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Abstract: We propose a new control approach for swing oscillation suppression in large power grids,
based on a spatially continuous representation of the system. Traditional modeling is spatially discrete
irrespective of the grid size, perceiving the swing dynamics as frequency and phase oscillations.
However, we show that for long chains of generators the overall swing dynamics is essentially governed
by propagating electro-mechanical waves, retrieving the oscillations only locally. We therefore model
the system by partial differential equations, where we decompose the grid into open and closed ended
chains of generators, strings and rings. The key principle of the proposed approach is generation of uni-
directional control waves that achieve closed loop matching of measured disturbance waves. While in
strings this is naturally implemented by actuation at the boundary, the lack of boundaries in rings poses
significant challenges. We solve the problem by introducing a new method for interior generation of
near exact uni-directional waves. The method, which we denote by Interior Wave Suppression control,
requires a minimal number of concentrated actuation and measurement devices for a given ring.
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1. INTRODUCTION

Control of swing dynamics is a ubiquitous element of a large
power network, where widely dispersed generators are inter-
connected through tielines. The essential characteristic that pro-
vides flawless power transmission through the network is syn-
chronized rotation of all generators. However, in the presence of
any disturbances, which may be caused due to various reasons
including generation trips and outages or load changes, asyn-
chronous motion can result. Such a motion leads to oscillations
in the rotation frequency and angle, which poses a serious con-
cern, as it can lead to increasing frequency swings and therefore
brown-outs and black-outs. This problem has been addressed
extensively and is the subject of numerous publications, e.g.
Chakrabortty (2012); Mhaskar and Kulkarni (2006); Deng and
Zhang (2014). Most of the existing approaches are based on
spatially discrete modeling, implemented by ordinary differ-
ential equations (ODEs), and focus on analysis and synthesis
using the ODE-models.

Our thesis, in contrast, is that for large power grids the fun-
damental mechanism that produces the phase and frequency
oscillations is a continuous one. We argue that the swing dy-
namics in a string of power generators is the electrical analogue
of vibrations in a mechanical string, with the generators as the
inertia and the tieline admittance as the string tension. Trans-
mitting power over the grid is therefore equivalent to sending
a wave through the string. As we demonstrate in the sequel by
simulating the discrete model, as the number of generators on
a line becomes larger, the overall swing dynamics evolves into
traveling electro-mechanical waves, preserving the oscillations
as a local effect only. The existense and propagation of electro-
mechanical waves through the grid was also independently
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recorded by extensive simulations in Tsai et al. (2007). This
characteristic suggests modeling the system by partial differen-
tial equations (PDEs) rather than ordinary ones. As a result,
accurate and physically oriented methods for mitigating and
suppressing the disturbance waves are better realized through
the use of PDEs.

Indeed, the problem of modeling and controlling the swing
dynamics as a continuum has been examined in several research
studies. In Cresap and Hauer (1981), the swing of a string of
generators was modeled by an undamped wave equation. PDE
modeling of more complex grid configurations including two-
dimensional topology and various losses was carried out in
Thorp et al. (1998) and Parashar et al. (2004), where inclusion
of wind penetration was considered in Gayme and Chakrabortty
(2012). In Magar et al. (2014), adaptive control of a continu-
ously modeled string grid was designed using finite eigenmode
discretization of the PDE. In Sahyoun et al. (2015), optimal
control algorithm was designed for the exact one dimensional
PDE. In Lesieutre et al. (2002), boundary controllers were
designed for one and two dimensional lossless grids, which
eliminated wave reflection from the boundaries.

The approach we present in this paper is different first all due to
regarding a general two dimensional grid topology as a collec-
tion of interconnected open and closed ended one dimensional
chains of generators, denoted by strings and rings, respectively.
Assuming that a large number of generators is spanned along
each chain, we model the chains by one dimensional wave
equations, distinguishing strings from rings by appropriate end
conditions. For each of these two building blocks of the grid
we employ infinite dimensional transfer functions to design an
accurate, physically oriented control method, which fully uti-
lizes the exact PDE-structure by exploiting the system traveling
wave characteristics.

