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Abstract
Paper wasps (genus: Polistes) are one of the most species rich genera of social insect.

Prior studies have found that male coloration, male color pattern, territory choice, and female
caste are potential drivers of intraspecific mate choice in paper wasps. However, there has been
no formal assessment of interspecific mate choice in this group, therefore the mechanisms
driving diversification in paper wasps remains an open question. This study measured
interspecific and intraspecific mating behavior between two closely related species of paper
wasps, Polistes fuscatus and Polistes metricus. These two species have ample opportunity to
interbreed as P. fuscatus and P. metricus forage, nest, and mate in the same habitats. We tested
the strength of reproductive isolation between these species using no choice and choice mating
trials. Our results show strong, symmetric, prezygotic isolation between P. fuscatus and P.
metricus. Males discriminated between conspecifics and heterospecifics but attempted to mate
with females of the other species in approximately 10% of heterospecific mating trials. Female
wasps were more discriminating than males and likely evaluated species identity and male quality
through visual or olfactory cues. We additionally report sexual dimorphism in P. metricus body

size.
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Introduction

Social hymenopterans are a highly successful group of organisms. Surprisingly, the
mechanisms that cause diversification in this group have received little attention (Boomsma,
Baer, & Heinze, 2005; Baer, 2014). One approach to studying the process of speciation is to
identify reproductive boundaries between species and to test the strength of these boundaries
(Coyne & Orr 2004). Understanding reproductive boundaries in social hymenoptera is of interest
because features of social insect mating systems predict that social insects should have high
specificity in mating signals, which can promote speciation and diversification (Coyne & Orr
2004). For example, populations of red-tailed bumblebees (Bombus lapidarius) show recent
divergence in male marking secretions, an important cue for mate attraction (Lecocq et al., 2013).
However male social insects lack energetically costly mating displays and rarely display male
specific ornamentation characteristic of other systems with strong sexual selection (Boomsma et
al., 2005; Baer, 2014; Beani et al., 2014), leaving the cause of diversification in this group an open
question.

Both male and female social hymenoptera have highly skewed distribution in mating
success. The majority of female social hymenoptera are non-reproductive workers. Only a small
proportion of female social hymenoptera mate, and for primitively social species such as paper
wasps, many mated females join cooperative foundress associations and never reproduce
(Reeve, 1991). Male Polistes dominula paper wasps can distinguish between non-reproductive
workers and reproductive females (Cappa et al., 2013). Mating in social hymenoptera typically
occurs in leks or groups, characterized by strong male competition and female choice (Boomsma

et al., 2005; Beani et al., 2014). Females are monogamous for most species of social hymenoptera
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(Strassmann, 2001). Male social hymenoptera do not provide parental care or nuptial gifts, with
rare exceptions (see Beani et al., 2014), but contribute only gametes to offspring. As a result, a
female likely chooses to mate with a male solely based upon her assessment of male quality.
Together these features predict that social hymenopteran mating signals should show high
specificity.

Polistes paper wasps are one of the most species rich genera of social insect making this
an interesting candidate group in which to investigate social insect diversification. There are
more than 200 recognized species of paper wasp (Carpenter, 1996). Species display wide
variation in body and facial coloration both within and between species (de Souza et al., 2017b;
Carpenter, 1996; Tibbetts, 2004). Paper wasp species often have overlapping ranges, but there is
little ecological differentiation among paper wasps (Buck, Marshall & Cheung 2008; Richter,
2000). Together, these observations suggest that diversification in these species may be driven
or reinforced by specificity in mating signals. In support of this prediction, coloration has been
shown to be an important signal for mate choice within species. Male stenogastrine wasps have
sexually dimorphic stripes on their tergites, which are displayed during territorial competition
and mating (Beani & Turillazzi, 1999). In P. dominula, the size of a yellow abdominal marking
influences female mating choice and male-male competition (de Souza et al., 2017a; l1zzo &
Tibbetts, 2012). Similarly, black facial pigmentation and yellow abdominal spots can impact the
choice of sexual partner for P. simillimus (de Souza et al., 2014), and these markings may be
honest signals of male quality (de Souza et al., 2018).

