the system has damping.

The focus of the next section is on the design of a controller
for wave suppression in the system. In the context of a power
grid, it corresponds to the damping of swing oscillations (i.e.
y:(t) = 0 as t — oo), thereby restoring equilibrium electrical
power flow (y, — const.).

(14)
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III. INTERIOR WAVE SUPPRESSION (IWS) CONTROL

To achieve the wave suppression goal we carry out model-
based control with the TF (7) as the starting point. Our control
method is inspired by the AVS approach from [22], [23],
[20], [21]. However, since the AVS method was designed
exclusively for topology with boundaries, we cannot apply it to
our ring system. We therefore develop a new approach, which
achieves wave suppression by interior actuation.

When a 1D topology has boundaries (here an open ended
chain, or a string), the two waves created by an input at the
boundary are degenerated to a single wave traveling outward.
Controlling the system through its boundary is therefore feasi-
ble, as the control wave can be uniquely designed to mitigate
disturbances and achieve desired dynamics. For example, in
[21] and [20] a boundary control wave is shaped in closed
loop to cancel out reflected disturbance waves, attributed also
to boundary impedance matching.

This control methodology, however, cannot be readily ap-
plied to a closed 1D topology without boundaries (the ring in
Fig. 1-c). The intuitive explanation is that since a concentrated
input at any location generates two waves, even if one of
them, say, a forward wave, is designed to cancel out a
disturbance wave, there will always remain the other wave,
a back action wave or a back-wave, repeatedly circulating
through the ring and constituting a disturbance of its own.
In fact, the unavoidable back-wave elaborates on the general
complexity associated with the inability to completely absorb
waves through an interior point control, whether on a string
or a ring, as was studied e.g. in [33], [34] and [35].

Our approach is based on minimizing the back-wave, while
designing the forward wave to suppress the disturbance. To
achieve this we propose a method to generate an interior,
near uni-directional wave, using two concentrated actuators.
A method to generate such a wave was originally proposed
by the authors in [36] for an infinite line topology governed
by the undamped wave equation (§ = 0 in (1)). Based on
this preliminary result, we derive in Sec. III-A a near uni-
directional wave for a damped medium (8 > 0 in (1)). We
then use this wave as a control to cancel out disturbance
propagation in (6). To make the concept clear, we first present
the method for an undamped medium, which is then followed
by the damped case.

A. Near uni-directional wave generation

of o

Uy — gl | Uy | u,

i

m |

Fig. 4. Sample force diagram for generation of a near uni-directional wave
on an infinite line. A signal f is applied at u = up and a signal & is applied
at u = up and u = ug — € with opposite signs.

We carry out the derivation of the near uni-directional wave
on an abstract infinite line topology. This was assumed here in
order to present the idea of the directionality concept without
involving the circulation effects of the ring topology. Suppose

that there are two concentrated actuator inputs f(¢) and A(f) on
a section of an infinite line, as depicted in Fig. 4. f(¢) is acting
at a single point u = up and h(t) is acting at two points u = ug
and u = up — €, with equal magnitudes and opposite signs. We
first consider the undamped case of 3 = 0. The transformed
wave equation (4) then takes the form

(£)?(135) = Yo (s 5) + & [£() +h(s)] 8 (u— uo)
— Lh(s)8(u— (uo — €)).

Using (6) and (7) with up = O for brevity, the resulting
velocity response to the combined action of both inputs can
be represented in the frequency domain as

Vitis) = ems {f(s) +(1—e~%) h(s),
" 2 F()+ (1 =€) h(s),

15)

Uy >0,

Um S _83

(16)
where the time constants are given by 7, = “2 and 7, = £
and the response at —€& < u,, < 0 is not of interest. The central
idea behind the near unidirectional wave generation can now
be explained as follows. Suppose that the two control inputs
are related as

h(s) = Gno(s)f(s), 1

Te(s+1m)’

where 11 > 0 is a design parameter that guarantees stable
Gpo(s). One can view the two-point actuation of A(f) as a
spatial differentiation, and the relation between h and f as
temporal integration. Then the velocity system (16) becomes

Go(s) = (17)

V(umm)_i TS Q(S), Uy > 0,
fs) " 26° {Q(s), un<—g, Y
where

O(s) =14A(s), A(s)=(1—e ") Gyol(s), a9)

O(s) = 1+A(s), A(s) = (1—e"*)Gyo(s).