The key element of the proposed method is a special mech-
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anism that generates near uni-directional control waves that
are designed to match the disturbance waves via closed loop
algorithms. The uni-directional characteristic is crucial for the
controllers not to create themselves back action disturbance
waves. For strings this is implemented as boundary control,
i.e. by a concentrated actuation at a string end, which naturally
generates a wave traveling only at a single direction. The con-
trol working principle can then be considered as an absolute
absorption of waves incoming into the actuated end, thus pre-
venting their further reflections (which can be also regarded as
mechanical impedance matching). The approach then coincides
with the previously reported Absolute Vibration Suppression
(AVS) method, originally designed in Halevi (2005) to control
one-dimensional mechanical flexible structures governed by the
undamped wave equation. It was further extended in Sirota and
Halevi (2015b) and Sirota and Halevi (2015a) to more general
forms of it, accounting for in-domain damping and elasticity.
The approach in Lesieutre et al. (2002), though differently de-
rived, is essentially equivalent.

For rings, however, any concentrated actuation is inherently
interior, which means it generates two waves traveling in op-
posite directions. Blocking wave propagation by concentrated
interior actuation therefore becomes a highly nontrivial task.
Our solution includes designing a special combination of a
small number of concentrated actuators and sensors to pro-
duce a control wave, which approaches to be uni-directional
to the extent that control effort is available. Incorporation of
modern power systems control devices, such as the Thyristor
Controlled Series Compensator (TCSC), which is a Flexible
AC Transmission Systems (FACTS) device and Phasor Mea-
surement Units (PMU), Chakrabortty (2012)-Chakrabortty and
Khargonekar (2013), makes the proposed control method read-
ily implementable. We denote the method by Interior Wave
Suppression.

2. EXACT TRAVELING WAVE MODEL

In Sec. 2.1 we derive traveling wave models for swing dy-
namics of string and ring elements, which are illustrated in
Fig. 1. In Sec. 2.2 we represent the PDE associated with the
spatially continuous system through infinite dimension transfer
functions (TFs), which capture the propagating wave nature of
swing oscillations in the grid.

2.1 The Continuous Model in Time Domain

The commonly used model for swing dynamics of the i,
generator interconnected with K other (identical) generators is
spatially discrete, and is given, e.g. in Anderson and Fouad
(2008), by

2HS .. . K EE
25 +BS =P}y
Q k=1,k#i ik

sin(5i—8k). (1)

The variables &;(t);, and Si(t)[,/s] = w;(t) — Q are relative
swing angle and frequency, respectively, of the i;, generator,
Q = 60y, is the base frequency, Hj is the inertia constant,
Spw) s the generation rating, PZ%W} is the mechanical power.
The normalized voltage Ejj,, | equals 1 and the normalized
reactance of the line segment i,k is constant, Xi,k[MW*l] =X,
due to the even spacing assumed. The damping B represents
system losses augmented with secondary control, which keeps
zero steady state swing frequency error, Sauer and Pai (1998).
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Fig. 1. Basic elements of power grid topology comprising N
generators evenly interconnected through tie-lines of to-
tal length L. Top: closed-ended element - a ring. Bot-
tom: open-ended element - a string. Y is a power dis-
turbance. The Wave Suppression control setup with con-
trollers H(s), C(s) and control signals P, X is designed
in Sec. 3.

Since in strings and rings each generator is connected only to
its direct previous and forthcoming neighbors, the model (1),
for small angle deviations, takes the form

2HS . . 1

?&—l—B&:PIM—)f((&H —28+0i-1). (2)
For (2) to evolve into a spatially continuous system, the distance
between two adjacent generators, L/N, should be viewed as an
infinitesimal perturbation € in the spatial coordinate. That is,
setting locations i and i 4 i in (2) as u and u + €, we can rewrite
(2) as

2H S .

B, 1 8(utet)—28(u,t)+8(u—e,)
R 85(u,t)+83(u,t)— .

82

o <

3)
Letting € — 0, with the subscripts u and ¢ denoting partial
derivatives, (3) becomes

%5,,(.4,[) b6, (u,1) = pM (1) — %5,,,4(14,1‘), @)
where s = éS, x= éX ,b= éB and pM is a spatially distributed
deviation in mechanical power. Equation (4) is the well-known
damped wave equation, Graff (1975), and it coincides with the
continuous model of the swing dynamics originally derived in
Cresap and Hauer (1981). Bringing (4) to a canonical form and
designating pM as a power disturbance per unit length, v, we
obtain

c25u,,(u,t) = Oy (u,t) + P& (u,t) + %l[/(u,t), %)

where 8 = b/p and c is the electro-mechanical wave propaga-
tion speed, given in terms of the equivalent string tension 7" and
linear density p, by

T\ '/? 1 2Hs
¢ <p> ; ot p 0 6)
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While the equivalent continuous system of (2) in the form of
(4) requires that € be arbitrarily small, numerical simulations
shown in the example in Sec. 2.2 illustrate that the solutions
of the two systems, for typical values suggested in Cresap and
Hauer (1981), coincide even for € ~ 20 miles.