In temperate latitudes, paper wasp colonies are started by a single wasp or by a small

group of female wasps (foundress association) in the spring (Sheehan et al., 2015). Colonies
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produce female worker offspring until mid-summer when nests transition to rearing males and
reproductive females (gynes). Males leave their natal nests to gather at leks or defend small
contiguous territories near the tops of vertical structures such as trees, buildings or telephone
poles (Beani et al., 1992; Beani & Turillazzi, 1988; Beani & Turillazzi, 1990a,b; Beani & Zaccaroni,
2015; Matthes-Sears & Alcock 1986; Polak, 1993). Mating occurs when females approach lekking
sites. However, smaller males may attempt to mate opportunistically with females near foraging
areas or flight paths (Beani & Turillazzi 1988; Post & Jeanne 1983; Polak 1993). Mating territories
commonly contain multiple species of paper wasp (Beani & Turillazzi 1990b; Reed & Landolt
1991). As a result of this overlap, unsuccessful heterospecific mating attempts have been
observed in the wild (Post & Jeanne, 1983; Reed & Landolt 1991). These heterospecific mating
attempts may be stimulated in part by a long-distance volatile pheromone produced by gynes,
which has been shown to attract both conspecific and heterospecific males (Post & Jeanne 1984;
Reed & Landolt 1990; Ono & Sasaki 1987). After mating, gynes diapause over winter, then the
following spring, they build new nests and rear the first group of worker offspring. Due to the
disproportionate female investment in offspring, paper wasps gynes may be choosier and more
discriminating in mate choice than males.

This study assessed inter- and intraspecific mating behavior between two species of paper
wasp, Polistes fuscatus and Polistes metricus. These species are sympatric throughout most of
their range where they forage, nest, and mate in similar habitats, offering ample opportunity for
these species to interbreed (Miller et al., 2018b). Quantifying reproductive isolation between P.

fuscatus and P. metricus may be particularly interesting because these species exhibit only weak
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genetic divergence (Miller et al., 2018a), suggesting that reproductive boundaries between these

species may have formed recently or may be still in the process of forming.

Methods

Wasp Collection

In September 2017, P. fuscatus nests (N=24) were collected in New York (Schuyler and
Thompkins Counties) and P. metricus (N=11) nests were collected in Maryland (Frederick and
Montgomery Counties). P. fuscatus and P. metricus are sympatric in Maryland, but only P.
fuscatus is found in New York. Adult wasps were housed in plastic containers, segregated by nest
and gender. Pupae hatching in mid-September were either male or assumed to be reproductive
females (gynes). Nests were monitored daily for eclosed wasps. Newly emerged wasps were
immediately removed and housed with other nest members of the same gender to ensure that
individuals had no prior exposure to members of the opposite sex. Wasps were keptina 12L:12D

light cycle and fed water and sugar ad libitum.

Mating Experiment 1

Individuals were randomly assigned to mating trials (N=152) in one of four groups: P.
fuscatus female x P. fuscatus male; P. metricus female x P. metricus male; P. fuscatus female x P.
metricus male; and P. metricus female x P. fuscatus male. Male and female wasps from the same
nest were never paired. Wasps were individually housed during the course of the experiment to

prevent the transmission of social or chemical information.
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More females eclosed in the lab (P. fuscatus N=77; P. metricus N=72) than males (P.
fuscatus N=37; P. metricus N=23). Due to the discrepancy between the sexes, virgin females with
no prior mating experience were used in all trials, but lab eclosed males were used multiple times,
always with the same species of female. Using males in multiple mate choice trials is consistent
with the experience of wasps in the wild as male wasps will mate multiple times if given the
opportunity, whereas female wasps typically mate only once (Hughes et al., 2008).