As the distance between actuators, €, becomes smaller, we
obtain the limits

limA(s) = , limA(s) = —! ,
=0 s+1n £-0 s+1n
tim0(s) = 2 jimg(s) =
£—0 s+n £—0 s+n

whereas as the free parameter, 77, becomes smaller, the limits
become

limA(s) =1, limA(s) =—1,

n—0 n—0 (20)
lim Q(s) =2, lim Q(s) = 0.

n—0 n—0

The limits of A(s) and A(s) in (20) indicate that a simultaneous
temporal integration and spatial differentiation, as imposed by
the rule (17), dictates how the control input is shaped, as two
waves equal in absolute amplitude but flipped in sign, with one
wave traveling in the positive u direction and the second wave
in the negative. Since an actuation by f(r) alone generates
two waves equal both in absolute amplitude and in sign, its
coordinated operation with A(¢) cancels out one of the waves
while doubling the other and thus creating a uni-directional
wave. This result is expressed by the limits of Q(s) and Q(s) in
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(20), representing the wave v(u,,1) = % flt—7,,)U(t—1y,) in
(18), which travels in the positive u direction only. This wave
is a pure shift of the input f(z) due to pure delay system
dynamics in the undamped case.

In practice, however, the physical distance &€ between two
concentrated actuators cannot be rendered exactly zero. The
design parameter 7] cannot be set exactly to zero either since it
will contribute a pole at the origin to the open loop system, i.e.
will lead to unbounded # signal for bounded persistent signals
f. The wave generated in the positive direction will therefore
always remain near uni-directional, with amplitude determined
by Q(s), and there will always be a residual back-wave with
amplitude determined by Q(s). The back wave amplitude can
be traded-off between the available control effort (f and A
grow as € and 1 become smaller) and the performance, as
discussed in the simulation section, Sec. IV-C. In the actual
damped case f > 0, the relation between inputs f and &, (17),
evolves to

h(s) = Gu(s)f(s), Gu(s) = G 1) 21
The response (18) becomes
V(U3 ) __ S A (s) ) OB (8), um >0, ”»
) 20200 {Qﬁ () wm<-g
where
0p(s) = 1+45(s), Ap(s) = (1=e7*)) Gy (s), -

Op(s) = 1+Ag(s), Ag(s)= (1 —efeW) Gi(s).

We note that the limits (20) remain unchanged, preserving
the near uni-directional effect. The wave shape, however,
evolves during motion according to the fractional order system
dynamics of the damped system.

B. Control of a Single Ring Element

The main focus of this paper is the control of waves in
a ring, whose model is given by (6) with the underlying TF
described by (7) - (10). As was described in Sec. III-A, this
control is accomplished using a combination of two inputs
h(t) and f(¢), that generate a near uni-directional wave as
in (22), which can be used to suppress the waves stemming
from (6). To accommodate both the regressive and progressive
components of the response in (6), we propose that the control
input consist of two pairs, {fi,/n} and {f2,/hn}, located
at {uj,u; + €} and {up,up — €}, respectively (see Fig. 5).
Defining 1,, = ”71 and 7,, = ”72, the total open loop response
to ¥ is then given by

v(u;s) =

[(p(s)e (7wt m)A0) 1 G (s)e (5w )0)) £y s)

+ (Qp(s)e ()M 4 gy (s)em (a4 fo(y)

+ (e (O e (im0 | S s
(24)

which was arbitrarily calculated at u; < u < up. At other
locations along the ring the times that take the waves generated

Fig. 5. Control setup for a single ring element. The near uni-directional wave
mechanism is generated by the pairs of control signals {fi,h;} (regressive
wave - counterclockwise) and {f»,h2} (progressive wave - clockwise). H| (s),
H,(s) and Gy(s) are the controllers designed in (31) and (21). vj (um,;s)
and vy, (uy, ;) are the regressive and progressive waves measured at u,,, and
Um, , respectively, and decoupled according to (28). The only requirement for
the control locations is uy > upm, >y, > u1. ¥(r) is an external disturbance
penetrating the ring at up, which may be anywhere along the ring.

by f1 and f, reach the point u (here 7, — Tu; and T— 1T, + Tujs
j = 1,2) are changed accordingly. The expression in (24)
comprises a response to a disturbance ¥(s) and to augmented
control inputs f; and f>. The latter consist of forward waves
and back-waves, whose amplitudes are respectively defined by

Qg (s) and Qg(s).

C. Controller design

The measurements, carried out at u,, and u,,, correspond
to the regressive and progressive wave components of v,
denoted by v~ (i, ;5) and v (u,;s) at these locations, where
v(um_,.;s) = v’(um_/.;s) +v+(um_i;s). In a power system example,
such a uni-directional measurement may be possible by mea-
suring both swing frequency and power flow at u = u,,;, since
power flow is defined by the spatial derivative of the swing
angle. Another option is measuring at two close points and
applying an algorithm similar to that in Sec. III-A to isolate
the uni-directional component. Noting that the system response
is given by (24), what remains to be determined is the choice

of fi(s) and fa(s),
fi (S) =—H; (S)V_(uml ;S)v

with controllers Hj(s) and H(s) to be properly designed. At
each location {uj,u;+ €}, j=1,2, a uni-directional control
wave is generated by f; and h; as described in Sec. III-A. At
{ur,u; + €} it is a wave traveling counterclockwise and de-
signed, through Hj (s), to suppresses the regressive disturbance
wave, whereas at {uy,up — €} it is a wave traveling clockwise
and designed, through H,(s), to suppresses the progressive

fo(s) = —Hy(s)v" (tmy:5), (25)