The related end conditions depend on which topology in Fig. 1
is being considered. In a string there should be no power flow
through the ends, i.e. free (Newmann) boundary conditions,
whereas in a ring we require position and power continuity,
leading to

64(0,¢) = 6,(L,t) =0;
6(0,6) =6(L,t), 6,(0,1) = &,(L,1);

string,
ring.

)

2.2 Transfer Function Representation

The intrinsic way of obtaining the exact traveling wave be-
havior of the system that is ready for a wave oriented control
is via representing the PDE (5) by its corresponding infinite
dimensional TF in the complex domain s. The TF of the damped
wave equation was derived in Sirota and Halevi (2015a), where
it was shown to be of fractional order in s, leading to nontrivial
time domain interpretation. Since our goal here is to deliver the
main idea of wave propagation in swing dynamics, we present
the TF derivation and the analysis thereafter for the simplified
undamped case, § = 0. However, the damping is assumed to
exist throughout the sequel, which is essential in the control
section 3. Applying Laplace transform to (5) with respect to
time, yields

2
Suu(x:5) = (2)" 8 (us5) — Ly (uss). (8)
The total solution of (8), which is a second order ODE in u,
with s as a parameter, is given by

L
5(u:5) = [ Gl E15)w(E:)dE. ©

where G(u,uy;s) is the TF from a spatially concentrated dis-
turbance W(s) acting at uy, to the swing angle deviation & (u;s).
For a string the TF becomes

ef‘r,,frﬂs +RL67(217|1,,71,,,|)3

Gsluss) = 205A4(s) (10,
Roef(rlﬁr\,,)s +R()RL€7(2T7TM7€W)X
2¢sAs(s)
and for a ring
elumls = (=lr—ry|)s
Grluss) = 2¢5A-(s) + 205A.(s) (D
where
Ag(s) =1—RoRre™*™,  A(s)=1-¢"", (12)
and
. S N IR
c c c c

Being infinite dimensional, (10) and (11) describe the simul-
taneous action of all system modes, thus implying traveling
waves. In particular, the response to the spatially concentrated
disturbance causes two waves to be generated, including pro-
gressive and regressive components, which respectively move
to the right vs. left in a string, and clockwise vs. counterclock-
wise in a ring. These two waves are captured by the first and the
second terms of each TF, respectively.

Each wave propagates along the structure with speed ¢ and
completes a full cycle, i.e. returns to its origin, after 27 time
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units in a string and 7 in a ring. The difference is due to the
reflection process that occurs in the string. The first cycle of
motion is represented by the TFs numerator, where the time
constants at the exponents indicate the appropriate wave arrival
times from uy to u. The proceeding cycles are represented by
the infinite series expansion
1 - k —2kes 1 " ke

— = RoR.)" e —— =) e . 14

AG) k;o( oRL) NE k;o (14)
The reflection effect depends on the nature of the boundary
condition, and is quantified by the exponent amplitudes Ry
and Ry, denoted by reflection coefficients. In the current case
of free ends we have Ry = R; = 1, hence a wave that hits a
free boundary is reflected identically. The wave shape during
motion is determined by the exponent powers. While angular
position is the shifted input integration due to the rigid body
mode, angular velocity is simply a shift of the input. A detailed
discussion of the propagation and reflection process in strings
can be found in Halevi (2005) and Sirota and Halevi (2013).
The traveling wave nature of the power grid is illustrated in the
following example.

Example 2.1. Consider a string of total length of L = 6400,
with N = 200 generators. Each generator is characterized by
H =5 and § = 375)sy], whereas the total line reactance
is given by X,y = 0.0031[MW7| . The equivalent continuous
system parameters are then given by ¢ = 2560,,,/5, T = 2.5

and ¢ = 797[MW~S/km]'

The response of the swing frequency by the discrete dynamics
as given in (2) and that of the corresponding continuous system
(5), atu = %L for a concentrated pulse disturbance Y at uy =

%L, were simulated and shown in Fig. 2 (in the form of blue and
black lines, respectively). The two graphs completely coincide,
which clearly demonstrates that the underlying swing dynamics
can be represented effectively by a spatially continuous system.
Fig. 3 illustrates how a disturbance that begins at the center of
the string generates two electro-mechanical waves that propa-
gate to the left and right and get reflected at the boundaries,
exactly as predicted by the TF (10). This confirms that the
oscillations observed in Fig. 2 are only a local effect of the
overall wave phenomenon.