Mating trials followed a no-choice design. A single virgin female and a single lab eclosed
male were introduced into a petri dish containing a vial of water. Wasps were allowed to interact
for two hours and were weighed at the end of the trial. Trials were recorded with Sony HDR-
CX405 video cameras. Males were allowed to recuperate for at least 24 hours between trials. All

trials were conducted from 10:00-16:00 h.

Measurement of Behavior

Behavioral interactions between males and females were quantified for the first 30
minutes of each trial. Male interest was determined by measuring the latency and frequency of
three male behaviors required for mating (based on Beani & Turillazzi 1988). (1)
Approach/inspection: the male oriented his head and body in the direction of the female, walked
towards the female, and attempted to contact the female with his legs or antenna. (2) Mating
Attempt: the male mounted the female in preparation for mating. (3) Mating: genital linkage
occurred for ten or more seconds. Matings that occurred in the remaining 90 minutes of each

trial were also recorded.
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To assess female aggression, we counted the number of snaps (opening and closing of
mandibles in the direction of the other wasp), bites, and stings. Aggressive behaviors had a highly
skewed distribution, driven by several extremely aggressive females. Therefore, we report
aggression as the log of the sum of the number of aggressive behaviors observed in each trial. All

behaviors were scored using BORIS (V6.2.2) by two observers blind to species identity.

Mating Experiment 2

There was a low proportion of successful matings in experiment 1. We therefore
performed a second set of trials to test if female receptivity increased when females were given
a choice of mating partners. Mating trials used the same pairings as Experiment 1 (N=99).
Experiment 2 began two days following the final Experiment 1 trial. Most mating in Experiment
1 occurred within the first fifteen minutes of the trial, therefore we reduced the length of mating
trials to thirty minutes. Trials followed the same procedure as Experiment 1, with the exception
that each trial used two males.

Females in Experiment 2 had been previously used in a single trial in Experiment 1 but
had not mated during that trial. Several males died prior to the start of Experiment 2, either as a
result of female aggression or due to senescence. To increase the number of males in the
experiment, additional wild-caught males collected on nests (P. fuscatus N=44; P. metricus N=22)
or caught on the wing (P. fuscatus N=2) were included. Wasps of both genders were assigned to
the same pairing as in Experiment 1. For each trial, we report the latency for the first male to

attempt to mate, and the latency of the first copulation.
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Statistical Analysis

Differences in male and female body size were assessed separately for each species using
a linear mixed effects model with the nlme package (Pinheiro et al. 2018), including nest of origin
as a random effect. Chi square tests were used to measure the difference in the frequency of
male behaviors between heterospecific and conspecific mating trials. Due to the small number
of counts in some groups, p-values were estimated using Monte-Carlo simulations (N=2000).
Quantitative measurements of behavior were not normally distributed, as a result, the non-
parametric Kruskal-Wallis test was used to assess differences in these behaviors between
conspecific and heterospecific trials. Following Coyne and Orr (1989), the strength of prezygotic
reproductive isolation was estimated as: 1 — (frequency of heterospecific mating/frequency of

conspecific mating). All statistics analyses were calculated with R (v3.4.3) (R Core Team, 2018).

Results

P. fuscatus and P. metricus were differentially sexual dimorphic in body weight. P.
metricus females were smaller than P. metricus males (Fig 1A: F1,100=34.6, P<0.0001). P. fuscatus
females were larger than P. fuscatus males, but this result was not statistically significant after
correcting for nest (F1124=2.3, P=0.13). This resulted in females that were smaller than males in

the P. metricus male x P. fuscatus female pairings, in comparison to other pairings (Figure 1B).