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

disturbance wave. In order to design the requisite closed-
loops, we take a closer look at the measurements. Arbitrarily
assuming that ¥ acts at u,,; < ug < u;,, the measurements are
given by

V" (tm,58) = {67(777”’1 T JA(S) Op (s)fi(s)

+e” (Tuy =Ty )Ms)éﬁ (8)f2(s)

+e (Tug=my )MS)T(S)} m ’

vt (Umy3s) = [ef(rfr“ﬁr’”)ms) 0p(s)f2(s)
e (A9 ()i (5)
_‘_e_(fmz_fuo)l(s)‘l’(s)}

(26)

20A(s)A(s)’

where 1, = u% and 7, = u% For ¥ acting at a different
location, its arrival times to u,1 and uy,, given by T,, — Ty,
and T,, — Ty,, will accordingly change. Since a measurement
at up, (um,) contains the back-wave of the measurement at
Um, (ttm,) through @B (s), the Hi(s) loop is coupled with the
H>(s) loop. To eliminate the coupling from the feedback, we
calculate and subtract the back-waves from the measurements,
replacing (25) with

fi(s) = —Hi(s)vg (um3s),  fols) = —Ha(s)vi (umass), (27)
where vy (t155) and Vi (upo;s) are “filtered’ measurements
given by

Vi (ty35) = [ (o422 9 () £y )
7(%‘071'"11 )A(f)lp ;
e ©)] 22 mAG)
v (ty35) = [~ (37 5)20 9 (5) fo )
~ (T, —Tup ) A () } s
e Wl 2526
Such decoupling is assumed to be achievable since the sub-
tracted expressions are the control inputs, which are known

in real time. The decoupled measurements (28) lead to the
control inputs

7‘Tu0*7mj [A(s)

H;(s) 2¢;{(s) e
fj(s):_ ACL(S)

where Acy(s) is the closed loop counterpart of A(s), given by

(29)

s — (T Tuy —Tm; | ) A(s)
Acr(s) = A(s) +Hj(s)2¢T(s)Qﬁ (s)e ( 0y ) . (30)
To achieve elimination of the circulation exponent e ") from
Acr(s), we set the controllers H;(s) in (27) to
20A(s) 1 g, —n As)
Hi(s) = e MY =1,2 (31)
J( ) s Qﬁ (S) ./

which is acceptable due to stability of m and Qg(s).
The expression of Hj(s) in (31) and the elimination of the
circulation exponent out of Acy(s) is independent of the
disturbance origin ug. The closed loop response then becomes
a sum of forward and backward waves,

V(”;S) = Vforward(u§5) JFVback(u;S)a (32)

where
s (e .
Vforward(u;s) = 2¢2{(s)e (Tu Tuo)l(.sh{l(s)
S Qﬁ (5) —0p1A(s) —OpoA(s)
co) — ¥
ek 55) = =3 am gyt Y
(33)

and for u and ug at [uy, ,um], we have

Ol =T—Tu+2% — Ty, Opr=Tu+ Ty —271. (34)

For different locations of u and disturbance origin ugp, the
arrival times 6Op; and Op are changed accordingly. Result
(32)-(34) states that the IWS control method, given by (21),
(27) and (31), completely absorbs propagating waves at the
artificial active boundaries at u; and u; (no A(s) in the forward
waves in (33)). This means that the forward waves cannot
“escape’ from the region u; < u < uy. The closed loop response
(33) is thus confined only to the unavoidable back-waves
that are decoupled in (28) and are unaffected by the control
algorithm. This closed loop system is stable, as proved in detail
in Sec. V. We summarize the proposed control strategy and
the resulting closed loop system performance in the following
theorem.

Theorem 3.1: We consider the continuous system in (15),
where y(z) is the response to control inputs f(¢) and &(z) (see
Fig. 4). A controller using the Interior Wave Suppression algo-
rithm described by (21), (27) and (31) is guaranteed to achieve
complete suppression of any wave circulation produced by
disturbances. The resulting closed loop system is stable.