0.02
0.015
0.01
0.005

Angular Velocity [r/s]

-0.005 | | | |
0 2 4 6 8 10

Time [s]

Fig. 2. Swing Frequency at u = %L of the string in Example 2.1

for uy, = %L. Black - continuous model (5). Blue - discrete
model (2).

3. WAVE SUPPRESSION CONTROL ALGORITHM

In this section we design a closed loop control method that
attenuates oscillations in the swing frequency S(M,t) by sup-
pressing the propagation of the electro-mechanical disturbance
wave, captured by the continuous model (5). In particular, the
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Angular Velocity [r/s]

3200
Distance [km]

Fig. 3. Swing Frequency of the string in Example 2.1 for uy =

%L. The response is plotted at different time instances 0 <
1 <t <<ty <ts <tg <7 for the entire string. Black
- the initial wave before reflection from the boundaries: #;
(solid), #, (dashed-dotted), t3 (dashed), 74 (dotted). Blue -
the wave after first reflection: #5 (dashed-dotted), ¢ (solid).

control action includes generating a wave as similar as possible
to the disturbance wave with the opposite sign, and scheduling
its injection to the grid to match the disturbance, thus creating
a net zero motion. The actual control mechanism in the string
case coincides with the AVS method introduced in Sec. 1, and
its application to the string power grid element is given in Sec.
3.1. The actuation is carried out by mechanical power delivery
(a concentrated force in a mechanical string analogy) to an end
generator, denoted by P{)"’ in Fig. 1-bottom. For a collocated
setup we place the sensor and actuator at the left end (u = 0
in the scheme), and design the controller H(s) (and possibly
C()).

In a ring topology, however, the lack of boundaries implies
that a single concentrated input acting at any location will
generate two waves (see the discussion in Sec. 2.2). In Sec.
3.2 we suggest the Interior Wave Suppression methodology
of generating in-domain near exact uni-directional waves, or
equivalently, creating artificial interior boundaries. The main
idea is affecting the spatial derivative of the system. Ideally,
this could be achieved by application of a pair of opposite
concentrated inputs at zero distance between each other. How-
ever, this is physically impossible, as it will result in a non
causal actuation system. The practical implication is therefore
the trade-off between exactness of wave direction and control
effort. We employ two concentrated control pairs, where one
is responsible for elimination of the progressive disturbance
wave and the other of the regressive. Each pair is applied at
two adjacent points, u;, u; + € and uy, up + € in Fig. 1-top, i.e.
a total of only four actuators. The control action can be carried
out either by mechanical power PM at all the four points. An
alternative way, which is adopted in this work, is combining
P at u; and uy with a different kind of actuation, namely
a change of reactance )? j beyond the nominal value X of the
corresponding line segments between u; and u; +¢€, j = 1,2.
X may be implemented by the emerging TCSC devices (Sec.
1), analogous to local change of tension in a mechanical string.
We place two corresponding sensors at locations u,,, and u,,,
which are not assumed collocated but satisfy u) < up, < up, <
uz, and design the controllers H(s) and C;(s).

3.1 Boundary Wave Suppression (or AVS) Control of the String

The control action by ISOM at the leftmost generator (Fig. 1-top)
is expressed in the continuous model (5) through the boundary
condition
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8,(0,1) = =R (1) (15)

Since the controlled variable is the swing frequency &(u,?),

the measured signal at u = 0 is §(0,7), denoted by v(0;s) after
Laplace transformation. The control signal is thus given by

PM(s) = —H(s)v(0;5), (16)

where the expression for v(0;s) = s8(0;s) is obtained from
(10). To achieve the Wave Suppression goal (i.e. generating
the opposite disturbance matching control wave), as a boundary
controller, H (s) should eliminate the wave reflections from that
boundary, i.e. to completely absorb the waves incoming at u =
0. The mathematical implication is canceling out the exponent
of the characteristic equation A,(s) in (12), retaining only the
first cycle of wave propagation. In the nominal undamped
system (10) the controller is given by

H(s) = ¢, a7
where the constant ¢, defined in (13), is the characteristic
mechanical impedance of the string. The resulting constant
rate feedback (16) is actually an active boundary damper. The
closed loop TF from the disturbance ¥(#) to the swing fre-
quency at any location 0 < u < L, becomes

ver(uss) 1 (ef\q,ff,,o\s +ef(zrf\f,,fru0|)s>
Yis) 29 ’

which coincides with (10) for an effective reflection coefficient
of Ry = 0, indeed indicating a complete wave absorption.