Experiment 1
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Male mating behavior in no-choice trials was simple and identical for P. fuscatus and P.
metricus. The male approached the female early in the trial. If she was receptive, the male
mounted the female and mating occurred. Males did not perform any visible courtship behavior,
indicating that female choice likely relied solely upon visual or chemical cues of male quality.

Males inspected females in 145 trials (96%). Males were equally likely to inspect
conspecific and heterospecific females (X2 = 2.0, P=0.75), but were slower to inspect and spent
less time inspecting females of the other species (Table 1; Figure 2A,D; Latency: H,= 7.2, P=0.007;
Time: H,= 33.9, P=5.7e”®). Males mounted females (hereafter “Attempt”): Mating attempts
occurred in 40 of 152 trials (27%). Mating attempts were more likely to occur in conspecific trials
(X% =41.7, P=5e%). Males attempted to mate with conspecifics more rapidly (Figure 2B: Latency:
H,=7.2, P=0.007) and spent more time attempting to mate with conspecifics than heterospecifics
(Figure 2E: Time mounting: H,= 33.9, P=5.7e). Mating occurred in 19 trials (13%). All matings
were between conspecifics (X? = 25.3, P=5e™). When mating occurred, the pair typically mated
rapidly (median time: 308s).

This experiment had a low rate of mating success, largely driven by female rejection of
males. Females rejected males by performing aggressive behaviors towards the male, preventing
males from mating, or by moving her abdomen to prevent genital linkage after mounting
occurred. Females were more aggressive towards conspecific males (H, = 5.5, P=0.02), but this
difference was driven by the higher number of mating attempts by conspecific males than
heterospecific males. The highest rates of aggression were observed during trials between P.

fuscatus females and P. metricus males (Figure 2F).
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There was uneven mating success among males. Only 6 of 19 males mated (32%) in P.
fuscatus x P. fuscatus mating trials, with two males mating twice. Similarly, 8 of 20 males mated
(40%) in P. metricus x P. metricus trials, with three males each mating twice. Mated P. fuscatus
males were smaller than males that did not mate (paired t-test: t = 2.5, df=11.6, P=0.03).
Conversely, P. metricus males were larger in trials with successful mating, but this difference was
not significant (paired t-test: t = -0.86, df=24.1, P=0.40). The relative difference in male and
female body size was not a predictor of mating success for P. fuscatus (paired t-test: t = -1.1,

df=9.1, P=0.31) or P. metricus (paired t-test: t = -0.24, df=32.4, P=0.81).

Experiment 2

Males attempted to mount females in 34 trials (34%). As above, mating attempts were
more likely to occur in conspecific trials (Table 2; X?> = 33.3, P=5e) but there was no difference
in the latency to attempt to mate between conspecific and heterospecific trials (Figure 2G; H; =
0.33, P=0.56). Mating occurred in 24 trials (25%). Mating was more likely to occur between
conspecifics (X2 = 20.8, P=5e*), however we observed two interspecific matings. One mating
occurred between a P. fuscatus female and a P. metricus male, and one mating between a P.
metricus female and a P. fuscatus male. In both trials, the female had a smaller body weight than
the male. The latency to mate was similar for conspecific and heterospecific trials (Figure 2H: H;
= 0.05, P=0.82). The difference in the latency in mating attempts and mating observed between
Experiment 1 and Experiment 2 was largely driven by a single heterospecific trial during which
mating occurred almost immediately. The two female wasps that mated with heterospecifics

were overwintered in the lab but neither female produced offspring. One female died in the early

10
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spring before founding a nest. The second female joined a cooperative foundress association as
a subordinate but did not lay eggs.

Including female choice led to a moderate increase in mating success (Figure 2l).
Experiment 2 had more mating attempts (odds ratio = 0.68 (95% Cl: 0.39-1.19), P=0.18) and
successful matings (odds ratio = 0.45 (95% Cl: 0.23-0.87), P=0.019), than experiment 1.
Combining the results of experiments 1 and 2, we estimate prezygotic reproductive isolation
between P. fuscatus and P. metricus as 0.91.