Proof. The proof of the control mechanism is obvious from
Section III-C. The closed loop system stability is proved in
Sec. V. O

We conclude this section with a note on a more realistic
case of finite actuation bandwidth, where the control input TF
(22) contains also some actuator dynamics, e.g. defined by
ﬁ. The controllers (31) can then increase the possibly too
slow closed loop dynamics by introducing a faster one, i.e.
contain also a lead term 5{1 i:ll , where gy < . The closed
loop response will then include also a portion of the forward

waves whose characteristic equation is given by
Hus
Auls) =1 HH

B Ups—+1
which approaches 1 as py tends to zero, retrieving the ideal
case (33), and which is stable for any 8 > 0 (Sec. V).

e M), (39)

D. Modeling and control of a network of rings

Control, observation, and stabilization of PDE’s, and in
particular, wave equations on networks is a subject of a
large amount of literature, [37], [38], [39], [40], to name a
few. In most of the reports the considered network topology
is a collection of strings with open ends, i.e. tree or star
connections, where the control is performed at the nodes. The
availability of the open ends enables to utilize the control
at the exterior nodes for system stabilization, similar to the
boundary control setups. In our case, though, no open ends are
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assumed and the control is performed at the ring interior. We
therefore would like to study the extension of the single ring
IWS control algorithm to a network of several rings connected
together at a point or along a line.

Jin

: ’L» ‘/‘21
Sz uy

Jn

Fig. 6. A diagram of a two-ring network connected at a single node (black
spot). fj1 and fj (red spots), j = 1,2, indicate uni-directional wave generators.
u; and up are the spatial coordinates of the left and right rings, respectively.

The first step to do so is derivation of an appropriate TF
model. Although there is no general formula for an arbitrarily
connected system of rings, the model can be constructed by
applying the two basic connectivity laws of continuity of
’position’ (swing angle) and balance of ’forces’ (electrical
power flow) at each node.

For example, consider the top-left and the bottom rings of
the network depicted in Fig. 1-(b), connected at a single point
and given again schematically in Fig. 6. Each ring is governed
by the wave equation (1) with corresponding position variables
y1 and y;, representing left and right rings, respectively, and
with respective spatial coordinates u#; and u;, both originating
at the node. Let the left and right rings have the properties
{T1,p1,L1} and {T2,p2,L»}, leading to {¢1,c1} and {¢2,c2}.
At the node, the position continuity condition is given by

yi(ur =0,t) = y2(up = 0,1) = y1 (uy = L1,t) = y2(up = Lo, 1),

whereas the balance of forces, assuming for brevity a distur-
bance ¥(¢) at the node, reads

lp(t) + Tl [yl_u|u| (ul = Ll 7[) —Vl_ujmy (M] = 07[)}
- T2 [yz_uzuz (uz - 07t) —y2_u2u2 (uz - L27t)} M

The resulting TFs from ¥(z) to the velocity (swing frequency)
of each ring, for an undamped system become

V&ls;)w - ij(s) (et mdsrerm) (1+e)
ValU2;s 1 —(n—14 — Ty s —Tys
2\;(1) : = An®) (¢ mdspermr) (1)

-4
Tul_cl

where 171 = f—ll =L and the

. . L’
characteristic equation is given by

Ap(s)=(1—e ™) (1+e ) g1+ (1+e ™) (1—e ™) go.

The physical implication of these TFs is that a wave approach-
ing the node along one path is split to four components: three
of them are waves proceeding to the remaining three paths,
and the forth is a reflected wave that in total yields 1.
Similarly to the extension of the model from a single ring
to a network of rings, the corresponding control design might
be extended as well. A possible option would be to place
a pair of uni-directional wave generators fi,h; and f>,h at
each link between two nodes, which obey the strategies in

u
and 7,, = ?§

(21), (25) and (31), and denoted by the red circles in Fig. 6.
At each ring fi,h; will suppress the progressive waves, and
fr,hy the regressive. The complexity, however, arises in the
process of the measurement decoupling, which was described
in (28) for the single-ring case. Since the network in Fig.
6 includes four control waves, there are four back-waves
and also reflections of the forward waves. The decoupling
process of each uni-directional measurement should therefore
be adjusted accordingly.

IV. IMPLEMENTATION OF THE IWS CONTROL IN AN
ACTUAL GRID AND SIMULATIONS

In this section we consider the practical aspects of the IWS
control methodology, designed in the previous section. Specif-
ically, we first discuss the implementation of the controllers
proposed in (21), (25) and (31) due their fractional order.
We then suggest how to incorporate these controllers and the
required measurements in an actual power system.