We analyze the closed loop system stability via the input-output
stability criterion, requiring that TFs from all possible exoge-
nous signals to all outputs are stable. We carry out the proof by a
straightforward calculation (suppressed here for brevity), yield-
ing that all the TFs in the loop are given by a finite summation
of delay exponents, similarly to (18), and thus are obviously
stable. For the realistic damped system, where the exponents
are of fractional order in s (i.e. no longer pure delays), stability
proof of each TF is more involved and is given in detail in
Sirota and Halevi (2015a). Control of the swing angle 6 (u,?) is
usually not required in the context of swing oscillation suppres-
sion. However, after closing the §(u,t) loop with (17), control
of 8(u,t) reduces to the well-explored problem of control of
rational systems (here an integrator) with delays via dead time
compensators (DTC), Smith (1957). The additional controller
C(s) should then be used.

The resulting closed loop behavior of 3(u,t) in Example 2.1
is illustrated in Fig. 4. As expected, the response contains only
the first cycle of motion (out of infinitely many open loop cycles
shown in Fig. 2). The coinciding responses of the discrete and
continuous models (2) and (5) pinpoint that traveling wave
behavior is intrinsic to large power grids.

(18)

3.2 Interior Wave Suppression Control of the Ring

We begin from incorporating the mechanical power and reac-
tance actuators pairs in the discrete model (2) and derive the
corresponding TFs for the continuous model (5). In the linear
swing equation (2) for generators i and i + 1, linearized about

. =E . 5E
an electrical power flow P;;,; = P, the reactance actuators

)’(v,-_,iH = X appear as a pair of power inputs at adjacent points
u; and u; 1 that correspond to locations u; and u; +¢€, j = 1,2,
in Fig. 1 for certain choices of i. Together with the counterpart

mechanical power PJM input at u;, we obtain
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Fig. 4. Swing frequency at u = %L in closed loop with controller

(17) of the string system in Example 2.1 for uy = %L. Only
first cycle of motion exists. Black - continuous model (5).
Blue - discrete model (1).

£

2HS . 1 P~ -
— 6 == [5i+1 —25i+6[_1] + 7Xj-|-PJM,
Q - X X (19)
2HS . 1 P S
T&#l =X [8i+2 — 26141 + 6] — YXj-

By (11), the TF from ﬁjM and X j to the swing frequency then
becomes

—E
1 ~ ~
i5) = ———— | Ep.(u;5)P" — Ex, (u;5)X;
v(u;s) S0A () ( P, (u;5)P;" (s) + X x; (U3 5) J(s)>
(20)
where
EPj(u;S) — e_lfu—fuj‘s +€7 (Tf‘fuffu_/‘)“‘ (213)
EXj(M;S) _ eflfu*(fuj+7€>|s +67<77‘Tu*(7u_/+7€)‘)s 7EP/- (M;S),
(21b)

where following (13), 7,; = "?’ and 7, = £. We begin by
designing the H;(s) loops and set the control laws to be
P = —Hi(s)Vp (), PY' = —Ho(s)VF (umy3s),
=~ 1 ~ 1
Xi = ——H\ ()0 (tmy35), Xo=———Ha(s)8 (tmy;s),
P ¢ my PE(P F my

(22)

where
Hy(s) = Ha(s) = ¢ (23)
coincides with (17). We now explain the feedback signals in
(22), which are the filtered (F) regressive (—) swing frequency
(v) and phase (8) waves at u,,| and their progressive counter-
parts (+) at u,». The isolation of a directional wave out of
a total measurement is a matter of programming. For ease of
derivation we use the obvious relation & (u;s) = %v(u s) Wthh

leads to the equivalent form of the reactance laws X, = PM

and X, = —ﬁf’zﬁ”, and
S

1 - . 2 - . Dl
m (Eu,(uml,s)‘l‘—l-jzlEj (umj,s)P]M> ,

1 2 ~
+ CQ) — + ) +(
1% (lfimz,s) = 2¢Tr(s) <Ew(um2,s)‘P+]_;Ej (Mm],S)P;W> .
(24)
The terms E,, (tm13s) and Elf, (tm2;5) depend on the location of
W, for example for u;,) < uy < Upma, Ey?(uml; 5) = e~ (uy—tm1)s
and Ey (up;s) = e ~(mm2—uy)s Using (21) with 5 1= ‘ic, gives