Males from different sources (wild caught or lab eclosed) attempted to mate (odds ratio
=1.54 (95% Cl: 0.68-3.5), P=0.30) and mated at similar frequencies (odds ratio=1.3 (95% Cl: 0.51-
3.53), P=0.58). Male body weight did not influence female mate choice in Experiment 2. P.
fuscatus females did not preferentially mate with the smaller male (paired t-test: t= 1.3, df=15.7,
P=0.21), nor did P. metricus females prefer the larger male (paired t-test: t= -0.5, df=13.9,
P=0.62). In three of the conspecific trials (3%), the female mated with both males.

In five trials (5.1%), one male attempted to mate with the other male. Male-male mating
occurred in only a single trial with the same species pairing. During this trial, a P. fuscatus male
first mated with the P. fuscatus female. The same male then attempted to mate with the other
male. The remaining four trials with male-male mating attempts were pairings between a P.
metricus female and P. fuscatus males. In all four trials, the male initially inspected - but did not
mate with - the female, prior to mounting the other male. Body weight did not predict which

male mounted the other male (paired t-test: t=-1.19, df=5.5, P=0.28).

11



244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Discussion

Mate choice experiments showed strong, symmetric, prezygotic isolation between P.
fuscatus and P. metricus. Male wasps were less likely to attempt to mate with heterospecifics
than conspecifics, although males attempted to mate with females of the other species in
approximately 10% of heterospecific mating trials. Matching prior observations, males did not
perform any obvious courtship behavior towards females. As a result, female assessment of
species identity and male quality likely relied on visual or olfactory cues. Male wasps had skewed
mating success with some males mating multiple times, suggesting that certain males were
perceived to be of higher quality by females. Female wasps were choosy and frequently rejected
undesirable males through aggressive interactions. This led to a low level of mating success even
among correct species pairings, matching previous observations of mating in P. fuscatus (Post
and Jeanne, 1983). In these trials, successful mating was primarily determined through female
choice.

P. fuscatus females were larger than P. fuscatus males and conversely, P. metricus females
were smaller than P. metricus males. Boomsma et al. (2005) predicted that social insects will have
little sexual dimorphism, but when sexual dimorphism exists, males should be smaller than
females. The higher body weight in P. metricus males appears to contradict these findings.
Experiment 1 suggested that P. fuscatus females preferred smaller males while P. metricus
females preferred larger males, but this result was not significant in Experiment 2. However, one
possible confound was our use of body weight rather than body length to assess male size. Body
weight may be affected by the nutritional condition, therefore the role of male body size in mate

choice is still uncertain for these species.
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Prezygotic discrimination between P. fuscatus and P. metricus was not complete. In two
trials, females mated with heterospecific males. Neither of these trials produced offspring, but
further studies are necessary to determine if additional post-mating isolating mechanisms exist
between these species. Nevertheless, our results suggest the potential for hybridization and gene
flow between P. fuscatus and P. metricus in the wild.

If mating success in these species is driven by female choice, interspecific mating is more
likely to occur when females have incomplete or inaccurate information about male quality. This
could occur when one species is rare, and the other species is common, such as at range limits.
Alternatively, if females are using visual or olfactory cues to choose a mate, interspecific mating
may occur in situations in which these signals are obscured. For example, crowded lekking sites
containing many males of multiple species. Lastly, interspecific mating could occur when males
are able to circumvent female choice, such as coercive mating between large males and small
females, as may have been the case in the heterospecific matings in our study.