A. Implementation of the fractional order controllers

The controllers H;(s) in (31) are of fractional order. Their
implementation thus requires rational approximations, for
which there exist several methods, both via time and frequency
domains. In time domain methods, the impulse response of a
suggested finite dimension controller is fitted to the impulse
response of the exact controller (if known) by optimization
algorithms, see e.g. [20]. The frequency domain methods are
based on an analogous optimized fitting of the frequency
response, such as [41], for systems with infinite number of
singularities. Several methods were also reported in [42], [43]
and [44]. Since H;(s) are relatively simple with only two
branch point singularities, standard software algorithms are
sufficient, where the frequency response is calculated on the
principal surface. However, if the phase of a fractional order
function begins or ends at non-integer multiplies of 90°, the
approximation usually has large errors. For example, the phase
of the @ component at s = jo (in the expression of H;(s))
equals 45° at w = 0. For that reason, we do not approximate
& directly, but first rewrite it as @ = w + %Tﬂ +1,
where R(s) = A(s) —s. Since the phase of the strictly proper
R(s) —% ranges from 180° to 90°, we apply the fitting
algorithm directly to it. The approximation of other fractional
order expressions is carried out in a similar way. Figure 7
depicts the actual fitting of the frequency responses and the
resulting fitting of the impulse responses of the exact @ and
its approximation by a third order rational controller.

B. Implementation in an actual generators chain

The Interior Wave Suppression control approach for a ring
can be summarized as follows: choose two pairs of control
inputs, fi,h; located at u; and u; + €, and f>,h;, located at
up and up — €, two velocity measurements, regressive at iy,
and progressive at u;,, and apply control strategies specified
by (21), (25), (28) and (31). The question that we address
in this section is the actual actuation quantities in a power
system that the f; and A; inputs will correspond to. As was
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Fig. 7. (a): impulse response of L;) — 1, the strictly proper part of the @

component of H(s). (b): frequency response of the ’IA(T) component of H ()

Solid-black: exact, dashed dotted-green: 3-rd order rational approximation.

discussed in Sec. I, the commonly used actuation methods in
power grid control are mechanical power injection and tie-
line reactance Vanatlon respectlvely denoted by the deviation
variables PM (1) —P" and X(t) = X(t) — X, where the
overhead bar denotes the equlhbnum state.

Returning to the discrete model (2) and linearizing around
an equilibrium_power flow ﬁE, the effect of the linearized
control inputs PM(¢) and X(¢) can be shown to result in

—E ~ ~
%Y}'Z%[Yj+1—2yj+Yj71]+%X+PM7 36)
M%H::%Mﬂfbﬁﬁﬂdféi

for generators j— 1, j and j+ 1 adjacently spaced in a ring of
N generators. At the spatially continuous limit and transformed
to Laplace domain, (36) becomes

$\ 2 ~ e ~
(E) y(u;8) = you(u; ) —1—% [PM(S) +TPEX(S)] O (u—up)
—E=~ -~
— 4 [TPPX(9)| 30— (w0 ),
(37)
where T = % c= Qg} and € is the distance between
adjacent generators. As (37) has the same forrn as @), 1
follows that PM corresponds to the f input and P X to the

h input. A physical reasoning is that 1 dlrectly affects only
the particular generator to which it is injected, whereas the
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Fig. 8. v(u,t) at u=0.85L in response to ¥(r) (green, 0.5 scaled) in Example
4.1. Open loop (gray) versus closed loop for different values of 1 in (21):
n= %1’ (red), n = 7 (blue) and 1 =57 (black).

reactance variation X inversely affects the adjacent generators
it operates in between.

C. Simulations

Example 4.1: We consider again the power grid system

in Example 2.1 with the realistic numerical values therein,
describing a ring of 200 generators evenly spanned across
6400y,,, yielding distance between generators of & = 32,,.
This time the system is controlled in closed loop with
the Interior Wave Suppression controllers given by (21),
(25) and (31). The damping constant was assumed f = 0.1
in appropriate units. The same vanishing pulse disturbance
W(t) = 0.18sin X [U(¢) — U(t — 0.47)] penetrates the ring at
uy = %L. The actuation and measurement locations were
respectively set to u; =0.25L and u, = 0.75L, and u,,,; =0.35L
and u,, = 0.65L. The actuator dynamics constant is set to
ur=0.01, whereas the controller lead compensator constant
is uy = py/100.
Figure 8 depicts the response at u = 0.85L to the concentrated
input ¥(z) (green, 0.5 scaled). The open loop response (gray)
is plotted versus the closed loop response for several values of
the design parameter 7 in (21), including n = %’c (red),n=r1
(blue) and n = 57 (black), where 7 ~ 2.5;. The smaller is 7,
the closer to zero is the limit of the back wave amplitude (20),
leading to a smaller back wave. Figure 9 depicts the actual
power grid control inputs X, (a) and PM (b) (respectively
identical to X> and PM due to symmetry). The plot exhibits the
trade-off of wave suppression with the energy of control inputs
X ;, whose convergence is slower and amplitude is higher for
smaller 7. f’JM are independent of 7.