V" (tmy38) =
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Ef(um.;S):e (= s (1- A7 (5))
EH () = e (=TS (1 AT (s
1( my ) ( ( ) (25)
E{(Mml,s) ‘L'u2 Tmy S(]—f—A (S)
E;UMQJ)— ~T T ) (14 A (s))
where
c
A (s)=— (e —1) At(s)=— ("™ —1 26
()= = (™ =1) A== (™=1). @6
Letting € — 0, yields
. — _ + —
£1_r>1(1){A (s)}_ 1 ll_[}r(l){A } 1, 27

and thus

lim {E; (u138)} =250 lim {E[ (uanis) } =0
elg(l){ 1 (m1 s)} ¢ ) elg(l){ 1 (m2 s)} )

iy (B3 (i)} = 2675 i (i)} =0
(28)
Therefore, as the distance between the generators decreases,
E| (tm1;s) and E5 (uyp;s) become regressive at uy; and pro-
gressive at up,; control waves, which are tuned by the laws
(22) to match the correspondingly measured waves. However,
since € will never be equal to zero, there will be a remainder
of a progressive control wave at u,, and a regressive one at
Uy Although the remainder is small, if it enters the feedback
loop it will eventually lead to divergence. Since those are parts
of the control signal, we are able to subtract them out of the
measurement, namely feeding back the reduced signals

1 ~
200.(5) (EJ/ (tm135)¥ +Ep (uml;s)p{"’) 7

1 -
Vi (my8) = oA ) (EVJ; (um2; )Y +E5 (Mmz;S)PZM) )

Such reduction is appropriate due to our original assumption
that damping exists, i.e. the roots of A,(s) are stable. The total
closed loop response still contains that remainder, but its am-
plitude will become smaller as € decreases, and in any manner
will eventually vanish due to damping.

However, since the the control laws for X ; effectively consist of

Vi (U3 8) =
(29)

integration of the PJM laws, the H;(s) loops are not sufficient to
internally stabilize the system. This suggests invoking the addi-
tional Cj(s) loops in Fig. 1, to control the swing angle J(u;s),
which contalns the rigid body mode, the stable H;(s) loops
closed system, and a delay. A reasonable choice of C; ( ) is thus
again a DTC, but due to the several actuation and measurement
options, its design should be taken carefully. In this paper we
employ only Cj(s) for the DTC (and C,(s) = 0). The overall
stability proof, which is not given here due to space limitations,
is quite straightforward in the undamped case but more involved
in the damped case, following similar lines as the proof in Sirota
and Halevi (2015a).

Figure 5 demonstrates the swing frequency response of the
system in Example 2.1 for a ring element under the action of the
ring H;(s) controllers (22) and an appropriate Cj (s) controller.
The disturbance penetrates at uy = 0.15L, the actuation and
measurement locations are respectively given by u; = 0.35L,
up =0.75L, up,, = 0.45L, u,, = 0.65L. The open loop response
(black) is plotted vs. the H;(s) loops only (blue) and vs. the
total closed loop (red). The blue plot illustrates the process of
wave motion termination in the ring. The red plot illustrates the
response of the total loop. Figure 6 depicts the total loop control
signals, which all converge to zero. Figure 7 shows the corre-
sponding total closed loop angle response, which converges to
zero at the entire ring.
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Fig. 5. Swing frequency at u = %L for uy = 0.15L of the ring
system in Example 2.1. Wave suppression demonstration.
Black - open loop. Blue - closed loop with (22) only. Red
- total closed loop.

0.1 0.1
=~ =
3 oJ\J\m—a‘“o—/k—v—
0 5 10 0 5 10
%107 %107

0 5 10 0 5 10
Time [s] Time [s]

Fig. 6. Control signals of the total response in Fig. 5.
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Fig. 7. Swing angle of the ring system in Example 2.1 for
uy = 0.15L. Total closed loop response is regulated to zero
forall0 <u < L.
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