Poor mate choice decisions can also occur when high quality heterospecifics are confused
with conspecifics, leading to a conflict between species choice and mate choice (Pfennig, 1998).
In social hymenopterans, gender is determined through single-locus complementary sex
determination. When a female mates with a male with the same allele at the sex-determination
locus, half of diploid offspring produced will be sterile males, leading to a severe fitness cost to
the nest (Crozier, 1977). A byproduct of inbreeding avoidance could be an increase in
heterospecific matings. In addition, a poor mate choice decision may be better than not mating.
Mated Bombus gynes have higher rates of winter survival than un-mated gynes (Baer & Schmid-

Hempel, 2001; Gerloff & Schmid-Hempel, 2005), and there is some indication of similar benefits

13



288

289

290

291

292

293

294

295

296

297

298

299
300
301
302
303
304
305

306

307
308

309
310

311
312
313

314
315

of mating in P. dominula (lzzo, 2011), suggesting that males provide unknown supplemental
resources for females.

Our experiments found that male wasps had a larger margin of error for incorrect species
choice. This was evidenced by male attempts to mate with other males in Experiment 2. Male-
male mating behavior ininsects is thought to represent a case of mistaken identity and inaccurate
mate choice (Scharf & Martin, 2013; Sales et al., 2018). Male-male mating attempts occurred at
a similar frequency to male attempts to mate with heterospecific females.

Overall, we found strong but incomplete mate choice discrimination between P. fuscatus
and P. metricus. Future studies are needed to determine which cues are important for
distinguishing species identity during mate choice and to determine the frequency of
hybridization between these species in nature.
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Figure 1: (A) Body weight for P. metricus and P. fuscatus females and males. (B) The difference
in body weight in Experiment 1 between paired males and females from the four possible
species pairings. Due to the larger body weight of P. metricus males, females were smaller than

males in the P. metricus male x P. fuscatus female trials.
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Figure 2: Quantitative measurements of male mating behavior in Experiment 1 shows that
males (A) approach, (B) mount/attempt to mate, and (C) mate with conspecific females more
quickly than heterospecific females. Males spend more time (D) approaching and (E)
attempting to mate with conspecific females during the first 30-minutes of each trial.
Heterospecific pairings did not mate during any trial in Experiment 1. Female P. fuscatus were
slightly more aggressive (F) than P. metricus females. Experiment 2 showed similar results with
males (G) attempting to mate, and (H) mating with conspecific females more quickly than
heterospecific females. There was a small increase in the proportion of trials during which

males attempted to mate and mated (l) in Experiment 2 compared to Experiment 1.
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Type Trials | Approaches | Latency to Approach | Attempts | Latency to Atempt [ Matings | Latency to Mate | Female Aggression
fuscatus female x fuscatus male 36 35 187.6 + 60.6 16 234 + 105.5 8 303 +181.4 2.1+0.31
fuscatus female x metricus male 41 40 297 +64.8 4 703.9 + 248.0 0 NA 1.43+£0.29
metricus female x fuscatus male 39 35 262.7 + 56.9 0 NA 0 NA 1.11+£0.19
metricus female x metricus male | 35 35 188.6 + 43.9 20 313.4+71.2 11 1626.4 + 807.3 1.62 £ 0.20

Table 1: Summary of results from Mate choice Experiment 1. Approaches, attempts, and

matings refer to the number of trials during which a male performed that behavior. Latency to

approach, latency to attempt, and latency to mate are the mean and standard error of the time

it took a male to perform that behavior during the trial in seconds. Female aggression is the

mean and standard error of the female aggression index (see methods).

Type Trials | Attempts |Latency to Atempt [Matings |Latency to Mate
fuscatus female x fuscatus male 31 17 176.9 + 87.2 12 281.2+125.4
fuscatus female x metricus male 24 2 11.7 + 1 0.01
metricus female x fuscatus male 23 1 11426 + 1153.9
metricus female x metricus male | 21 14 186.1+47.7 10 456.3 + 182.7

Table 2: Summary of results from Mate choice Experiment 2. Attempts, and matings refer to

the number of trials during which a male performed that behavior. Latency to attempt, and

latency to mate is the mean and standard error of the time it took a male to perform that

behavior during the trial in seconds.
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