V. STABILITY ANALYSIS OF THE SINGLE-RING CASE

The closed-loop control setup for a continuous single-ring
model consists of two pairs of actuators, {f1,h;} and {f2,h},
and two respective measurements, v~ (ty,;s) and v’ (uy,;s),
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Fig. 9. Control signals in closed loop of Example 4.1. (a) , X, for n= %‘L’
(red), n = 7 (blue) and = 57 (black). (b) Pf"’ (orange, independent of 7).

as illustrated in Fig. 5. The controllers Hj(s) and H;(s)
correspond to the Interior Wave Suppression strategy, specified
by (21), (25) and (31). The closed loop TF between an external
disturbance ¥(¢) and the velocity response was derived in (33).
The complete transfer matrix between all possible signals in
the closed loop, including unmodeled signals such as actuation
uncertainties and measurement noise, is given by

GeCar e

Here y is the outputs vector including the swing frequency at
any point « and at the measurement points uy,;. f is the controls
vector including the A; signals (f; are not included since their
stability is guaranteed by that of h;). d is a representative
disturbance signal that stands for the power disturbance y
and actuation disturbances dy,, dy,, dy,, dy,, all entering the
loop through the same TF (7) with a difference only within
the exponent arguments, indicating the relative locations of
the disturbance action and the output. n is the measurement
noises vector. All these signals are given by

Gya
Ggq

Gyn

Gin .

y= [ v(uys) Ve (umiss) Vi (umss) ]/ (39a)
f=[ i) hafs) ] (39b)
d=w(s (39¢)
n=1[ nmi(s) mals) ] (39d)

10
The sub-matrices in (38) are given by
B G (S) [Gel (S) + ng (S)} 7B(s)
SOcmae| o]
g Gils) [ Goy(s)
Gra(s) = 05(s) { Gy (s) } ’ “0)
Gg9 (S) + G910 (S)
Gyn(s) = — Go.(s) ;
Go.(s)
_ 290Gy () [ Gey, (s)
Gmls) = QB(S) [ Gelz(s) :|7
where
B(s) = Q5" (5)Go(5)Qp (5) [Goy (5) + Go, (5)] ,
s s (4D
Gi(5) = 77+ Golo) = Gt Gals) =040

Qg (s) and Qg(s) are defined in (23) and Gj(s) in (21), Ay(s)
in (35), and A(s), A(s) and ¢ in (8), (5) and (10). 6 in Gg(s)
stands for any of the exponent arguments 8; = 7 and 0 = 0y,
whose exact expressions are given by

0 =7T,— Ty
6; :T+Tu_271+fu/
05 =T — Ty, + Ty
O =1T—71, +7Ty
0o =T — T, + Ty,
011 =Tm — Tu

=T—1T,+1y
0, =27 — T, — Ty
05 = T, — Ty

03 = Ty, — Ty
010=T—"Tm, + T
912:Tu2

(42)

1 — Ty -

In this section, we show that the complete closed-loop system
(38)-(42) is stable invoking the internal stability criterion,
which claims that the closed loop system is stable provided
that TFs from all possible inputs to all possible outputs are
stable. These, in turn, are captured by the transfer matrix in
(38), which consists of finite summations or multiplications
of the systems Gq(s), Go(s), Gi(s), Gy'(5), Gu(s), 0p(s),
le(s), 0p(s)Ge(s) and Ay(s). The goal of this section is
therefore proving stability of each of the above listed TFs.

Since f > 0, the underlying TFs are all of fractional order.
Stability of fractional order systems is a non-trivial problem
that has received increased attention in recent years. Since
these systems are irrational, their stability analysis cannot, in
general, be limited to pole location only, as was discussed
in [45] for fractional order characteristic polynomials of s?,
Y€ (0,1). In a series of recent publications [46], [47], [48],
stability of such polynomials, with the addition of integer order
time delays, were investigated. The situation here is quite dif-
ferent because the model (7) includes fractional order delays,
specifically exponents of A(s) = (s2+ Bs)'/2, so the results of
the above listed publications are not directly applicable.

We choose to carry out the stability analysis of our system
mainly in time domain following the L' stability criterion,
which was defined in [45] as:

Definition 5.1: A TF G(s), defined by its impulse response
G(t) =9 (t)+ L ard(t — 1), is stable in L! sense iff:

Yu(r) e L=, y(t) =9 (t)xu(t) € L™, (43)
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which is satisfied when ¢ (¢) € L' and |g;| < co. The assumed
time domain of all signals is the non-negative real axis.

Although stability in the L' sense guarantees stability in the
H* sense, for some TFs we add a direct H” stability proof.
This advocates the validity of the complex domain stability
analysis for the fractional order systems at hand, which for
particular TFs we use in a standalone manner.

Proposition 5.2: All the components of the complete closed
loop system (38), which are given by Gg(s), Go(s), Gi(s),
Gy (5), Gu(s), Qp(s), Q5" (s). Op(5)Ga(s) and Ay(s) in (41),
are stable.

Proof. The proof is given in Appendix A. O

VI. CONCLUSION

We consider the problem of wave propagation in a ring,
which is a common phenomenon in several engineering prob-
lems including that of a power grid. Rather than viewing
the underlying oscillations using discrete-space models, we
propose a continuous approach to model the problem and a
model-based control to suppress the waves. A ring topology
with a one-dimensional wave equation is used to analyze the
underlying dynamics. The Interior Wave Suppression (IWS)
method was used as the underlying control method.

The main difficulty introduced due to the ring geometry is
the lack of boundaries, and therefore any concentrated input to
the ring generates waves in two directions, both progressive
and regressive, thereby preventing total absorption. Using a
judicious combination of control inputs it is shown that a near
uni-directional wave can be generated, with minimal back-
waves. Two pairs of coordinated control inputs are used in
particular, each operating at a different location along the
ring so as to match the circulating progressive and regressive
waves. Two independent velocity measurements are used for
feedback with suitable filtering introduced so that the effects
of the two control back-waves at the measurement location are
decoupled from each other. The decoupling process enables the
disturbance suppression by the forward control waves, while
the residual back-waves, whose amplitudes are reduced by the
IWS algorithm, decay according to the open loop damping.

Any damping present in the system was included, leading
to fractional order transfer function model and associated IWS
controllers, which were accommodated through appropriate
analysis. The resulting closed-loop system is proved to be
stable. The overall modeling and control methods are shown
to be implementable in a power grid using PMU as sensors
and FACTS devices such as TCSC as actuators. Numerical
simulations demonstrate that the proposed method is viable
and leads to satisfactory suppression of waves.

APPENDIX A
PROOF OF PROPOSITION 5.2 IN SEC. V

Stability of Gg(s):

Proof. We invoke the time domain criterion 5.1. Gg(s) is
proper but not strictly proper. Extracting its delayed com-
ponent e 04(5) = ¢=05,=0RG) \where R(s) = A(s) — s (as was
defined in Sec. IV), and the bound of the causal component

e 9R() at the right half plane (on the principal surface) is

given by e ~2B9 The strictly proper part of Gg(s), which
we denote by Gg(s), is therefore given by Gg(s) = Gg(s) —

e~ (3P+)8  Stability of Go(s) will thus immediately stem
from the stability of Gg(s), for which we need to calculate
the inverse Laplace transform or, equivalently, its impulse
response, denoted by % (t). It should be noted that one cannot
determine the inverse Laplace transform of Gg(s) easily by
using standard tables [31].~We therefore provide its derivation
below. The derivative of Gg(s) with respect to s, which we
denote by Gg 4, is given by

Goa(s) = $Go(s) = (s+%B)GF(O;s)+0e*(%ﬁ+s)67 (44)

where I'(0; ) is defined in (13). Since y(6,¢) in (14), which is
the inverse Laplace transform of I'(6;s), is a function delayed
by t = 0, we have sI'(0;s) = Z{y(0,t)} + v(0,0), where
¥(6,0) = e’%BGU(I — 0). We therefore obtain

7 {7S9F(9;S) + 697(%ﬁ+‘9)9} =7(6,1)

(OB - (0a) Juie—o

(45)
where I (+) is the 1y order modified Bessel function. Substi-

tuting (45) and (13) to (44), the zero order Bessel function
is canceled. Applying the Laplace transform integration rule

L7 HGo(s)} = —1.27{Gopu(s)}, we obtain
_ O L(ipvii—e2
Gy(t) = ;ﬁeezﬁll(zﬁt)U(t—e). (46)

t2—62

Now we need to show that % (t), the impulse response of
Go(s), is absolutely integrable. Since % (¢) is continuous and
bounded (at # = 0 it equals %ﬁZOe’%BG), it is thus absolutely
integrable on a strip ¢ € [0,7;] for some finite #;, so we only
need to verify that it is absolutely integrable on ¢ € [t;,0). For
large ¢, V12— 02? ~t, and by [32], %(¢) has the asymptotic
expansion:

where €0 = $1/5. c1 = G5 2 = s and = 528
Therefore, we obtain
[ )

[ wlar < /
J1
dt <o Ve>0,

/ (
n

each integral in (48) converges, yielding % (r) € L'(R.) and
thus Gg(s) is stable in the L' sense. O

Stability of Go(s):

COCI

Jild @)

Gy
¢)

(49)

Proof. We first prove that G| (s) is stable and then prove that
the division by A(s) does not affect this result. Considering
again the L! criterion, we isolate the strictly proper component
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of G1(s), which is given by G (s) = Gi(s) — 1. The calculation
of its inverse Laplace transform, ¢ (¢), similarly to Gy, gives

G1(1) = 1Be 2P (1 (31) ~ 1o (1B1)).

whose asymptotic expansion, by [32], is given by ¥(f) ~
—Co/B(tv/1) ™  (c1t™ + ot +e3t73--+), and is therefore
absolutely integrable by the same reasoning of % (t).

For a direct proof that G;(s) is also H™ stable we rewrite
1/2

it as Gi(s) = W The singularities (here of branch point
type) are located at s = 0 and s = —f3, i.e. outside of the
open right half plane. It is easy to see that |G;(s)| < 1, which
completes the proof for G (s).

Proceeding with the complex domain considerations, we
now prove that A(s) in the denominator of Go(s) keeps it
analytic and bounded in the open right half plane. Calculating
the roots of A(s) =0, we obtain —TA(p) = In(1) = 2nmi,
with n = 0,4£1,%2,..., whose solutions are given by p =

0,—B,—3B+/ (%ﬁ)z (2””) All roots except for p =0
are located in the open left half plane spaced symmetrically
with respect to the vertical line —5 B The only seemed cause
for Gy(s) not to be bounded in the open right half plane is
the root p =0 of A(s). However, the effect of this root is
annihilated by G| (s), which renders the total limit of Gy(s) at
s =0 to be %, which therefore means Gy(s) is stable. O

I(S) _ A()A(s) .

Stability of G, S
Proof. We observe that G, (s) is analytic in the open right
half plane. To be bounded as well, s = 0 must not be its
singularity. However, in the proof of stability of Gy(s) earlier
in this section we obtained the limit for lim,_,0Go(s) = %,

hence lim,_0 G, ' (s) = T8, which is obviously finite. O
Stability of Gj(s):

Proof. Using complex domain considerations, we need to
show that the roots of (s2 + ﬁs) 1/2 +n =0, the denominator
of Gy(s), are all located in the open left half plane. We need

to regard only one solution of two that converges to s = —1
as B — 0, and thus obtain s = —5f8 — 5 (ﬁ2+4n ) 1/2 , which
is strictly negative. O

Stability of Qp(s):

Proof. First we write explicitly Qg(s) = 1 +Ag(s) = 1+

Gi(s) — Gi(s)Ge(s), where ® = 6 + 7. Stability of Qg(s) is
therefore a direct consequence of stability of Gg(s) and G 2(s),
proved earlier in this section. O

Stability of Qbil (s):

Proof. In complex domain QEI (s) = ﬁﬁm can be regarded

as a negative feedback loop around Ag(s). Since Ag(s) is
stable due to the stability of Qg(s), its Nyquist plot must not
encircle the critical point —1. Here we prove that [Ag(j®)| <1
holds at all frequencies. Since as B grows Ag(s) converges
to zero, it is sufficient to prove the above when |Ag(j)|
obtains its largest values, i.e. for B = 0. Calculating |Ao(jo)| =

2g (1) where g(T:0) = % we need to show

that |g(Te®)| < 1/2 Ve > 0. The solutions of ¢’ (Te®) =0

: 2 2
satisfy 1 —cosTe® = Sm(%w)((;i:)a)) ) for @ > 0. Substi-

tuting back to g yields g (T:0) = és.mc(r8 ®), which is clearly
smaller than § for all ® >0 (g(0) =0 is a minimum). O

Stability of Qp(s)Ge(s):

Proof. Qﬁ (s) is defined in (23) and Gg(s) in (41). Substituting
for Qp(s) and Gg(s) and using the relation Gg (5)e®™rs) =
Geo(s), where ® = 6 — 1., we obtain Og(s)Gg(s) = Ge(s) +
Gu(5)Go(s) — Gi(s)Ge(s). Since stability of Gg(s) is essen-
tially the same as of Gg(s), Qp(s)Ge(s) is stable due to
stability of Gg(s) and Gy (s), proved earlier in this section. [J

Stability of 1/Au(s):
HH&
15+
Uy, it will be sufficient to show that |e’”1 i) < 1 for
all frequencies, Where A(jo) = Bwj— »?, provided B > 0.
Defining Bwj — ®> = re/?, where = o\/ 0>+ B2 and ¢ =
m—tan~! ﬁ , We obtaln Ajo) = riel? (considering only the
positive branch of the square root for A(j®) to reduce to j®
for B =0). Since e/ =cos £+ jsin 4, the real part of e TAUO)
—Tcos (%7%tan" E) B efrr]/zsin (ltan’1 E)

Proof. Since the high frequency gain of is 1 for any

is given by e @ Since

O<tan‘1ﬁ < % for B >0 and thus sin( tan~! ﬁ) >0, we
obtain that |e~**U®)| < 1 for any B > 0. O
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